
Chapter 1

THE FORMULATION AND SOLUTION OF DISCRETE
OPTIMISATION MODELS

H. Paul Williams
Department of Operational Research
London School of Economics, London
United Kingdom
h.p.williams@lse.ac.uk

Abstract This introductory chapter first discusses the applicability of Discrete Optimisa­
tion and how Integer Programming is the most satisfactory method of solving
such problems. It then describes a number of modelling techniques, such as
linearisng products of variables, special ordered sets of variables, logical condi­
tions, disaggregating constraints and variables, column generation etc. The main
solution methods are described, i.e. Branch-and-Bound and Cutting Planes. Fi­
nally alternative methods such as Lagrangian Relaxation and non-optimising
methods such as Heuristics and Constraint Satisfaction are outlined.

Keywords: Integer Programming, Global Optima, Fixed Costs,Convex Hull, Reformulation,
Presolve, Logic, Constraint Satisfaction.

1. The Applicability of Discrete Optimisation
The purpose of this introductory chapter is to give an overview of the scope

for discrete optimisation models and how they are solved. Details of the mod­
elling necessary is usually problem specific. Many applications are covered in
other chapters of this book. A fuller coverage of this subject is given in [25]
together with many references.

For solving discrete optimization models, when formulated as (linear) In­
teger Programmes (IPs), much fuller accounts, together with extensive refer­
ences, can be found in Nemhauser and Wolsey [19] and Williams [24]. Our
purpose, here, is to make this volume as self contained as possible by describ­
ing the main methods.

4 HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION

Limiting the coverage to linear IPs should not be seen as too restrictive in
view of the reformulation possibilities described in this chapter.

It is not possible, totally, to separate modelling from the solution meth­
ods. Different types of model will be appropriate for different methods. With
some methods it is desirable to modify the model in the course of optimisation.
These two considerations are addressed in this chapter.

The modelling of many physical systems is dominated by continuous (as
opposed to discrete) mathematics. Such models are often a simplification of
reality, but the discrete nature of the real systems is often at a microscopic level
and continuous modelling provides a satisfactory simplification. What's more,
continuous mathematics is more developed and unified than discrete mathe­
matics. The calculus is a powerful tool for the optimisation of many contin­
uous problems. There are, however, many systems where such models are
inappropriate. These arise with physical systems (e.g. construction problems,
finite element analysis etc) but are much more common in decision making
(operational research) and information systems (computer science). In many
ways, we now live in a 'discrete world'. Digital systems are tending to replace
analogue systems.

2. Integer Programming

The most common type of model used for discrete optimisation is an Inte­
ger Programme (IP) although Constraint Logic Programmes (discussed in the
chapter by Hooker) are also applicable (but give more emphasis to obtaining
feasible rather than optimal solutions). An IP model can be written:

Maximise/Minimise c 'x-i-d 'y (1.1)

Subject to: A x + B y < b (L2)

xe3f t ,yGZ (L3)

X are (generally non-negative) continuous variables and y are (generally non-
negative and bounded) integer variables.

If there are no integer variables we have a Linear Programme (LP). If
there are no continuous variables we have a Pure IP (PIP). In contrast the
above model is known as a Mixed IP (MIP). Most practical models take this
form. It should be remarked that although the constraints and objective of the
above model are linear this is not as restrictive, as it might seem. In IP, non­
linear expressions can generally be linearised (with possibly some degree of
approximation) by the addition of extra integer variables and constraints. This
is explained in this chapter. Indeed IP models provide the most satisfactory
way of solving, general non-linear optimisation problems, in order to obtain a
global (as opposed to local) optimum. This again is explained later in this
chapter.

The Formulation and Solution of Discrete Optimisation Models 5

LPs are 'easy' to solve in a well defined sense (they belong to the complexity
class P). In contrast, IPs are difficult, unless they have a special structure, (they
are in the NP - complete complexity class). There is often considerable scope
for formulating, or reformulating, IP models in a manner which makes them
easier to solve.

3. The Uses of Integer Variables
The most obvious use of integer variables is to model quantities which can

only take integer values e.g. numbers of cars, persons, machines etc. While
this may be useful, if the quantities will always be small integers (less than,
say, 10), it is not particularly common. Generally such quantities would be
represented by continuous variables and the solutions rounded to the nearest
integer.

3.1 0-1 Variables
More commonly integer variables are restricted to two values, 0 or 1 and

known as 0-1 variables or binary variables. They then represent Yes/No
decisions (e.g. investments). Examples of their use are given below. Before
doing this it is worth pointing out that any bounded integer variable can be
represented as a sum of 0-1 variables. The most compact way of doing this is
to use a binary expansion of the coefficients. Suppose e.g. we have an integer
variable y such that:

0 < y < [/ (1.4)

Where U is an upper bound on the value of y. Create 0-1 variables:

2/0 , yi , 2/2 , . . . 2/Liog2 u\

then y can be represented by:

2/0 + 2yi + 47/2 + + 2L -̂S2 ^\yy^os2 u\ (1.5)

3.1.1 Fixed Charge Problems. A very common use of 0-1 variables is
to represent investments or decisions which have an associated fixed cost (/).
If carried out, other continuous variables xi, X2,. . . , Xn bringing in e.g. vari­
able profits Pi^P2,'",Pn come into play. This situation would be modelled
as:

Maximise YlPj^j — fv (1.6)

Subject to: ^Xj - My < 0 (1.7)
j

(and other constraints)

6 HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION

where M represents an upper bound on the combined level of the continuous
activities.

If y =: 0 (investment not made) all the x^are forced to zero. On the other
hand \f y — \ (investment is made) the fixed cost f is incurred but the Xj can
take positive values and profit is made.

There are, of course, many extensions to this type of model where alternative
or additional investments can be made, etc. The basic idea is, however, the
same.

3.1.2 Indicator Variables. A very powerful modelling technique is to
use 0-1 variables to distinguish situations which are ('discretely') different. If
there is a simple dichotomy then the two possible values of a 0-1 variable can
be used to make the distinction. For example, suppose we want to model the
condition

Y^ai jXj < 6i or /J<^2j^j ^ ^2 (1-8)
J 3

Such a condition is known as a disjunction of constraints (in contrast to the
usual LP conjunction of constraints). Let y = 0 impose the first constraint in
the disjunction and y= 1 impose the second constraint. This is achieved by the
following conjunction of constraints

Y^aijXj-Miy<hi (1.9)

j

^a2jXj + M2y <M2 + b2 (1.10)

j

Ml is an upper bound on the value of the expression J2 ^ij^j "~ ^i ^^d M2 an
j

upper bound on ̂ CL2JXJ — 62. (If either of the expressions has no upper bound
j

then the disjunction can only be modelled in special conditions.) There is an
alternative and preferable way of modelling this condition which is considered
later in this chapter.

Should a disjunction of more than two constraints be needed then more than
one 0 - 1 variable can be used. For example the situation

2^ciijXj < 61 or ^<^2j^j <b2 or . . . or ^^^(^nj^j ^K (1.11)
j j j

can be modelled as
^aijXj-Miyi <6i (1.12)

j

Y^a2jXj-M2y2<h2 (1.13)

The Formulation and Solution of Discrete Optimisation Models 7

Y^ anjXj - MnVn < K (1.14)

3

yi + y2 + '" + yn<n-l (1.15)

The situation where at least A: of a given set of constraints [l <k <n) hold
can easily be modelled by amending (1.15).

There are many situations where one wishes to model such disjunctions. For
example:

• This operation must finish before the other starts or vice versa;

• We must either not include this ingredient or include it above a given
threshold level.

