
2

Mathematical Preliminaries

In this chapter, we introduce many of the fundamental mathemati-
cal ideas used throughout the book. We first discuss sets, which help
organize “things” into meaningful unordered collections. We then dis-
cuss functions which help map things to other things. Next, we dis-
cuss relations that relate things. We provide a concrete syntax, that
of Lambda expressions, for writing down function definitions. We then
present ways to “count” infinite sets through a measure known as car-
dinality.

2.1 Numbers

We will refer to various classes of numbers. The set Nat, or natu-
ral numbers, refers to whole numbers greater than or equal to zero,
i.e., 0, 1, 2, The set Int, or integers, refers to whole numbers, i.e.,
0, 1,−1, 2,−2, 3,−3 The set Real, or real numbers, refers to both
rational as well as irrational numbers, including 0.123,

√
2, π, 1, and

−2.

2.2 Boolean Concepts, Propositions, and Quantifiers

We assume that the reader is familiar with basic concepts from Boolean
algebra, such as the use of the Boolean connectives and (∧), or (∨), and
not (¬). We will be employing the two quantifiers “for all” (∀) and “for
some” or equivalently “there exists” (∃) in many definitions. Here we
provide preliminary discussions about these operators; more details are
provided in Section 5.2.4.

16 2 Mathematical Preliminaries

In a nutshell, the quantifiers ∀ and ∃ are iteration schemes for ∧, ∨,
and ¬, much like Σ (summation) and Π (product) are iteration schemes
for addition (+) and multiplication (×). The universal quantification
operator ∀ is used to make an assertion about all the objects in the
domain of discourse. (In mathematical logic, these domains are assumed
to be non-empty). Hence,

∀x : Nat : P (x)

is equivalent to an infinite conjunction

P (0) ∧ P (1) ∧ P (2) . . .

or equivalently ∧x∈Nat : P (x).

2.3 Sets

A set is a collection of things. For example, A = {1, 2, 3} is a set contain-
ing three natural numbers. The order in which we list the contents of a
set does not matter. For example, A = {3, 1, 2} is the same set as above.
A set cannot have duplicate elements. For example, B = {3, 1, 2, 1} is
not a set.1

A set containing no elements at all is called the empty set, written
{}, or equivalently, ∅. A set may also consist of a collection of other
sets, as in

P = {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

P has a special status; it contains every subset of set A. P is in fact
the powerset of A. We will have more to say about powersets soon.

2.3.1 Defining sets

Sets are specified using the set comprehension notation

S = {x ∈ D | p(x)}.

Here, S includes all x from some universe D such that p(x) is true. p(x)
is a Boolean formula called characteristic formula. p by itself is called
the characteristic predicate. We can leave out D if it is clear from the
context.

1 An unordered collection with duplicates, such as B, is called a multi-set or bag.

2.3 Sets 17

Examples:

• Set A, described earlier, can be written as

A = {x | x = 1 ∨ x = 2 ∨ x = 3}.

• For any set D,
{x ∈ D | true} = D.

Notice from this example that the characteristic formula can simply
be true, or for that matter false.

• For any set D,
{x ∈ D | false} = ∅.

The next two sections illustrate that care must be exercised in writ-
ing set definitions. The brief message is that by writing down a collec-
tion of mathematical symbols, one does not necessarily obtain some-
thing that is well defined. Sometimes, we end up defining more than
one thing without realizing it (the definitions admit multiple solutions),
and in other cases we may end up creating contradictions.

2.3.2 Avoid contradictions

Our first example illustrates the famous Russell’s Paradox. This para-
dox stems from allowing expressions such as x ∈ x and x /∈ x inside
characteristic formulas. Consider some arbitrary domain D. Define a
set S as follows:

S = {x ∈ D | x /∈ x}.
Now, the expression x /∈ x reveals that x itself is a set. Since S is a set,
we can now ask, “is S a member of S?”

• If S is a member of S, it cannot be in S, because S cannot contain
sets that contain themselves.

• However, if S is not a member of S, then S must contain S!

Contradictions are required to be complete, i.e., apply to all possible
cases. For example, if S /∈ S does not result in a contradiction, that,
then, becomes a consistent solution. In this example, we fortunately
obtain a contradiction in all the cases. The proposition S ∈ S must
produce a definite answer - true or false. However, both answers lead to
a contradiction.

We can better understand this contradiction as follows. For Boolean
quantities a and b, let a ⇒ b stand for “a implies b” or “if a then b;”
in other words, ⇒ is the implication operator. Suppose S ∈ S. This

18 2 Mathematical Preliminaries

allows us to conclude that S /∈ S. In other words, (S ∈ S) ⇒ (S /∈ S)
is true. In other words, ¬(S ∈ S) ∨ (S /∈ S), or (S /∈ S) ∨ (S /∈ S), or
(S /∈ S) is true. Likewise, (S ∈ S) ⇒ (S /∈ S). This allows us to prove
(S ∈ S) true. Since we have proved S ∈ S as well as S /∈ S, we have
proved their conjunction, which is false! With false proved, anything
else can be proved (since false ⇒ anything is ¬(false)∨ anything, or
true). Therefore, it is essential to avoid contradictions in mathematics.

