
Chapter 2 

OPTIMALITY, RELAXATION AND 
GENERAL SOLUTION PROCEDURES 

In this chapter, we discuss some fundamental concepts and basic solution 
frameworks for the following general nonlinear integer programming problem: 

(P) min f{x) 

s.t. gi{x) < 6i, i = 1,. . . ,m , 

hk{x) = c/c, /c := 1 , . . . , / , 

X G X C Z^, 

where all / , gi's and hk's are real-valued functions defined on M^ and Z^ is the 
set of integer points in M .̂ 

A solution X G X is said to be a feasible solution of (P) if gi{x) < hi, for 
alH = 1, ... , m, and hk{x) - Ck, for all A: = 1, ... , /. A feasible solution x* is 
said to be an optimal solution of (P) if /(x*) < /(x) for any feasible solution 
xof (P). 

This chapter is organized as follows: We introduce the concept of an optimal-
ity condition using bounds in Section 2.1. In Section 2.2, we present a general 
framework of partial enumeration methods, first a general branch-and-bound 
method, then a backtrack partial enumeration method for 0-1 programming and 
its implementation in 0-1 linear integer programming. In Section 2.3, we intro­
duce the concept of relaxation and discuss the relationship between Lagrangian 
relaxation and continuous relaxation. We study the relationship between contin­
uous and integer optimal solutions of nonhnear integer programming problems 
in Section 2.4. In Section 2.5, we discuss how to convert a general constrained 
nonlinear integer programming problem into an unconstrained one by using an 
exact penalty function. Finally, we present in Section 2.6 optimality conditions 
for binary quadratic problems. 
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2.1 Optimality Condition via Bounds 
An essential task in designing any solution algorithm for (P) is to derive 

an optimal condition or a stopping criterion to terminate the algorithm, i.e., to 
judge if the current solution is optimal to (P) or to conclude that there is no 
feasible solution to (P). Except for very few special cases, such as uncon­
strained quadratic binary problems (see Section 2.6), it is difficult to obtain an 
explicit optimality condition for problem (P). As in linear integer program 
and other discrete optimization problems, however, optimality of the nonlinear 
integer programming problem (P) can be verified through the convergence of a 
sequence of upper bounds and a sequence of lower bounds of the objective func­
tion. Let /* be the optimal value of (P). Suppose that an algorithm generates 
a nonincreasing sequence of upper bounds 

7 i > 7 2 > - - - > 7 f c > - - - > r 
and a nondecreasing sequence of lower bounds 

i,<i,<---<i,<---<r, 
where / and /;. are the lower and upper bounds of /* generated at the k-ih 
iteration, respectively. ^^ fk~ Lk — ̂  holds for some small e > 0 at the /c-th 
iteration, then the following is evident: 

r - 6 < / , < r . 
Notice that an upper bound of /* is often associated with a feasible solution 
x^ to (P), since f{x^) > /*. A lower bound of /* is usually achieved by 
solving a relaxation problem of (P) which we will discuss in later sections of 
this chapter. A feasible solution x^ is called an e-approximate solution to (P) 
when f{x^) = /^ and /^ - /^ < e > 0. 

We have the following theorem. 

THEOREM 2.1 Suppose that {f^} and [f] are the sequences of upper bounds 

and lower bounds of f^, respectively. If fk~ f u — Ofor some k and x^ is a 

feasible solution to (P) with f{x^) = /^, then x^ is an optimal solution to (P). 

The key question is how to generate two converging sequences of upper and 
lower bounds of /* in a solution process. Continuous relaxation, Lagrangian 
relaxation (Chapter 3) and surrogate relaxation (Chapter 4) are three typical 
ways of getting a lower bound of an integer programming problem. The upper 
bound of /* is usually obtained via feasible solutions of problem (P). 

2.2 Partial Enumeration 
Although the approach of total enumeration is infeasible for large-scale in­

teger programming problems, the idea of partial enumeration is still attractive 
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if there is a guarantee of identifying an optimal solution of (F) without check­
ing explicitly all the points in X. The efficiency of any partial enumeration 
scheme can be measured by the average reduction of the search space of inte­
ger solutions to be examined in the execution of the solution algorithm. The 
branch-and-bound method is one of the most widely used partial enumeration 
schemes. 

2.2.1 Outline of the general branch-and-bound method 
The branch-and-bound method has been widely adopted as a basic partial 

enumeration strategy for discrete optimization. In particular, it is a successful 
and robust method for linear integer programming when combined with linear 
programming techniques. The basic idea behind the branch-and-bound method 
is an imphcit enumeration scheme that systematically discards non-promising 
points in X that are hopeless in achieving optimality for (P). The same idea 
can be applied to nonlinear integer programming problem (P). To partition the 
search space, we divide the integer set X into p (> 2) subsets: X i , . . . , Xp. A 
subproblem at node i, {P{Xi)), i = 1 , . . . ,p, is formed from (F) by replacing 
X with Xi. One or more subproblems are selected from the subproblem list. 
For each selected node, a lower bound LBi of the optimal value of subproblem 
{P{Xi)) is estimated. If LBi is greater than or equal to the function value of 
the incumbent, the best feasible solution found, then the subproblem {P{Xi)) is 
removed or fathomed from further consideration. Otherwise, problem {P{Xi)) 
is kept in the subproblem list. The incumbent is updated whenever a better 
feasible solution is found. One of the unfathomed nodes, {P{Xi)), is selected 
and Xi is further divided or branched into smaller subsets. The process is 
repeated until there is no subproblem left in the list. It is convenient to use 
a node-tree structure to describe a branch-and-bound method in which a node 
stores the information necessary for describing and solving the corresponding 
subproblem. We describe the general branch-and-bound method in details as 
follows. 

ALGORITHM 2.1 (GENERAL BRANCH-AND-BOUND METHOD FOR ( P ) ) 

Step 0 (Initialization). Set the subproblem list L = {P{X)}. Set an initial 
feasible solution as the incumbent x* and t'* — /(x*). If there is no feasible 
solution available, then set ?;* = +oo. 

Step 1 (Node Selection). If L — 0, stop and x* is the optimal solution to (F). 
Otherwise, choose one or more nodes from L, Denote the set of k selected 
nodes by L' = {P(Xi),..., P{Xk)}, Let L: = L\ L\ Set i = 1. 

Step 2 (Bounding). Compute a lower bound LBi of subproblem {P{Xi)). Set 
LBi = +00 if {P{Xi)) is infeasible. If LBi > v^, go to Step 5. 
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Initialization: set L = {P{X)} 

V* = +CX) 

Choose set L^ from L with k nodes, 

set i — 1 

Compute lower bound LDi for 

(PiXi)) G L^ 

Remove (P (Xi ) ) 
from L* 

If .T is optimal 
to (PiXi)) 

Save a feasible solution x or generate 
a better feasible solution, update x* and 
V*, remove all {P{Xj)) with LBj > v* 

Yes 

Choose a node (P(XO) G L ^ 
divide X,; into subsets Lf 
and remove (P(X.i)) from L, L : = L U L « U L f 

Figure 2.1. Diagram of the general branch-and-bound method. 

Step 3 (Feasible solution). Save the best feasible solution found in Step 2 or 
generate a better feasible solution when possible by certain heuristic method. 
Update the incumbents* andt'* when needed. Remove fromL^ all {P{Xj)) 
satisfying LBj > t'*, 1 < j < i. If ^ < k, SQU := i + 1 and return to Step 
2. Otherwise, go to Step 4. 

Step 4 (Branching). If L^ = 0, go to Step 1. Otherwise, choose a node 
{P{Xi))fYomL\ FurtherdivideXiintosmallersubsets: Lf = {X/ , . . . ,Xf} . 
Remove {P{Xi)) from L^ and set L:= LUL^U Lf. Go to Step 1. 

