Chapter 2

OPTIMALITY, RELAXATION AND
GENERAL SOLUTION PROCEDURES

In this chapter, we discuss some fundamental concepts and basic solution
frameworks for the following general nonlinear integer programming problem:

(P)  min f(x)
st gi(z) <b,i=1,...,m,
hi(z) =cx, k=1,...,1,
re X CZ",

where all f, g;’s and hy’s are real-valued functions defined on R™ and Z" is the
set of integer points in R".
A solution & € X is said to be a feasible solution of (P) if g;(Z) < b, for

alli=1,...,m, and hy(Z) = g, forallk =1, ..., I. A feasible solution z* is
said to be an optimal solution of (P) if f(z*) < f(xz) for any feasible solution
z of (P).

This chapter is organized as follows: We introduce the concept of an optimal-
ity condition using bounds in Section 2.1. In Section 2.2, we present a general
framework of partial enumeration methods, first a general branch-and-bound
method, then a backtrack partial enumeration method for 0-1 programming and
its implementation in 0-1 linear integer programming. In Section 2.3, we intro-
duce the concept of relaxation and discuss the relationship between Lagrangian
relaxation and continuous relaxation. We study the relationship between contin-
uous and integer optimal solutions of nonlinear integer programming problems
in Section 2.4. In Section 2.5, we discuss how to convert a general constrained
nonlinear integer programming problem into an unconstrained one by using an
exact penalty function. Finally, we present in Section 2.6 optimality conditions
for binary quadratic problems.
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2.1 Optimality Condition via Bounds

An essential task in designing any solution algorithm for (P) is to derive
an optimal condition or a stopping criterion to terminate the algorithm, i.e., to
judge if the current solution is optimal to (P) or to conclude that there is no
feasible solution to (P). Except for very few special cases, such as uncon-
strained quadratic binary problems (see Section 2.6), it is difficult to obtain an
explicit optimality condition for problem (P). As in linear integer program
and other discrete optimization problems, however, optimality of the nonlinear
integer programming problem (P) can be verified through the convergence of a
sequence of upper bounds and a sequence of lower bounds of the objective func-
tion. Let f* be the optimal value of (P). Suppose that an algorithm generates
a nonincreasing sequence of upper bounds

Fi>T> > Fo > > f

and a nondecreasing sequence of lower bounds
o *
[iSf, << f <SS

where f " and f,, are the lower and upper bounds of f* generated at the k-th

iteration, respectively. If f, — £, < €eholds for some small € > 0 at the k-th
iteration, then the following is evident:

froe<f <

Notice that an upper bound of f* is often associated with a feasible solution
z¥ to (P), since f(z*) > f*. A lower bound of f* is usually achieved by
solving a relaxation problem of (P) which we will discuss in later sections of
this chapter. A feasible solution z¥ is called an e-approximate solution to ( P)
when f(z*) = f, and f,, —f,<e>0.
We have the following theorem.
THEOREM 2.1 Supposethat {f,}and {/,} arethe sequences of upper bounds
and lower bounds of f*, respectively. If f, — ik = 0 for some k and z* is a
feasible solution to (P) with f(z*) = f,, then z* is an optimal solution to (P).
The key question is how to generate two converging sequences of upper and
lower bounds of f* in a solution process. Continuous relaxation, Lagrangian
relaxation (Chapter 3) and surrogate relaxation (Chapter 4) are three typical

ways of getting a lower bound of an integer programming problem. The upper
bound of f* is usually obtained via feasible solutions of problem (P).

2.2  Partial Enumeration

Although the approach of total enumeration is infeasible for large-scale in-
teger programming problems, the idea of partial enumeration is still attractive
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if there is a guarantee of identifying an optimal solution of (P) without check-
ing explicitly all the points in X. The efficiency of any partial enumeration
scheme can be measured by the average reduction of the search space of inte-
ger solutions to be examined in the execution of the solution algorithm. The
branch-and-bound method is one of the most widely used partial enumeration
schemes.