Russell’s Paradox is used to conclude that a “truly universal set”
– a set that contains everything – cannot exist. Here is how such a
conclusion is drawn. Notice that set S, above, was defined in terms
of an arbitrary set called D. Now, if D were to be a set that contains
“everything,” a set such as S must clearly be present inside D. However,
we just argued that S must not exist, or else a contradiction will result.
Consequently, a set containing everything cannot exist, for it will lack
at least S. This is the reason why the notion of a universal set is not
an absolute notion. Rather, a universal set specific to the domain of
discourse is defined each time. This is illustrated below in the section
devoted to universal sets. In practice, we disallow sets such as S by
banning expressions of the form x ∈ x. In general, such restrictions are
handled using type theory [48].

2.3.3 Ensuring uniqueness of definitions

When a set is defined, it must be uniquely defined. In other words, we
cannot have a definition that does not pin down the exact set being
talked about. To illustrate this, consider the “definition” of a set

S = {x ∈ D | x ∈ S},

where D is some domain of elements. In this example, the set being
defined depends on itself. The circularity, in this case, leads to S not
being uniquely defined. For example, if we select D = Nat, and plug
in S = {1, 2} on both sides of the equation, the equation is satisfied.
However, it is also satisfied for S = ∅, S = {3, 4, 5}. Hence, in the above
circular definitions, we cannot pin down exactly what S is.

The message here is that one must avoid using purely circular defini-
tions. However, sets are allowed to be defined through recursion which,
at first glance, is “a sensible way to write down circular definitions.”
Chapter 7 explains how recursion is understood, and how sets can be
uniquely defined even though “recursion seems like circular definition.”

2.3 Sets 19

Operations on Sets

Sets support the usual operations such as membership, union, intersec-
tion, subset, powerset, Cartesian product, and complementation. x ∈ A
means x is a member of A. The union of two sets A and B, written
A∪B, is a set such that x ∈ (A∪B) if and only if x ∈ A or x ∈ B. In
other words, x ∈ (A ∪ B) implies that x ∈ A or x ∈ B. Also, x ∈ A or
x ∈ B implies that x ∈ (A ∪ B). similarly, the intersection of two sets
A and B, written A ∩ B, is a set such that x ∈ (A ∩ B) if and only if
x ∈ A and x ∈ B.

A proper subset A of B, written A ⊂ B, is a subset of B different
from B. A ⊆ B, read ‘A is a subset of B’, means that A ⊂ B or A = B.
Note that the empty set has no proper subset.

Subtraction, Universe, Complementation, Symmetric
Difference

Given two sets A and B, set subtraction, ‘\’, is defined as follows:

A \ B = {x | x ∈ A ∧ x /∈ B}.
Set subtraction basically removes all the elements in A that are in B.
For example, {1, 2} \ {2, 3} is the set {1}. 1 survives set subtraction
because it is not present in the second set. The fact that 3 is present
in the second set is immaterial, as it is not present in the first set.

For each type of set, there is a set that contains all the elements of
that type. Such a set is called the universal set. For example, consider
the set of all strings over some alphabet, such as {a, b}. This is universal
set, as far as sets of strings are concerned. We can write this set as

SigmaStar = {ε, a, b, aa, ab, ba, bb, aaa, aab, . . .}.
(The reason why we name the above set SigmaStar will be explained
in Chapter 7.) Here, ε is the empty string, commonly written as "", a
and b are strings of length 1, aa, ab, ba, and bb are strings of length
2, and so on. While discussing natural numbers, we can regard Nat =
{0, 1, 2, . . .} as the universe.

The symbol ε is known to confuse many students. Think of
it as the “zero” element of strings, or simply read it as the
empty string "". By way of analogy, the analog of the arithmetic
expression 0+1, which simplifies to 1, is ε concatenated with a,
which simplifies to a. (We express string concatenation through
juxtaposition). Similarly, 0+2+0 = 2 is to numbers as ε aa ε =
aa is to strings. More discussions are provided in Section 7.2.4.

20 2 Mathematical Preliminaries

Universal sets help define the notion of complement of a set. Consider
the universal set (or “universe”) SigmaStar of strings over some alpha-
bet. The complement of a set of strings such as {a, ba} is
SigmaStar \ {a, ba}. If we now change the alphabet to, say, {a}, the
universal set of strings over this alphabet is

SigmaStar1 = {ε, a, aa, aaa, aaaa, . . .}.

Taking the complement of a set such as {a, aaa} with respect to
SigmaStar1 yields a set that contains strings of a’s such that the num-
ber of occurrences of a’s is neither 1 nor 3.

Given two sets A and B, their symmetric difference is defined to be

(A \ B) ∪ (B \ A).

For example, if A = {1, 2, 3} and B = {2, 3, 4, 5}, their symmetric
difference is the set {1, 4, 5}. The symmetric difference of two sets pro-
duces, in effect, the XOR (exclusive-OR) of the sets.

For any alphabet Σ and its corresponding universal set SigmaStar,
the complement of the empty set ∅ is SigmaStar. One can think of ∅ as
the empty set with respect to every alphabet.