Step 5 (Fathoming). Remove {P{Xi)) from L^. If i < k, SQii := i + 1 and 
return to Step 2. Otherwise, go to Step 4. 

Figure 2.1 illustrates the diagram of Algorithm 2.1. 
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THEOREM 2,2 Algorithm 2.1 stops at an optimal solution to (P) within a 
finite number of iterations. 

Proof. Note that the fathoming procedure, either in Step 3 or Step 5 of the 
algorithm, will not remove any feasible solution of (P) better than the incum­
bent. Notice that X is finite. Thus only a finite number of branching steps can 
be executed. At an extreme, when Xi is a singleton, either {P{Xi)) is infeasible 
or an optimal solution to (P(Xi)) can be found, thus {P{Xi)) being fathomed 
in Step 5. Within a finite number of iterations, L will become empty and the 
optimality of the incumbent is evident. D 

One key issue to develop an efficient branch-and-bound method is to get a 
good (high) lower bound LBi generated by the bounding procedure in Step 2. 
The better the lower bound, the more subproblems can be fathomed in Steps 3 
and 5 and the faster the algorithm converges. There is a trade-off, however, be­
tween the quaUty of the lower bounds and the associated computational efforts. 
For nonlinear integer programming problem (P), continuous relaxation and 
Lagrangian relaxation are two commonly used methods for generating lower 
bounds in Step 2. 

2.2.2 The back-track scheme 
The back-track scheme was proposed originally as a systematic way to thread 

a maze. Known by its different names, the back-track scheme was rediscovered 
from time to time in different fields. Especially, it was adopted as an efficient 
procedure for implicit enumeration in solving many kinds of combinatorial 
problems. We discuss the back-track scheme in this subsection as a powerful 
partial enumeration scheme for 0-1 programming problems. 

Let's consider the following general nonhnear 0-1 integer programming 
problem: 

(0-lP) min f{x) 

s.t. gi{x) <bi, i = 1,2,...,m, 

xex =^{0,1}'', 

where / is assumed to be monotonically increasing, i.e., f{x) > f{y) if x > 
y. It is clear that there are at most 2^ possible candidates to be considered 
for achieving an optimahty of problem (0-lP). However, an efficient solution 
algorithm should be devised such that, in most situations, only a significantly 
small portion of the 2^ possible solutions needs to be explicitly enumerated. 
These possible solutions should rather be implicitly enumerated group by group. 

To group the 2^ solutions, we define a partial solution to be an assignment 
of binary values to a subset of the n decision variables. Let N = {1,... ,n}. 
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At iteration t, let Jt — {j ox — j \ j ^ It C N} denote the partial solution 
with Xj = 1 when j G Jt and Xj = 0 when ~j G Jt, where It is the index 
set of Jt. Only one of j or —j could be included in Jt. Any variable Xj whose 
index j is not included in It is defined to htfree. A completion of Jt is defined 
as a solution determined by Jt together with a binary specification of the free 
variables. It is clear that a /c-element partial solution could determine 2^~^ 
different completions as a group. When all free variables are set to be zero, the 
completion is termed typical Since the objective function / in problem (0-lP) 
is monotonically increasing, the typical completion of Jt has the minimum 
objective function value among all completions of Jt. For example, Jt = 
{3, 5, —2} with n = 5 specifies a partial solution of X3 = 1, 0:5 = 1 and X2 = 
0. Jt has two free variables {xi and X4) and four possible completions, among 
which the one with xi = X4 = 0 is the typical completion. 

After a partial solution Jt is generated at iteration t, we need to determine if its 
corresponding solution group (completions) could include an optimal solution 
to (P). In the following two situations, Jt can bo fathomed. 

Case (i): If the typical completion of Jt is feasible in (0-lP), Jt can be 
fathomed in this case (after updating the incumbent if the typical completion 
of Jt has an objective value less than the one of the incumbent), since no other 
completion of Jt could generate an objective value of (0-lP) smaller than the 
objective value of the typical completion as / is monotonically increasing. 

Case (ii): If the typical completion of Jt has an objective value larger than 
or equal to the one of the incumbent, Jt can be fathomed in this case since no 
other completion of Jt, including the typical completion, could do better than 
the incumbent. 

There is only one remaining situation which fits neither Case (i) nor Case (ii): 
the typical completion of Jt is infeasible in (0-lP) and has an objective value 
less than that of the incumbent. In this situation, we augment Jt by assigning 
values to some free variables of Jt according to some rules such that a new 
partial solution is generated for further fathoming. 

The back-track scheme, as a systematic method, is designed to implicitly 
enumerate all solutions without generating any redundant partial solutions. To 
ensure having a new non-redundant partial solution when a partial solution 
is fathomed, at least one element of the partial solution has to be changed to 
its complement. When the chosen element is replaced by its complement, it 
is marked by an underline in order to prevent a turning back in the solution 
process. This process repeats and terminates when there is no non-underlined 
component in the partial solution, which impHes that all possible solutions are 
implicitly enumerated. In the back-track procedure, we always locate in a 
partial solution the right-most element which is not underlined. We replace this 
right-most non-underlined element by its underlined complement and delete all 
elements to its right. If no non-underlined element exists in the partial solution, 
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Set Jo = 0 and t = 0 

t = t + l 

No 

Yes 

Yes 

Augment Jt 

Locate the rightmost element 
which is not underiined, replace 
it by its underlined complement 
and delete all elements to its right 

Yes Update 

the incumbent 

No 

Terminate 

Yes 

Figure 2.2. Diagram of the back-track scheme. 

we can claim that all 2^ solutions have been implicitly enumerated and the 
solution procedure terminates. For example, if Jt = {3, S,;;^^} is fathomed at 
iteration t, the new partial solution J^+i is {3, j ^ } in the back-track procedure. 

A diagram of the general solution framework for the back-track scheme 
is given in Figure 2.2. Notice that for different types of 0-1 programming 
problems, such as 0-1 Hnear programming problems and polynomial 0-1 pro­
gramming problems, different fathoming and augmenting rules could be de­
signed to explore special structures of the problems. 

THEOREM 2.3 The back-track scheme leads to a non-redundant sequence 
of partial solutions which terminates only when all 2^ solutions have been 
(implicitly) enumerated. 
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Theorem 2.3 indicates that the back-track scheme is a finite algorithm. If 
(0-lP) is feasible, the optimal solution will be in store of the incumbent at 
termination of the procedure. 

Although we start with JQ == 0 in Figure 2.2, JQ could essentially be any 
other partial solution without an underlined element. In addition, in the process 
of augmentation, we can augment more than one free variable on the right of 
J^ 

2.2.2.1 The additive algorithm for solving Hnear 0-1 programming 
problems 

In 1965, Balas proposed an implicit enumeration method to directly solve 
linear zero-one programming problems [7]. Due to the fact that only addition 
is required as an arithmetic operation in the solution procedure, the solution 
procedure is called as the additive algorithm. One advantage of the additive 
algorithm is that there is no roundoff error. The additive algorithm is considered 
to be fundamental for the later development of various implicit enumeration 
methods for integer programming problems. 

In this subsection we consider the following linear zero-one programming 
problem: 

(0-lLP) min f{x) = V^^j^j? 

n 

s.t. gi{x) = ^ aijXj <bi, i e M = {1,2,..., m}, 

Xje{0,l}, j G i V = { l , 2 , . . . , n } . 

Without loss of generality, we assume that Cj > 0 for all j G Â . By introducing 
m slack variables, problem (0-lLP) can be rewritten as follows. 