• At least (most) A: of a given set of possible warehouses should be built.

In fact all of IP could be reduced to disjunctions of linear constraints. This is
only a useful paradigm for some problems. However the modelling of disjunc­
tive conditions has been thoroughly analysed in Balas [2].

3.2 Special Ordered Sets of Variables (Discrete Entities)
If a quantity can take a number of discrete values then a convenient method

of modelling is a Special Ordered Set of Type 7 (SI set). Suppose we wish to
model a quantity which can take values ai, a2 , . . . , a^. We would represent
this quantity by

X = aiyi + a2y2 + • • • + anyn (1.16)

and with the constraint

yi + y2 + — \ - yn = i

with the stipulation that

Exactly one member of the set {2/1,̂ 2? * • * 5 ^n} c^^ be non-zero

Note that it is not necessary to stipulate that the yj variables be integer and 0-1.
An S1 set (as opposed to the individual variables in it) should be regarded

as a discrete entity. It can be considered as a generalisation of a general in­
teger variable where values are not evenly spaced. SI sets are regarded as
entities analogous to integer variables when the Branch-and Bound algorithm,
described later in this chapter, is used.

A variant of SI sets are Special Ordered sets of Type 2 (S2 sets). These
are widely used to model non-linear functions. In order to model a non-linear
function it must be separated into the sum of non-linear functions of a single
variable. This can generally be done by introducing new variables and con­
straints. (The possibility of doing this goes back to one of Hilbert's problems.)

HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION

AX)

A^

A^

Figure L1. A piecewise linear approximation to a non-linear function

Each non-linear function of a single variable is approximated by a piecewise
linear function i.e. a series of linear segments as illustrated in Figure 1.1. A
grid value is defined for the relevant values of the argument x (not necessarily
evenly spaced) and the function f{x) defined at those values. We define an S2
ŝ t {yi , ^2) ••• 1/5} with the constraints

X = Xiyi + X2y2 + Xs 7/3 + X4 7/4 + X5 2/5 (1.17)

f{x) - f{Xi)yi + f{X2)y2 + f{X^)y^ + f{X^)y^ + f{X^)y^ (1.18)

yi + y2 + 2/3 + 2/4 + ys = 1 (1.19)

together with the stipulation that

At most two adjacent j/5 can be non-zero

Note that the yj are continuous. If, for example, yz — \^yA — \ (implying the
other 2/j=0) this corresponds to the point A in Figure 1.1. By this means, only
the points on one of the straight-line segments in Figure 1.1 are represented
by(x, f {x)). Clearly a more refined grid can give a more accurate approxima­
tion to a function (at the expense of more variables).

The concept of Special Ordered Sets are described by [3] with an extension
to deal with functions of more than one variable in [4]. There are, of course,
alternative methods of modelling condition (1.11) using 0-1 variables since we
again have a disjunction of possibilities. However, using Special Ordered Sets
has computational advantages when using the Branch-and-Bound algorithm.

The Formulation and Solution of Discrete Optimisation Models 9

4. The Modelling of Common Conditions
4.1 Products of Variables

It has already been remarked that non-linear expressions can be reformu­
lated using linear constraints involving integer variables. A common non-
linearity is products of integer variables. As explained above (bounded) gen­
eral integer variables can always be expressed using 0-1 variables. Therefore
we confine our attention to products of 0-1 variables.

Consider the product yi y2 which we will represent by a new variable z
where yi and 2/2 ar^ 0-1 variables. This product itself can only take values 0 or
1 depending on the values of yi and ^2- If cither is zero the product itself is 0.
Otherwise it is 1.

Logically we have

yi = 0 or 2/2 = 0 (or both) implies z = 0

This can be modelled by
yi + y2-2z>0 (1.20)

(There is a 'better' way of modelling this which will be given later in this
chapter.) We also have to model

yi = I and 2/2 == 1 implies z = 1.

This can be modelled by
yi + y2-z<i (1.21)

If we have a product of 3 or more 0 - 1 variables then we can repeat the above
formulation procedure.

A product of a continuous variable x and a 0-1 variable y can be represented
by a continuous variable z. The variable z will then be equal to x or to zero
depending on whether y is 1 or 0. Either way we have

z-x<0 (1.22)

If y =^ 1 then we want the condition z — x. This may be done by modelling
the condition

y — 1 implies z > x

since, together with (1.22), this would imply z = x. We can model the condi­
tion as

X- z + My<M (1.23)

M must be chosen as a suitably large number (an upper bound) which x (and
therefore z) will not exceed.

If we wish to model the product of an 0-1 variable and an expression this
formulation can be extended in an economical manner, as done by Glover [10].

10 HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION

4.2 Logical Conditions
The common use of 0-1 variables in IP models suggests the analogy with

modelling of True/False propositions which forms the subject matter of the
Propositional Calculus (Boolean Algebra). This close relationship is explored
further in this book in Chapter 3 by Hooker. Here we give a taste for the power
of IP to model the relationships of the Propositional Calculus.

In IP (and LP) our propositions are constraints which may be true or false.
(An LP model consists of a conjunction of constraints i.e. they must all be
true). We can represent the truth or falsity of a constraint by the setting of a
0-1 variable. If, for example, we have the constraint

^aj Xj < b (1.24)
j

then we can incorporate the 0-1 variable y into the constraint to give

^ ajXj -\- My < M -\-b (1.25)
j

where M is an upper bound on the expression

2_]cijXj — b (1.26)
j

If y = 1 the constraint (1.24) is forced to hold. If y == 0 it becomes vacuous.
Sometimes we may wish to model the condition

y ^ ajXj < b implies y = 1
3

This can be represented by its equivalent contrapositive statement

2/ == 0 implies y^ajXj > b (1-27)
j

Since it is conventional only to use non-strict inequalities we can replace

Y^ajXj >b
j

by
"^ajXj >b + e (1.28)

j

where e is a suitable small positive number. Now (1.27) can be modelled (by
analogy with (1.25)) as

^ ajXj + my>b + e (1.29)

The Formulation and Solution of Discrete Optimisation Models 11

where m is a lower bound on the expression

3

It is now possible to model the standard connectives of the Propositional Cal­
culus applied to constraints by means of (in)equalities between 0-1 variables.

We have already modelled the 'or' condition by constraints (1.9) and (1.10)
and (1.12) to (1.15). The 'and' condition is simply modelled by repeating the
constraints (as in LP). The implies' condition is modelled thus:

2/i == 1 implies 2/2 = 1

is represented by yi — ^2 ^ 0

We now have all the machinery for modelling logical conditions which will be
explained in greater depth in Hooker's chapter (see chapter 3).

5. Reformulation Techniques
Despite advances in methods of solving Discrete Optimisation problems, as

well as the dramatic increase in the speed and storage capacity of computers,
many such problems still remain very difficult to solve. There is, however,
often great flexibility in the way such problems are modelled as Integer Pro­
grammes. It is frequently possible to remodel a problem in a way which makes
it easier to solve. This is the subject of this section.

5.1 The Convex Hull of Integer Solutions
The constraints of a Linear Programme (LP) restrict the feasible solutions to

a set which can be represented by a Polytope in multidimensional space. For
Integer Programmes the set is further restricted to the lattice of integer points
within a Polytope. This is illustrated, in Figure 1.2, by the constraints of a
2-Variable IP, which can therefore be represented in 2-dimensional space.

