
2

Designing Simple Evolutionary Algorithms

The purpose of this chapter is to show you how an evolutionary algorithm
works and to teach you how to design your own simple ones. We start simply,
by evolving binary character strings, and then try evolving more complex
strings. We will examine available techniques for selecting which population
members will breed and which will die. We will look at the available crossover
and mutation operators for character strings; we will modify the string evolver
to be a real function optimizer; and we will examine the issue of population
size. We will then move on to more complex problems using string evolvers:
the Royal Road problem and self-avoiding walks. The chapter concludes with a
discussion of the applications of roulette selection beyond the basic algorithm,
including a technique for performing a valuable but computationally difficult
type of mutation (probabilistic mutation) efficiently. An example of a binary
string evolver applied to a real world problem is given in Section 15.1. The
experiments with various string evolvers continue in Chapter 13. Figure 2.1
lists the experiments in this chapter and shows how they depend on one
another.

Evolutionary algorithms are a synthesis of several techniques: genetic algo-
rithms, evolutionary programming, evolutionary strategies, and genetic pro-
gramming. In this chapter, there is a bias toward genetic algorithms [29], be-
cause they were designed around the manipulation of binary character strings.
The terminology used in this book comes from many sources; arbitrary choices
were necessary when several terms exist for the same concept.

Figure 2.2 is an outline for a simple evolutionary algorithm. It is more
complex than it seems at first glance. There are five important decisions that
factor into the design of the algorithm:

What data structure will you use? In the string evolver and real function
optimizer in Section 1.2, for example, the data structures were a string
and an array of real numbers, respectively. This data structure is often
termed the gene of the evolutionary algorithm. You must also decide how
many genes will be in the evolving population.

34 Evolutionary Computation for Modeling and Optimization

Exp 2.1

Exp 2.5 Exp 2.10Exp 2.6

Exp 2.4

Exp 2.2 Exp 2.3 Exp 2.7 Exp 2.9

Exp 2.13

Exp 2.14

Exp 2.15

Exp 2.12

Exp 2.16

Exp 2.11

Exp 2.8

Ch 13

1 Basic string evolver.
2 Change replacement fraction.
3 Steady-state algorithm.
4 One- and two-point crossover.
5 Uniform crossover.
6 Adaptive crossover.
7 With and without mutation.
8 Basic real function optimizer.
9 Experimentation with population size.
10 Royal road function.
11 Royal Road with probabilistic mutation.
12 Introduce self avoiding walks.
13 The stochastic hill climber.
14 Stochastic hill climbing with more mutation.
15 Stochastic hill climbing with lateral movement.
16 Self-avoiding walks with helpful mutation derived from the

stochastic hill climber.

Fig. 2.1. The topics and dependencies of the experiments in this chapter.

Designing Simple Evolutionary Algorithms 35

Create an initial population.
Evaluate the fitness of the population members.
Repeat

Select pairs from the population to be parents, with a fitness bias.
Copy the parents to make children.
Perform crossover on the children (optional).
Mutate the resulting children (probabilistic).
Place the children in the population.
Evaluate the fitness of the children.

Until Done.

Fig. 2.2. A simple evolutionary algorithm.

What fitness function will you use? A fitness function maps the genes
onto some ordered set, such as the integers or the real numbers. For the
string evolver, the fitness function has its range in the natural numbers; the
fitness of a given string is the number of positions at which it agrees with
a reference string. For the real function optimizer, the fitness function
is simply the function being optimized (when maximizing) or its negative
(when minimizing).

What crossover and mutation operators will you use? Crossover
operators map pairs of genes onto pairs of genes; they simulate sexual
reproduction. Mutation operators make small changes in a gene. Taken
together, these are called variation operators.

How will you select parents from the population, and how will you
insert children into the population? The only requirement is that the
selection method be biased toward “better” organisms. There are many
different ways to do this.

What termination condition will end your algorithm? This could be
after a fixed number of trials or when a solution is found.

Our prototype evolutionary algorithm will be the string evolver (as in
Definition 1.2 and Problem 13). Our data structure will be a string of charac-
ters, and our fitness function will be the number of agreements with a fixed
reference string. We will experiment with different variation operators and
different ways of picking parents and inserting children.

2.1 Models of Evolution

Definition 2.1 The method of picking parents and the method of inserting
children back into the population, taken together, are called the model of
evolution used by an evolutionary algorithm.

The model of evolution used in Problem 13 is called single tournament
selection. In single tournament selection, the population is shuffled randomly

36 Evolutionary Computation for Modeling and Optimization

and divided into small groups. The two most fit individuals in each small
group are chosen to be parents. These parent strings are crossed over and the
results possibly mutated to provide two children that replace the two least fit
members of the small group.

Single tournament selection has two advantages. First, for small groups of
size n, the best n − 2 creatures in the group are guaranteed to survive. This
ensures that the maximum fitness of a group (with a deterministic fitness
function) cannot decline as evolution proceeds. Second, no matter how fit
a creature is compared to the rest of the population, it can have at most
one child in each generation. This prevents the premature loss of diversity
in a population that can occur when a single parent has a large number of
children, a perennial problem in evolutionary algorithms of all sorts. When
a creature that is relatively fit in the initial population dominates the early
evolved population, it can prevent the discovery of better creatures by leading
the population into a local optimum.

Definition 2.2 A global optimum is a point in the fitness space whose
value exceeds that of any other value (or is exceeded by every other value if
we are minimizing). A local optimum is a point in the fitness space that
has the property that no chain of mutations starting at that point can go up
without first going down.

Making an analogy to a mountain range, the global optimum can be
thought of as the top of the highest mountain, while the local optima are
the peaks of every mountain or foothill in the range. Even rocks will have
associated local optima at their high points. Note that the global optimum is
one of the local optima. Also, note that there may be more than one global
optimum if two mountains tie for highest.

When the members of a population with the highest fitness are guaranteed
to survive in an evolutionary algorithm, that algorithm is said to exhibit
elitism. Those members of the population guaranteed to survive are called
the elite. Elitism guarantees that a population with a fixed fitness function
cannot slip back to a smaller maximum fitness in later generations, but it
also causes the current elite to be more likely to have more children in the
future causing their genes to dominate the population. Such domination can
impair search of the space of genes, because the current elite may not contain
the genes needed for the best possible creatures. A good compromise is to
have a small elite. Single tournament selection has an elite of size 2. Half the
population survives, but only two creatures, the two most fit, must survive.
Other creatures survive only if they have the good luck to be put in a group
with creatures less fit than they.

In single tournament selection, the selection of parents and the method
for inserting children are wedded to one another by the picking of the small
groups. This need not be the case; in fact, it is usually not the case. There
are several other methods of selecting parents.

Designing Simple Evolutionary Algorithms 37

In double tournament selection, with tournament size n, you pick a group of
n creatures and take the single most fit one as a parent, repeating the process
with a new group of n creatures to get a second parent. Double tournament
selection may also be done with replacement (the same parent can be picked
twice) or without replacement (the same parent cannot be picked twice, i.e.,
the first parent is excluded during the selection of the second parent).

Roulette wheel selection, also called called roulette selection, chooses par-
ents in direct proportion to their fitness. If creature i has fitness fi, then the
probability of being picked as a parent is fi/F , where F is the sum of the
fitness values of the entire population.

Rank selection works in a fashion similar to roulette wheel selection except
that the creatures are ordered by fitness and then selected by their rank
instead of their fitness. If creature i has rank fi, then the probability of being
picked as a parent is fi/F , where F is the sum of the ranks of the entire
population. Note: the least fit creature is given a rank of 1 so as to give it the
smallest chance of being picked.

In Figure 2.3, we compare the probabilities for rank and roulette selec-
tion. If there is a strong fitness gradient, then roulette wheel selection gives a
stronger fitness bias than rank selection and hence tends to take the popula-
tion to a nearly uniform type faster. The utility of faster fixation depends on
the problem under consideration.