2.2.1  Outline of the general branch-and-bound method

The branch-and-bound method has been widely adopted as a basic partial
enumeration strategy for discrete optimization. In particular, it is a successful
and robust method for linear integer programming when combined with linear
programming techniques. The basic idea behind the branch-and-bound method
is an implicit enumeration scheme that systematically discards non-promising
points in X that are hopeless in achieving optimality for (P). The same idea
can be applied to nonlinear integer programming problem ( P). To partition the
search space, we divide the integer set X into p (> 2) subsets: Xy,...,X,. A
subproblem at node i, (P(X;)),i=1,...,p, is formed from (P) by replacing
X with X;. One or more subproblems are selected from the subproblem list.
For each selected node, a lower bound L B; of the optimal value of subproblem
(P(X3)) is estimated. If LB; is greater than or equal to the function value of
the incumbent, the best feasible solution found, then the subproblem (P (X3)) is
removed or fathomed from further consideration. Otherwise, problem (P(X;))
is kept in the subproblem list. The incumbent is updated whenever a better
feasible solution is found. One of the unfathomed nodes, (P (X)), is selected
and X is further divided or branched into smaller subsets. The process is
repeated until there is no subproblem left in the list. It is convenient to use
a node-tree structure to describe a branch-and-bound method in which a node
stores the information necessary for describing and solving the corresponding
subproblem. We describe the general branch-and-bound method in details as
follows.

ALGORITHM 2.1 (GENERAL BRANCH-AND-BOUND METHOD FOR (P))

Step 0 (Initialization). Set the subproblem list L = {P(X)}. Set an initial
feasible solution as the incumbent z* and v* = f(x*). If there is no feasible
solution available, then set v* = +00.

Step 1 (Node Selection). If L = (), stop and z* is the optimal solution to (P).
Otherwise, choose one or more nodes from L. Denote the set of & selected
nodes by L® = {P(X1),...,P(Xy)}. Let L : = L\ L®. Seti = 1.

Step 2 (Bounding). Compute a lower bound L B; of subproblem (P(X;)). Set
LB; = +ooif (PP(Xj;)) is infeasible. If LB; > v*, go to Step 5.
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Initialization: set L = {P({X)}
v* = 400

| 1

No

Choose set L® from L with k nodes,

seti =1

i

Compute lower bound L B; for
(P(X:)) e L? -

| Remove (P(X;)) Yes
from L* |
f No

If % is optimal Save a feasible solution & or generate
ml(Pl(X‘)) a better feasible solution, update z* and
. v*, remove all (P(X;)) with LB; > v*

}

Choose a node (P(X;)) € L*,
divide X; into subsets Lf
and remove (P(X;)) from L. L=LUL*UL}

Figure 2.1. Diagram of the general branch-and-bound method.

Step 3 (Feasible solution). Save the best feasible solution found in Step 2 or
generate a better feasible solution when possible by certain heuristic method.
Update the incumbent z* and v* when needed. Remove from L all (P(X}))
satisfying LB; > v*,1 < j <4. If i <k, set4 := ¢ + 1 and return to Step
2. Otherwise, go to Step 4.

Step 4 (Branching). If L® = (), go to Step 1. Otherwise, choose a node
(P(X3)) from L*. Further divide X; into smaller subsets: L§ = {X},..., X7}.
Remove (P(X;)) from L® and set L := LU L* U L. Go to Step 1.

Step 5 (Fathoming). Remove (P(X;)) from L*. If i < k, set4 := ¢ + 1 and
return to Step 2. Otherwise, go to Step 4.

Figure 2.1 illustrates the diagram of Algorithm 2.1.
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THEOREM 2.2 Algorithm 2.1 stops at an optimal solution to (P) within a
finite number of iterations.

Proof. Note that the fathoming procedure, either in Step 3 or Step 5 of the
algorithm, will not remove any feasible solution of (P) better than the incum-
bent. Notice that X is finite. Thus only a finite number of branching steps can
be executed. Atan extreme, when Xj is a singleton, either (P(X;)) is infeasible
or an optimal solution to (P(X;)) can be found, thus (P(X;)) being fathomed
in Step 5. Within a finite number of iterations, L will become empty and the
optimality of the incumbent is evident. ]

One key issue to develop an efficient branch-and-bound method is to get a
good (high) lower bound L B; generated by the bounding procedure in Step 2.
The better the lower bound, the more subproblems can be fathomed in Steps 3
and 5 and the faster the algorithm converges. There is a trade-off, however, be-
tween the quality of the lower bounds and the associated computational efforts.
For nonlinear integer programming problem (P), continuous relaxation and
Lagrangian relaxation are two commonly used methods for generating lower
bounds in Step 2.

2.2.2 The back-track scheme

The back-track scheme was proposed originally as a systematic way to thread
amaze. Known by its different names, the back-track scheme was rediscovered
from time to time in different fields. Especially, it was adopted as an efficient
procedure for implicit enumeration in solving many kinds of combinatorial
problems. We discuss the back-track scheme in this subsection as a powerful
partial enumeration scheme for 0-1 programming problems.