- x i + 2rz;2 < 7 (1.30)

xi + 3x2 < 15 (1.31)

7x1-3x2 < 23 (1.32)

3^b^2 ^ 0 and integer (1.33)

The boundaries of constraints (1.30), (1.31) and (1.32) are represented by the
lines AB, BC and CD respectively and the non-negativity conditions by OA
and OD. However, the integrality restrictions on xi and X2 restrict us further
to the lattice of points marked. If we were to ignore the integrality conditions
then, given an objective function, we would have an LP model. An optimal

12 HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION

Figure 1.2. The convex hull of a pure IP

solution would lie at one of the vertices O, A, B, C, or D (if there were alter­
native solutions some of them would be between these vertices). The LP got
by ignoring the integrality conditions is known as the "LP Relaxation" of the
model.

However, if we were to represent the constraints whose boundaries are the
bold lines we would have a more constrained LP problem whose solutions
would be O, P, Q, R, S, T or U which would satisfy the integrality requirements.
The region enclosed in the bold lines is known as the Convex Hull of Feasible
Integer Solutions. It is the smallest convex set containing the feasible integer
solutions. For this example the constraints defining the convex hull are:

-Xi +X2

X2

Xi +X2

x\

1X\ — X2

X\,X2

<

<

<

<

<

>

3
4

7
4

6

0

(1.34)

(L35)

(L36)

(1.37)

(1.38)

(1.39)

Computationally LP models are much easier to solve than IP models. There­
fore reformulating an IP by appending or substituting ihtst facet defining con­
straints would appear to make a model easier to solve. With some types of
model it is fairly straightforward to do this. In general, however, the deriva­
tion of facet defining constraints is extremely difficult and there is no known
systematic way of doing it. What is more, there are often an astronomic num­
ber of facets making it impossible to represent them all with limited computer
storage.

The Formulation and Solution of Discrete Optimisation Models 13

Before describing ways of partially using the concept above, to our advan­
tage, we point out that the example above is a Pure Integer Programme. The
concept still applies to Mixed Integer Programmes. Suppose, for example, that
constraints (1.33) have been modified to only stipulate that X2 should be inte­
ger. The feasible solutions would be as represented by the horizontal lines in
Figure 1.3. The convex hull of feasible integer solutions is described by the

Figure 1.3. The convex hull of a mixed IP

bold lines and the facet defining constraints are:

-Xi + X2 < 3

^2 < 4

Ixi + 11x2 < 65

7x1 - 3x2 < 23

X\,X2 > 0

(1.40)

(1.41)

(1.42)

(1.43)

(1.44)

We now describe ways in which some commonly arising constraints can be
reformulated to make the associated LP Relaxation 'tighter', even if we do not
produce facet defining constraints for the complete model.

5.2 ^Big M' coefficients
These arise when a particular set of activities (continuous or integer) can

only take place if another, 0 - 1 variable, takes the value 1. An example of this
is the constraint (1.7) in the Fixed Charge problem. The condition is correctly
modelled so long as the value of M is sufficiently large not to place a spurious
restriction on the value of ^ Xj (or some other set of activities). But if M

j
is larger than it need be, the associated LP relaxation will be less constrained

14 HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION

than it need be i.e. the associated polytype of the LP relaxation will be larger
than necessary. Therefore when such a situation arises it is desirable to make
M a strict upper bound on the appropriate expression, if possible. It may be
worth maximising the appropriate expression subject to the other constraints
(as an LP) in order to find as small a value of M to be acceptable. A number
of packages try to reduce the values of *Big M coefficients' automatically.

5.3 Disaggregating Constraints
A common PIP constraint takes the form

^1 + X2 + . . . +Xn-ny <{) (L45)

where all variables are 0 — L This models the condition that if any of Xj take
the value 1 then so must y. An analogous constraint is

^1 + ^2 + . •. +Xn-ny > 0 (1.46)

which models the condition that if y = 1 then all of the Xj must be one.
Constraint (L20) is a special case of this. Both (L45) and (L46) can be disag­
gregated into

Xj-y<Q for all j (1,47)

and
Xj-y>Q for all j (1.48)

respectively. The groups of constraints (1.47) and (1.48) both have the same
set of feasible integer solutions as (1.45) and (1.46) respectively but have more
constrained LP relaxations, e.g. the solution xi = ^,X2 — \^X'^ — , . . —
x^^^O^y = ^ satisfies (1.45) and (1.46) but violates (1.47) and (1.48). Hence
this fractional solution cannot arise from an LP relaxation using (1.47) and
(1.48). However, any fractional solution which satisfies (1.47) and (1.48) also
satisfies (1.45) and (1.46) respectively. There are many other, more com­
plicated, constraints and groups of constraints which have been analysed to
give tighter LP relaxations. See for example Wolsey [26] and Nemhauser and
Wolsey [19].

5.4 Splitting Variables
In order to disaggregate constraints it is sometime possible to split variables

up into component variables which can then appear in different constraints. A
general way of doing this is described by Balas [2] and Jeroslow [15] under
the title 'Disjunctive Constraints'.

We have already shown how it is possible to model a disjunction of con­
straints (1.11) by (1.12) to (1.15). There is another formulation for which the
LP relaxation is tighter.

The Formulation and Solution of Discrete Optimisation Models 15

Suppose we have a disjunction of groups of constraints which can be written
as

Aix>bi or A2X>b2 or . . . or AnX>bn (1 49)

where x and bi are vectors. We also assume that the constraints in each of the
'clauses' above have the same recession directions. This means that if they are
open polytopes, as represented in Figure 4, the directions of the extreme rays
are the same. The polytopes in Figure 4 have different recession directions
since direction DS does not form part of the left hand polytope. If, as is the

Figure 1.4. Polytopes with different recession directions

case with the constraints in (1.11), the polytopes are all closed then the problem
does not arise since there are no recession directions. In practice this will
often be the case as we will place 'big M' coefficients as upper bounds on the
variables. For disjunction (1.49), however, we make no such assumption. In
order to model (1.49) we split the vector x into n component vectors xi, X2,
' • • y Xfi l ' ^ '

X =ari+jC2+. ..+A:n (1.50)

We then specify the following constraints

AjXj > bjHj for all j (1.51)

2/1 + 2/2+ . . . +yn = l (1.52)

where yj are 0 — 1 integer variables. Balas [2] shows that if it is possible to rep­
resent an IP as a disjunction of polytopes in this way then we can obtain a con­
vex hull representation (in the higher dimensional space of x:=Xi+X2+... +jCn)

16 HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION

5,5 Multicommodity Flows
If a MIP model contains variables representing flows of material it may be

advantageous to disaggregate these flows into different commodities. This is
illustrated by the lot sizing problem (see e.g. Wolsey [26]). In this problem it
has to be decided, in different periods, whether to produce a certain quantity (a
iot') of material to satisfy future demand. There is a fixed charge associated
with producing any at all. Hence an optimal policy will be only to produce
in certain periods but retain stock from this production to satisfy some of the
demand in the future.

Let Xi = Quantity produced in period i
yi = \\ixi>Q

= 0 otherwise
Zi = Stock held at the end of the period i
di = Demand in period i
fi = Fixed cost of production in period i

One possible way of modelling the constraints is

Xi-Miyi<0 (1.53)

xi- zi = di (1.54)

Zi-i + Xi ~ Zi = di for all i y^ 1 (1.55)

Notice the use of the 'big-M' coefficient in constraints (1.53) representing up­
per bounds on the amount produced in each period.

