Preface

This book is an adaptation of notes that have been used to teach a class in
evolutionary computation at Iowa State University for eight years. A number
of people have used the notes over the years, and by publishing them in book
form I hope to make the material available to a wider audience.

It is important to state clearly what this book is and what it is not. It
is a text for an undergraduate or first-year graduate course in evolutionary
computation for computer science, engineering, or other computational science
students. The large number of homework problems, projects, and experiments
stem from an effort to make the text accessible to undergraduates with some
programming skill. This book is directed mainly toward application of evolu-
tionary algorithms. This book is not a complete introduction to evolutionary
computation, nor does it contain a history of the discipline. It is not a theoret-
ical treatment of evolutionary computation, lacking chapters on the schema
theorem and the no free lunch theorem.

The key to this text are the experiments. The experiments are small com-
putational projects intended to illustrate single aspects of evolutionary com-
putation or to compare different methods. Small changes in implementation
create substantial changes in the behavior of an evolutionary algorithm. Be-
cause of this, the text does not tell students what will happen if a given method
is used. Rather, it encourages them to experiment with the method. The ex-
periments are intended to be used to drive student learning. The instructor
should encourage students to experiment beyond the stated boundaries of the
experiments. I have had excellent luck with students finding publishable new
ideas by exceeding the bounds of the experiments suggested in the book.

Source code for experiments, errata for the book, and bonus chapters and
sections extending material in the book are available via the Springer website
www. Springeronline.com or at

www.eldar.http://eldar.mathstat.uoguelph.ca/dashlock/OMEC/

The book is too long for a one-semester course, and I have never managed
to teach more than eight chapters in any one-semester offering of the course.
The diagrams at the end of this preface give some possible paths through the
text with different emphases. The chapter summaries following the diagrams
may also be of some help in planning a course that uses this text.

VIII

Evolutionary Computation for Modeling and Optimization

Some Suggestions for Instructors Using This Text

Make sure you run the code for an experiment before you hand it out
to the class. Idiosyncratic details of your local system can cause serious
problems. Lean on your most computationally competent students; they
can be a treasure.

Be very clear from the beginning about how you want your students to
write up an experiment. Appendix A shows the way I ask students to write
up labs for my version of the course.

I sometimes run contests for Prisoner’s Dilemma, Sunburn, the virtual
politicians, or other competitive evolutionary tasks. Students evolve com-
petitors and turn them in to compete with each other. Such competitions
can be very motivational.

Assign and grade lots of homework, including the essay questions. These
questions are difficult to grade, but they give you, the instructor, excellent
feedback about what your students have and have not absorbed. They also
force the students that make an honest try to confront their own ignorance.

Possible Paths Through the Text

The following diagrams give six possible collections of paths through the text.
Chapters listed in parentheses are prerequisite. Thus 13.3(6) means that Sec-
tion 13.3 uses material from Chapter 6.

1.1-1.2

- e—

I
'
>
?
3

3
\61 / \4
€2 91292+
- V. ‘
rel 10.1
8.1
i |
12
9 N
AN 13.1-13.2
13.1
13.2 14.1
13.3(6) |
13.4(9) 15.1

A course on using evolutionary algo-
rithms for optimization.

A course on evolutionary algorithms
using only simple string data struc-
tures.

-—0 ——

8.1
14.1-14.2 i
l \ 10
15.1 ‘
15.2(6) 12
15.4
15.5

A course on using evolutionary algo-
rithms for modeling.

A course focused on genetic pro-
gramming.

Preface X

A broad survey of techniques in evo-
lutionary computation.

O\ L) e—) e——

/N

13.1 8.1
13.2 \ l
\ /9

15

A course on evolutionary algorithms
potentially useful in bioinformatics.

X Evolutionary Computation for Modeling and Optimization
A Brief Summary of Chapters

Chapter 1 gives examples of evolutionary algorithms and a brief introduction
to simple evolutionary algorithms and simple genetic programming. There is
some background in biology in the chapter that may help a computational
specialist understand the biological inspiration for evolutionary computation.
There is also material included to help the instructor with students deeply
skeptical of the scientific foundations of evolution. Chapter 1 can typically
be skipped if there is a shortage of time. Most of the technically required
background is repeated in greater detail in later chapters.