(O-lLPs) min f{x) = ^CjXj, 

n 

S.t. gi{x) = ^Y^aijXj -i-yi = bi, i e M, 

xje{0,l}, jeN, 

yi>0, ieM, 

where i/i, i G M, are nonnegative slack variables. 
The additive algorithm starts with a partial solution Jo = 0 and an upper bound 

of the minimum value of the objective function, /* = Yll=i ^j- ^^ iteration t, 



Optimality, Relaxation and General Solution Procedures 21 

the partial solution is J^. Let x^ be the typical completion of Jt and y^ e W^ 
be the corresponding vector of slack variables. 

When f{x^) > /*, the partial solution Jt can be fathomed, no matter if x^ 
is feasible or not in (0-lLP), since no completion of Jt will give an objective 
value less than /*. The algorithm proceeds then to the back-track procedure. 

When f{x^) < /* and y^ > 0, x^ is a better feasible solution. We update 
the incumbent by setting /* = f{x^). The partial solution Jt can be fathomed, 
since no other completions of Jt can yield an objective value less than f{x^). 
The algorithm proceeds then to the back-track procedure. 

When f{x^)<f^ and y^ ^ 0, the typical completion of J^ x^ is infeasible 
in (0-lLP) and we need to augment Jt with at least one free variable (if any). 
The principle of augmentation is to pursue a reduction in both the objective 
value and the degree of infeasibility. To identify a candidate of augmentation 
from among all free variables, a set T* is constructed as follows, 

T^ = {j ^ TV \ /̂  I f{x^) + Cj < /* and there exists i G M such that 

aij < OandyJ < 0}. 

It is clear that only those Xj's with j in T^ need to be considered as candidates 
to augment Jt on the right because assigning 1 to some free variable not in 
T^ would either lead to a larger lower objective value than /* or increase the 
degree of the infeasibility of x^ If T^ is empty, we know that there does not 
exist a feasible completion of Jt which can do better than the incumbent, and 
Jt is thus fathomed. 

When T^ is not empty, we check further the following inequality for those i 
e M with yj < 0: 

yj- ^ m i n { 0 , a ^ , } > 0 . (2.2.1) 

If (2.2.1) does not hold for any i e M with yj < 0, then the slack variable of 
the i-th constraint will remain negative for whatever solution augmented from 
Jt by assigning 1 to some variables in T^ In other words, it is impossible for 
Jt to have a feasible completion which can be adopted to improve the current 
incumbent value and thereby Jt is fathomed. 

If (2.2.1) holds for alH E M with yj < 0, we could augment Jt on the right. 
A suitable criterion in selecting a free variable from T^ is to use the following 
formulation: 

m 

f — argmax V^min{yJ — ajj,0}. (2,2.2) 

If j^ is chosen according to the above formulation, J^+i — Jt U {j^} has the 
"least" degree of the violation of the constraints. 
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The back-track scheme can be used to clearly interpret the additive algorithm 
of Balas and has been adopted to simplify the additive algorithm of Balas such 
that not only the solution logic in the algorithm becomes much clearer, but also 
the memory requirement of computation is significantly reduced. Based on the 
back-track scheme, the additive algorithm of Balas can be explained via the 
following flow chart in Figure 2.3. 

Set Jo =0,t = O 

/ * is an upper bound of / 

r = fix') 

Locate the rightmost element 

which is not underlined, replace 

it by its underlined complement 

and delete all elements to its right 

Figure 2.3. Diagram of the additive algorithm of Balas. 

The following linear 0-1 programming problem serves as an example to 
illustrate the back-track scheme in the additive algorithm. 
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EXAMPLE 2.1 

min 5xi + 1x2 + lOxs + 8x4 + X5 

s.t. — xi + 3x2 — 5x3 — X4 + 4x5 ̂  —2, 

2x1 — 6x2 + 3x3 + 2x4 — 2x5 < 0, 

X2 - 2X3 + X4 + X5 < - 1 , 

Xi,X2,X3,X4,X5 G { 0 , 1 } . 

Adding slack variables yields the following standard formulation, 

min 5x1 + 7x2 + IOX3 + 8x4 + X5 

s.t. — xi + 3x2 — 5x3 — XA + 4X5 + yi — —2, 

2x1 - 6x2 + 3x3 + 2x4 - 2x5 + 2/2 == 0, 

X2 - 2X3 + ^4 + 3̂5 + y3 = - 1 , 

xi,X2,X3,X4,X5 G {0,1}, yi,y2,2/3 > 0. 

Initial Iteration 

Step 0. Set Jo - 0 and /* = Xl̂ ^ î Cj = 26. 

Iteration 1 (t = 0) 

Step L x^ = (0,0, 0, 0, 0)^, /(x^) = 0 < /* = 26 and y^ - ( -2,0, - 1 ) ^ ^ 
0 ^ Augmenting JQ. 

Step 2. Notice that all xi,X2,X3,X4,X5 are free variables and T^ = 
{1,3,4}. 

Step 3. For i = 1, yO _ ^^.^^o min{0, aij}= - 2 - ( -1 - 5 - l)=5 > 0; 

For i = 3, yg - JZjero min{0,03^}= - 1 - (-2) = 1 > 0. 

Step4. j ° = argmaXjg7-o{^^^j mm(y? —aij,0)} = argmax{—1 — 2 — 
1, - 3 , - 1 - 2 - 2} = 3 => Ji = {3}. 

Iteration 2 (i = 1) 

Step 1. x^ = (0,0,1,0,0)^, / (x i ) = 10 < /* = 26 and y^ = (3, - 3 , 1 ) ^ ^ 
0 =• Augmenting Ji . 

5?e/7 2. Notice xi, a;2,0:4, X5 are free variables and T^ = {2, 5}. 

Step 3. For i = 2, y^ - YljeT^ ™™(0' a2j)=-3 - ( -6 - 2) = 5 > 0. 

Step 4. j ^ = argmax^gjnil^^^j niin(yjî  — ajj,0)} = argmaxjO, —1 — 
1} = 2. Thus J2 = {3,2}. 

Iteration 3 (i = 2) 
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Step 1. x^ = (0,1,1,0, 0)^, f{x^) = 17 < /* = 26 and y^ = (0, 3,0)^ > 0 
^ Record x* = {0,1,1,0,0}, set /* = 17 and J2 is fathomed. 

Step 2. Back track and get J3 == {3, —2). 

Iteration 4 (t = 3) 

Step 1. x^ = (0,0,1,0,0)^, f{x^) = 10 < /* = 17 and y'^ = (3, - 3 , 1 ) ^ ^ 
0 => Augmenting J3. 

Step 2. Notice that xi, X4, X5 are free variables and T^ — {5}. 

Step 3. For i=:2,y^- E J ^ T ^ niin(0, a2j) = -3 - (-2) ^ - 1 < 0 =4> 
J3 is fathomed. 

Step 4. Back track and get J4 = {—3}. 

Iteration 5 (t == 4) 

Step 7. x^ = (0,0,0,0, 0)^, /(x^) = 0 < /* = 17 and y^ - (-2, 0, - 1 ) ^ ^ 
0 =^ Augmenting J4. 

5̂ /̂? 2. Notice that xi, X2, X4, 0:5 are free variables and T^ — {1,4}. 

Step 3. For i — 3,y^ - ^J^T^ min(0, a^j) — —I — (0) = -1 < 0 =^ J4 
is fathomed. 

Step 4. No element in J4 is not underlined. => The algorithm terminates 
with an optimal solution x* = {0,1,1,0,0} and /* = 17. 

2.3 Continuous Relaxation and Lagrangian Relaxation 
Let v(Q) denote the optimal value of problem (Q). A problem (i?(0) ^i^h 

a parameter ^ is called a relaxation of the primal problem (P) if v{R{^)) < 
v{P) holds for all possible values of ^. In other words, solving a relaxation 
problem offers a lower bound of the optimal value of the primal problem. The 
dual problem, (D), is formulated to search for an optimal parameter, (̂ *, such 
that the duality gap of v{P) — v{R{^)) is minimized at ^ = ^*. The quaUty 
of a relaxation should be thus judged by two measures. The first measure is 
how easier the relaxation problem can be solved when compared to the primal 
problem. The second measure is how tight the lower bound can be, in other 
words, how small the duality gap can be reduced to. 