Let’s consider the following general nonlinear 0-1 integer programming
problem:

(0-1P) min f(z)
st gi(z) <bj,i=1,2,...,m,
ze X =1{0,1}"

where f is assumed to be monotonically increasing, i.e., f(z) > f(y) if z >
y. It is clear that there are at most 2" possible candidates to be considered
for achieving an optimality of problem (0-1P). However, an efficient solution
algorithm should be devised such that, in most situations, only a significantly
small portion of the 2™ possible solutions needs to be explicitly enumerated.
These possible solutions should rather be implicitly enumerated group by group.

To group the 2" solutions, we define a partial solution to be an assignment
of binary values to a subset of the n decision variables. Let N = {1,...,n}.
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At iteration ¢, let J; = {j or — j | j € I; C N} denote the partial solution
with z; = 1 when j € J; and x; = 0 when ~j € J;, where I; is the index
set of J;. Only one of j or —7 could be included in J;. Any variable x; whose
index j is not included in I; is defined to be free. A completion of J; is defined
as a solution determined by J; together with a binary specification of the free
variables. It is clear that a k-clement partial solution could determine 27 %
different completions as a group. When all free variables are set to be zero, the
completion is termed typical. Since the objective function f in problem (0-1P)
is monotonically increasing, the typical completion of J; has the minimum
objective function value among all completions of J;. For example, J; =
{3,5,—2} with n = 5 specifies a partial solution of 3 = 1, x5 = 1 and z3 =
0. J; has two free variables (z; and z4) and four possible completions, among
which the one with z; = 24 = 0 is the typical completion.

After a partial solution J; is generated at iteration £, we need to determine if its
corresponding solution group (completions) could include an optimal solution
to (P). In the following two situations, J; can be fathomed.

Case (i): If the typical completion of J; is feasible in (0-1P), J; can be
fathomed in this case (after updating the incumbent if the typical completion
of J; has an objective value less than the one of the incumbent), since no other
completion of J; could generate an objective value of (0-1F) smaller than the
objective value of the typical completion as f is monotonically increasing.

Case (ii): If the typical completion of J; has an objective value larger than
or equal to the one of the incumbent, J; can be fathomed in this case since no
other completion of J;, including the typical completion, could do better than
the incumbent.

There is only one remaining situation which fits neither Case (i) nor Case (ii):
the typical completion of J, is infeasible in (0-1P) and has an objective value
less than that of the incumbent. In this situation, we augment J; by assigning
values to some free variables of J; according to some rules such that a new
partial solution is generated for further fathoming.

The back-track scheme, as a systematic method, is designed to implicitly
enumerate all solutions without generating any redundant partial solutions. To
ensure having a new non-redundant partial solution when a partial solution
is fathomed, at least one element of the partial solution has to be changed to
its complement. When the chosen element is replaced by its complement, it
is marked by an underline in order to prevent a turning back in the solution
process. This process repeats and terminates when there is no non-underlined
component in the partial solution, which implies that all possible solutions are
implicitly enumerated. In the back-track procedure, we always locate in a
partial solution the right-most element which is not underlined. We replace this
right-most non-underlined element by its underlined complement and delete all
elements to its right. If no non-underlined element exists in the partial solution,
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SetJop=0andt =0
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No
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Terminate
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Figure 2.2. Diagram of the back-track scheme.

we can claim that all 2" solutions have been implicitly enumerated and the
solution procedure terminates. For example, if J; = {3,5, —2} is fathomed at
iteration ¢, the new partial solution J; 1 is {3, =5} in the back-track procedure.

A diagram of the general solution framework for the back-track scheme
is given in Figure 2.2. Notice that for different types of 0-1 programming
problems, such as 0-1 linear programming problems and polynomial 0-1 pro-
gramming problems, different fathoming and augmenting rules could be de-
signed to explore special structures of the problems.

THEOREM 2.3 The back-track scheme leads to a non-redundant sequence
of partial solutions which terminates only when all 2™ solutions have been
(implicitly) enumerated.
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Theorem 2.3 indicates that the back-track scheme is a finite algorithm. If
(0-1P) is feasible, the optimal solution will be in store of the incumbent at
termination of the procedure.

Although we start with Jy = 0 in Figure 2.2, Jy could essentially be any
other partial solution without an underlined element. In addition, in the process
of augmentation, we can augment more than one free variable on the right of
Ji.

2,2.2.1  The additive algorithm for solving linear 0-1 programming
problems

In 1965, Balas proposed an implicit enumeration method to directly solve
linear zero-one programming problems [7]. Due to the fact that only addition
is required as an arithmetic operation in the solution procedure, the solution
procedure is called as the additive algorithm. One advantage of the additive
algorithm is that there is no roundoff error. The additive algorithm is considered
to be fundamental for the later development of various implicit enumeration
methods for integer programming problems.