Types versus Sets

The word type will be used to denote a set together with its associated
operations. For example, the type natural number, or Nat, is associated
with the set {0, 1, 2, . . .} and operations such as successor, +, etc. ∅
is an overloaded symbol, denoting the empty set of every type. When
we use the word “type,” most commonly we will be referring to the
underlying set, although strictly speaking, types are “sets plus their
operations.”

Numbers as Sets

In mathematics, it is customary to regard natural numbers themselves
as sets. Each natural number essentially denotes the set of natural
numbers below it. For example, 0 is represented by {}, or ∅, as there
are no natural numbers below 0. 1 is represented by {0}, or (more
graphically) {{}}, the only natural number below 1. Similarly, 2 is the
set {0, 1}, 3 is the set {0, 1, 2}, and so on. This convention comes in
quite handy in making formulas more readable, by avoiding usages such
as

∀i : 0 ≤ i ≤ N − 1 : ..something..

2.4 Cartesian Product and Powerset 21

and replacing them with

∀i ∈ N : ..something..

Notice that this convention of viewing sets as natural numbers is
exactly similar to how numbers are defined in set theory textbooks,
e.g., [50]. We are using this convention simply as a labor-saving device
while writing down definitions. We do not have to fear that we are
suddenly allowing sets that contain other sets.

As an interesting diversion, let us turn our attention back to the
discussion on Russell’s Paradox discussed in Section 2.3.2. Let us take
D to be the set of natural numbers. Now, the assertion x /∈ x evaluates
to true for every x ∈ D. This is because no natural number (viewed
as a set) contains itself - it only contains all natural numbers strictly
below it in value. Hence, no contradiction results, and S ends up being
equal to Nat.

2.4 Cartesian Product and Powerset

The Cartesian product operation ‘×’ helps form sets of tuples of el-
ements over various types. The terminology here goes as follows:
‘pairs’ are ‘two-tuples,’ ‘triples’ are ‘three-tuples,’ ‘quadruples’ are
‘four-tuples,’ and so on. After 5 or so, you are allowed to say ‘n-ple’ -
for instance, ‘37-ple’ and so on. For example, the set Int×Int denotes
the sets of pairs of all integers. Mathematically, the former set is

Int × Int = {〈x, y〉 | x ∈ Int ∧ y ∈ Int}.

Given two sets A and B, the Cartesian product of A and B,
written A × B, is defined to be the set

{〈a, b〉 | a ∈ A ∧ b ∈ B}.

We can take Cartesian product of multiple sets also. In general, the
Cartesian product of n sets Ai, i ∈ n results in a set of “n-tuples”

A0 × A1 × . . . An−1 = {〈a0, a1, . . . , an−1〉 | ai ∈ Ai for every i}.

If one of these sets, Ai, is ∅, the Cartesian product results in ∅ because
it is impossible to “draw” any element out of Ai in forming the n-ples.
Here are some examples of Cartesian products:

• {2, 4, 8} × {1, 3} × {100} =
{〈2, 1, 100〉, 〈2, 3, 100〉, 〈4, 1, 100〉, 〈4, 3, 100〉, 〈8, 1, 100〉, 〈8, 3, 100〉}.

22 2 Mathematical Preliminaries

• SigmaStar1×SigmaStar1 = {〈x, y〉 | x and y are strings over {a}}.
In taking the Cartesian product of n sets Ai, i ∈ n, it is clear that

if n = 1, we get the set A0 back. For example, if A0 = {1, 2, 3}, the
1-ary Cartesian product of A0 is itself. Note that A0 = {1, 2, 3} can
also be written as A0 = {〈1〉, 〈2〉, 〈3〉} because, in classical set theory
[50], 1-tuples such as 〈0〉 are the same as the item without the tuple
sign (in this case 0).

It is quite common to take the Cartesian product of different types
of sets. For example, the set Int × Bool denotes the sets of pairs of
integers and Booleans. An element of the above set is 〈22, true〉, which
is a pair consisting of one integer and one Boolean.

2.4.1 Powersets and characteristic sequences

The powerset of a set S is the set of all its subsets. As is traditional,
we write 2S to denote the powerset of S. In symbols,

2S = {x | x ⊆ S}.

This “exponential” notation suggests that the size of the powerset is
2 raised to the size of S. We can argue this to be the case using the
notion of characteristic sequences. Take S = {1, 2, 3} for example. Each
subset of S is defined by a bit vector of length three. For instance, 000
represents ∅ (include none of the elements of S), 001 represents {3}, 101
represents {1, 3}, and 111 represents S. These “bit vectors” are called
characteristic sequences. All characteristic sequences for a set S are of
the same length, equal to the size of the set, |S|. Hence, the number of
characteristic sequences for a finite set S is exponential in |S|.

2.5 Functions and Signature

A function is a mathematical object that expresses how items called
“inputs” can be turned into other items called “outputs.” A function
maps its domain to its range; and hence, the inputs of a function belong
to its domain and the outputs belong to its range. The domain and
range of a function are always assumed to be non-empty. The
expression “f : TD → TR” is called the signature of f , denoting that f
maps the domain of type TD to the range of type TR. Writing signatures
down for functions makes it very clear as to what the function “inputs”
and what it “outputs.” Hence, this is a highly recommended practice.