An alternative, and more constrained, way of modelling this problem is to
split the variables into components representing different 'commodities'. We
distinguish between the different quantities produced in a period to meet de­
mand in different future periods.
Let Xij — Quantity produced in period i to meet demand in period j

Zij = Stock held at end of period i to meet demand in period j

The constraints can now be reformulated as

Xij — djUi < 0 for all i, j (1.56)

^ij — ^ij = dj for all j (1.57)

y ^ i^i-i,j + Xij - Zij) = dj for all j (1.58)
i<j

Notice that it is no longer necessary to use the 'big-M' coefficients since the
demand in period j places an upper bound on the value of each Xij variable.

The Formulation and Solution of Discrete Optimisation Models 17

If all the constraints were of the form (1.56), (1.57) and (1.58) it can be
shown that the LP relaxation would produce the integer optimal solution. In
practice there will probably be other constraints in the model which prevent
this happening. However, this second formulation is more constrained (al­
though larger).

5.6 Reducing the Number of Constraints
One of the effects of most of the reformulations described in the previous

section has been to increase the number of constraints. While there is great
advantage to be gained in tightening the LP relaxation in this way the increased
size of the models will, to some extent, counter the reduction in overall solution
time. Therefore, in this section, we look at ways of reducing the number of
constraints in an IP model.

5.6.1 Avoiding Constraints by Virtue of Optimality. Sometimes
certain constraints will automatically be satisfied at the optimal solution. For
example, with the formulation of the fixed charge problem constraint (1.7) does
not rule out the 'stupid' solution Xj = 0 for all j and y = 1. However, it is not
necessary to put in extra constraints to avoid this since such a solution would
be non-optimal.

However, there are situations in which it is desirable to put in constraints
which are not necessary, by virtue of optimality, but which aid the solution
process using the Branch and Bound algorithm described below. Hooker et al
[14] discusses such an example in relation to modelling a chemical process and
terms the extra constraints as iogic cuts'.

5.6.2 Avoiding Constraints by Introducing Extra Variables. A
number of formulations of important Combinatorial Optimisation problems in­
volve an exponential number of constraints. The best known example of this
is the famous Travelling Salesman Problem discussed in eg Lawler et al [17].
The problem is to route a Salesman around a number of cities, returning to the
beginning and covering the minimum total distance. It can be formulated as a
PIP model as follows:

Xij — 1 if tour goes from i to j directly

= 0 otherwise

Given that the distance from i to j is Cij the model is

Minimise ^^(^ij^ij (1-59)

18 HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION

subject to / J ^ i j = 1 for all j (1.60)
i

V^Xij = IforalH (1.61)

j

^^ij < \S\-l forall 5 c {2 ,3 , . . . ,n} (1.62)

where 2 < l^l < |V |̂ —2. Constraints (1.60) and (1.61) guarantee that each city
is entered exactly once and left exactly once respectively. However, constraints
(1.62) are needed to prevent 'subtours' i.e. going around disconnected subsets
of the cities. There are 2^~^ — n — 1, such constraints: i.e. an exponential
number. It would be impossible to fit all these constraints in a computer for
even modest values of n. In practice such constraints are usually added (with
others) on an 'as-needed' basis in the course of optimisation.

However, it is possible to avoid an exponential number of constraints by in­
troducing extra variables (a polynomial number). There are a number of ways
of doing this which are surveyed by Orman and Williams [20]. We present
one such formulation here. It relies on a Network Flow formulation associated
with the network of arcs between cities.

yij — Flow (of some commodity) between i and j

Vij - (n - 1) Xij < 0 for all ij (1.63)

^yij^n-1 (1.64)
j

X^^u -^Vki^" - 1 for all i 7̂ 1 (1.65)
j k

together with constraints (1.60) and (1.61).
Constraints (1.63) only allow flow in an arc if it exists (similar to the 'big

M' constraints discussed earlier). Constraint (1.64) introduces a flow of n — 1
units of the commodity into city 1 and constraint (1.65) takes 1 unit of the
commodity out of all the other (n — 1) arcs. In order to dispose of all the
commodity the underlying network must be connected, so ruling out subtours.

Hence the exponential number of constraints (1.62) has been replaced by
constraints (1.63), (1.64) and (1.65): a total of n^. In addition we have doubled
the number of variables from n (n — 1) to 2n (n — 1).

Unfortunately this formulation does not perform as well as the conventional
formulation, for reasons described below, if a linear programming based IP

The Formulation and Solution of Discrete Optimisation Models 19

algorithm is used. Rather surprisingly this formulation can be drastically im­
proved by a multicommodity flow formulation analogous to that described for
the lot sizing problem. This results in a model whose LP relaxation has equal
strength to the conventional formulation, but has only a polynomial number of
constraints.

5.7 Column Generation
Besides the advantages of introducing extra variables to avoid an excess

number of constraints it may be very difficult (or impossible) to capture some
complicated conditions by means of (linear) constraints. In such circumstances
it may only be practical to enumerate all, or some of, the possible solutions to
the complicating conditions. These can then be generated in the course of
optimization if deemed worthwhile.

The classic example of this is the Cutting Stock Problem (see e.g. Gilmore
and Gomory [9]) where it is wished to cut given orders for widths of material
(e.g. wallpaper) out of standard widths. The objective is to minimise total
waste (which is equivalent to minimising the total number of rolls used). An
equivalent problem is sometimes referred to as the 'Bin Packing Problem'.
Here we wish to pack items into bins using the minimum number of bins.

A possible formulation would be to include variables with the following
interpretation:

Xij — Quantity of order i (e.g. a given width) taken from roll j

Constraints could then be stated to:

(i) limit the widths taken from each standard roll to be within the standard
width

(ii) meet total demand

This would be a somewhat cumbersome model with a large amount of unnec­
essary symmetry (i.e. many equivalent solutions would be investigated in the
course of optimisation).

The usual way of solving such problems is to enumerate some of the solu­
tions to (i). This is done by giving possible patterns of widths which may fit
into the standard widths.

We illustrate this important technique by a small example. A plumber has a
stock of 13 metre copper pipes and needs to cut off the following orders:

10 lengths of 4 metres
10 lengths of 5 metres
23 lengths of 6 metres

How should he cut up the 13 metre pipes in order to minimise the number he
needs to use ? There are a number of possible cutting patterns he could adopt,

20 HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION

Pattern 1

Pattern 2

Pattern 3

1 6 1 5 I I

1 5 1 4 1 4 1

1 '^ 1 4 1 4 1 1

Figure L5. A cutting pattern

for example three are shown in Figure 1.5. In fact, in this example, there are
only six possible patterns (leaving out obviously redundant ones, which are
'dominated' by others). However we will begin by restricting ourselves to the
above three.

Variables are introduced with the following interpretation:

Xj = Number of standard pipes cut using pattern j in our model

The model becomes:
Minimise xi + X2 + x^ (1.66)

Subject to: 2x2 + 3^3 > 10

3^1+^2 > 10
xi > 23

xi,X2,a;3 > 0 and integer

(1.67)

(1.68)

(1.69)

Notice that we have modelled the demands for 4, 5 and 6 metre pipes respec­
tively by constraints (1.67) to (1.69) i.e. we have modelled constraints (ii).
However we have predefined some solutions to constraints (i). If we solve the
above model we obtain the solution

xi = 23, X2 — 0, xa = 4

i.e. we use 23 of pattern 1 and 4 of pattern 3 making a total of 27 standard
lengths. However, we have not incorporated some patterns in the model. No­
tice that each possible pattern gives a column of the model e.g. the column for
X2 has coefficients 2,1,0 since pattern 2 has 2 of length 4, 1 of length 5 and 0
of length 5.