In this subsection we consider the following linear zero-one programming
problem:

n

(0-1LP) min f(z) =Y ¢z,

j=1

n
s.t. gl(ac) = Zaijxj <b,teEM= {1,2,...,771},
j=1
z;€{0,1}, j€ N ={1,2,...,n}.

Without loss of generality, we assume that c; > O forall 7 € V. By introducing
m slack variables, problem (0-1LP) can be rewritten as follows,

(0-1LP,) min f(z) = icm,
Jj=1

T
s.t. gi(x) = Z%‘ﬂ?j +y; =b;, 1 € M,
j=1
z; € {0,1}, j € N,
Yi Z 07 1€ M7

where y;, @ € M, are nonnegative slack variables.
The additive algorithm starts with a partial solution Jy =) and an upper bound
of the minimum value of the objective function, f* =5 " cj. Atiteration t,
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the partial solution is J;. Let z! be the typical completion of J; and y* € R™
be the corresponding vector of slack variables.

When f(z?) > f*, the partial solution .J; can be fathomed, no matter if z*
is feasible or not in (0-1L P), since no completion of J; will give an objective
value less than f*. The algorithm proceeds then to the back-track procedure.

When f(z') < f* and y* > 0, z¥ is a better feasible solution. We update
the incumbent by setting f* = f(z*). The partial solution .J; can be fathomed,
since no other completions of .J; can yield an objective value less than f(zt).
The algorithm proceeds then to the back-track procedure.

When f(z*) < f* and y* # 0, the typical completion of J;, z¢, is infeasible
in (0-1LP) and we need to augment J; with at least one free variable (if any).
The principle of augmentation is to pursue a reduction in both the objective
value and the degree of infeasibility. To identify a candidate of augmentation
from among all free variables, a set T is constructed as follows,

T = {j € N\I,| f(z") +c; < f* and there exists i € M such that
aij < 0and y} < 0}.

It is clear that only those x;’s with j in 7" need to be considered as candidates
to augment J; on the right because assigning 1 to some free variable not in
T* would either lead to a larger lower objective value than f* or increase the
degree of the infeasibility of zt. If T is empty, we know that there does not
exist a feasible completion of J; which can do better than the incumbent, and
J¢ is thus fathomed.

When T is not empty, we check further the following inequality for those %
€ M with y¢ < 0:

yi — > min{0,a;} > 0. (2.2.1)
JET?

If (2.2.1) does not hold for any 7 € M with y} < 0, then the slack variable of
the ¢-th constraint will remain negative for whatever solution augmented from
Ji by assigning 1 to some variables in 7. In other words, it is impossible for
Jt to have a feasible completion which can be adopted to improve the current
incumbent value and thereby J; is fathomed.

If (2.2.1) holds for all ¢ € M with y} < 0, we could augment J; on the right.
A suitable criterion in selecting a free variable from T is to use the following
formulation:

m
"t .
j' = arg ?é%«)f ;_1 min{y} — a;ij, 0}. (2.2.2)

If 4 is chosen according to the above formulation, J,11 = J; U {j} has the
“least” degree of the violation of the constraints.



22 NONLINEAR INTEGER PROGRAMMING

The back-track scheme can be used to clearly interpret the additive algorithm
of Balas and has been adopted to simplify the additive algorithm of Balas such
that not only the solution logic in the algorithm becomes much clearer, but also
the memory requirement of computation is significantly reduced. Based on the
back-track scheme, the additive algorithm of Balas can be explained via the
following flow chart in Figure 2.3.

SetJo =0,t =0
f* is an upper bound of f

Identify Tt = {j e N\ I | f(a!) +¢;

< f* and there exists ¢ € M such that
aij < Oalldfjl@ <0}

vt - Z;e’r' min{0,a;;} >0
for all ¢ with ¢ < 0?

Augment J; with
- jt = argmaxjer: 100 min{y! — aq5,0}

Terminate

Locate the rightmost element v
L i No s
which is not underlined, replace ¢ Are all elements

in J; underlined?

it by its underlined complement

and delete all elements to its right

Figure 2.3. Diagram of the additive algorithm of Balas.

The following linear 0-1 programming problem serves as an example to
illustrate the back-track scheme in the additive algorithm.
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ExaMPLE 2.1

min 5z + 7z + 10x3 + 3x4 + 5

s.t. —x1 4+ 3o — Bx3 — x4 + 4y < -2,
2x1 — 6x9 + 323 + 224 — 225 < 0,
Ty — 223 + x4 + 15 < ~1,
Ty, %2, L3, T4,25 € {0,1}.