2.6 The λ Notation 23

As a simple example, + : Int × Int → Int denotes the signature of
integer addition.

Function signatures must attempt to capture their domains and
ranges as tightly as possible. Suppose we have a function g that accepts
subsets of {1, 2, 3}, outputs 4 if given {1, 2}, and outputs 5 given any-
thing else. How do we write the signature for g? Theoretically speaking,
it is correct to write the signature as 2Nat → Nat; however, in order to
provide maximum insight to the reader, one must write the signature
as

2{1,2,3} → {4, 5}.
If you are unsure of the exact domain and range, try to get as tight as
possible. Remember, you must help the reader.
The image of a function is the set of range points that a function
actually maps onto. For function f : TD → TR,

image(f) = {y ∈ TR | ∃x ∈ TD : y = f(x)}.

2.6 The λ Notation

The Lambda calculus was invented by Alonzo Church2 as a formal rep-
resentation of computations. Church’s thesis tells us that the lambda-
based evaluation machinery, Turing machines, as well as other formal
models of computation (Post systems, Thue systems, . . .) are all for-
mally equivalent. Formal equivalences between these systems have all
been worked out by the 1950s.

More immediately for the task at hand, the lambda notation pro-
vides a literal syntax for naming functions. First, let us see in the con-
text of numbers how we name them. The sequence of numerals (in pro-
gramming parlance, the literal) ‘1’ ‘9’ ‘8’ ‘4’ names the number 1984.
We do not need to give alternate names, say ‘Fred’, to such numbers!
A numeral sequence such as 1984 suffices. In contrast, during program-
ming one ends up giving such alternate names, typically derived from
the domain of discourse. For example,

function Fred(x) {return 2;}.
Using Lambda expressions, one can write such function definitions
without using alternate names. Specifically, the Lambda expression
λx.2 captures the same information as in the above function definition.

2 When once asked how he chose λ as the delimiter, Church replied, “Eenie meenie
mynie mo!”

24 2 Mathematical Preliminaries

We think of strings such as λx.2 as a literal (or name) that describes
functions. In the same vein, using Lambda calculus, one name for the
successor function is λx.(x+1), another name is λx.(x+2− 1), and so
on.3 We think of Lambda expressions as irredundant names for functions
(irredundant because redundant strings such as ‘Fred’ are not stuck in-
side them). We have, in effect, “de-Freded” the definition of function
Fred. In Chapter 6, we show that this idea of employing irredundant
names works even in the context of recursive functions. While it may
appear that performing such ‘de-Fredings’ on recursive definitions ap-
pears nearly impossible, Chapter 6 will introduce a trick to do so using
the so-called Y operator. Here are the only two rules pertaining to it
that you need to know:

• The Alpha rule, or “the name of the variable does not matter.”
For example, λx.(x + 1) is the same as λy.(y + 1). This process of
renaming variables is called alpha conversion. Plainly spoken, the
Alpha rule simply says that, in theory,4 the formal parameters of a
function can be named however one likes.

• The Beta rule, or “here is how to perform a function call.” A func-
tion is applied to its argument by writing the function name and
the argument name in juxtaposition. For example, (λx.(x + 1)) 2
says “feed” 2 in place of x. The result is obtained by substituting 2
for x in the body (x + 1). In this example, 2 + 1, or 3 results. This
process of simplification is called beta reduction.

The formal arguments of Lambda expressions associate to the right. For
example, as an abbreviation, we allow cascaded formal arguments of
the form (λxy.(x+y)), as opposed to writing it in a fully parenthesized
manner as in (λx.(λy.(x+y))). In addition, the arguments to a Lambda
expression associate to the left. Given these conventions, we can now
illustrate the simplification of Lambda expressions. In particular,

(λzy.(λx.(z + x))) 2 3 4

can be simplified as follows (we show the bindings introduced during
reduction explicitly):

= (λzy.(λx.(z + x))) 2 3 4

3 You may be baffled that I suddenly use “23” and “+” as if they were Lambda
terms. As advanced books on Lambda calculus show [48], such quantities can
also be encoded as Lambda expressions. Hence, anything that is effectively

computable—computable by a machine—can be formally defined using only the
Lambda calculus.

4 In practice, one chooses mnemonic names.

2.7 Total, Partial, 1-1, and Onto Functions 25

= (using the Beta rule) (λz = 2 y = 3.(λx.(z + x)))4.
= (λx.(2 + x))4
= (using the Beta rule) (λx = 4.(2 + x))
= 2 + 4
= 6

The following additional examples shed further light on Lambda cal-
culus:

• (λx.x) 2 says apply the identity function to argument 2, yielding 2.
• (λx.x) (λx.x) says “feed the identity function to itself.” Before per-

forming beta reductions here, we are well-advised to perform alpha
conversions to avoid confusion. Therefore, we turn (λx.x) (λx.x)
into (λx.x) (λy.y) and then apply beta reduction to obtain (λy.y),
or the identity function back.

• As the Lambda calculus seen so far does not enforce any “type
checking,” one can even feed (λx.(x + 1)) to itself, obtaining (after
an alpha conversion) (λx.(x+1))+1. Usually such evaluations then
get “stuck,” as we cannot add a number to a function.