2.3.1 Continuous relaxation 
The continuous relaxation of (P) can be expressed as follows: 

(P) min f{x) 

s.t. gi{x) <bi, i = 1,. . . ,m , 
hk{x) ^ Ck, fc = 1 , . . . , / , 
X G convex)^ 
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where conv{X) is the convex hull of the integer set X. Problem (P) is a general 
constrained nonlinear programming problem. Since X C conv{X), it holds 
^{P) ^ /*• Generally speaking, a continuous relaxation problem is easier to 
solve than the primal nonlinear integer programming problem. 

When all / and ^^'s are convex and all hk's are linear in (P), the continuous 
relaxation problem is convex. For continuous convex minimization problems, 
many efficient solution methods have been developed over the last four decades. 
Below is a list of some of the well-known solution methods for convex con­
strained optimization (see e.g. [13][58][148]): 

• Penalty Methods; 

• Successive Quadratic Programming (SQP) methods; 

• Feasible Direction Methods: 

- Wolfe's Reduced Gradient Method for linearly constrained problems; 

- The Generalized Reduced Gradient Method for nonlinearly constrained 
problems; 

- Rosen's Gradient Projection Methods. 

• Trust Region Methods. 

There does not exist a general-purpose solution method, however, for searching 
for a global solution for nonconvex constrained optimization problems. Never­
theless, there are several solution algorithms developed in global optimization 
for nonconvex problems with certain special structures, for example, outer ap­
proximation methods for concave minimization with linear constraints ([105] 
[174]) and convexification methods for monotone optimization problems ([136] 
[207]). 

2.3.2 Lagrangian relaxation 
Define the following Lagrangian function of (P) for A G W^ and /i G M :̂ 

m I 

L(x,A,/i) == f{x) + Y^Xi{gi{x) -bi) + Y^pk{hk{x) -Ck). 

The Lagrangian relaxation problem of (P) is posted as follows: 

{Lxn) (i(A,/i) == minL(x, A,/i). (2.3.1) 
XEX 

Denote the feasible region of (P) by 

S = {x e X \ gi{x) <bi,i=- l,..,,m, hk{x) == c^, k = l,..,,l}. 
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The following weak duality relation will be derived in the next chapter: 

d{X, M) < fix), V A G M![̂ , /i G R^ X G 5. (2.3.2) 

This ensures that solving (î A,/i) gives a lower bound of /*, the optimal value 
of (P). The dual problem of (P) is to search for the best lower bound provided 
by the Lagrangian relaxation: 

(D) max d{X,fi), (2.3.3) 

2.3.3 Continuous bound versus Lagrangian bound 
We first establish a relationship between the continuous bound and the 

Lagrangian bound in convex cases of (P). We need the following assump­
tion. 

ASSUMPTION 2.1 Functions f andgi (i = 1,.., ,m) are convex, functions 
hk (k = 1,.., J) are linear, and certain constraint qualification holds for (P). 

One sufficient condition to ensure the satisfaction of the constraint qualifica­
tion in Assumption 2.1 is that the gradients of the active inequality constraints 
and that of the equality constraints at the optimal solution to (P) are linearly 
independent. 

The following theorem shows that the Lagrangian bound for convex integer 
programming problem (P) is at least as good as the bound obtained by the 
continuous relaxation. 

THEOREM 2.4 Under Assumption 2.1, it holds v{D) > v(P). 

Proof. Since X C conv{X), we have 

v(D) = max minL(x, A,/x) 

> max min L[x,\,ii) 
AGM!p,/iGM' xeconv{X) 

= v(P). 

The last equahty is due to the strong duality theorem of convex programming 
under Assumption 2.1. D 

The tightness of the Lagrangian bound has been also witnessed in many com­
binatorial optimization problems. In the case of nonlinear integer programming, 
to compute the Lagrangian bound v(D), one has to solve the Lagrangian re­
laxation problem (2.3.1). When all functions / , ^^'s and h^'s and set X are 
separable, the Lagrangian relaxation problem (2.3.1) can be solved efficiently 
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via decomposition which we are going to discuss in Chapter 3. When some of 
the functions / , ^^'s and /i^'s are nonseparable, problem (2.3.1) is not easier 
to solve than the original problem (P). Nevertheless, the Lagrangian bound 
of a quadratic 0-1 programming problem can still be computed efficiently (see 
Chapter 11). Lagrangian bounds for linearly constrained convex integer pro­
gramming problems can also be computed via certain decomposition schemes 
(see Chapter 3). 

Next, we compare the continuous bound with the Lagrangian bound for a 
nonconvex case of (P), more specifically, the following linearly constrained 
concave integer programming problem: 

(Py) min f{x) 

s.t. Ax < 6, 

Bx = d, 

X e X = {x e IJ^ \ Ij < Xj < Uj^ j = 1 , . . . , n}, 

where f{x) is a concave function, 4̂ is an m x n matrix, P is an / x n matrix, 
b G M^, d e R^Jj and Uj are integer lower bound and upper bound of Xj, 
respectively. Let (Py) denote the continuous relaxation problem of (Py). 

The Lagrangian dual problem of (Py) is: 

(Dy) max dy{X^fi)^ 

where 
dy{X^ jj) ^ mm[f{x) + \^{Ax -b) + i7{Bx - d)], 

for A G R!J? and/i G E^ 
The following result shows that, on the contrary to the convex case of (P), 

the continuous relaxation of {Py) always generates a lower bound of {Py) at 
least as good as that by the Lagrangian dual. 

THEOREM 2.5 Assume that f is a concave function on X in {Py)- Then 
v{Dy) < v{Py), 

Proof. Let Vt denote the set of extreme points of conv{X): 

Vt = {x'\i=:l,...,K), 

where K = 2^. Consider the following convex envelope of / over conv{X)\ 

K K 

0(x) - m i n { ^ 7 j ( x ^ ) | X^7z^' - :r, 7 G A}, (2.3.4) 
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where A == {7 G R^ | J^f^i ji = 1, -fi > 0, i = 1,... ,K}. It is clear that 0 
is a piecewise Hnear convex function on conv{X). By the concavity of / , we 
have 

f{x) > (t){x), Vx E conv{X) (2.3.5) 

and f{x) = (/)(x) for all x e Q. Recall that f{x) and (/)(x) have the same 
global optimal value over conv{X) (see [182]). Notice that a concave function 
always achieves its minimum over a polyhedron at one of the extreme points. 
Also, the extreme points of conv{X) are integer points. Thus, we have 

v{Dy) = max min[/(x) + X^{Ax - b) + fi^{Bx - d)] 

= max min [f{x) + \^{Ax-b) + f/^{Bx-d)] 
AGR!p,MeM' xeconv{X) 

= max min [(l){x) + X^{Ax — b) + fi^{Bx — d)] 
AGlR!p,/ieM' xeconv{X) 

= min max [(f>{x) + X^{Ax — b) + fi^{Bx — d)] 
xeconv{X) AGM!p,/i€M^ 

= min {4>{x) I Ax < 6, Bx = d} 
xEconv{X) 

< min {/(x) \ Ax <b, Bx = d} 
xEconv{X) 

The fourth equation in the above derivation is due to the strong duality theorem 
for piecewise linear programming. D 

Combining Theorems 2.4 and 2.5 gives rise to the well-known result in 
classical linear integer programming theory: The Lagrangian dual bound is 
identical to the continuous bound for linear integer programming. 

COROLLARY 2.1 If f is a linear function in {Pv)> then v{Dy) = v{Pv). 