Adding slack variables yields the following standard formulation,

min 5x; + 7xo + 1023 + 3x4 + x5

s.t. —x1+3z9 — 53 — x4 + 45 + Y1 = =2,
2x1 — 69 + 323 + 224 — 225 + Y2 = 0,
To —2x3 + x4 + x5 + ys = —1,
Z1,T2,%3,T4,%5 € {Oa 1}) Y1,92, Y3 > 0.

Initial Iteration
Step 0. Set Jy = () and f* = ?:1 cj =26.

Iteration 1 (t = 0)

23

Step 1. 2°=(0,0,0,0,0)T, f(z9)=0< f*=26and y° = (-2,0,-1)T »

0 = Augmenting Jp.

Step 2. Notice that all x1, o, 3,24, x5 are free variables and 7°
{1,3,4}.

Step 3. Fori = 1,4} = 37 o min{0, a1j}= =2 — (=1 -5 - 1)=5 > 0;

Fori = 3,49 — > cpomin{0, agj}= —1 — (=2) = 1 > 0.

Step 4. j° = arg maxjeTo{Zle min(y) — a;;,0)} =argmax{—1—2—

1,-3,-1-2-2} =3=J, ={3}.
Iteration 2 (t = 1)

Step 1. x1 =(0,0,1,0,0)T, f(z!)=10< f*=26andy' = (3,-3,1)7

0 = Augmenting Ji.
Step 2. Notice z1, x9, T4, T5 are free variables and T = {2, 5}.
Step 3. Fori = 2, yy — 3. min(0, agg)=—3 — (=6 — 2) = 5 > 0,

Z

Step 4. j! = arg max;ept {Zf’zl min(y} — a;;,0)} = arg max{0, —1 —

1} = 2. Thus Jy = {3, 2}.
Iteration 3 (t = 2)
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Step 1. 2?=(0,1,1,0,0)T, f(2?) =17 < f*=26andy* = (0,3,0)" >0
= Record z* = {0, 1,1,0,0}, set f* =17 and Jj is fathomed.
Step 2. Back track and get J3 = {3, —2}.
Iteration 4 (t = 3)
Step 1. 23=(0,0,1,0,0)7, f(z®)=10< f*=17andy® = (3,-3,1)T #
0 = Augmenting J3.
Step 2. Notice that 1, x4, 25 are free variables and 7% = {5}.
Step 3. Fori = 2, Y3 — 3 seramin(0,az5) = =3 — (-2) = -1 < 0=
Js is fathomed.
Step 4. Back track and get Jy = {=3}.
Iteration 5 (t = 4)
Step 1. 2*=(0,0,0,0,0)T, f(z")=0< f*=17and y* = (~2,0,-1)T *
0 = Augmenting Jy.
Step 2. Notice that 1, 22, 74, T3 are free variables and T4 = {1,4}.
Step 3. Fori = 3,y3 — > cpa min(0,a3;) = =1 - (0) = =1 < 0= Jy
is fathomed.

Step 4. No element in Jy is not underlined. => The algorithm terminates
with an optimal solution z* = {0,1,1,0,0} and f* = 17.

2.3  Continuous Relaxation and Lagrangian Relaxation

Let v(Q) denote the optimal value of problem (Q). A problem (R(£)) with
a parameter £ is called a relaxation of the primal problem (P) if v(R(£)) <
v(P) holds for all possible values of £. In other words, solving a relaxation
problem offers a lower bound of the optimal value of the primal problem. The
dual problem, (D), is formulated to search for an optimal parameter, £*, such
that the duality gap of v(P) — v(R(£)) is minimized at £ = £*. The quality
of a relaxation should be thus judged by two measures. The first measure is
how easier the relaxation problem can be solved when compared to the primal
problem. The second measure is how tight the lower bound can be, in other
words, how small the duality gap can be reduced to.

2.3.1 Continuous relaxation
The continuous relaxation of (P) can be expressed as follows:
(P) min f(z)
st gi(z)<b,i=1,...,m,
hk(a:) = Cl, k= 1,...,[,
z € conv(X),
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where conv(X ) is the convex hull of the integer set X . Problem (P) is a general
constrained nonlinear programming problem. Since X C conv(X), it holds
v(P) < f*. Generally speaking, a continuous relaxation problem is easier to
solve than the primal nonlinear integer programming problem.

When all f and g;’s are convex and all hy’s are linear in (P), the continuous
relaxation problem is convex. For continuous convex minimization problems,
many efficient solution methods have been developed over the last four decades.
Below is a list of some of the well-known solution methods for convex con-

strained optimization (see e.g. [13][58][148]):

» Penalty Methods;

» Successive Quadratic Programming (SQP) methods;
m Feasible Direction Methods:

- Wolfe’s Reduced Gradient Method for linearly constrained problems;

— The Generalized Reduced Gradient Method for nonlinearly constrained
problems;

— Rosen’s Gradient Projection Methods.
= Trust Region Methods.