2.7 Total, Partial, 1-1, and Onto Functions

Functions that are defined over their entire domain are total. An ex-
ample of a total function is λx.2x, where x ∈ Nat. A partial function
is one undefined for some domain points. For example, λx.(2/x) is a
partial function, as it is undefined for x = 0.

The most common use of partial functions in computer science is to
model programs that may go into infinite loops for some of their input
values. For example, the recursive program over Nat,

f(x) = if (x = 0) then 1 else f(x)

terminates only for x = 0, and loops for all other values of x. Viewed
as a function, it maps the domain point 0 to the range point 1, and
is undefined everywhere else on its domain. Hence, function f can be
naturally modeled using a partial function. In the Lambda notation,
we can write f as λx.if (x = 0) then 1. Notice that we use an “if-then”
which leaves the “else” case undefined.

One-to-one (1-1) functions f are those for which every point y ∈
image(f) is associated with exactly one point x in TD. A function
that is not 1-1 is ‘many-to-one.’ One-to-one functions are also known
as injections. An example of an injection is the predecessor function
pred : Nat → Nat, defined as follows:

26 2 Mathematical Preliminaries

λx.if (x > 0) then (x − 1).

We have pred(1) = 0, pred(2) = 1, and so on. This function is partial
because it is undefined for 0.

Onto functions f are those for which image(f) = TR. Onto functions
are also known as surjections. While talking about the type of the range,
we say function f maps into its range-type. Hence, onto is a special
case of into when the entire range is covered. One-to-one, onto, and
total functions are known as bijections. Bijections are also known
as correspondences.
Examples: We now provide some examples of various types of func-
tions. In all these discussions, assume that f : Nat → Nat.

• An example of a one-to-one (1-1) function (“injection”) is f =
λx.2x.

• An example of a many-to-one function is f = λx.(x mod 4).
• An example of an onto function is f = λx.x.
• An example of a partial function is f = λx.if even(x) then (x/2).
• An example of a bijection is f = λx.if even(x) then (x+1) else (x−

1). All bijections f : TD → TR where TD = TR = T are the same
type, are permutations over T .

• Into means not necessarily onto. A special case of into is onto.
• Partial means not necessarily total. A special case of partial is total.

For any given one-to-one function f , we can define its inverse to
be f−1. This function f−1 is defined at all its image points. Therefore,
whenever f is defined at x,

f−1(f(x)) = x.

For f : TD → TR, we have f−1 : TR → TD. Consequently, if f is
onto, then f−1 is total—defined everywhere over TR. To illustrate this,
consider the predecessor function, pred. The image of this function is
Nat. Hence, pred is onto. Hence, while pred : Nat → Nat is not total,
pred−1 : Nat → Nat is total, and turns out to be the successor function
succ.

Given a bijection f with signature TD → TR, for any x ∈ TD,
f−1(f(x)) = x, and for any y ∈ TR, f(f−1(y)) = y. This shows that if
f is a bijection from TD to TR, f−1 is a bijection from TR to TD. For
this reason, we tend to call f a bijection between TD and TR - given
the forward mapping f , the existence of the backward mapping f−1 is
immediately guaranteed.

2.9 Algorithm versus Procedure 27

Composition of functions

The composition of two functions f : A → B and g : B → C, written
g ◦ f , is the function λx . g(f(x)).

2.8 Computable Functions

Computational processes map their inputs to their outputs, and there-
fore are naturally modeled using functions. For instance, given two
matrices, a computational process for matrix multiplication yields the
product matrix. All those functions whose mappings may be obtained
through a mechanical process are called computable functions, effec-
tively computable functions, or algorithmically computable functions.
For practical purposes, another equivalent definition of a computable
function is one whose definition can be expressed in a general-purpose
programming language. By ‘mechanical process,’ we mean a sequence
of elementary steps, such as bit manipulations, that can be carried out
on a machine. Such a process must be finitary, in the sense that for
any input for which the function is defined, the computational process
producing the mapping must be able to read the input in finite time
and yield the output in a finite amount of time. Chapter 3 discusses the
notion of a ‘machine’ a bit more in detail; for now, think of computers
when we refer to a machine.

Non-computable functions are well-defined mathematical concepts.
These are genuine mathematical functions, albeit those whose map-
pings cannot be obtained using a machine. In Section 3.1, based on
cardinality arguments, we shall show that non-computable functions
do exist. We hope that the intuitions we have provided above will al-
low you to answer the following problems intuitively. The main point
we are making in this section is that just because a function “makes
sense” mathematically doesn’t necessarily mean that we can code it up
as a computer program!