2.4 Proximity between Continuous Solution and Integer 
Solution 

A natural and simple way to solve (P) is to relax the integrality of x and 
to solve the continuous version of {P) as a nonlinear programming problem. 
The optimal solution to the continuous relaxation is then rounded to its nearest 
integer point in X which sometimes happens to be a good sub-optimal feasible 
solution to (F). In many situations, however, the idea of rounding the contin­
uous solution may result in an integer solution that is not only far away from 
the optimal solution of (P) but also infeasible. Thus, it is important to study 
the relationship between the integer and continuous solutions in mathematical 
programming problems. 
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2,4.1 Linear integer program 
Consider a linear integer program 

min c^x (2.4.1) 

s.t. Ax < 6, 

and its continuous relaxation: 

min (Fx (2.4.2) 

s.t. Ax < 6, 

xeW, 

where A is an integer mxn matrix and c G M^ and b G M^. Denote by A(y4) 
the maximum among the absolute values of all sub-determinants of matrix A, 

THEOREM 2.6 Assume that the optimal solutions of problems (2.4.1) and 
(2.4.2) both exist. Then: 

(i) For each optimal solution x to (2.4.2), there exists an optimal solution z* 
to (2.4.1) such that 

| | x -^* | |oo<nA(A) . (2.4.3) 

(ii) For each optimal solution z to (2.4.1), there exists an optimal solution 
X* to (2.4.2) such that 

| |x*-z| |oo <nA{A). (2.4.4) 

Proof. Let x and z be optimal solutions to (2.4.2) and (2.4.1), respectively. 
Partition A into A^ = [Aj,A^], where Aix > A\z and A2X < A2Z, and 
partition b into b^ and 6̂  accordingly. Note that A2X < A2Z < 6 .̂ Let Ai > 0 
and A2 > 0 be optimal dual variables corresponding to Ai and A2, respectively, 
for (2.4.2). By the complementary slackness condition, A2 = 0 and thus we 
have AjXi = —c. Consider the following cone: 

C = {x\ Aix > 0, A2X < 0}. 

Obviously, x — z e. C. Furthermore c^x < 0 for all x e C, since c^x = 
—XjAix < 0 for all x G C By Caratheodory's theorem, there exist t{t <n) 
integer vectors d'^ e C,i = 1,... ,t, and p^i > 0,i = 1,... ^t, such that 

X- z = pid^ + h ptd^. (2.4.5) 

By Cramer's rule, we can assume that ||d |̂|cx) < A(A), z =: 1,. . ., t. 
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Let 

z''^z+[^ll\d^ + ^-+[llt\d\ (2.4.6) 

where \x\ is the maximum integer number less than or equal to x. By (2.4.5), 
we have 

*̂ - ^ + (L/̂ iJ - /ii)^' + • • • + (L/̂ d - l^t)d\ (2.4.7) 

Thus, 

Aiz"" = Aix + ([/iij - /ii)^id^ + • • • + (L/id - MO^I^^ < ^1^ < ^\ 
^ 2 ^ * = A2Z + [fii\A2d^ + •"+ [fit\A2d^ < A2Z < h^. 

So Az"" < b. Moreover, since c^d'^ = -XjAid^ < 0 for alH = 1 , , . . , ,̂ we 
imply from (2.4.6) that ĉ :̂* < c^z. Therefore, 2:* is an optimal solution to 
(2,4,1) and by (2.4.7), we get 

Ik* - l̂loo < IM Îloo + • • • + IM'lloo < nA(A), 

which is (2.4.3), Moreover, combining ĉ 2:* < c^z with the optimality of z 
and (2,4,6) leads to c^d'^ = 0 for z with /î  > 1. 

Now, let 

X* = X ~ [fii\d^ [f^t\d\ (2.4,8) 

Then, 

Aix* = Aix - [fii\Aid^ [fit\Aid^ < Aix < b\ (2,4,9) 

Also, by (2,4,5), it holds 

X* - ^ + (/ii - [fli\)d^ + ... + (^^- [fit\)d\ 

Thus, we obtain ||x* — |̂|oo < nA{A) using the similar arguments as in part 
(i). Moreover, we have 

A2X'' - A2Z + {in - [iii\)A2S + • • • + (/î  - [iit\)A2d^ < A2Z < b^. 

(2.4.10) 

Combining (2.4.9) with (2.4.10) gives rise to ^x* < b. Since c^d'^ == 0 for i 
with /ii > 1 and [/î J = 0 for i with 0 < /î  < 1, we obtain from (2.4.8) that 
c^x* — c^x. Thus, X* is an optimal solution to (2,4,2), D 
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2.4.2 Linearly constrained separable convex integer 
program 

The proximity results in the previous subsection can be extended to separable 
convex programming problems. Consider the following problems: 

min f{x) = ^fj{xj) 

s.t. Ax < 6, 

and its continuous relaxation: 

(2.4.11) 

min f(x) = y"jj(xj) 
j=i 

(2.4.12) 

s.t. Ax < 6, 

where fj{xj),j = 1, • •., TI, are all convex functions on M, A is an integer 
m X n matrix and b 6 R^. The following result generalizes Theorem 2.6, 

THEOREM 2.7 Assume that the optimal solutions of problems (2.4.11) and 
(2.4.12) both exist. Then: 

(i) For each optimal solution x to (2.4.12), there exists an optimal solution 
z"" to (2.4.11) such that 

\x — z < nA{A). (2.4.13) 

(ii) For each optimal solution z to (2.4.11), there exists an optimal solution 
X* to (2.4.12) such that 

\x — z\ < n/\{A). (2.4.14) 

Proof. Let x and z be optimal solutions to (2.4.12) and (2.4.11), respectively. 
Let 5* be the intersection of the feasible region of (2.4.12) with the minimal 
box that contains x and z. Let 

A* = -'•nxn , b* = max(x, z) 
— min(x, z) 

(2.4.15) 

Then S'* can be expressed as {x E M^ | A*x < 6*}. Now, consider the linear 
over-estimation of fj{xj). Let c] = (fji^j) — fj{^j))/{^j ~ ^j)- Without 
loss of generality, we can assume that Zj — fj{zj) = 0. So fj{xj) = c'jXj. 
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Moreover, by the convexity of / j , we have fj{xj) < c'jXj for all j — 1 , . . . , n 
and X G 5*. Consider the following linear program: 

min (c*)^:r (2.4.16) 

s.t. ^*x < 6*, 

Since (c*)'^x = f{x) < f{x) < (c*)^x for all x G 5*, x is also an opti­
mal solution to (2.4.16). Note that the upper bound of the absolute values of 
subdeterminants of A* remains A(yl). 

By Theorem 2.6, there exists an integer ^* G 5* such that ||x - ^*||oo < 
nA{A) and (c*)^^* < (c*)^^ for all integer z G S\ Note that /(^*) < 
(c*)'̂ 2:* < (c*)'^z = f{z). It follows that ^* is an optimal solution to (2.4.11). 
This proves part (i) of the theorem. Part (ii) can be proved similarly. D 

2.4.3 Unconstrained convex integer program 
In this subsection, we establish some proximity results for general uncon­

strained convex integer programs which are not necessarily separable. For a 
separable convex function the distance (in oo-norm) between its integer and real 
minimizers is bounded by 1. This is simply because the distance between the 
integer and real minimizers of a univariate convex function is always dominated 
by 1. Thus, we first concentrate in this subsection on a proximity bound for 
nonseparable quadratic functions and then extend it to strictly convex functions. 
We further discuss an extension to mixed-integer cases. 

Let Q be an n X n symmetric positive definite matrix. Define 

q{x) = {x- xo)^Q{x - xo). 