Creature # Fitness Rank P(chosen) P(chosen)
Roulette Rank

1 2.1 1 0.099 0.048
2 3.6 5 0.169 0.238
3 7.1 6 0.333 0.286
4 2.4 2 0.113 0.095
5 3.5 4 0.164 0.190
6 2.6 3 0.122 0.143

Fig. 2.3. Differing probabilities for roulette and rank selection.

A model of evolution also needs a child insertion method. If the population
is to remain the same size, a creature must be removed to make a place for
each child. There are several such methods. One is to place the children in the
population at random, replacing anyone. This is called random replacement.
If we select creatures to be replaced with a probability inversely proportional
to their fitness, we are using roulette wheel replacement (also called roulette
replacement). If we rank the creatures in the opposite order used in rank
selection and then choose those to be replaced with probability proportional to
their rank, we are using rank replacement. In another method, termed absolute
fitness replacement, we replace the least fit members of the population with
the children. Another possible method is to have children replace their parents

38 Evolutionary Computation for Modeling and Optimization

only if they are more fit. In this method, called locally elite replacement, the
two parents and their two children are examined, and the two most fit are
put into the population in the slots occupied by the parents. In random elite
replacement, each child is compared to a randomly selected member of the
population and replaces it only if it is at least as good.

With all of the selection and replacement techniques described above you
must decide how many pairs of parents to select in each generation of your
evolutionary algorithm. At one extreme, you select enough pairs of parents
to replace your entire population; this is called a generational evolutionary
algorithm. At the other extreme, a steady-state evolutionary algorithm, you
count each act of selecting parents and placing (or failing to place) the children
in the population as a “generation.” Such single-mating “generations” are
usually called mating events.

Generational evolutionary algorithms were first to appear in the litera-
ture and were considered “standard.” Steady-state evolutionary algorithms
are described very well by Reynolds [49] and were discovered independently
by Syswerda [54] and Whitley [59].

Experiment 2.1 Write or obtain software for a string evolver (defined in
Section 1.2). For each of the listed models of evolution, do 100 trials. Use 20-
character strings of printable ASCII characters and a 60-member population.
To stay consistent with single tournament selection in number of crossover
events, implement all other models of evolution so that they replace exactly
half the population. This updating of half the population will constitute a gen-
eration. For this experiment, use the type of crossover used in the first part
of Figure 1.7 and Problem 13 in which the children are copies of the parents
with their gene loci swapped after a randomly generated crossover point. For
mutation, change a single character in each new creature at random.

(i) Single tournament selection with small groups of size 4.
(ii) Roulette selection and locally elite replacement.
(iii) Roulette selection and random replacement.
(iv) Roulette selection and absolute fitness replacement.
(v) Rank selection and locally elite replacement.
(vi) Rank selection and random replacement.
(vii) Rank selection and absolute fitness replacement.

Write a few paragraphs explaining the results. Include the mean and stan-
dard deviation of the solution times (measured in generations) for each model
of evolution. (A population is considered to have arrived at a “solution” when
it contains one string that matches the reference string.) Compare your re-
sults with those of other students. Pay special attention to trials done by other
students with identical models of evolution that give substantially different re-
sults.

Designing Simple Evolutionary Algorithms 39

Experiment 2.2 Use the version of the code from Experiment 2.1 with
roulette selection and random replacement. Compute the mean and standard
deviation of time-to-solution of 100 trials in each of 5 identical populations in
which you replace 1/5, 1/3, 1/2, 2/3, and 4/5 of the population in each genera-
tion. Measure time in generations and in number of crossovers; discuss which
measure of time is more nearly a fair comparison of the different models of
evolution.

Experiment 2.3 Starting with the code from Experiment 2.1, build a steady-
state evolutionary algorithm. For each of the following models of evolution, do
20 different runs. Give the mean and standard deviation of the number of mat-
ing events until a maximum fitness creature is located. Cut off the algorithm
at 1,000,000 mating events if no maximum fitness creature is located. Assume
that the double tournament selection is with replacement.

(i) Single tournament selection with tournament size 4.
(ii) Single tournament selection with tournament size 6.
(iii) Double tournament selection with tournament size 2.
(iv) Double tournament selection with tournament size 3.

Problems

Problem 24. Assume that we are running an evolutionary algorithm on a
population of 12 creatures, numbered 1 through 12, with fitness values of 1,
4, 7, 10, 13, 16, 19, 22, 25, 28, 31, and 34. Compute the expected number of
children each of the 12 creatures will have for the following parent selection
methods: (i) roulette selection, (ii) rank selection, and (iii) single tournament
selection with tournament size 4. (The definition of expected value may be
found in Appendix B.) Assume that both parents can be the same individual
in the roulette and rank cases.

Problem 25. Repeat Problem 24 (i) and (ii), but assume that the parents
must be distinct.

Problem 26. Compute the numbers that would appear in an additional col-
umn of Figure 2.3 for P(chosen) using single tournament selection with small
groups of size 3.

Problem 27. Compute the numbers that would appear in an additional col-
umn of Figure 2.3 for P(chosen) using double tournament selection with small
groups of size 4 and with replacement.

Problem 28. First, explain why the method of selecting parents, when sep-
arate from the method of placing children in the population, cannot have any
effect on whether a model of evolution is elitist or not. Then, classify the fol-
lowing methods of placing children in the population as elitist or nonelitist. If

40 Evolutionary Computation for Modeling and Optimization

it is possible for a method to be elitist or not depending on some other factor,
e.g., fraction of population replaced, then say what that factor is and explain
when the method in question is or is not elitist.

(i) random replacement.
(ii) absolute fitness replacement.
(iii) roulette wheel replacement.
(iv) rank replacement.
(v) locally elite replacement.
(vi) random elite replacement.

Problem 29. Essay. Aside from the fact that we already know the answer
before we run the evolutionary algorithm, the problem being solved by a string
evolver is very simple in the sense that all the positions in the creature’s gene
are independent. In other words, the degree to which a change at a particular
location in the gene is helpful, unhelpful, or detrimental depends in no way
on the value of the gene in other locations. Given that this is so, which of
the possible models of evolution that you could build from the various parent
selection and child placement methods, including single tournament selection,
would you expect to work best and worst? Advanced students should support
their conclusions with experimental data.

Problem 30. Give a sketch or outline of an evolutionary algorithm and a
problem that together have the property that fitness in one genetic locus can
be bought at the expense of fitness in another genetic locus.

Problem 31. Invent a model of evolution not described in this section that
you think will be more efficient than any of those given for the string evolver
problem. Advanced students should offer experimental evidence that their
method beats both the models single tournament selection and roulette selec-
tion with random replacement.

Problem 32. Essay. Describe, as best you can, the model of evolution used
by rabbits in their reproduction. One important difference between rabbits
and a string evolver is that most evolutionary algorithms have a constant
population whereas rabbit populations fluctuate somewhat. Ignore this dif-
ference by assuming a population of rabbits in which births and deaths are
roughly equal per unit time.

Problem 33. Essay. Repeat Problem 32 for honeybees instead of rabbits.
Warning: this is a hard problem.

Problem 34. Suppose that we modify the model of evolution “single tourna-
ment selection with group size 4” on a population of size 4n as follows. Instead
of selecting the small groups at random, we select them in rotation as shown
in the following table of population indices.

Designing Simple Evolutionary Algorithms 41

Generation Group 1 Group 2 · · · Group n
1 0123 4567 · · · (4n− 4)(4n− 3)(4n− 2)(4n− 1)
2 (4n− 1)012 3456 · · · (4n− 5)(4n− 4)(4n− 3)(4n− 2)
3 (4n− 2)(4n− 1)01 2345 · · · (4n− 6)(4n− 5)(4n− 4)(4n− 3)
4 (4n− 3)(4n− 2)(4n− 1)0 1234 · · · (4n− 7)(4n− 6)(4n− 5)(4n− 4)

etc.