2.9 Algorithm versus Procedure

An algorithm is an effective procedure, where the word ‘effective’ means
‘can be broken down into elementary steps that can be carried out
on a computer.’ The term algorithm is reserved to those procedures
that come with a guarantee of termination on every input. If such a
guarantee is not provided, we must not use the word ‘algorithm,’ but
instead use the word procedure. While this is a simple criterion one

28 2 Mathematical Preliminaries

can often apply, sometimes it may not be possible to tell whether to
call something an algorithm or a procedure. Consider the celebrated
“3x + 1 problem,” also known as “Collatz’s problem,” captured by the
following program:

function three_x_plus_one(x)

{ if (x==1) then return 1;

if even(x) then three_x_plus_one(x/2);

else three_x_plus_one(3x+1); }

For example, given 3, the three_x_plus_one function obtains 10, 5,
16, 8, 4, 2, 1, and halts. Will this function halt for all x? Nobody
knows! It is still open whether this function will halt for all x in Nat
[24]! Consequently, if someone were to claim that the above program is
their actual implementation of an algorithm (not merely a procedure) to
realize the constant function λx.1, not even the best mathematicians or
computer scientists living today would know how to either confirm or
to refute the claim! That is, nobody today is able to prove or disprove
that the above program will halt for all x, yielding 1 as the answer.5

2.10 Relations

Let S be a set of k-tuples. Then a k-ary relation R over S is defined to be
a subset of S. It is also quite common to assume that the word ‘relation’
means ‘binary relation’ (k = 2); we will not follow this convention,
and shall be explicit about the arity of relations. For example, given
S = Nat × Nat, we define the binary relation < over S to be

< = {〈x, y〉 | x, y ∈ Nat and x < y}.

It is common to overload symbols such as <, which can be used to de-
note binary relations over Int (the set of positive and negative numbers)
or Real. For the sake of uniformity, we permit the arity of a relation
to be 1. Such relations are called unary relations, or properties. For
example, odd can be viewed as a unary relation

odd = {x | x ∈ Nat and x is odd},

or, equivalently,

odd = {x | x ∈ Nat and ∃y ∈ Nat : x = 2y + 1}.

5 Our inability to deal with “even a three-line program” perhaps best illustrates
Dijkstra’s advice on the need to be humble programmers [36].

2.10 Relations 29

Much like we defined binary relations, we can define ternary rela-
tions (or 3-ary relations), 4-ary relations, etc. An example of a 3-ary
relation over Nat is between, defined as follows:

between = {〈x, y, z〉 | x, y, z ∈ Nat ∧ (x ≤ y) ∧ (y ≤ z)}.

Given a binary relation R over set S, define the domain of R to be

domain(R) = {x | ∃y : 〈x, y〉 ∈ R},

and the co-domain of R to be

codomain(R) = {y | ∃x : 〈x, y〉 ∈ R}.

Also, the inverse of R, written R−1 is

R−1 = {〈y, x〉 | 〈x, y〉 ∈ R}.

As an example, the inverse of the ‘less than’ relation, ‘<,’ is the greater
than relation, namely ‘>.’ Similarly, the inverse of ‘>’ is ‘<.’ Please
note that the notion of inverse is defined only for binary relations - and
not for ternary relations, for instance. Also, inverse is different from
complement. The complement of < is ≥ and the complement of ‘>’ is
‘≤,’ where the complementations are being done with respect to the
universe Nat × Nat.

For a binary relation R, let elements(R) = domain(R)∪codomain(R).
The restriction of R on a subset X ⊆ elements(R) is written

R |X= {〈x, y〉 | 〈x, y〉 ⊆ R ∧ x, y ∈ X}.

Restriction can be used to specialize a relation to a “narrower” domain.
For instance, consider the binary relation < defined over Real. The
restriction < |Nat restricts the relation to natural numbers.

Putting these ideas together, the symmetric difference of ‘<’ and
‘>’ is the ‘�=’ (not equal-to) relation. You will learn a great deal
by proving this fact, so please try it!

30 2 Mathematical Preliminaries

2.11 Functions as Relations

Mathematicians seek conceptual economy. In the context of functions
and relations, it is possible to express all functions as relations; hence,
mathematicians often view functions as special cases of relations. Let
us see how they do this.

For k > 0, a k-ary relation R ⊆ T 1
D×T 2

D×. . .×T k
D is said to be single-

valued if for any 〈x1, . . . , xk−1〉 ∈ T 1
D ×T 2

D× . . .×T k−1
D , there is at most

one xk such that 〈x1, . . . , xk−1, xk〉 ∈ R. Any single-valued relation R
can be viewed as a k−1-ary function with domain T 1

D×T 2
D× . . .×T k−1

D
and range T k

D. We also call single-valued relations functional relations.
As an example, the ternary relation

{〈x, y, z〉 | x, y, z ∈ Nat ∧ (x + y = z)}

is a functional relation. However, the ternary relation between defined
earlier is not a functional relation.

How do partial and total functions “show up” in the world of re-
lations? Consider a k − 1-ary function f . If a xk exists for any input
〈x1, . . . , xk−1〉 ∈ T 1

D ×T 2
D × . . .×T k−1

D , the function is total; otherwise,
the function is partial.

To summarize, given a single-valued k-ary relation R, R can be
viewed as a function fR such that the “inputs” of this function are
the first k − 1 components of the relation and the output is the last
component. Also, given a k-ary function f , the k + 1-ary single-valued
relation corresponding to it is denoted Rf .