There does not exist a general-purpose solution method, however, for searching
for a global solution for nonconvex constrained optimization problems. Never-
theless, there are several solution algorithms developed in global optimization
for nonconvex problems with certain special structures, for example, outer ap-
proximation methods for concave minimization with linear constraints ([105]
[174]) and convexification methods for monotone optimization problems ([136]
[207]).

2.3.2 Lagrangian relaxation
Define the following Lagrangian function of (P) for A € R and i € RE:

m !

L(z, A ) = fx)+ Y Xilgi(@) = bi) + Y (b)) — c)-

i=1 k=1

The Lagrangian relaxation problem of (P) is posted as follows:
(Law)  d(X p) = min L(z, A, ). (23.D)
xeX

Denote the feasible region of (P) by
SZ{.’EEXIQZ'(I) < bj,i=1,...,m, }Lk(l‘):ck, k= 1,...,l}.
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The following weak duality relation will be derived in the next chapter:
dhp) < flz), VAERT, neR zesS. (23.2)

This ensures that solving (L, ,) gives a lower bound of f*, the optimal value
of (P). The dual problem of (P) is to search for the best lower bound provided
by the Lagrangian relaxation:

(D) max  d(\ ). (2.3.3)
AeRT ueR!

2.3.3  Continuous bound versus Lagrangian bound

We first establish a relationship between the continuous bound and the
Lagrangian bound in convex cases of (P). We need the following assump-
tion.

ASSUMPTION 2.1 Functions f and g; (i = 1,...,m) are convex, functions
hi (k= 1,...,1) are linear, and certain constraint qualification holds for (P).

One sufficient condition to ensure the satisfaction of the constraint qualifica-
tion in Assumption 2.1 is that the gradients of the active inequality constraints
and that of the equality constraints at the optimal solution to (P) are linearly
independent.

The following theorem shows that the Lagrangian bound for convex integer
programming problem (P) is at least as good as the bound obtained by the
continuous relaxation.

THEOREM 2.4 Under Assumption 2.1, it holds v(D) > v(P).
Proof. Since X C conv(X), we have
v(D) = max  min L(x, A,
(D) e o Tain (2, A, 1)

> max min Lz, A, p)
AERT el zeconv(X)

= v(P).

The last equality is due to the strong duality theorem of convex programming
under Assumption 2.1, O

The tightness of the Lagrangian bound has been also witnessed in many com-
binatorial optimization problems. Inthe case of nonlinear integer programming,
to compute the Lagrangian bound v(D), one has to solve the Lagrangian re-
laxation problem (2.3.1). When all functions f, ¢;’s and hy’s and set X are
separable, the Lagrangian relaxation problem (2.3.1) can be solved efficiently
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via decomposition which we are going to discuss in Chapter 3. When some of
the functions f, g;’s and hy’s are nonseparable, problem (2.3.1) is not easier
to solve than the original problem (P). Nevertheless, the Lagrangian bound
of a quadratic 0-1 programming problem can still be computed efficiently (see
Chapter 11). Lagrangian bounds for linearly constrained convex integer pro-
gramming problems can also be computed via certain decomposition schemes
(see Chapter 3).

Next, we compare the continuous bound with the Lagrangian bound for a
nonconvex case of (P), more specifically, the following linearly constrained
concave integer programming problem:

(P) min f(z)
s.t. Ax < b,
Bz = d,
reX={zeZ"|lj<z;<u;, j=1,...,n},
where f(x) is a concave function, A is an m x n matrix, B is an [ X n matrix,
be R™ de R, and u; are integer lower bound and upper bound of z;,

respectively. Let (P,,) denote the continuous relaxation problem of (P,).
The Lagrangian dual problem of (P,) is:

D ma dy(A, 1),
(Dv) ,\eRT,;(eRl v 1)

where

dv(A, ) = min[f(z) + N (Az = b) + ' (Be — d)),

for A\ € R7 and p € R,

The following result shows that, on the contrary to the convex case of (P),
the continuous relaxation of (P,) always generates a lower bound of (F,) at
least as good as that by the Lagrangian dual.