Chapter 2 introduces simple string data structure evolutionary algorithms.
In this context, it surveys the “parts list” of most evolutionary algorithms
including mutation and crossover operators, and selection and replacement
mechanisms. The chapter also introduces two complex string problems: the
Royal Road problem and the self-avoiding walk problem. These set the stage
for the discussion of fitness landscapes in Chapter 3. The final section intro-
duces a technical flourish and can easily be skipped.

Chapter 3 introduces real function optimization using a string of real numbers
(array) as its representation. The notion of fitness landscape is introduced. The
idea of niche specialization is introduced in Section 3.3 and may be included or
skipped. Section 4 closely compares two fitness functions for the same problem.
Section 5 introduces a simplified version of the circuit board layout problem.
The fitness function is constant except where it is discontinuous and so makes
a natural target for an evolutionary computation.

Chapter 4 introduces the idea of a model-based fitness function. Both the star
fighter design problem (Sunburn) and the virtual politicians use a model of a
situation to evaluate fitness. The model of selection and replacement is a novel
one: gladiatorial tournament selection. This chapter is not deep, is intended
to be fun, and is quite popular with students.

Chapter 5 introduces the programming of very simple artificial neural nets
with an evolutionary algorithm in the context of virtual robots. These virtual
robots, the symbots, are fairly good models of trophic life forms. This chapter
introduces the problem of stochastic fitness evaluation in which there are a
large number of fitness cases that need to be sampled. The true “fitness” of a
given symbot is elusive and must be approximated. This chapter is a natural
for visualization. If you have graphics-competent students, have them build a
visualization tool for the symbots.

Chapter 6 introduces the finite state machine representation. The first section
is a little dry, but contains important technical background. The second sec-

Preface XI

tion uses finite state machines as game-playing agents for Iterated Prisoner’s
Dilemma. This section lays out the foundations used in a good deal of pub-
lished research in a broad variety of fields. The third section continues on to
other games. The first section of this chapter is needed for both GP automata
in Chapter 10 and chaos automata in Chapter 15.

Chapter 7 introduces the permutation or ordered list representation. The first
section introduces a pair of essentially trivial fitness functions for permuta-
tion genes. Section 2 covers the famous Traveling Salesman problem. Section
3 covers a bin-packing problem and also uses a hybrid evolutionary/greedy
algorithm. The permutations being evolved control a greedy algorithm. Such
hybrid representations enhance the power of evolutionary computation and
are coming into broad use. Section 4 introduces an applied problem with
some unsolved cases, the Costas array problem. Costas arrays are used as
sonar masks, and there are some sizes for which no Costas array is known.
This last section can easily be skipped.

Chapter 8 introduces genetic programming in its most minimal form. The
variable (rather than fixed) sized data structure is the hallmark of genetic
programming. The plus-one-recall-store problem, the focus of the chapter,
is a type of maximum problem. This chapter tends to be unpopular with
students, and some of the problems require quite advanced mathematics to
solve. Mathematicians may find the chapter among the most interesting in
the book. Only the first section is really needed to go on to the other chapters
with genetic programming in them. The chapter introduces the practice of
seeding populations.

Chapter 9 introduces regression in two distinct forms. The first section cov-
ers the classical notion of parameter-fitting regression, and the second uses
evolutionary computation to perform such parameter fits. The third section
introduces symbolic regression, i.e., the use of genetic programming both to
find a model and fit its parameters. Section 4 introduces automatically de-
fined functions, the “subroutine” of the genetic programming world. Section
5 looks at regression in more dimensions and can be included or not at the
instructor’s whim. Section 6 discusses a form of metaselection that occurs
in genetic programming called bloat. Since the type of crossover used in ge-
netic programming is very disruptive, the population evolves to resist this
disruption by having individual population members get very large. This is
an important topic. Controlling, preventing, and exploiting bloat are all cur-
rent research topics.

Chapter 10 introduces a type of virtual robot, grid robots, with the Tartarus
task. The robots are asked to rearrange boxes in a small room. This topic
is also popular with students and has led to more student publications than

XII Evolutionary Computation for Modeling and Optimization

any other chapter in the text. The first section introduces the problem. The
second shows how to perform baseline studies with string-based representa-
tions. The third section attacks the problem with genetic programming. The
fourth introduces a novel representation called the GP automaton. This is the
first hybrid representation in the text, fusing finite state machines and genetic
programming.