2.11.1 More λ syntax

There are two different ways of expressing two-ary functions in the
Lambda calculus. One is to assume that 2-ary functions take a pair
of arguments and return a result. The other is to assume that 2-ary
functions are 1-ary functions that take an argument and return a result,
where the result is another 1-ary function.6 To illustrate these ideas,
let us define function RMS which stands for root mean squared in both
these styles, calling them rms1 and rms2 respectively:

rms1 : λ〈x, y〉.
√

x2 + y2

rms2 : λx.λy.
√

x2 + y2

6 The latter style is known as the Curried form, in honor of Haskell B. Curry. It
was also a notation proposed by Schöenfinkel; perhaps one could have named it
the ‘Schöenfinkeled’ form, as well.

2.11 Functions as Relations 31

Now, rms1〈2, 4〉 would yield
√

20. On the other hand, we apply rms2

to its arguments in succession. First, rms2(2) yields λy.
√

22 + y2, i.e.,

λy.
√

4 + y2, and this function when applied to 4 yields
√

20. Usually, we
use parentheses instead of angle brackets, as in programming languages;
for example, we write rms1(2, 4) and λ(x, y).

√
x2 + y2.

The above notations can help us write characteristic predicates quite
conveniently. The characteristic predicate

(λ(z, y).(odd(z) ∧ (4 ≤ z ≤ 7) ∧ ¬y))

denotes (or, ‘defines’) the relation = {〈5, false〉, 〈7, false〉}. This is
different from the characteristic predicate

(λ(x, z, y).(odd(z) ∧ (4 ≤ z ≤ 7) ∧ ¬y))

which, for x of type Bool, represents the relation

R
′ ⊆ Bool × Nat × Bool

equal to

{〈false, 5, false〉, 〈true, 5, false〉, 〈false, 7, false〉}, 〈true, 7, false〉}.

Variable x is not used (it is a “don’t care”) in this formula.

Chapter Summary

This chapter provided a quick tour through sets, numbers, functions,
relations, and the lambda notation. The following exercises are designed
to give you sufficient practice with these notions.

Exercises

2.1. Given the characteristic predicate p = λx. (x > 0 ∧ x < 10),
describe the unary relation defined by p as a set of natural numbers.

2.2. Given the characteristic formula f = (x > 0 ∧ x < 10), describe
the unary relation defined by f as a set of natural numbers.

2.3. Given the characteristic predicate

r = λ(x, y, z). (x ⊆ y ∧ y ⊆ z ∧ x ⊆ {1, 2} ∧ y ⊆ {1, 2} ∧ z ⊆ {1, 2})

write out the relation described by r as a set of triples.

2.4. Repeat Exercise 2.3 with the conjunct x ⊆ y removed.

32 2 Mathematical Preliminaries

2.5. What is the set defined by P = {x ∈ Nat | 55 < 44}?

2.6. The powerset, P , introduced earlier can also be written as

P = {x | x ⊆ {1, 2, 3}}

What set is defined by replacing ⊆ by ⊂ above?

2.7.
1. What is the set described by the expression

{1, 2, 3} ∩ {1, 2} ∪ {2, 4, 5}.

Here, ∩ has higher precedence than ∪.
2. What is the symmetric difference between {1, 2, 3, 9} and {2, 4, 5,−1}?
3. How many elements are there in the following set:

{∅} ∪ ∅ ∪ {{2}, ∅}? ∅ denotes the empty set. It is assumed that sets
may contain other sets.

2.8. Formally define the set S of divisors of 64. Either show the set
explicitly or define it using comprehension.

2.9. Formally define the set S of divisors of 67,108,864. Either show
the set explicitly (!) or define it using comprehension.

2.10. What is the set defined by {x | x ≥ 0 ∧ prime(x) ∧ x ≤ 10}?

2.11. What is the set defined by

{x | x ∈ 13 ∧ composite(x) ∧ x ≥ 1}?

A composite number is one that is not prime.

2.12. What is the set defined by

{x | x ∈ 25 ∧ square(x)}

square(x) means x is the square of a natural number.

2.13. What is the set S = {x | x ⊂ Nat ∧ 23 = 24}?

2.14. Take S = Nat, which contains an infinite number of elements.
How many elements are there in the powerset of S? Clearly it also
contains an infinite number of elements; but is it the “same kind of
infinity?” Think for five minutes and write down your thoughts in about
four sentences (we shall revisit this issue in Chapter 3).

2.11 Functions as Relations 33

2.15. The set Odd of odd numbers is a proper subset of Nat. It is true
that Odd “appears to be smaller” than Nat - yet, both sets contain
an infinite number of elements. How can this be? Is the ‘infinity’ that
measures the size of Odd a ‘smaller infinity’ than that which measures
the size of Nat? Again, express your thoughts in about four sentences.

2.16. Let E be the set of Even natural numbers. Express the set E×2E

using set comprehension.

2.17. An undirected graph G is a pair 〈V,E〉, where V is the set of
vertices and E is the set of edges. For example, a triangular graph over
V = {0, 1, 2} is

〈{0, 1, 2}, {〈0, 1〉, 〈1, 2〉, 〈0, 2〉}〉.
We follow the convention of not listing symmetric variants of edges -
such as 〈1, 0〉 for 〈0, 1〉.

Now, this question is about cliques. A triangle is a 3-clique. A clique
is a graph where every pair of nodes has an edge between them. We
showed you, above, how to present a 3-clique using set-theoretic nota-
tion.