Call this modification cyclic single tournament selection. One of the qualities
that makes single tournament selection desirable is that it can retard the rate
at which the currently best gene spreads through the population. Would cyclic
single tournament selection increase or decrease the rate of spread of a gene
with relatively high fitness? Justify your answer.

Problem 35. Explain why double tournament selection of tournament size
2 without replacement and locally elite replacement is not the same as single
tournament selection with tournament size 4. Give an example in which a set
of 4 creatures is processed differently by these two models of evolution.

Problem 36. For double tournament selection with tournament size n with
replacement and then without replacement, compute the expected number of
mating events that the best gene participates in if we do one mating event for
n = 2, 3, or 4 in a population of size 8.

2.2 Types of Crossover

Definition 2.3 A crossover operator for a set of genes G is a map

Cross : G×G→ G×G

or
Cross : G×G→ G.

The points making up the pairs in the domain space of the crossover operator
are termed parents, while the points either in or making up the pairs in the
range space are termed children. The children are expected to preserve some
part of the parents’ structure.

In later chapters, we will study all sorts of exotic crossover operators.
They will be needed because the data structures being operated on will be
more complex than strings or arrays. Even for strings, there are a number of
different types of crossover. The crossover used in Experiment 2.1 is called
single-point crossover. To achieve a crossover with two parents, randomly
generate a locus, called the crossover point, and then copy the loci in the

42 Evolutionary Computation for Modeling and Optimization

genes from the parents to the child so that the information for each child
comes from a different parent before and after the crossover point.

There is a problem with single-point crossover. Loci near one another in
the representation used in the evolutionary algorithm are kept together with
a much higher probability than those that are farther apart. If we are evolving
strings of length 20 to match a string composed entirely of the character “A,”
then a creature with an “A” in positions 2 and 19 must almost be cloned during
crossover in order to pass both good loci along. A simple way of reducing this
problem is to have multiple-point crossover. In two-point crossover, as shown
in Figure 2.4, two random loci are generated, and then the loci in the children
are copied from one parent before and after the crossover points and from
the other parent in between the crossover points. This idea generalizes in
many ways. One could, for example, generate a random number of crossover
points for each crossover or specify fixed fractions of usage for different sorts
of crossover.

Parent 1 aaaaaaaaaaaaaaaaaaaa
Parent 2 bbbbbbbbbbbbbbbbbbbb
Child 1 aaaabbbbbbbbbaaaaaaa
Child 2 bbbbaaaaaaaaabbbbbbb

Fig. 2.4. Two-point crossover.

Experiment 2.4 Modify the version of the code from Experiment 2.1 that
does roulette selection with random elite replacement to work with different
sorts of crossover. Run it as a steady-state algorithm for 100 trials. Use 20-
character strings and a 60-member population. Measuring time in number of
crossovers done, compare the mean and standard deviation of time-to-solution
for the following crossover operators:

(i) one-point,
(ii) two-point,
(iii) half-and-half one- and two-point.

When writing up your experiment, consult with others who have done the
experiment and compare your trials to theirs.

Another kind of crossover, which is computationally expensive but elimi-
nates the problem of representational bias, is uniform crossover. This crossover
operator flips a coin for each locus in the gene to decide which parent con-
tributes its genetic value to which child. It is computationally expensive be-
cause of the large number of random numbers needed, though clever program-
ming can reduce the cost.

This raises an issue that is critical to research in the area of artificial life.
It is easy to come up with new wrinkles for use in an evolutionary algorithm;

Designing Simple Evolutionary Algorithms 43

it is hard to assess their performance. If uniform crossover reduces the average
number of generations, or even crossovers, to solution in an evolutionary algo-
rithm, it may still be slower because of the additional time needed to generate
the extra random numbers. Keeping this in mind, try the next experiment.

Experiment 2.5 Repeat Experiment 2.4 with the following crossover opera-
tors:

(i) one-point,
(ii) two-point,
(iii) uniform crossover.

In addition to measuring time in crossovers, also measure it in terms of ran-
dom numbers generated and, if possible, true time by the clock. Discuss the
degree to which the measures of time agree or fail to agree and frame and
defend a hypothesis as to the worth of uniform crossover in this situation.

In some experiments, different crossover operators are better during differ-
ent phases of the evolution. A technique to use in these situations is adaptive
crossover. In adaptive crossover, each creature has its gene augmented by a
crossover template, a string of 0’s and 1’s with one position for each item
in the original data structure. When two parents are chosen, the crossover
template from the first parent chosen is used to do the crossover. In positions
where the template has a 0, items go from first parent to the first child and
the second parent to the second child. In positions where the template has a
1, items go from the first parent to the second child and from the second par-
ent to the first child. The parental crossover templates are themselves crossed
over and mutated with their own distinct crossover and mutation operators to
obtain the children’s crossover templates. The templates thus coevolve with
the creatures and seek out crossover operators that are currently useful. This
can allow evolution to focus crossover activity in regions where it can help
the most. The crossover templates that evolve during a successful run of an
evolutionary algorithm may contain nontrivial useful information about the
structure of the problem.

Example 1. Suppose we are designing an evolutionary algorithm whose gene
consists of 6 real numbers. A crossover template would then be a string of six
0’s and 1’s, and crossover would work like this:

Gene Template
Parent 1 1.2 3.4 5.6 4.5 7.9 6.8 010101
Parent 2 4.7 2.3 1.6 3.2 6.4 7.7 011100
Child 1 1.2 2.3 5.6 3.2 7.9 7.7 010100
Child 2 4.7 3.4 1.6 4.5 6.4 6.8 011101

The crossover operator used on the crossover templates is single-point crossover
(after position 3).

44 Evolutionary Computation for Modeling and Optimization

Adaptive crossover can suffer from a common problem called a two-time-
scale problem. The amount of time needed to efficiently find those fit genes
that are easy to locate with a given crossover template can be a great deal less
than that needed to find the crossover template in the first place. For some
problems this will not be the case, for some it will, and intuition backed by
preliminary data is the best tool currently known for telling which problems
might benefit from adaptive crossover. If a problem must be solved over and
over for different parameters, then saving crossover templates between runs
of the evolutionary algorithm may help. In this case, the crossover templates
are being used to find good representations, relative to the crossover operator,
for the problem in general while solving specific cases.

Experiment 2.6 Repeat Experiment 2.4 with the following crossover opera-
tors:

(i) one-point,
(ii) two-point,
(iii) adaptive crossover.

For the variation operators for the crossover templates, use one-point crossover
together with a mutation operator that flips a single bit 50% of the time. When
comparing solution times, attempt to compensate for the additional computa-
tional cost of adaptive crossover. Using real time-to-solution would be one good
way to do this.

The last crossover operator we wish to mention is null crossover. In null
crossover there is no crossover; the children are copies of the parents. Null
crossover is often used as part of a mix of crossover operators or when debug-
ging an algorithm. We conclude with a definition that will become important
when we return to studying genetic programming.

Definition 2.4 A crossover operator is called conservative if the crossover
of identical parents produces children identical to those parents.

Problems

Problem 37. Assume that we are working with a string evolver. If the refer-
ence string is

11111111111111111111,

then what is the expected fitness of the children of

11111111000000000000
and

00000000000011111111
under:

(i) one-point crossover,

Designing Simple Evolutionary Algorithms 45

(ii) two-point crossover,
(iii) uniform crossover.