Chapter 11 covers a traditional topic: programming neural nets to simulate
digital logic functions. While there are many papers published on this topic it
is a little dry. The chapter introduces neural nets in a more complex form than
Chapter 5. The chapter looks at direct representation of neural weights and
at a way of permitting both the net’s connectivity and weights to evolve, and
finally attacks the logic function induction problem with genetic programming
in its last section.

Chapter 12 introduces a novel linear representation for genetic programming
called an ISAc list. ISAc lists are short pieces of simplified machine code. They
use a form of goto and so can be used to evolve fully functioning programs with
nontrivial flow of control. The chapter introduces ISAc lists in Section 1 and
then uses them on the Tartarus problem in Section 2. Section 3 introduces a
large number of new grid robot tasks. Section 4 uses ISAc lists as an inspiration
to create a more powerful type of string representation for grid robot tasks.
This latter section can be skipped.

Chapter 13 introduces a generic improvement to a broad variety of evolution-
ary algorithms. This improvement consists in storing the evolving population
in a geography, represented as a combinatorial graph, that limits selection and
crossover. The effect is to slow convergence of the algorithm and enhance ex-
ploration of the search space. The first section introduces combinatorial graphs
as population structures. The second section uses the techniques on string-
based representations. The third uses the graph-based population structure
on more complex representations, such as finite state machines and ordered
genes. The last section explores genetic programming on graphs. Other than
the first section, the sections of this chapter are substantially independent.

Chapter 14 contains four extended examples of a generic technique: storing
directions for building a structure rather than the structure itself. This type of
representation is called a “cellular” representation for historical reasons. The
first section uses a cellular representation to evolve two-dimensional shapes.
The second introduces a cellular representation for finite state automata. The
third introduces a novel editing representation that permits the evolution of a
class of combinatorial graphs. The fourth section uses context free grammars
to create a cellular encoding for genetic programming. This technique is quite
powerful, since it permits transparent typing of genetic programming systems

Preface XIII

as well as the incorporation of domain-specific knowledge. The sections of this
chapter may be used independently.

Chapter 15 gives examples of applications of evolutionary computation to
bioinformatics. The first three sections are completely independent of one an-
other. Section 1 gives an application of string-type genes to an applied (pub-
lished) problem in bioinformatics. It both aligns and characterizes an insertion
point of a type of genetic parasite in corn. Section 2 uses finite state machines
to attempt to learn sets of PCR primers that work well and poorly. The fi-
nite state machines are intended as filters for subsequently designed primers.
The third section introduces a hybrid evolutionary/greedy representation for
a hard search problem, locating error-tolerant DNA tags used to mark genetic
constructs. The last two sections give methods of visualizing DNA as a fractal.

Acknowledgments

I would like to thank my wife, Wendy, who has been a key player in preparing
the manuscript and helping me get things done, and who has acted as a sound-
ing board for many of the novel ideas contained in this text. I also owe a great
deal to the students who supplied ideas in the book, such as John Walker,
who thought up Sunburn and helped develop the symbots; Mark Joenks, the
creator of ISAc lists and virtual politicians; Mark Smucker, whose ideas led
to graph-based evolutionary algorithms; Warren Kurt vonRoeschlaub, who
started the symbots and other projects; and Mike McRoberts, who coded up
the first implementation of GP automata. I thank Jim Golden, who was a key
participant in the research underlying the fractal visualization of DNA. I am
also grateful to the numerous students who turned in edits to the manuscript
over the years, including Pete Johnson, Steve Corns, Elizabeth Blankenship,
and Jonathan Gandrud. The Bryden, Schnable, and Sheble labs at Iowa State
have supplied me with many valuable students over the years who have asked
many questions answered in this book. Mark Bryden, Pat Schnable, and Ger-
ald Sheble all provided a valuable driving force toward the completion of this
book.

2 Springer
http://www.springer.com/978-0-387-22196-0

Evolutionary Computation for Modeling and Optimization
Ashlock, D,

2008, ¥, 572 p., Hardcowver
ISBN: @78-0-387-22196-0