Present the following n-cliques over the nodes i ∈ n in the same
set-theoretic notation. Also draw a picture of each resulting graph:

1. 1-clique, or a point.
2. 2-clique, or a straight-line.
3. 4-clique.
4. 5-clique.

2.18. Write a function signature for the sin and tan functions that
accept inputs in degrees.

2.19. Decipher the signature given below by writing down four distinct
members of the domain and the same number from the range of this
function. Here, X stands for “don’t care,” which we add to Bool. For
your examples, choose as wide a variety of domain and range elements
as possible to reveal your detailed understanding of the signature:

(Int ∪ {−1}) × 2Int × Bool → 22Bool∪{X} × Int.

2.20. Write a function signature for the function 1/(1−x) for x ∈ Nat.

2.21. Express the successor function over Nat using the Lambda no-
tation.

2.22. Express the function that sums 1 through N using the Lambda
notation.

34 2 Mathematical Preliminaries

2.23. Simplify (λzy.(λx.(z + ((λv.(v + x))5)))) 2 3 4

2.24. A half-wave rectifier receives a waveform at its input and pro-
duces output voltage as follows. When fed a positive voltage on the
input, it does not conduct below 0.7 volts (effectively producing 0
volts). When fed a positive voltage above 0.7 volts, it conducts, but
diminishes the output by 0.7 volts. When fed a negative voltage, it
produces 0 volts, except when fed a voltage below -100 volts, when it
blows up in a cloud of smoke (causing the output to be undefined).
View the functionality of this rectifier as a function that maps input
voltages to output voltages. Describe this function using the Lambda
notation. You can assume that ifthenelse and numbers are primitives
in Lambda calculus.

2.25. Provide one example of a bijection from Nat to Int.

2.26. Point out which of the following functions can exist and which
cannot. Provide reasons for functions that cannot exist, and examples
for functions that can exist.

1. A bijection from ∅ to ∅.
2. A bijection from {ε} to {∅}.
3. A partial 1-1 and onto function from Nat to Nat.
4. A partial 1-1 and onto function from Int to Nat.
5. A 1-1 into function from Nat to Nat.
6. A 1-1 into, but not onto, function from Nat to Nat.
7. A bijection from Int to Real.
8. A bijection from a set to its powerset. (Recall that we cannot have

∅ as either the domain or range of a function.)
9. A many-to-one function from the powerset of a set to the set.

10. An into map from a set to its powerset.

2.27. Describe a bijection from the set {ε} to the set {∅}. Here, ε is
the empty string.

2.28. Think about the following question, writing your thoughts in a
few sentences, in case you cannot definitely answer the question (these
will be addressed in Chapter 3).

Can there be a bijection between Int and 2Int?
How about a finite subset, F , of Int, and 2F ?
How about an infinite subset, I, of Int, and 2I?
Which other kinds of functions than bijections may exist?

2.11 Functions as Relations 35

2.29. Do you see any problems calling a function g “computable” if g
were to accept a subset of Nat, output 4 if given {1, 2}, and output 5
given any other subset of Nat? How about a variant of this problem
with “any other subset” replaced by “any other proper subset?”

2.30. Which of the following functions are computable?:

1. A function that inverts every bit of an infinite string of bits.
2. A function that inverts every bit of a finite (but arbitrarily long)

string of bits.
3. A function that outputs a 1 when given π, and 0 when given

any other Real number. (Recall that π is not 22/7, 3.14, or even
3.1415926. In fact, π is not a Rational number.)

2.31. Does there exist a procedure that, given a C program P and its
input x, answers whether P halts on x? Does there exist an algorithm
for this purpose?

2.32. Can there be an algorithm that, given two C programs, checks
that they have identical functionality (over all their inputs)?

2.33. Can there be an algorithm that, given two Yacc grammar files
(capturing context-free grammar productions) checks whether the gram-
mars encode the same language or not? (Yacc is a tool to generate
parsers). Write your ‘best guess’ answer for now; this problem will be
formally addressed in Chapter 17.

2.34. What is the symmetric difference between ‘≤’ and ‘≥’? How
about the symmetric difference between ‘<’ and ‘≤’?

2.35. Consider the binary relation relprime over Nat × Nat such that
relprime(x, y) exactly when x and y are relatively prime (the greatest
common divisor of x and y is 1). Is relprime a functional relation?
What is its inverse? What is its complement?

2.36. Consider the 3-ary relation “unequal3,” which consists of triples
〈a, b, c〉 such that a �= b, b �= c, and a �= c. Is this relation a functional
relation? Provide reasons.

2.37. How many functions with signature Boolk → Bool exist as a
function of k? Here Boolk is Bool×Bool× . . .×Bool (k times). Think
carefully about all possible distinct functions that can have this sig-
nature. Each k-ary Boolean function can be presented using a k + 1-
column truth table with each row corresponding to one input and its
corresponding output.

36 2 Mathematical Preliminaries

2.38. Repeat Exercise 2.37 for partial functions with signature Boolk

→ Bool. View each partial function as a table with the output field
being either a Boolean or the special symbol ⊥, standing for undefined.

http://www.springer.com/978-0-387-24418-1