If the above model is solved as a Linear Programme (LP) we obtain dual
values for the constraints (this concept is explained in any standard text on LP).
In this case they are ^, 0,1. Suppose we were to consider another pattern with
ai of length 4, a2 of length 5 and aa of length 6 we must have

4ai + 5a2 + 6aa < 13 (1.70)

The Formulation and Solution of Discrete Optimisation Models 21

The variable corresponding to this pattern would have a reduced cost of

I- -ai- as

To make it a desirable variable to enter the solution we wish to make this
quantity as small as possible.

i.e. Maximise -a\ + as (1-71)
o

subject to constraint (1.70). This type of IP with one constraint is known as a
Knapsack Problem and efficiently solved by Dynamic Programming (see e.g.
Bellman [5]). Details of this procedure are beyond the scope of this chapter.
For this example the optimal solution is ai,a2 = 0,a3 = 2 i.e. we should
consider using the pattern in Figure 1.6.

6 6 Pattern 4

Figure 1.6. Optimal pattern

Note that the analysis has been based on the LP Relaxation and not the IP
solution to (1.66)-(1.69). Therefore it is not necessarily the case that the new
pattern will be beneficial. However, in this case we append a new variable x^
to the model, representing pattern 4. This gives

Minimise xi + X2-\- x^ + X4, (1.72)

Subject to: 2x2 + 8x3 > 10 (1.73)

X1 + X2 > 10 (1.74)

xi + 2x4 > 23 (1.75)

xi,X2,X3,X4 > 0 and integer

This revised model has optimal solution

xi = 5, X2 — 5, X3 = 0, X4 = 9

i.e. we use 5 of pattern 1, 5 of pattern 2 and 9 of pattern 4 making a total of 19
standard lengths. Clearly this is an improvement of the previous solution. The
procedure can be repeated generating new patterns only when worthwhile. In
fact, for this example, this is the optimal solution demonstrating that only 3 of
the six possible patterns are ever needed.

Column Generation techniques, such as this, are common in LP and IP to
avoid excessive numbers of variables. The exact formulations of the applica­
tions are problem specific and beyond the scope of this chapter. One of the
most economically important applications of the technique is to the Air Crew
Scheduling problem.

22 HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION

6. Solution Methods
There is an important class of problems for which Linear Programming (LP)

automatically gives integer solutions making specialist IP methods unneces­
sary. These are models which are presented as, or can be converted to, Network
Flow models.

It is important to recognise that IP models are generally much more difficult
to solve than LP models. Theoretically they lie in the NP-complete complex­
ity class (unless they have a special structure) whereas LP models lie in the P
complexity class (sector example Garey and Johnson [8]). This theoretical dis­
tinction is borne out by practical experience. Some IP models can prove very
difficult to solve optimally in a realistic period of time. It is often much more
difficult (than for LP models) to predict how long it will take to solve them.
However, as discussed earlier, reformulation can sometimes have a dramatic
effect on solution success.

Historically the first method used to solve IPs was known as 'Cutting Planes'
and is due to Gomory [11] and [13]. In practice, however, another, simpler,
method known as Branch-and-Bound due to Land and Doig [16] and Dakin
[7] was used and variants formed the basis of commercial systems. These two
methods are described in the next two sections.

Commercial systems now, however, use a combination of both methods.
While Branch-and-Bound forms the basic solution framework. Cutting Planes
are used within this framework (Branch-and-Cut). This combined approach is
also described here. In addition heuristic choices are made within Branch-and-
Bound to guide the, somewhat arbitrary, tree search.

Reformulation methods are also incorporated in some systems (usually known
as Presolve).

Finally variables (columns) are sometimes generated in the course of op­
timization. This is usually referred to as *Branch-and-Price' for the reason
described in the previous section.

6.1 Cutting Planes
In order to illustrate this approach we will refer to the example illustrated in

figure 1.2. Each of the new facet defining constraints, given there (inequalities
(1.34), (1.35), (1.36), (1.37) and (1.38)) can be regarded as cutting planes. If
appended to the model they may aid the solution process. Rather than define
them all, prior to solving the model, the usual approach is to append them, in
the course of optimisation, if needed.

We illustrate this process by considering the model with an objective func­
tion i.e.

Maximise xi + X2 (L76)

Subject to: -xi + 2^2 < 7 (1.77)

The Formulation and Solution of Discrete Optimisation Models 23

^1 + 3x2 < 15 (1.78)

7x1-3x2 < 2 3 (1.79)

^b ^2 ^ 0 and integer (1.80)

Figure 1.7 illustrates this. This first step is to solve the Linear Programming

Figure 1.7. An integer programme

Relaxation of the model. That is to ignore the integrality requirements and to
solve the model as an (easier) LP.

The concept of a 'Relaxation' is broader than this and used widely in the
solution of IP models. The essential idea

Subject to: 2x2 + 3x3 > 10

Xi + X2 > 10

xi + 2x4 > 23

(1.81)

(1.82)

(1.83)

X1, X2, X3, X4 > 0 and integer
is to leave out some of the conditions or constraints on a (difficult) IP model

and solve the resultant (easier) model. By leaving out constraints we may
well obtain a 'better' solution (better objective value), but one which does not
satisfy all the original constraints. This solution is then used to advantage in
the subsequent process.

For the above example the optimal solution of the LP Relaxation is

. 3 o 5 _, . . . 1
xi = 4-,X2 = 3—, Objective = 12' 6

We have obtained the optimal fractional solution at C. The next step is to de­
fine a cutting plane which will cut-off the fractional solution at C, without

24 HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION

removing any of the feasible integer solutions (represented by bold dots). This
is known as the separation problem. Obviously a number of cuts are possi­
ble. The facet defining constraints, are possible cuts as are "shallower" cuts
which are not facets. A major issue is to create a systematic way of gener­
ating those cuts (ideally facet defining) which separate C from the feasible
integer solutions. Before we discuss this, however, we present a major result
due to Chvatal [6]. This is that all the facet defining constraints (for a PIP) can
be obtained by a finite number of repeated applications of the following two
procedures.

(i) Add together constraints in suitable multiples (when all in the same form
eg "<" or ">") and add or subtract "=" constraints in suitable multiples.

(ii) Divide through the coefficients by their greatest common divisor and
round the right-hand-side coefficient up (in the case of ">" constraints)
or down (in the case of "<" constraints).

We illustrate this by deriving all the facet defining constraints for the exam­
ple above. However, we emphasise that our choice of which constraints to add,
and in what multiples, is ad-hoc. It is a valid procedure but not systematic.
This aspect is discussed later.

1. Add - x i + 2 x 2 < 7

-xi < 0

to give —2^1 + 2x2 < 7

Divide by 2 and round to give

-Xi + X2 <

2. Add -xi + 2x2 < 7

—xi + 3x2 < 15

to give 5x2 < 22

Divide by 5 and round to give

= 3 (1.84)

, 22
= 4 (1.85)

3. Add xi + 3x2 < 15

-7x - 3x2 < 23

The Formulation and Solution of Discrete Optimisation Models

to give 8x1 < 38

Divide by 2 and round to give

38

25

4. Add

Xi <

xi + 3x2 < 15

= 4 (1.86)

XI < A

to give 3x1 + 3x2 < 23

Divide by 3 and round to give

- X i +X2 <
23

(1.87)

5. Add 2x(7xi - 3 x 2 < 23)

- X I < 0

to give 14xi — 7x2 < 46

Divide by 7 and round to give

-2xi — X2 <
46

7
- 6 (1.88)

Constraints (1.84) to (1.88), together with the original constraints (1.80)
make up all the facet defining constraints for this model. Note that all the
new facet defining constraints, apart from constraint (1.87), have been derived
using one rounding operation, after adding some of the original constraints in
suitable multiples. Such constraints are known as rank-1 cuts. In contrast
constraint (1.87) was derived using constraint (1.86), which was itself derived
as a rank-1 cut. Therefore constraint (1.87) is known as a rank-2 cut. The rank
of a cut is a measure of the complexity of its derivation. For some problems
(eg. The Travelling Salesman Problem) there is no limit to the rank of the
facet defining constraints, giving a further indication of their computational
difficulty.