THEOREM 2.5 Assume that f is a concave function on X in (P,). Then

v(Dy) < v(Py).
Proof. Let 2 denote the set of extreme points of conv(X):
Q={z'i=1,...,K},

where K = 2". Consider the following convex envelope of f over conv(X):

K K
¢(e) = min{Y_vif(a') | Y wa' ==, v € A}, (23.4)
i=1 i=1
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where A = {y e R | 2K 4 =1, % >0,i=1,...,K}. Itis clear that ¢
is a piecewise linear convex function on conv(X). By the concavity of f, we
have

f(z) > ¢(x), Vax e conv(X) (2.3.5)

and f(z) = ¢(x) for all z € Q. Recall that f(x) and ¢(z) have the same
global optimal value over conv(X) (see [182]). Notice that a concave function
always achieves its minimum over a polyhedron at one of the extreme points.
Also, the extreme points of conv(X) are integer points. Thus, we have

= i T(Az - Bz —d
v(Dy) Ae@?fewﬁr??[ﬂmHA (Az —b) + p (Bz — d)]

= max min _[f(z) + A\ (Az — b) 4+ uT (Bz — d)]
AERT, uER! z€CconV(X)

= i +AT(Az = b) + pT(Bz — d
Ae@ﬁ‘emefﬁ&x>[¢(w) (Az = b) + p” ( )]

i Az —b) + pF(Bx —d
e ) A [¢(z) + A" (Az — b) + " (Bz — d)]
min  {¢(z) | Az <b, Bx =d}

z€conv(X)

< min  {f(z) | Az < b, Bx = d}
zE€conv(X)

Il

Il

= v(Py).

The fourth equation in the above derivation is due to the strong duality theorem
for piecewise linear programming. |

Combining Theorems 2.4 and 2.5 gives rise to the well-known result in
classical linear integer programming theory: The Lagrangian dual bound is
identical to the continuous bound for linear integer programming.

COROLLARY 2.1 If f is a linear function in (P,), then v(D,) = v(Py).

2.4  Proximity between Continuous Solution and Integer
Solution

A natural and simple way to solve (P) is to relax the integrality of = and
to solve the continuous version of (P) as a nonlinear programming problem.
The optimal solution to the continuous relaxation is then rounded to its nearest
integer point in X which sometimes happens to be a good sub-optimal feasible
solution to (). In many situations, however, the idea of rounding the contin-
uous solution may result in an integer solution that is not only far away from
the optimal solution of (P) but also infeasible. Thus, it is important to study
the relationship between the integer and continuous solutions in mathematical
programming problems.
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2.4.1 Linear integer program
Consider a linear integer program

min ¢!z (2.4.1)
s.t. Az < b,
xeZ",

and its continuous relaxation:

min ¢’z (2.4.2)
s.t. Ax <D,
z € R,

where A is an integer m X n matrix and ¢ € R™ and b € R™. Denote by A(A)
the maximum among the absolute values of all sub-determinants of matrix A.

THEOREM 2.6 Assume that the optimal solutions of problems (2.4.1) and
(2.4.2) both exist. Then:

(i) For each optimal solution T to (2.4.2), there exists an optimal solution z*
to (2.4.1) such that

1 = 2*lloo < nA(A). (243)

(ii) For each optimal solution z to (2.4.1), there exists an optimal solution
x* to (2.4.2) such that

fl* = Z||oo < nA(A). (2.4.4)

Proof. Let z and Z be optimal solutions to (2.4.2) and (2.4.1), respectively.
Partition A into AT = [A?,Ag], where A1z > A7 and Ayz < AsZz, and
partition b into b! and b? accordingly. Note that AyZ < AgZ < b2 Let A\ > 0
and Ay > 0 be optimal dual variables corresponding to A, and A, respectively,
for (2.4.2). By the complementary slackness condition, Ay = 0 and thus we
have AT M) = —c. Consider the following cone:

C={z| Az >0, Ayx <0}

Obviously, Z — z € C. Furthermore ¢’z < 0 for all z € C, since ¢’z =
—AlTAlm <0 for all z € C. By Carathéodory’s theorem, there exist ¢ (t < n)
integer vectors d* € C,i=1,...,t,and p; > 0,7 =1,...,t, such that

T—Z=md + -+ md. (2.4.5)

By Cramer’s rule, we can assume that ||d*|jcc < A(A),i=1,...,t.
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Let
=24 (pa)d 4 ) d (2.4.6)

where | z] is the maximum integer number less than or equal to z. By (2.4.5),
we have

2 =T+ (] = p)d 4+ (L] — pe)d (2.4.7)
Thus,

Arz' = Az + (L) — p)Ad + o+ (L) — pe)Ardt < Az < b
Agz* = AgZ+ |p1]Asd -+ ) Aedt < Az < b2
So Az* < b. Moreover, since ¢! d* = —X?Aldi <Oforalli=1,...,t, we
imply from (2.4.6) that ¢”'z* < ¢”'z. Therefore, 2* is an optimal solution to
(2.4.1) and by (2.4.7), we get