Problem 38. Assume that we are maximizing the real function f(x, y) =
1

x2+y2+1 with the technique described in Problem 14. Find a pair of parents
(x1, y1), (x2, y2) such that neither parent has a fitness of more than 0.1 but
one of their potential crossovers has fitness of at least 0.9. Crossover in this
case would consist simply in taking the x coordinate from one parent and the
y coordinate from the other. Fitness of a gene (a, b) is f(a, b).

Problem 39. Usually we require that a crossover operator be conservative.
Give a nonconservative crossover operator for use in the string evolver that
you think will improve performance and show why the lack of conservation
might help.

Problem 40. Essay. Taking the point of view that evolution finds pieces of
a solution and then puts them together, explain why conservative crossover
operators might be a good thing.

Problem 41. Suppose that we keep track of which pairs of parents have high-
or low-fitness children by simply tracking the average fitness of all children
produced by each pair of parents. We use these numbers to bias the selection
of a second parent after the first is selected with a pure fitness bias. If this
technique is used in a string evolver, will there be a two-time-scale problem?
Explain what two separate process are going on in the course of justifying
your answer. Hint: what is the average number of children a given member of
the population has?

Problem 42. Prove that for the string evolver problem, all of the conservative
crossover operators given in this section conserve fitness in the following sense:
if we have a crossover operator take parents (p1, p2) to children (c1, c2), then
the sum of the fitness of the children equals the sum of the fitness of the
parents.

Problem 43. Read Problem 42. Find a problem that does not have the con-
servation property described. Prove that your answer is correct.

Problem 44. Essay. In the definition of the term “crossover operator” there
were two possibilities, producing one or two children. If we transform a
crossover operator that produces two children into an operator that produces
one by throwing out the least fit child, then do we disrupt the conservation
property described in Problem 42? Do you think this would improve the av-
erage performance of a string evolver or harm it?

Problem 45. Suppose we are running a string evolver with a 20-character
reference string, a crossover operator producing two children, and no muta-
tion operator. What condition must be true of the original population for

46 Evolutionary Computation for Modeling and Optimization

there to be any hope of eventual solution? Does the condition that allows
eventual solution ensure it? Prove your answers to both these questions. Es-
timate theoretically or experimentally the population size required to give a
95% chance of satisfying this condition.

2.3 Mutation

Definition 2.5 A mutation operator on a population of genes G is a func-
tion

Mute : G→ G

that takes a gene to another similar but different gene. Mutation operators are
also called unary variation operators.

Crossover mixes and matches disparate creatures; it facilitates a broad
search of the space of data structures accessible to a given evolutionary al-
gorithm. Mutation, on the other hand, makes small changes in individual
creatures. It facilitates a local search and also a gradual introduction of new
ideas into the population. The string evolvers we have studied use a single
type of mutation: changing the value of the string at a single position. Such
a mutation is called a point mutation. More complex data structures might
have a number of distinct types of minimal changes that could serve as point
mutations. Once you have a point mutation, you can use it in a number of
ways to build different mutation operators.

Definition 2.6 A single-point mutation of a gene consists in generating
a random position within the gene and applying a point mutation at that po-
sition.

Definition 2.7 A multiple-point mutation consists in generating some
fixed number of positions in the gene and doing a point mutation at each of
them.

Definition 2.8 A probabilistic mutation with rate α operates by going
through the entire gene and performing a point mutation with probability α at
each position. Probabilistic mutation is also called uniform mutation.

Definition 2.9 A Lamarckian mutation of depth k is performed by look-
ing at all possible combinations of k or fewer point mutations and using the
one that results in the best fitness value.

Definition 2.10 A null mutation is one that does not change anything.

Designing Simple Evolutionary Algorithms 47

Any mutation operator can be made helpful by comparing the fitnesses of
the gene before and after mutation and saving the better result. (Lamarckian
mutation is already helpful, since “no mutations” is included in “k or fewer
point mutations.”)

Any mutation operator may be applied with some probability, as was done
in several of the experiments in this chapter so far. The following experiment
illustrates the use of mutations.

Experiment 2.7 Modify the standard string evolver software used in Exper-
iment 2.1 as follows. Use roulette wheel selection and random elite replace-
ment. Use two-point crossover and put in an option to either use or fail to
use single-point mutation in a given run of the evolutionary algorithm. When
used, the single-point mutation should be applied to every new creature. Com-
pute the average time-to-solution, cutting off the algorithm at generation 3000
if it has not found a solution yet. Report the number of runs that fail and the
mean solution time of those that do find a solution. Explain the differences
the mutation operator created.

Definition 2.11 A mode of a function is informally defined as a high point
in the function’s graph. Formally, a point mode is a point p in the domain
of f such that there is a region R, also in the domain of f , about that point
for which, for each x �= p ∈ R, it is the case that f(x) < f(p). Another type
of mode is a contiguous region of points all at the same height in the graph
of f , such that all points around the border of that region are lower than the
points in the region. Figure 2.5 shows a function with two modes.

The string evolver problem is what is called a unimodal problem; that is to
say, there is one solution and an uphill path from any place in the gene space
of the problem to the solution. For any given string other than the reference
string, there are single character changes that improve the fitness.

Note: single-character changes (no matter whether they help, hurt, or fail
to change fitness) induce a notion of distance between strings. Formally, the
distance between any two strings is the smallest number of one-character
changes needed to transform one into the other. This distance, called Ham-
ming distance or Hamming metric, makes precise the notion of similarity in
Definition 2.5. Mutation operators on any problem induce a notion of distance,
but rarely one as nice as Hamming distance.

When designing an evolutionary algorithm, you need to select a set of
mutation operators and then decide how often each one will be used. The
probability that a given mutation operator will be used on a given creature
is called the rate or mutation rate for that operator. The expected number
of point mutations to be made in a new creature is called the overall muta-
tion rate of the evolutionary algorithm. For helpful and Lamarckian mutation
operators, computation of the overall mutation rate is usually infeasible; it
depends on the composition of the population.

48 Evolutionary Computation for Modeling and Optimization

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

-4 -3 -2 -1 0 1 2 3 4

Fig. 2.5. A function with two modes.

-3
-2

-1
0

1
2

3 -3
-2

-1
0

1
2

3

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Fig. 2.6. Fake bell curve f(x, y) = 1
1+x2+y2 in two dimensions.

Designing Simple Evolutionary Algorithms 49

To explore the effects of changing mutation rates, we will shift from string
evolvers to function optimizers. It is folklore in the evolutionary algorithms
community that an overall mutation rate equal to the reciprocal of the gene
length of a creature works best for moving between nearby optima of nearly
equal height when doing function optimization. Experiment 2.8 will test this
notion.

The fake bell curve in n dimensions is given by the function

Bn(x1, x2, . . . , xn) =
1

1 +
∑n

i=1 x2
i

. (2.1)

This function has a single mode at the origin of n-dimensional Euclidean
space, as shown for n = 2 in Figure 2.6 (it is unimodal). By shifting and
scaling this function we can create all sorts of test problems, placing optima
where we wish, though some care is needed, as shown in Problem 48. Figure
2.5 was created in exactly this fashion.

Experiment 2.8 Write or obtain software for a function optimizer with no
crossover operator that uses probabilistic mutation with rate α. Use rank se-
lection with random replacement. Use strings of real numbers of length n,
where n is one of 4, 6, 8, and 10. Use overall mutation rates of r/n where r
is one of 0.8, 0.9, 1, 1.1, 1.2. (Compute the α that yields the correct overall
mutation rate: r/n = n · α, so α = r/n2.) Run the algorithm to optimize
fn = Bn(x1, x2, . . . , xn) + Bn(x1 − 2, x2 − 2, . . . , xn − 2). Use a population of
200 creatures all initialized to (2, 2, . . . , 2). Do 100 runs. Compute the average
time for a creature to appear that is less than 0.001 in absolute value in every
locus.