As emphasised above, however, in general the derivation of Chvatal cuts
is arbitrary. It is a valid 'proof procedure for showing cuts to be valid but
we have not given a systematic way of doing this. In general there is no such
systematic way. If, however, we use LP to obtain the solution of the relaxed
problem we can use this solution to derive some Chvatal cuts.

26 HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION

In the example we began by obtaining the fractional solution at C. At C
constraints (1.78) and (1.79) are 'binding' i.e. they cannot be removed without
altering the LP optimal solution. Also xi and X2 take positive values (in LP
parlance they are 'basic' variables). If we add 'slack' variables to constraints
(1.78) and (1.79) to make them equations we obtain

xi + 3x2 + U2 = 15 (1.89)

7x1-3x2 + U3=^23 (1.90)

We can eliminate xi from equation (1.90) (using equation (1.89)) and then
X2 from equation (1.90) (using equation (1.90)) by Gaussian Elimination. Mak­
ing xi and X2 the subjects of their respective equations gives:

Setting ui and U2 ('non-basic' variables) to zero gives the fractional solu­
tion, we have already obtained, to the LP Relaxation. However we want an in­
teger solution to (1.78), (1.79) and other constraints (1.79) and (1.80). Clearly
since xi and X2 can only take integer values this is true for ui and U2 as well.
(1.91) and (1.92) can be rewritten separating out their integer and fractional
parts and also ensuring that the expression on the right is non-negative. This
gives:

3 7 7
Xi+U2 + U3-A= - + -U2 + -Us (1.93)

-2 + u , - 3 = A + l I , , + | (1,94)

Since the expressions on the right must be both integer and strictly positive
we have

3 7 7
I + g«2 + gW3 > 1 (1.95)

A + i ! „2 + ^ > l (1.96)
12 24 ^ 24 - ^ ^

Using expressions (1.89) and (1.90) to substitute for U2 and U3 and eliminat­
ing fractions gives

7 (15 - x i - 3x2) + 7 (23 - 7x1 + 32:2) > 2

The Formulation and Solution of Discrete Optimisation Models

i.e.

and

I.e.

7x1 < 33

17 (15 -XI- 3x2) + (23 - 7x1 + 3x2) > 14

Xi + 2X2 < 11

27

(1.97)

(1.98)

The cuts which we have derived are known as Gomory Cuts and are illustrated
in figure 1.8. Notice that these cuts are shallower than Chvatal cuts but they

Figure 1.8. An integer programme with Gomory cuts

can be generated systematically if the Simplex Algorithm is used to solve the
LP Relaxation.

We could append either or both of cuts (1.97) and (1.98) to the model and
resolve. If both cuts are appended we obtain another fractional solution at E.

.11 o3 ^, . . ^14
^1 =4—,X2 ==3-, Objective - 7—

This solution can be used to generate further cuts. Ultimately, in a finite
number of steps, we will obtain the optimal integer solution at S (figure 1.2).

xi == 4, X2 ==̂ 3, Objective == 7

If, however, we had appended the Chvatal cuts (1.87) and (1.88) at the first
stage we could have obtained the optimal integer solution in one step. As
we have emphasised before, however, there is no known systematic way of
generating Chvatal cuts.

28 HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION

Further discussion of the many methods of generating cutting planes is be­
yond the scope of this introductory chapter but can be found in eg. [19]. We
should, however, mention that the generation of Gomory Cuts can be gener­
alised to deal with the (much more common) Mixed Integer (MIP) case. This
is done by Gomory [12], Although such cuts are usually "very weak", in prac­
tice they often prove very effective.

6.2 Branch-and-Bound
This approach again starts by solving the LP Relaxation. We again use the

model (1.76) to (1.80) to illustrate the method. Although this model is a PIP
it will be obvious from the explanation that the method applies equally well to
MIPS.

It is convenient to represent the various stages of the optimisation by a tree.
The LP Relaxation, solved at the first stage, is represented by node 0 of the
tree. In our example the solution to this is

19 41 49
XI = —,X2=^ —, Objective = —

We then choose one of the integer variables, which has taken a fractional value,
and create a branch. If we choose xi its possible values are illustrated in
figure 1.9. There is no loss of generality in stating the following dichotomy

Figure 1.9. Possible values of an integer variable

xi < 4 or xi > 5. Whats more this rules out the current fractional solution.
The choice of which integer variable to branch-on is heuristic. In general if
a variable x takes a fractional value N + f where 0 < / < 1 then we create
the dichotomy x<Norx>N + l, We append each of the alternatives
extra constraints separately to the original model and represent the two new
problems as two new nodes of the solution tree, illustrated in figure 1.10.

The situation is illustrated in Figure 1.11.
The solution at node 1 corresponds to the point Si. For convenience the new

nodes are numbered in order of their generation. At each node we write the
solution of its LP relaxation. Notice that

(a) the objective value gets worse (strictly no better) as we go down a branch
(smaller for a maximisation or larger for a minimisation).

(b) the LP relaxation of a new node may become infeasible.

The Formulation and Solution of Discrete Optimisation Models 29

a;i = 4|,X2 == 3-^ , Objective = 8

Figure 1.10. The first branch of a solution tree

Figure 1.11. Solution space of the first branch

30 HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION

The process can now be continued by branching on variable X2 to produce the
solution tree in Figure 1.12.

x\ = A^X2 = 3^

Objective == 7 |

xi = 4,0^2 == 3

Objective — 7

xi = 4|,a;2 = 3 ^ , Objective = 8 |

xi < 4

â i — 3,^2 = 4

Objective — 7

Infeasible

Figure 1.12. Final solution tree

In this example two alternative optimal integer solutions are produced at
nodes 3 and 4.

A number of general observations need to be made about the process.

1 The method could require the generation of an exponential number of
nodes. At level r we could have 2^ nodes. In practice this seldom hap­
pens. We stop going down a branch (the branch is said to h^ fathomed)
for three possible reasons.

a. The LP relaxation becomes infeasible as at node 2. Therefore there
can be no integer solution down this branch.

b. We obtain an integer solution as at node 3.

c. The objective value of the LP relaxation is worse than that of a
known integer solution. Such a branch is said to be bounded be­
cause the objective value of the known integer solution provides a

The Formulation and Solution of Discrete Optimisation Models 31

bound (lower bound for a maximisation or upper bound for a min­
imisation) on the values of the optimal integer solution. This has
not happened in this case.

2 In principle this process might not terminate if the feasible region of the
LP relaxation was 'open'. However, in practice, this seldom happens and
can be avoided by giving the integer variables upper and lower (usually
zero) bounds,

3 When a node does not lie at the bottom of a branch which has been
fathomed it is known as a Waiting Node. Once there are no more waiting
nodes (as in Figure 1.12) the best integer solution must be an optimal
solution. Should no integer solution be found the model is shown to be
(integer) infeasible.