Consider 

mm{q{x) | x G M""} (2.4.17) 

and 

mm{q{x) \xell'], (2.4.18) 

Obviously, XQ is the unique minimizer of (2.4.17). For any nxn real symmetric 
matrix P, denote by Amax(-P) and Amin(^) its largest and smallest eigenvalues, 
respectively. 

THEOREM 2.8 For any optimal solution x to (2.4.18), it holds 

„ 1 , 
\\x-xo\\2 < ^ V ^ ' (2.4.19) 
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where K — Xma,x{Q)/^mm(Q) i^ the condition number of Q. 

Proof. Let 

q[x) = (x - XQfQ{x - xo) = r. (2.4.20) 

We assume without loss of generality that x 7̂  XQ and thus r > 0. By the 
optimality of x, no integer point is contained in the interior of the following 
ellipsoid: 

E={xeW \{x- xofQ{x - xo) < r}. 

Since the diameter of the circumscribed sphere of a unit cube in M^ is ^/n, the 
interior of a ball in M^ with diameter greater than y ^ must contain at least one 
integer point. It is clear that elHpsoid E contains the ball centered at XQ with 
diameter 2Y^rAmin(Q~"^). Hence, we have 

2VrXmin{Q-') < V^^ (2.4.21) 

Notice also that ellipsoid E is enclosed in the ball centered at XQ with diameter 
2V'rAmax(Q~^). We therefore find from (2.4.20) and (2.4.21) that 

D 

Let / : M^ —> R be a twice differentiable convex function satisfying the 
following strong convexity condition: 

0 < m < A^in(VV(^)) < Amax(VV(^)) < M, Vx G R^. (2.4.22) 

Consider 

min{/(x) I X G R""} (2.4.23) 

and 

min{/(x) I X G Z^}. (2.4.24) 
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T H E O R E M 2.9 Let xo be the unique optimal solution to (2,4,23). Then for 
any optimal solution x to (2,4,24), it holds 

1 , 
IF-X0II2. < 2 V ^ ^ i ' 

where ni = M/m, 

Proof. Note that the condition (2.4.22) and Taylor's Theorem imply 

^m\\x - xog < / W - / (^o) < \M\\X - xolll, Vx G M^. (2.4.25) 

Let r =: f{x) - / (xo) . By (2.4.25), the convex level set {x eW \ f{x) -
f{xo) < r} contains a sphere with diameter 2y2rM^ and is enclosed in a 
sphere with diameter 2V2rm~^. The theorem then follows by using the same 
arguments as in the proof of Theorem 2.8. D 

Now we consider the mixed-integer convex program: 

min{/ (x) I X = (y,zf, y e Z \ z e R^}, (2.4.26) 

where / > 0 , / c > 0 , /-[-/c = n and f{x) satisfies condition (2.4.22). 

T H E O R E M 2.10 Let XQ be the unique optimal solution to (2.4.23). Then for 
any optimal solution x of (2,4.26), it holds 

1 
\\X -X0II2 < -^V^lKi, 

where KI = M/m. 

Proof. Note that every sphere in R^ with diameter ^/n has a nonempty inter­
section with a /c-dimensional hyperplane {x e W^ \ x = (y, 2:)^, y = a} for 
some integer a e ZK The theorem can then be proved along the same line as 
in the proof of Theorem 2.8. D 

One promising application of the above proximity results is their usage in 
reducing the set of feasible solutions in integer programming problems. 

E X A M P L E 2.2 Consider the following unconstrained quadratic integer pro­
gram: 

min q{x) = 21x\ — 18x1X2 + 4^2 — 3x2 

s.t. X e 1?. 

The optimal solution of the continuous relaxation of this example is XQ = 
(0.5,1.5)^ with g(xo) == - 2 . 2 5 . Theorem 2.8 can be used to reduce the 
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feasible region by setting the bounds for the integer variables. It is easy to 
verify that K = 33.5627. From (2.4.19) we have \\x - xo||2 < ( l /2) \ /2^ = 
4.0965. We can thus attach a box constraint —3 < a;i < 4, —2 < X2 < 5 
to Example 2.2. This significant reduction in the feasible region may help 
the solution process when a branch-and-bound algorithm is used as a solution 
scheme. Applying a branch-and-bound procedure to Example 2.2 with the box 
constraint yields an optimal solution x = (1,3)-^ with q{x) = 0. We note 
that X cannot be obtained by rounding the continuous optimal solution xo since 
g((0, If) = qiil, 2f) = 1, g((l, i n = qiiO, 2f) = 10. 

The following example shows that the bound in (2.4.19) can be achieved in 
some situations. 

EXAMPLE 2.3 Consider the following problem: 

min{f^(x, - l f \ x e Z-} . 

It is easy to see that all vertices of the unit cube [0,1]^ are the optimal 
integer solutions of this problem. Since XQ = (1 /2 ,1 /2 , . . . , 1/2)^, we get 
11̂  — ^olb = y/ri/2. On the other hand, since Q = I, WQ have hi = 1 and 

Now, we give another example in which the strict inequality in (2.4.19) holds 
while both 11 x — XQ 112 and K. tend to infinity simultaneously. As a by-product, we 
can get a method in constructing nonseparable quadratic test problems where 
the distance between the continuous and integer solutions can be predetermined. 

Let vi = {cos 6^ sin 9)^, V2 = {—sin 6^ cos 6)^. Then vi and V2 are or-
thonormal and the angle between vi and xi-axis is 9. For Ai > A2 > 0, 
let 

P = Al'̂ ;l̂ 'f + A2t'2'?̂ 2' 
Ai cos^ ^ + A2 sin^ 9 (Ai — A2) sin 9 cos 9 \ 
(Ai - A2) sin 9 cos 9 Ai sin^ ^ + A2 cos^ 9 J ' ^ ^ 

It follows that P is a 2 X 2 symmetric positive definite matrix and it has eigen­
values Ai and A2 with corresponding eigenvectors vi and V2, respectively. 

EXAMPLE 2.4 Consider the following problem: 

min{q{x) := {x - xofP~\x - XQ) \ x e Z^}, (2.4.28) 

where P is defined by (2.4.27), XQ = (0,1/2)^ and A2 G (0,1/4). 

For any positive integer m > 0 and A2 E (0,1/4), we can determine the 
values of 9 and Ai such that axis 0:2 = 0 supports ellipsoid E{xo^ P~^) = {x e 
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R'^ \ {x — xo)^P~^{x — xo) < 1} at ( -m,0) . For t G M, consider equation 
g((t, 0)^) = 1. From (2.4.27) and (2.4.28), this equation is equivalent to 

ait^ + a2t + as = 0, (2.4.29) 

where 

ai =: Ai sin^ 9 + X2 cos^ 9, 

^2 = (Ai - A2)sin6>cos^, 
1 1 

<̂3 == -Ai cos^0 +-A2sin^^ - A1A2. 

Note that 

al - 4aia3 = -A1A2 + 4AiA2(Ai sin^ 6> + A2 cos^ 9). 

Therefore, equation (2.4.29) has a unique real root if and only if 

Ai sin^ 6̂  + A2 cos^ <9 - ^. (2.4.30) 

If condition (2.4.30) holds, ai = | and the root of equation (2.4.29) is 

t - --^ = -2(Ai - A2)sin6>cos6>. (2.4.31) 
2ai 

Setting t = ~m in (2.4.31), we get 

(Ai - A2) sin(2(9) = m. (2.4.32) 

Equations (2.4.30) and (2.4.32) uniquely determine the values of 0 E (0, 7r/2) 
and Ai > 1/4 for which (—m, 0)^ is the unique intersection point of ellipsoid 
E{xo,P~^) and xi-axis. By the symmetry of the ellipsoid, (m, 1)^ is the 
unique intersection point of E{xo^ P~^) and the Hne X2 — 1. Since no integer 
point otherthan ( -m,0)^ and (m, 1)^ lies in £^(xo,P~^),xi(m) — (-m, 0)'^ 
and X2{m) = (m, 1)-̂  are the optimal solutions of (2.4.28). 