In Figures 2.6 and 2.5 we give examples of functions with one and two
modes, respectively. The clarity of these examples relies on the smooth, con-
tinuous nature of the real numbers: both these examples are graphs of a con-
tinuous function from a real space to a real space. Our fundamental example,
the string evolver, does not admit nice graphs. A string evolver operating on
strings of length 20 would require a 20-dimensional graph to display the full
detail of the fitness function. In spite of this, the string evolver fitness function
is quite simple.

Problems

Problem 46. Suppose we modify a string evolver so that there are two ref-
erence strings, and a string’s fitness is taken to be the number of positions
in which it agrees with either of the reference strings. If the strings are of
length l over an alphabet with k characters, then how many strings in the
space exhibit maximum fitness? Hint: your answer will involve the number q
of characters on which the two reference strings agree.

50 Evolutionary Computation for Modeling and Optimization

Problem 47. Is the fitness function given in Problem 46 unimodal? Prove
your answer and describe any point or nonpoint modes.

Problem 48. Examine the fake bell curve, Equation 2.1, in 1 dimension,
f(x) = 1

1+x2 . If we want a function with two maxima, then we can take
f(x) + f(x − c) but only if c is big enough. Give the values of c for which
g(x) = f(x) + f(x− c) has one maximum, and those for which it has two.

Problem 49. Essay. Explain why it is difficult to compute the overall mu-
tation rate for a Lamarckian or helpful mutation. Give examples.

Problem 50. Construct a continuous, differentiable (these terms are defined
in calculus books) function f(x, y) such that the function has three local
maxima with the property that the line segment P (in x–y space) from the
origin through the position of the highest maximum intersects the line segment
Q joining the other two maxima, with the length of P at least twice the length
of Q. Hint: multiply, don’t add.

Problem 51. Suppose that we modify a string evolver to have two reference
strings, but, in contrast to Problem 46, take the fitness function to be the
maximum of the number of positions in which a given string matches one or
the other of the reference strings. This fitness function can be unimodal, or it
can have more than one mode. Explain under what conditions the function is
uni- or multimodal.

Problem 52. Suppose that we are looking at a string evolver on strings of
length 4 with underlying alphabet {0, 1}. What is the largest number of ref-
erence strings like those in Problem 51 that we could have and have as many
modes as strings?

2.4 Population Size

Definition 2.12 The population size of an evolutionary algorithm is the
number of data structures in the evolving population.

In biology it is known that small populations are likely to die out for lack
of sufficient genetic diversity to meet environmental changes or because all
members of the population share some defective gene. As we saw in Problem
45, analogous effects are possible even in simple evolutionary optimizers like
the string evolver. On the other hand, a random initial population is usually
jammed with average creatures. In the course of finding the reference string,
we burn away a lot of randomness at some computational cost. There is thus
a tension between the need for sufficient diversity to ensure solution and the
need to avoid processing a population so large that it slows time-to-solution.
Let’s experiment with the string evolver to attempt to locate the sweet region
and break-even point for increasing population size.

Designing Simple Evolutionary Algorithms 51

Experiment 2.9 Modify the standard string evolver operating on 20-character
strings as follows: Use roulette wheel selection, random elite replacement,
and one-point mutation applied with probability one. Use a steady-state evo-
lutionary algorithm and change the underlying alphabet to be {0, 1}. Put
into the code the ability to change the population size. Measure the time-to-
solution in crossover events, averaged over 100 runs, for populations of size
20, 40, 60, 80, 100, 110, and 120. Approximate the best size and do a couple of
additional runs near where you suspect the best size is. Graph the results as
part of your write-up.

Problems

Problem 53. Essay. Larger populations, having higher initial diversity, should
present less need to preserve diversity. Would you expect larger populations
to be of more value in preserving diversity in a unimodal or polymodal prob-
lem as compared to diversity preservation techniques like single tournament
selection?

Problem 54. Give a model of evolution that can process a large population
more efficiently (for the string evolver problem) than any of the ones given
in this chapter. Hint: concentrate on small subsets of the population without
completely ignoring anyone.

Problem 55. Essay. There is no requirement in the theory of evolutionary
algorithms that we have one population. In fact, when we do 100 experimental
runs, we are using 100 different populations. Give a specification, like those
in the text, for an experiment that will test into how many small populations
600 creatures should be divided for an arbitrary problem. It should explore
reasonably between the extremes of running one population of 600 creatures
and 600 populations of one creature each.

2.5 A Nontrivial String Evolver

An unfortunate feature of the string evolver is that it solves a trivial problem.
It is possible to build very difficult string evolution problems by modifying the
way in which fitness is computed. The standard example of this is the Royal
Road function (defined by John Holland), which is defined over the alphabet
{0, 1}. This function assumes a reference string of length 64, but blocks of 8
adjacent characters in positions 1–8, 9–16, . . ., 57–64 are given special status.
For each such block made entirely of 1’s, the string’s fitness is incremented
by 8. Blocks with only some 1’s give no fitness. This function is quite dif-
ficult to optimize and is a good test function for evolutionary optimization
systems of difficult unimodal problems. The length of 64 and block size of 8
are traditional, but varying these numbers yields many possibly interesting
test problems.

52 Evolutionary Computation for Modeling and Optimization

Definition 2.13 Define the Royal Road function of length l and block
size b, where b divides l evenly, to be a fitness function for strings where
fitness is assessed by dividing the string into l/b pieces of length b and then
giving a fitness of b for each piece on which a string in an evolving population
exactly matches the reference string.

Experiment 2.10 Take the software you used for Experiment 2.4 and mod-
ify it to work on the Royal Road function with reference string “all ones” and
alphabet {0, 1} with l = 16 and b = 1, 2, 4, 8. Report the mean and deviation
time-to-solution over 100 runs for a population of 120 creatures, cutting off an
unsuccessful run at 10,000 generations (do not include the cutoff runs in the
mean and deviation computations). If you have a fast enough computer, ob-
tain higher-quality data by increasing the cutoff limit. Use two-point crossover
and single-point mutation (with probability one). In addition to reporting and
explaining your results, explain why cutoff is probably needed and is a bad
thing. What is the rough dependence of time-to-solution on b?

Experiment 2.11 Modify the software from Experiment 2.10 so that it uses
probabilistic mutation with rate α. For l = 16 and b = 4 make a conjecture
about the optimum value for α and test this conjecture by finding average
time-to-solution over 100 runs for 80%, 90%, 100%, 110%, and 120% of your
conjectured α. Feel free to revise your conjecture and rerun the experiment.

Problems

Problem 56. Compute the probability of even one creature having nonzero
fitness in the original population of n genes in a string evolver on the alphabet
{0, 1} when the fitness function is the Royal Road function of length l and
block size b for the following values:

(i) n = 60, l = 36, b = 6,
(ii) n = 32, l = 49, b = 7,
(iii) n = 120, l = 64, b = 8,
(iv) n = 20, l = 120, b = 10.

Problem 57. Essay. Suppose we are running a string evolver with the clas-
sical Royal Road fitness function (l = 64, b = 8). Which of the mutation op-
erators in this section would you expect to be most helpful and why? Clearly,
Lamarckian mutation with a depth of 8 would guarantee a solution, but it is
computationally very expensive. Keeping this example in mind, factor com-
putational cost into your discussion.

Problem 58. Essay. Single tournament selection does not perform well rel-
ative to roulette selection with random elite replacement on the basic string
evolver. If possible, experimentally verify this. In any case, conjecture why

Designing Simple Evolutionary Algorithms 53

this is so and tell whether you would expect this also to be so with the classi-
cal Royal Road fitness function (l = 64, b = 8). Support your argument with
experimental data if it is available.

Problem 59. Read Problem 57. How many sets of point mutations must be
checked in a single Lamarckian mutation of depth 8?