4 The choices of which variables to branch on and which waiting nodes
to develop are heuristic. How these choices are made in practice are
beyond the scope of this chapter (and sometimes specific to the com­
mercial packages used). There are, however, general strategic choices to
be made regarding which waiting nodes to develop. A depth-first strat­
egy involves going down individual branches of the tree in the hope of
finding an integer solution quickly. Such a solution may be satisfactory
(although not proven to be optimal) or used as a bound in order to fathom
other future branches. A breadth-first strategy involves solving the LP
relaxation of all waiting nodes at a particular level before proceeding to
the next level. For example we solved the LP relaxation at node 2 before
developing node 1 further. Which strategy is best adopted depends on
the nature of the problem and whether one wants a (good) integer solu­
tion or the proven optimum. Such considerations are discussed in [24].
There are also computational considerations as to how one reoptimises
the LP relaxation between nodes (eg. The Primal or Dual Simplex algo­
rithms). These are beyond the scope of this chapter but discussed in eg.
[19].

6.2.1 Other Branches. In order to illustrate the Branch-and-Bound
method we branched on integer variables using the dichotomy that if an integer
variable x takes the fractional value N + f where 0 < / < 1 we have

x<Norx>N-hl

Other dichotomies are possible

eg. X = 0 or X > 0

32 HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION

6.2.2 Branching on Entities. In section 1.3.2 we explained the con­
cept of Special Ordered Sets and emphasised they should be regarded as en­
tities rather than just as individual variables. This is to allow the concept of
branching on the entity. If for example we have a S2 set {XQ, xi, X2, . . . , X^}
we require that at most two adjacent Xj can be non-zero (In practice we usually
also stipulate the convexity constraint that the variables sum to 1, but this is not
necessary to the concept). The branching dichotomy that we use is

xo + xi + .. . + Xj_i = 0 or Xj+i + Xj-f-2 + ... + x^ = 0

The rational behind this is that the order of the variables is significant.
Therefore, if a number of variables currently take non-zero values, we choose
a variable 'in the middle' of these, Xj, and, without loss of generality, force all
the variables to the left to zero or all the variables to the right to be zero. Such
a branching can radically reduce the size of the tree search from branching on
individual variables.

6.3 Branch-and-Cut
The use of cutting planes to solve IP models has already been discussed.

There is often great merit in using them within the Branch-and-Bound method.
If, for example we were to apply the Gomory Cuts (1.97) and (1.98) to the LP
relaxation (at node 0) we would start with the fractional solution at E in Fig­
ure 1.8 and the Branch-and-Bound tree would take the same course as before.
In general, however, one might expect it to reduce this search tree. Such cuts,
incorporated into the solution process, would be known as global cuts since,
being applied at node 0, they would be valid for the whole model.

Alternatively, or additionally, we could apply cuts at particular nodes of the
tree. Such cuts would be local cuts since they might only be valid at that
particular node and all nodes descending from it. For example, at node 1 in
Figure 1.10 we have the solution represented by point Si in Figure 1.11. We
could obtain Gomory Cuts to the LP relaxation at node 1 and apply them. One
such Gomory Cut obtainable here is (1.98) (In this example it is also a global
cut). Appending this cut gives the solution

1 1
xi = 4, X2 = 3 - , Objective = 7-

In this, trivially small, example there is no obvious advantage in applying cut­
ting planes in the tree search. However for larger examples it is often worth­
while.

6.4 Lagrangian Relaxation
The methods described so far have relied on the LP Relaxation of an IP to

help in the solution process. It has already been pointed out that this is not the

The Formulation and Solution of Discrete Optimisation Models 33

only possible relaxation. Indeed many relaxations are possible. One such, that
has proved particularly valuable for many problems, is Lagrangian Relaxation,
The idea here is to remove some of the constraints of the model and incorporate
them in the objective function. There will then be a penalty (degradation of the
objective function) in violating them but violation will not render the relaxed
model infeasible. If the constraints so removed are complicated ones to satisfy
then the resultant relaxed model may be easier to solve.

Because the success of the method depends on which constraints are re­
moved and incorporated in the objective function its use is problem dependent.
We illustrate the method by means of our previous small example.

Maximise
Subject to:

Xi + X2

—xi + 2x2 ^ 7

xi + 3x2 < 15

7xi — 3x2 < 23

^1 , ^2 > 0, and integer

(1.99)
(1.100)

(1.101)

(1.102)

(1.103)

Suppose we were to remove constraint (1.102) but penalise breaking it. The
amount by which it is broken could be written as

y = 7 x 1 - 3 x 2 - 2 3 (1.104)

As we wish to minimise this quantity we could subtract 7xi - 3x2 in a suitable
multiple, from the objective function. The multiple we choose can be based
on the dual value of the constraint (if we start by solving the LP relaxation).
The usual method is to use a technique called subgradient optimisation which
is beyond the scope of this chapter but described in [19]. This multiplier can
be regarded as a Lagrange Multiplier, Hence the use of the name ''Lagrangian
Relaxation" For the purposes of this illustration we will take the multiplier as
0.1. This transforms the problem to :

3 13
Maximise Tn^^ "̂ To^^ (1.105)

Subject to: - x i + 2x2 < 7 (1.106)

XI+ 3x2 < 15 (1.107)

xi,X2 > 0 , (1.108)

Now it might be the case, for problems with a structure, that the model above
was easier to solve as an IP than the original model.

An example of this is if we were left with one constraint. We would then
have a Knapsack Problem which we could solve quickly by Dynamic Pro­
gramming (see Bellman [5]). Another example is with the Travelling Sales­
man Problem where we are left with a Spanning Tree Problem for which there

34 HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION

exists a fast simple algorithm. It should be noted, however, that if the relaxed
problem is easier to solve as an IP because it is an LP which gives an integer
solution e.g. a Network Flow problem, then there is no virtue to be gained in
Lagrangian Relaxation.

Returning to our example, solving the model above (by whatever means)
yields the optimal integer solution.

XI = ^, X2 = 4. (1.109)

Note that the constraint removed (1.102) has been satisfied automatically whereas
if it had been removed and given a smaller penalty it might not have been sat­
isfied. This is clearly one of the optimal solutions to the original problem.

6.5 Heuristics
Heuristics are quick, easy-to-understand methods which are widely used

to solve combinatorial problems quickly but non-optimally. They are usually
problem specific. Therefore for those two reasons they are not discussed in this
general chapter on optimisation (There is considerable discussion in Chapter 6
by Cordeau and Laporte in relation to Distribution problems). However it is
very valuable to incorporate heuristics inside the Branch-and-Bound method.
The overall structure of Branch-and-Bound guarantees an optimal solution, if
carried out to completion, but the incorporation of heuristics within this struc­
ture can greatly speed the process.

We have already mentioned that heuristics can be valuable in the choices of
branching variables and waiting node. They can, however, also be applied at
a waiting node to try to obtain an integer solution before developing the node.
Such an integer solution, if found, will give a bound on the value of the final
optimal integer solution. This bound may be used, to good effect, in bounding
other waiting nodes. It may also, of course, be a valuable solution in itself.

6.6 Constraint Satisfaction
This, alternative, approach to solving some Discrete Optimization problems

can be very powerful. It is discussed at length in Chapter 3 by Hooker. An al­
ternative name for this approach is Constraint Logic Programming. We outline
the method here.

One of the merits of Constraint Satisfaction is that it allows a richer set of
modelling expressions than simply the linear expressions of IP. The essential
idea of Constraint Satisfaction is that every variable has a finite domain of
possible values it may take. The predicates within this modelling language
relate the variables. Therefore when a variable is assigned a particular value in
its domain this may further restrict the possible values which related variables
can take in their domains. For example in the Assignment Problem we wish

The Formulation and Solution of Discrete Optimisation Models 35

to assign n objects {ai, a2, . . . , a^} to n other objects {bi, b2, . . . , b î} so
that each object is uniquely assigned. The usual IP model would contain 0-1
variables.