Now, we set A2 — 1/5. For any positive integer m, let 9{m) and Ai(m) be 
determined from (2.4.30) and (2.4.32). Denote/^(m) == Ai(m)/A2 = 5Ai(m). 



Optimality, Relaxation and General Solution Procedures 37 

By (2.4.30) and (2.4.32), we have 

||xi(m) - X0II2 = Wx-iim) - 2:o||2 

m"= + -

4(Ai(m) - 1/5)2 sin2[^(m)](l - sin2[^(m)]) + ^ 

Thus, ||xi(m) —X0II2 = |k2(^) -^o | |2 —̂  00and/^(m) -> oowhenm -^ oo. 
Moreover, since /i:(m) > 1, we have 

\\xi{m) - X0II2 = Y ^ ' ^ ( ^ ) + 5 < 2^^^^^^)-

2.5 Penalty Function Approach 
Generally speaking, an unconstrained integer programming problem is easier 

to solve than a constrained one. We discuss in this section how to convert a 
general constrained integer programming problem into an unconstrained one 
by using an exact penalty method. Consider the following problem: 

(P) min f{x) 

s.t. gi{x) < 0, i = l,...,m, 

hj{x) = 0, j =: 1 , . . . , / , 

X e X, 

where / , gi{x) (i = 1 , . . . , m) and hj{x) (j == 1 , . . . , /) are continuous func­
tions, and X is a finite set in Z^. Let 

S = {x e X \ gi{x) < 0, z == 1 , . . . ,m, hj{x) — Q,j — l,...,l}. 

Define a penalty function P{x) such that: P{x) == 0 for x G 5 and P{x) > 
e > OfoY X ^ S. A typical penalty function for (P) is 

m I 

P(x) = ^max(ffi(x),0) +J]^/i2(x). (2.5.1) 
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Define the penalty problem of (P) as follows: 

(PEN) min T(x, fi) = f{x) + /iP(x), /i > 0. 

Since T{x, n) = f{x) for x G 5 and 5 C X, we have v{P) > v{PEN). 

THEOREM 2.11 Let f be a lower bound of miiXx^x f{x) and ^ > 0 be a 
lower bound of minx^x\s P{^)- Suppose that X \S j^ ^. Then, there exists 
a p,Q such that for any /U > po, any solution x* that solves (PEN) also solves 
{P)andv{PEN) = v{P). 

Proof. Let 

v{P) - I 
po = - • (2.5.2) 

7 
For any x e X \S and any n > p.o, 

T{x,ii) - f{x) + iJiP{x) 

> fix) + iioP{x) 
> f{x) + {v{P)-f) 
> v(P). 

Therefore, the minimum of T{x, /j,) over X must be achieved in S. Since 
T{x,fj,) — /(a;) for any x € 5, we conclude that x* solves (P) and t>(P£'A'') = 
T{x*,fj,) = fix*) = viP). D 

COROLLARY 2.2 Let f be an upper bound ofv{P). Ifm == 0 and hj^ {j — 
1 , . . . , /J are integer-valued functions on X, then for any l^ > p^o = f — f, 

any solution x* solves (PEN) also solves (P), where P(x) = Y2i=i /^?(^) i^ 
problem (PEN). 

Proof. Since hj is integer-valued, we deduce that P{x) > 1 for any x e X\S 
and hence 7 can be taken as 1. Moreover, v{P) > / , thus, by (2.5.2), /HQ < 
f — f. The conclusion then follows from Theorem 2.11. D 

If hj{x) > 0 for any x G X, j = 1 , . . . , /, then P{x) in Corollary 2.2 can 

be taken as P(x) = Ylj=i ^j(^)' 

2.6 Optimality Conditions for Unconstrained Binary 
Quadratic Problems 

2.6.1 General case 
We consider the following unconstrained binary quadratic optimization problem: 

(BQ) min q(x) = -x^Qx + b^x^ 
a:G{-l,l}"' 2 
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where Q is a symmetric matrix in R^^^ and 6 G M .̂ Notice that any binary 
quadratic problem with yi G {k^ ui}, i = 1, ... , n, can be transformed into the 
form of {BQ) by the Unear transformation: y^ — l^ + [m — li){xi + l ) /2, 
i = 1 , . . . , n. It is clear that (BQ) is equivalent to the following continuous 
quadratic problem: 

(CQ) min q{x) = -x^Qx + h^x^ 

S.t. X;^^ — 1, Z = 1, . . . , n . 

Problem {CQ) is essentially a nonconvex continuous optimization problem 
even if matrix Q is positive semidefinite. Thus, problem {CQ) is the same as 
hard as the primal problem {BQ), 

To motivate the derivation of the global optimahty conditions, let's consider 
the relationship between the solutions of the following two scalar optimization 
problems with a > 0: 

{SQ) min {-ax^ + 6x | x G {-1,1}} 
Zi 

and 
(SQ) min {-ax^ + te | - 1 < x < 1}. 

We are interested in conditions under which v{SQ) = v{SQ), and furthermore 
(SQ) and {SQ) have the same optimal solution. Note that we can rewrite ^ax'^ 

+ bx as ^a{x + | ) ^ - ^ . It can be verified that when a < \b\ and 6 > 0, x* 
= - 1 solves both {SQ) and {SQ) and when a < \b\ and 6 < 0, x* = 1 solves 
both {SQ) and {SQ). In summary, a < \b\ is both a necessary and sufficient 
condition for generating an optimal solution of the integer optimization problem 
{SQ) by its continuous optimization problem {SQ). 

Consider the following Lagrangian relaxation of problem {CQ): 

^ in L(x,y) - q{x) + Y,yi{xf - 1), 
i—l 

where ŷ  G M is the Lagrangian multiplier for constraint x? = 1, z = 1 , . . . , n. 
Define two n x n diagonal matrices X = diag{x) and Y = diag{y). The 
Lagrangian relaxation problem of {CQ) can be expressed as 

{LCQ) h{y) - min [^x^(Q + 2Y)x + b^x - e^y], 

where e is an n dimensional vector with all components equal to 1. The dual 
problem of {CQ) is then given as 

{DQ) rnax /i(y), 
yGdom h 
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where 

dom h^{y eW\ h{y) > -oo} . 

Note that the necessary and sufficient conditions for h{y) > —oo are: 
(i) There exists an x such that (Q + 2Y)x + 6 = 0; 
(ii) The matrix Q + 2y is positive semidefinite. 
Although problem (CQ) is nonconvex, if we are lucky enough to find out an 

X that is feasible in {CQ) and y G dom h such that q{x) = h{y), then x must 
be a global optimal solution to (CQ), 

THEOREM 2.12 Letx = Xe be feasible in (CQ). If 

XQXe + Xb<Xmin{Q)e, (2.6.1) 

where XminiQ) ^^ the minimum eigenvalue of matrix Q, then x is a global 
optimal solution of{CQ) or (BQ). 

Proof. Let 

Let Y = diagiy). Then 

y = -\i^XQXe + Xh). (2.6.2) 

{Q + 2Y)x + h - QXe + 2YXe + b 

- QXe + 2Xy + b 

= QXe-X^QXe-X^b + b 

= 0, 

where the last equahty is due to X'^ = / when x is feasible to (CQ). This 
impHes that :r is a solution to (LCQ) with y = y when Q + 2Y is positive 
semidefinite. 