Problem 60. Consider a string evolver over the alphabet {0, 1} using a Royal
Road fitness function with l = 4 and a population of 2 creatures. The evolver
proceeds by copying a single-point mutation of the best creature onto the
worst creature in each generation. Estimate mathematically or experimentally
the time-to-solution for b = 1, 2, 4 if the reference string is 1111 and the
population is initialized to be all 0000. Appendix B, on probability theory,
may be helpful.

Problem 61. Is the classical Royal Road fitness function unimodal?

2.6 A Polymodal String Evolver

In this chapter so far we have experimented with a number of evolutionary
algorithms that work on unimodal fitness functions. In addition, we have
worked, in Experiment 2.8, with a constructively bimodal fitness function.
In this section, we will work with a highly polymodal fitness function. This
polymodal fitness function is one used to locate self-avoiding walks that cover
a finite grid.

Definition 2.14 A grid is a collection of squares, called cells, laid out in a
rectangle (like graph paper).

Definition 2.15 A walk is a sequence of moves on a grid between cells that
share a side. If no cell is visited twice, then the walk is self-avoiding. If every
cell is visited, then the walk is optimal.

From any cell in a grid, then, there are four possible moves for a walk: up,
down, right, and left. We will thus code walks as strings over the alphabet
{U, D, L, R}, which will be interpreted as the successive moves of a walk.
Some examples of walks are given in Figure 2.7.

To evolve self-avoiding walks that cover a grid, we will permit the walks to
fail to be self-avoiding, but we will write the fitness function so that the best
score can be obtained only by a self-avoiding walk. Definition 2.16 gives such
a function. If we think of self-avoiding walks as admissible configurations and
walks that fail to avoid themselves as inadmissible, then we are permitting
our evolutionary algorithm to search an entire space while looking for islands
of admissibility. When a space is almost entirely inadmissible, attempting to
search only the admissible parts of it is impractical. It is thus an interesting
question, treated in the Problems, what fraction of the space is admissible.

54 Evolutionary Computation for Modeling and Optimization

UUURRRDDLULDDRR RRUULDLUURRRDRURDDDLULD

RRRUUULLLDDRURD URDRURDRRULURULLDLLLURR

Fig. 2.7. Optimal self-avoiding walks on 4× 4 and 4× 6 grids that visit every cell.
(The walks are traced as paths starting in the lower left cell and shown in string
form beneath the grids with U=up, D=down, R=right, and L=left.)

Definition 2.16 The coverage fitness of a random walk of length NM − 1
on an N ×M grid is computed as follows: Begin in the lower left cell of the
grid, marking it as visited. For each of the moves in the random walk, make
the move (if it stays on the grid) or ignore the move (if it attempts to move
off the grid). Mark each cell reached during the walk as visited. The fitness
function returns the number of cells visited.

Notice that this fitness function requires that the walk have exactly one
fewer move than there are cells, so each move must hit a new cell. The exam-
ples given in Figure 2.7 have this property.

Experiment 2.12 Modify the basic string evolver software to work on a pop-
ulation of n strings with two-point crossover and k-point mutation. Use size-4
tournament selection applied to the entire population. Make sure that chang-
ing n and k is easy. Run 400 populations each using the coverage fitness on
15-character strings over the alphabet {U, D, R, L} on a 4 × 4 grid for
n = 200, 400 and k = 1, 2, 3. This is 2400 runs and will take a while on even

Designing Simple Evolutionary Algorithms 55

a fast computer. Stop each individual run when a solution is found (this is a
success) or when the run hits 1000 generations. Tabulate the number of suc-
cesses and the fraction of successes. Discuss whether there is a clearly superior
mutation operator and discuss the merits of the two population sizes (recalling
that the larger one is twice as much work per generation).

Fig. 2.8. A slightly suboptimal walk.

If the code used for Experiment 2.12 does a running trace of the best fit-
ness, then it is easy to see that the search “gets stuck” sometimes. If you save
time-to-solution for the runs that terminate in fewer than 1000 generations,
you will also observe that solution is often rapid, much faster than 1000 gener-
ations. This suggests that not only are there many global optima (Figure 2.7
shows a pair of global optima for each of two different grid sizes), but there is
probably a host of local optima. Look at the walk shown in Figure 2.8. It has
a coverage fitness of 24; the optimal is 25. It is also several point mutations
from any optimal gene. Thus, this walk forms an example of a local optimum.

As we will see in the Problems, each optimal self-avoiding walk has a
unique encoding, but local optima have a number of distinct codings that in
fact grows with their degree of suboptimality. As we approach an optimum,
the fragility of our genetic representation of the walk grows. More and more
of the loci are such that changing them materially decreases fitness. Let’s
take a look at how fitnesses are distributed in a random sample of strings
coding for walks. Figure 2.9 shows how the fitnesses of 10,000 genes generated
uniformly at random are distributed. Given that our evolutionary algorithms
can find solutions to problems of this type, clearly the evolutionary algorithm
is superior to mere random sampling. Our next experiment is intended to give
us a tool for documenting the presence of a rich collection of local optima
using the coverage fitness function.

56 Evolutionary Computation for Modeling and Optimization

1 13 25
0

750

1500

Fig. 2.9. A histogram of the covering fitness of 10,000 strings of 24 moves on a 5×5
grid. (The most common fitness was 10, attained by 1374 of the strings. The largest
fitness obtained was 20.)

Definition 2.17 A stochastic hill climber is an algorithm that repeatedly
modifies an initial configuration, saving the new configuration only if it is
better (or no worse).

Experiment 2.13 Write or obtain software for a stochastic hill climber that
requires that new results be better for length-24 walks on a 5× 5 grid starting
in the lower left cell. Use single-point mutation to perform modifications. Run
the hill climber for 1000 steps each time you run it, and run it until you get
5 walks of fitness 20 or more. Make pictures of the walks, pooling results with
anyone else who has performed the experiment.

Figure 2.10 shows four walks generated by a stochastic hill climber. The
coverage fitnesses of these walks are 20, 16, 18, and 19, respectively. All four
fail to self-avoid, and all four arose fairly early in the 1,000-step stochastic
hill climb. If these qualities turn out to be typical of the walks arrived at
in Experiment 2.13, then it seems that a stochastic hill climber is not the
best tool for exploring this fitness landscape. In the interest of fairness, let us
extend the reach of our exploration of stochastic hill climber behavior with
an additional experiment.

Experiment 2.14 Modify the stochastic hill climber from Experiment 2.13
to use two-point mutation. In addition to this change, perform 10,000 rather
than 1000 mutations. (This is probably more than necessary, but it should

Designing Simple Evolutionary Algorithms 57

RULUUDRRDUULRRRDDLURUULL RRRLLLLULRUUUUURDRDDRURR

RLLURLULRRDDDRLURURULLUR DDUUURDDRDURRULULURLLLLL

Fig. 2.10. Examples of the output of a stochastic hill climber.

be computationally manageable.) Run both the old and new hill climbers 100
times and compare histograms of the resulting fitnesses.

The stochastic hill climbers in Experiments 2.13 and 2.14 require that new
results be better, so they will make a move only if it leads uphill. Taking the
mutated string only if it was no worse may tend to let the search move more,
simply because “sideways” moves are permitted. Let’s see what we can learn
about the effect of these sideways moves.

Experiment 2.15 Modify the stochastic hill climbers from Experiments 2.13
and 2.14 so that they accept mutated strings that are no worse. Repeat Exper-
iment 2.14 with the modified hill climbers. Compare the results.

A stochastic hill climber can be viewed as repeated application of a helpful
mutation operator to a single-member population. After having done all this
work on stochastic hill climbing, it might be interesting to see how it works
within the evolutionary algorithm.