Xij = 1 iff â is assigned to bj

= 0 otherwise

For Constraint Satisfaction we would have different (less) variables

Xi = index of object to which â is assigned

together with a predicate

all_different{xi, X2,... , Xn}

meaning that each of ai, a2, . . . , an must be assigned to a different object bi,
b2, . . . , hn- Each Xi would initially have the domain {1, 2, . . . , n}. When
however a particular Xi is assigned to a particular value hj (either permanently
or temporarily) its index would be taken out of the domains of the other Xi (ei­
ther permanently or temporarily). A tree search is performed to systematically
explore the possible feasible solutions. Applying the search intelligently can
result in the obtaining of a feasible solution more quickly than for IP.

As the above example demonstrates Constraint Satisfaction models are usu­
ally much more compact than IP models. The successive domain reduction of
the variables mirrors the Presolve facility of many commercial IP systems as
was mentioned previously.

However Constraint Satisfaction does not rely on the concept of an LP re­
laxation which can prove very valuable in reducing a tree search. In fact for
some models (eg. the Assignment problem mentioned above) the LP relaxation
yields a feasible integer solution immediately. For some, other problems with
a strong combinatorial flavour, however, the LP relaxation is of little value.

Constraint Satisfaction sometimes is a very good way of finding feasible so­
lutions quickly to 'needle-in-a-haystack' type problems where the finding of
any feasible solution is difficult. It is less successful at finding optimal solu­
tions to problems with many feasible solutions (eg. the Travelling Salesman
problem). In such cases successively improved objective values have to be
used to try to find solutions which are better.

There is considerable promise in designing hybrid systems which combine
both the methods of IP and Constraint Satisfaction (see chapter 4. To date
these have been most successful for specialist problems where the structure
of the model can be exploited. So far there has been less progress in general
hybrid systems.

36 HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION

6.7 Other Methods
In view of its immense practical importance, combined with the major dif­

ficulties of computation, there has been much research in alternative methods.
To date these have not resulted in systems which can compete with Branch-
and-Bound (augmented by Cutting Planes, Presolve etc). Logic methods have
been applied to some pure 0-1 models. Here the linear constraints of IP are
replaced by expressions in the Propositional Calculus {Boolean Algebra) and
Logic methods (eg. Resolution) used to solve the resultant model. Chapter 3
by Hooker discusses some of these methods.

Another class of methods (not covered in this volume) use analogous but
discrete concepts to those of linear algebra (Hilbert and Grobner bases and
lattice reduction, etc). A reference to such methods is Aardal, Weismantel and
Wolsey [1].

The method of Projection (Fourier-Motzkin elimination) has been extended
to IP models by Williams [22] and [23] and is well covered in Martin [18] with
a discussion of the solution of Diophantine equations. Finally Schrijver [21]
gives a very full account of the theoretical aspects of solving IP models with
very many references.

References
[1] K. AARDAL, R. WEISMANTEL, AND L. A. WOLSEY. Non-Standard

Approaches to Integer Programming, Discrete Applied Mathematics, 123
(2002), 5-74

[2] E. BALAS. Disjunctive Programming: Properties of the Convex Hull of
feasible points. Discrete Applied Mathematics, 89 (1998), 1-46

[3] E.M.L, BEALE and J.A. TOMLIN. Special facilities in a general math­
ematical programming system for non-convex problems using ordered sets of
variables, in J. Lawrence [Ed], Proceedings of the 5^^ INTERNATIONAL
CONFERENCE ON OPERATIONS RESEARCH 1969 Tavistock, London

[4] E.M.L. BEALE. Branch and Bound methods for numerical optimisation
of non-convex functions, in M.M. Barritt and D. Wishart (Eds) COMPSTAT
80: PROCEEDINGS IN COMPUTATIONAL STATISTICS 1975 pp 11-
20, Physica Verlag, Wien

[5] R. BELLMAN. Dynamic Programming, 1957 Princeton University
Press

[6] V. CHVATAL. Edmonds Polytopes and a Hierarchy of Combinatorial
Problems, Discrete Mathematics, 4 (1973) 305-337

[7] R. J. DAKIN. A Tree Search Algorithm for Mixed Integer Programming
Problems, Computer Journal, 8 (1965), 250-255

[8] M. R. GAREY AND D. S. JOHNSON. Computers and Interactibility:
A Guide to the Theory of NP-Completeness, 1979, Freeman

The Formulation and Solution of Discrete Optimisation Models 37

[9] RC. GILMORE AND R.E. GOMORY. A Linear Programming Approach
to the Cutting Stock Problem Part I, Operations Research, 9 (1961) 849 - 859

[10] F. GLOVER. Improved Linear Integer Programming Formulations of
Nonlinear Integer Problems, Management Science 224 (1975), 455-459

[11] R. E. GOMORY, Outline of an Algorithm for Integer Solutions to Lin­
ear Programs, Bulletin of the American Mathematical Society, 64 (1958),
275-278

[12] R. E. GOMORY An Algorithm for the Mixed Integer Problem, Re­
search Report, RM-2597 (1960), The Rand Corporation

[13] R. E. GOMORY An Algorithm for Integer Solutions to Linear Pro­
grams, Recent Advances in Mathematical Programming, R. Graves and P.
Wolf (Eds), 1983, McGraw-Hill pp. 269-302

[14] J, N. HOOKER, H. YAN, I. GROSSMANN AND R. RAMAN. Logic
cuts processing networks with fixed charges. Computers and Operations Re­
search, 21 (1994) 265-279

[15] R. JEROSLOW. Logic-based decision support: Mixed integer model
formulation. Annals of Discrete Mathematics 40, 1989, North Holland, Ams­
terdam

[16] A. H. LAND AND A. G. DOIG. An Automatic Method for Solving
Discrete Programming Problems, Econometrics, 28 (1969) 497-520

[17] E.L. LAWLER, J.K. LENSTRA, A.H.G. RINNOOY KAN AND D.B.
SHMOYS (Eds). The TraveUing Salesman Problem. 1995, Wiley, Chich­
ester

[18] R. K. MARTIN. Large Scale Linear and Integer Optimization, 1999,
Kluwer

[19] G. L. NEMHAUSER AND L.A. WOLSEY Integer and Combinato­
rial Optimisation, 1988, Wiley, New York

[20] A.J. ORMAN AND H.R WILLIAMS. A Survey of Different Integer
Programming Formulations of the Travelling Salesman Problem, Working
Paper LSEOR 04.67, 2004, London School of Economics.

[21] A. SCHRIJVER. Theory of Linear and Integer Programming, 1986,
Wiley

[22] H. P. WILLIAMS. Fourier-Motzkin Elimination Extension to Integer
Programming Problems, Journal of Combinatorial Theory (A), 21 (1976),
118-123

[23] H, P WILLIAMS. A Characterisation of all Feasible Solutions to an
Integer Program, Discrete Apphed Mathematics, 5 (1983) 147-155

[24] H. P. WILLIAMS. Model Solving in Mathematical Programming.
Wiley, 1993

[25] H. P. WILLIAMS. Model Building in Mathematical Programming.
4*^ Edition, Wiley, 1999

3 8 HANDBOOK ON MODELLING FOR DISCRETE OPTIMIZATION

[26] L. A. WOLSEY. Strong formulations for mixed integer programming:
a survey, Mathematical Programming, 45 (1989) 173-191

http://www.springer.com/978-0-387-32941-3