From (2.6.1) and (2.6.2), we have 

Xmini2Y) = min {-XQXe - Xb)i > -XminiQ)^ 
l<i<n 

Thus, 

^min{Q + 2 y ) > XminiQ) + ^min\^^) ^ 0-

We can conclude that matrix Q + 2y is positive semidefinite. Thus y defined in 
(2,6.2) belongs to dom h. The remaining task in deriving the sufficient global 
optimality condition is to prove that the dual value h{y) attains the objective 
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value of the feasible solution x, 

h{y) = mm[-x'^{Q + 2Y)x + h^x-e^y} 

= -\sF'{Q + 2Y)x-e^y 

= -^e^XiQ + 2Y)Xe-e^y 

= -^e^XQXe - 2e^y 

= ^e^XQXe + b^Xe 

= q{^)^ 

where the fact ofXYXe = X'^Ye = Ye is used in the fourth equaUty and (2.6.2) 
is appHed in the fifth equahty. D 

The next theorem gives a necessary global optimality condition for (CQ) or 
(BQ). 

THEOREM 2.13 //"x* = X*e is a global optimal solution to {CQ), then 

X*QX*e + X% < diag{Q)e, (2.6.3) 

where diag(Q) is a diagonal matrix formed from matrix Q by setting all its 
nondiagonal elements at zero. 

Proof. Let ei be the i-th unit vector in W. If x* is optimal to {CQ), then g(a;*) 
< q{z) for every feasible z to {CQ). Especially, setting z = x* — 2x*ei in the 
above relation yields 

x^ef Qx* + x\h Ci < qu^ z == 1 , . . . , n, 

where qu is the i-ih diagonal element of Q, D 

The above derived sufficient and necessary global optimality conditions for 
the unconstrained binary quadratic problem {BQ) can be rewritten in the fol­
lowing form where the two bear a resemblance, 

Sufficient Condition for {BQ) : X{Q - \min{Q)I)Xe < -Xb, 

Necessary Condition for (BQ) : X{Q - diag{Q)I)Xe < ~Xb. 

Note that qu > \min{Q) for alH = 1, . . . , n. Thus, diag{Q)e > Xmin{Q)e. 
Obviously, sufficient condition (2.6.1) implies necessary condition (2.6.3). 
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2.6.2 Convex case 
We now consider a special case of (BQ) where matrix Q is positive semi-

definite. Consider the following relaxation of {BQ)\ 

(BQ) min q{x) — -x^Qx + h^x^ 

s.t. xf < 1, z == 1 , . , . ,n. 

It is clear that {BQ) is a continuous convex minimization problem when q is 
convex. It is also obvious that if x ^ {—1,1}^ is optimal to (BQ), then x is 
also optimal to problem {BQ), On the other hand, if x* E {—1, l}'^ is optimal 
to problem {BQ), then v{'BQ) < q{x*). 

THEOREM 2.14 Assume that Q is positive semidefinite. Thenx'' G { — 1,1}^ 
is an optimal solution to both {BQ) and {BQ) if and only if 

X*QX*e + X * 6 < 0 , (2.6.4) 

where X* = diag{x'^) and e = ( 1 , . . . , 1)- .̂ 

Proof. Assume that x* satisfies (2.6,4). For any y G M!fi, consider the 
Lagrangian relaxation of problem {BQ): 

n 

h{y) = min L(x, y) = q{x) + Y]yi{x^ - 1). (2.6.5) 
i—l 

Let 

which is nonnegative according to the assumption in (2.6.4). Furthermore, 
matrix {Q + 21"*) is positive semidefinite, where F* = diag{y''). As the same 
as in proving Theorem 2.12, we can prove that x* solves problem (2.6.5) and 
h{y^) = Q{^*)' Thus, X* G {-1,1}'^ is optimal to {BQ), thus an optimal 
solution to {BQ). 

To prove the converse, assume that x* G { — 1,1}^ solves both {BQ) and 
{BQ). Then from the KKT conditions for {BQ), there exists ay eW^ such 
that {Q + 2y)x* -\-b = 0, where Y = diag{y). Thus, 

X*gX*e + X*6 - X*(Qx* + 6) 

- -2x*yx* 
- - 2 ^ 6 < 0. 

D 



Optimality, Relaxation and General Solution Procedures 43 

Notice that problem {BQ) is a box constrained convex quadratic program­
ming problem and hence is much easier to solve than (BQ). Solving {BQ), 
however, in general only yields a real solution. The next result gives a sufficient 
condition for getting a nearby integer optimal solution to (BQ) based on a real 
optimal solution to (BQ). 

THEOREM 2.15 Assume that Q is a real positive semidefinite matrix and 
X* is an optimal solution to {BQ). If z"" e. { — 1, l}'^ satisfies the following 
conditions: 

(i) zl = x^forxl e {-1,1}, and 

(ii) 2'*(5(2:* - X*) < Xmin{Q)e, where Z* = diag{z'') and \rnin{Q) is the 
minimum eigenvalue ofQ, 

then 2:* is an optimal solution to {BQ). 

Proof. There exists Lagrangian multiplier vector y G W\. such that x* satisfies 
the following KKT conditions for {BQ)\ 

{Q + 2y)x* + 6 = 0, 
2/i[(^*)^ - 1] = 0, z - l , . . . , n , 

where Y = diag{y). Let 5 = z* — x* and A = diag{5). It can be verified that 
yiSi = 0, z = 1, ..., n. Thus AY = 0. We have 

Z*QZ*e + Z*6 = Z'^Qz^' + Z^ 

= Z*[0(x* + )̂ + 6] 
- Z%-2Yx^ + Q5) 

= (X* + A)( -2yx* + Q5) 

= -2y + Z'^QS - 2Ayx* 

- -2y + Z'Q{z'-x') 
< z*g(z*-x*). 

Thus Z*Q(^* - X*) < Xmin{Q)e implies Z*gZ*e + Z*6 < Xmin{Q)e. Ap­
plying Theorem 2.12 concludes that 2:* is optimal to {BQ). D 

The above theorem can be used to check the global optimality of an integer 
solution by rounding off a continuous solution. 

EXAMPLE 2.5 Consider problem (BQ) with 

/ 4 2 0 2 \ 

Q = 
' 2 

0 

V2 

4 
0 
2 

0 
4 
2 

2 
2 

4 / 

6 = (4,4,3,3)^ 
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For this problem, we have \min{Q) = 1.0376 and the optimal solution to 
(WQ) is X* -: (-0.875,-0.875,-1,0.625)^. Rounding x* to its nearest 
integer point in {—1,1}^, we obtain 2:* = (—1, —1, —1,1)^. It can be verified 
that Z*Q(^* - X*) - (0,0, -0.75,1)^ < 1.0376 xe = Xmin{Q)e is satisfied. 
Thus, by Theorem 2.15, z* is an optimal solution to {BQ), 

2.7 Notes 
The concept of relaxation in integer programming was first formally pre­

sented in [76]. The framework of the branch-and-bound method for integer 
programming was first presented in [124], More about imphcit enumeration 
techniques can be found in [176]. 

In 1965, Glover first introduced the back-track scheme in his algorithm for 
solving linear 0-1 programming problems [77]. Based on Glover's previous 
work, Geoffrion [73] proposed a framework for implicit enumeration using the 
concept of the back-tracking scheme which was used later to simplify the well-
known additive algorithm of Balas [7] for hnear 0-1 programming problems. 
Both Glover [77] and Geoffrion [73] proved Theorem 2.3 separately using 
induction. 

The relationship between the integer and continuous solutions in mathe­
matical programming problems has been an interesting and challenging topic 
discussed in the literature. Proximity results were first established in [43] (see 
also [28][191]) for linear integer programming and then extended to linearly 
constrained convex separable integer programming problems in [ 102] [225] (see 
also [11]). The proximity results for nonseparable convex function were ob­
tained in [204]. 

There is almost no optimality condition derived in the literature for nonlinear 
integer programming problems. The binary quadratic optimization problem 
may be the only exception for which optimality conditions were investigated 
(seee.g.,[15][179]). 
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