58 Evolutionary Computation for Modeling and Optimization

Experiment 2.16 Modify the software from Experiment 2.12 to use helpful
mutation operators part of the time. Rerun the experiment for n = 200 and
k = 1, 2 with 50% and 100% helpful mutation. Compare with the corresponding
runs from Experiment 2.12. Summarize and attempt to explain the effects.

We conclude this phase of our exploration of polymodal fitness functions.
We will revisit this fitness function in Chapter 13, where a technique for
structurally enhancing evolutionary algorithms at low computational cost is
explored.

Problems

Problem 62. For a 3× 3 grid and walks of length 8 moves, give examples of:

(i) An optimal self-avoiding walk other than UURRDDLU (which is given
later in this section as part of a problem).

(ii) A non-self-avoiding walk.
(iii) A self-avoiding nonoptimal walk.

Notice that you will have to waste moves at the edge of the grid (which are
not moves at all) in order to achieve some of the answers. Be sure to reread
Definition 2.16 before doing this problem.

Problem 63. Give an example of a self-avoiding walk that cannot be ex-
tended to an optimal self-avoiding walk. You may pick your grid size.

Problem 64. Make a diagram, structured as a tree, showing all self-avoiding
walks on a 3×3 grid that start in the lower left cell, excluding those that waste
moves off the edge of the grid. These walks will vary in length from 1 to 8.
This is easy as a coding problem and a little time-consuming by hand. While
there are only 8 optimal self-avoiding walks, there are quite a few self-avoiding
walks.

Problem 65. Prove that the coverage fitness function given in Definition 2.16
awards the maximum possible fitness only to optimal self-avoiding walks.

Problem 66. Give an exact formula for the number of optimal self-avoiding
walks on a 1×n and on a 2×n grid as a function of n. Assume that the walks
start in the lower left cell.

Problem 67. Draw all possible optimal self-avoiding walks on a 3 × 3 grid
and a 3× 4 grid. Start in the lower left cell.

Problem 68. Give an exact formula for the number of optimal self-avoiding
walks on a 3 × n grid as a function of n. Assume that the walks start in the
lower left cell. (This is a very difficult problem.)

Designing Simple Evolutionary Algorithms 59

UURRDDLU

Problem 69. Review the discussion of admissible and inadmissible walks at
the beginning of this section. For the length-8 walk given above, how many
of the one-point mutants of the walk are admissible? Warning: there are 38

one-point mutants of this walk; you need either code or cleverness to do this
problem.

Problem 70. Suppose that instead of wasting moves that move off the grid,
we wrap the grid at the edges. Does this make the problem harder or easier
to solver via evolutionary computation?

Problem 71. Prove that all single-point mutations of a string specifying an
optimal self-avoiding walk are themselves nonoptimal.

Problem 72. Find a walk with a coverage fitness one less than the maximum
on a 3× 3 grid and then enumerate as many strings as you can that code for
it (at least 2).

Problem 73. On a 5 × 5 grid, make an optimal self-avoiding walk and find
a point mutation such that the fitness decrease caused by the point mutation
is as large as possible.

Problem 74. Construct a string for the walk shown in Figure 2.8 that ends
in a downward move off the grid (there is only one such string). Now find the
smallest sequence of point mutations you can that makes the string code for
an optimal self-avoiding walk.

Problem 75. Modify the software for Experiment 2.13to record when the
hill climber, in the course of performing the stochastic hill climb, found its
best answer. Give the mean, standard deviation, and maximum and minimum
times to get stuck for 1000 attempts.

Problem 76. Read the description of Experiments 2.13 and 2.14. Explain
why a stochastic hill climber using two-point mutation might need more trials
per hill climbing attempt than one using one-point mutation.

60 Evolutionary Computation for Modeling and Optimization

Problem 77. Given that we start in the lower left cell of a grid, prove that
there are never more than three choices of a way for a walk to leave a given
grid cell in a self-avoiding fashion.

Problem 78. Based on the results of Problem 77, give a scheme for coding
walks starting in the lower left cell of a grid with a ternary alphabet. Find
strings that result in the walks pictured in Figure 2.7.

Problem 79. Prove that the fraction of genes that encode optimal self-
avoiding walks is less than

(3
4

)NM−1 on an N ×M grid.

Problem 80. Essay. Based on the sort of reencoding needed to answer Prob-
lem 78 (use your own if you did the problem), try to argue for or against the
proposition that the reencoding will make the space easier or harder to search
with an evolutionary algorithm. Be sure to address not only the size of the
search space but also the ability of the algorithm to get caught. If you are
feeling gung ho, support your argument with experimental evidence.

2.7 The Many Lives of Roulette Selection

In Section 2.1, we mentioned roulette selection as one of the selection tech-
niques that can be used to build a model of evolution. It turns out that the
basic roulette selection code, given in Figure 2.11, can be used for several
tasks in evolutionary computation. The most basic is to perform roulette se-
lection, but there are others. Let us trace through the roulette selection code
and make sure we understand it first.

The routine takes, as arguments, an array of positive fitness values f and
an integer argument n that specifies the number of entries in the fitness array.
It returns an integer, the index of the fitness selected. The probability that
a given index i will be selected is in proportion to the fraction of the total
fitness in f at f [i]. Why? The routine first totals f , placing the resulting
total in the variable ttl. It then multiplies this total by a random number
uniformly distributed in the interval [0, 1] to select a position in the range
[0, Total Fitness], which is placed in the variable dart. (The variable name is a
metaphor for throwing a dart at a virtual dart board that is divided into areas
that are proportional to the fitnesses in f .) We then use iterated subtraction,
of successive fitness values from the dart, to find out where the dart landed.
If the dart is in the range [0, f [0]), then subtracting f [0] from the dart will
drive the total negative. If the dart is in the range [f [0], f [0] + f [1]), then
the iterated subtraction will go negative once we have subtracted both f [0]
and f [1]. This pattern continues with the effect that the probability that the
iterated subtraction will drive the dart negative at index i is exactly f [i]/ttl.
We thus return the value of i at which the iterated subtraction drives the dart
negative.

Designing Simple Evolutionary Algorithms 61

//Returns an integer in the range 0 to (n-1) with probability of i
//proportional to f[i]/Sum(f[i]).

int RouletteSelect(double *f;int n){ //f holds positive fitness
values

//n counts entries in f

int i; double ttl,dart;

ttl=0;
for(i=0;i<n;i++)ttl+=f[i]; //compute the total fitness
dart=ttl*random01(); //generate randomly

//0<=dart<=(total fitness)
i=-1;
do {

dart-=f[++i]; //subtract successive fitnesses;
} while(dart>=0); //the one that takes you negative is

//where the dart landed

return(i); //tell the poor user what the decision is
}

Fig. 2.11. Roulette selection code.

Now that we have code for roulette selection, let’s figure out what else we
can do with it. It is often desirable to select in direct proportion to a function
of the fitness. If, for instance, we have fitness values in the range 0 < x < 1 but
we want some minimal chance of every gene being selected, then we might
use x + 0.1 as the “fitness” for selection. This could be coded by simply
preprocessing the fitness array f before handing it off to the RouletteSelect
routine. In general, if we want to select in proportion to g(fitness), then we
need only apply the function g(x) to each entry of f before using it as the
“fitness” array passed to RouletteSelect. It is, however, important for correct
functioning of both evolution and the selection code that g(x) be a monotone
function, i.e., a < b→ g(a) < g(b).

The other major selection method in Section 2.1 was rank selection. There
we gave the most fit of n creatures rank n, the next most fit rank n− 1, etc.,
and then selected creatures to be parents in proportion to their rank. Rank
is thus nothing more than a monotone function of fitness. This means that
the roulette selection code is also rank selection code as long as we pass an
array of ranks. If we compute the ranks in reverse fashion, with the most fit
creature’s rank at 1, then the roulette selection code may be used to do the
selection needed for rank replacement. Roulette replacement is also achieved
by a simple modification of f . Let us now consider an application of roulette
selection to the computational details of mutation.

62 Evolutionary Computation for Modeling and Optimization

The Poisson Distributions and Efficient Probabilistic Mutation

When we place a probability distribution on a finite set, we get a list of
probabilities, each associated with one member of the finite set. Typically, a
programming language comes equipped with a routine that generates random
integers in the range 0, 1, . . . , n − 1 and with another routine that gener-
ates random floating point numbers in the range (0, 1). As long as a uniform
distribution on an interval is all that is required, an affine transformation
g(x) = ax + b can transform these basic random numbers into the integer or
floating point distribution required. Computing nonuniform distributions can
require a good deal of mathematical muscle. In Chapter 3 we will learn to
transform uniform 0-1 random numbers into normal (also called Gaussian)
random numbers. Here we will adapt roulette selection to nonuniform distri-
butions on finite sets and then give an application for efficiently performing
probabilistic mutation.

By now, the alert reader will have noticed that if we know a probability dis-
tribution on a finite set, then the roulette selection routine can generate proba-
bilities according to that distribution if we simply hand it that list of probabil-
ities in place of the fitness array. If, for example, we pass f = {0.5, 0.25, 0.25}
to the routine in Figure 2.11, then it will return 0 with probability 0.5, 1 with
probability 0.25, and 2 with probability 0.25. In the course of designing sim-
ulations and search software in later chapters, it will be useful to be able to
select random numbers according to any distribution we wish, but at present
we want to concentrate on a particular distribution, the Poisson distribution.

In Appendix B, the binomial distribution is discussed at some length. When
we are doing n experiments, each of which can either succeed or fail, the
binomial distribution lets us compute the probability of k of the experiments
succeeding. The canonical example of this kind of experiment is flipping a
coin with “heads” being taken as a success. Now imagine we were to flip 3000
(very odd) coins, and that the chance of getting a head was only one in 1,500.
Then, on average, we would expect to get 2 heads, but if we wanted to compute
explicitly the chance of getting 0 heads, 1 head, etc., numbers like 3000! (three-
thousand factorial) would come into the process, and our lives would become a
trifle difficult. This sort of situation, a very large number of experiments with
a small chance of success, comes up fairly often. A statistician examining data
on how many Prussian cavalry officers were kicked to death by their horses
(a situation with many experiments and few “successes”) discovered a short
cut.

As long as we have a very large number of experiments with a low proba-
bility of success, the Poisson distribution, Equation 2.2, gives the probability
of k successes with great accuracy:

P (k successes) =
e−m ·mk

k!
(2.2)

Designing Simple Evolutionary Algorithms 63

The parameter m requires some explanation. It is the average number of
successes. For n experiments with probability α of success we have m = nα.
In Figure 2.12 we give an example of the initial part of a Poisson distribution,
both listed and plotted. How does this help us with probabilistic mutation?

When we perform a probabilistic mutation with rate α on a string with
n characters, we generate a separate random number for each character in
the string. If the length of the string is small, this is not too expensive. If
the string has 100 characters, this can be a very substantial computational
expense. Avoiding this expense is our object. Typically, we keep the expected
number of mutations, m = nα, quite small by keeping the string length times
the rate of the probabilistic mutation operator small. This means that the
Poisson distribution can be used to generate the number of mutations r, and
then we can perform an r-point mutation.

There is one small wrinkle. As stated in Equation 2.2, the Poisson distribu-
tion gives a positive probability to each integer. This means that if we fill an n-
element array with the Poisson probabilities of 0, 1, . . . , n−1, the array will not
quite sum to 1 and will hence not quite be a probability distribution. Looking
at Figure 2.12, we see that the value of the Poisson distribution drops off quite
quickly. This means that if we ignore the missing terms after n− 1 and send
the not-quite-probability distribution to the routine RouletteSelect(f, n), we
will get something very close to the right numbers of mutations, so close, in
fact, that it should not make any real difference in the behavior of the mu-
tation operator. In the Problems, we will examine the question of when it is
worth using a Poisson distribution to simulate probabilistic mutation.

Problems

Problem 81. The code given in Figure 2.11 is claimed to require that f be
an array of positive fitness values. Explain why this is true and explain what
will happen if (i) some zero fitness values are included and (ii) negative fitness
values creep in.

Problem 82. The code given in Figure 2.11 returns an integer value without
explicitly checking that it is in the range 0, 1, . . . , n− 1. Prove that if all the
fitness values in f are positive, it will return an integer in this range.

Problem 83. Modify the RouletteSelect(f, n) routine to work with an array
of integral fitness values. Other than changing the variable types, are any
changes required? Why or why not?

Problem 84. If C is not your programming language of choice, translate the
routine given in Figure 2.11 to your favored language.

Problem 85. Explicitly explain, including the code to modify the entries
of f , how to use the RouletteSelect(f, n) code in Figure 2.11 for roulette
replacement. This, recall, selects creatures to be replaced by new creatures
with probability inversely proportional to their fitness.

64 Evolutionary Computation for Modeling and Optimization

P(0)=0.135335
P(1)=0.270671
P(2)=0.270671
P(3)=0.180447
P(4)=0.0902235
P(5)=0.0360894
P(6)=0.0120298
P(7)=0.00343709
P(8)=0.000859272
P(9)=0.000190949
P(10)=3.81899e-05
P(11)=6.94361e-06

...

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12

Fig. 2.12. A listing and plot of the Poisson distribution with a mean of m = 2.

Designing Simple Evolutionary Algorithms 65

Problem 86. Give the specialization of Equation 2.2 to a mean of m = 1
and compute for which k the probability of k successes drops to no more than
10−6.

Problem 87. Suppose we wish to perform probabilistic mutation on a 100-
character string with rate α = 0.03. Give the Poisson distribution of the
number of mutations and give the code to implement efficient probabilistic
mutation as outlined in the text. Be sure to design the code to compute the
partial Poisson distribution only once.

Problem 88. For an n-character string gene being modified by probabilistic
mutation with rate α, compute the number of random numbers (other than
those required to compute point mutations) needed to perform efficient proba-
bilistic mutation. Compare this to the number needed to perform probabilistic
mutation in the usual fashion. From these computations derive a criterion, in
terms of n and α, for when to use the efficient version of probabilistic mutation
instead of the standard one.

Problem 89. Suppose we are using an evolutionary algorithm to search for
highly fit strings that fit a particular criterion. Suppose also that all good
strings, according to this criterion, have roughly the same fraction of each
character but have them arranged in different orders. If we know a few highly
fit strings and want to locate more, give a way to apply RouletteSelect(f, n)
to generate initial populations that will have above average fitness. (Starting
with these populations will let us sample the collection of highly fit strings
more efficiently.)

Problem 90. Suppose we have an evolutionary algorithm that uses a collec-
tion of several different mutation operators. For each, we can keep track of the
number of times it is used and the number of times it enhances fitness. From
this we can get, by dividing these two numbers, an estimate of the probability
each mutation operator has of improving a given gene. Clearly, using the most
useful mutation operators more often would be good. Give a method for using
RouletteSelect(f, n) to probabilistically select mutation operators according
to their estimated usefulness.

Problem 91. Essay. Read Problem 90. Suppose we have a system for es-
timating the usefulness of several mutation operators. In Problem 90, this
estimate is the ratio of applications of a mutation operator that enhanced
fitness to the total number of applications of that mutation operator. It is
likely that the mutation operators that help the most with an initial, almost
random, population will be different from those that help the most with a
converged population. Suggest and justify a method for estimating the recent
usefulness of each mutation operator, such as would enhance performance
when used with the system described in Problem 90. Discuss the computa-
tional complexity of maintaining these moving estimates and try to keep the
computational cost of your technique low.

http://www.springer.com/978-0-387-22196-0