I2* = Zlloo < lld'loo + -+ + [|d]loo < nA(A),
which is (2.4.3). Moreover, combining ¢’ z* < ¢?'z with the optimality of Z

and (2.4.6) leads to ¢Z'd! = 0 for 7 with Wi > 1.
Now, let

ot =T~ [ )dt — o — ) d (2.4.8)
Then,
Arr* = Mz - | fArd = () id' S Az <L (249)
Also, by (2.4.5), it holds
o* =2+ (1~ [ ])d 4 (e L))d

Thus, we obtain ||z* — Z||c < nA(A) using the similar arguments as in part
(i). Moreover, we have

Asz®™ = Aoz + (1 — (1)) Aod" + -+ (e — [p]) Aed" < AzZ < b7,
(2.4.10)

Combining (2.4.9) with (2.4.10) gives rise to Az* < b. Since ¢I'd* = 0 for i
with p; > 1 and {p;| = 0 for ¢ with 0 < p; < 1, we obtain from (2.4.8) that
cF'z* = c’'z. Thus, z* is an optimal solution to (2.4.2). O
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2.4.2 Linearly constrained separable convex integer
program
The proximity results in the previous subsection can be extended to separable
convex programming problems. Consider the following problems:

min f(z) = f;(x;) (2.4.11)
j=1
s.t. Az <b,
x €L,

and its continuous relaxation:

n
min f(z) = fi(z;) (2.4.12)
j=1
s.t. Az < b,
z € R,
where fj(x;), j = 1,...,n, are all convex functions on R, A is an integer

m X n matrix and b € R™. The following result generalizes Theorem 2.6.

THEOREM 2.7 Assume that the optimal solutions of problems (2.4.11) and
(2.4.12) both exist. Then:

(i) For each optimal solution T to (2.4.12), there exists an optimal solution
z* to (2.4.11) such that

|1Z — 2" |lo < nA(A). (2.4.13)

(i1) For each optimal solution Z to (2.4.11), there exists an optimal solution
x* to (2.4.12) such that :

2" — Z]loo < NA(A). (2.4.14)

Proof. Let z and z be optimal solutions to (2.4.12) and (2.4.11), respectively.
Let S* be the intersection of the feasible region of (2.4.12) with the minimal
box that contains Z and Z. Let

A b
A = Ixn |, b= max(z,z) |. (2.4.15)
—Txn — min(Z, z)

Then S* can be expressed as {z € R™ | A*z < b*}. Now, consider the linear
over-estimation of f;(xz;). Let cj = (f;(Z;) — f;(2;))/(%; — Z;). Without
loss of generality, we can assume that 2; = f;(z;) = 0. So f;(z;) = ;.
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Moreover, by the convexity of f;, we have f;(z;) < cjzj forallj=1,...,n
and x € S*. Consider the following linear program:
min (c*)Tx (2.4.16)
s.t. A*z < b¥,
z € R™

Since (¢)Tz = f(z) < f(z) < ()T forall z € S*, 7 is also an opti-
mal solution to (2.4.16). Note that the upper bound of the absolute values of
subdeterminants of A* remains A(A).

By Theorem 2.6, there exists an integer z* € S* such that ||Z — 2*||c <
nA(A) and (c*)Tz* < (c*)Tz for all integer z € S*. Note that f(2*) <
(c)Tz* < (¢*)Tz = f(2). It follows that z* is an optimal solution to (2.4.11).
This proves part (i) of the theorem. Part (ii) can be proved similarly. O

2.4.3 Unconstrained convex integer program

In this subsection, we establish some proximity results for general uncon-
strained convex integer programs which are not necessarily separable. For a
separable convex function the distance (in co-norm) between its integer and real
minimizers is bounded by 1. This is simply because the distance between the
integer and real minimizers of a univariate convex function is always dominated
by 1. Thus, we first concentrate in this subsection on a proximity bound for
nonseparable quadratic functions and then extend it to strictly convex functions.
We further discuss an extension to mixed-integer cases.

Let () be an n X n symmetric positive definite matrix. Define

q(z) = (z — 20)" Q(z — o).
Consider
min{g(z) | = € R} 2.4.17)
and
min{q(z) | = € Z"}. (2.4.18)

Obviously, z is the unique minimizer of (2.4.17). For any n X n real symmetric
matrix P, denote by Apax(P) and Amin (P) its largest and smallest eigenvalues,
respectively.

THEOREM 2.8 For any optimal solution T to (2.4.18), it holds

1
|12 = zoll2 < 5/, (2.4.19)
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where k = Amax(Q)/Amin(Q) is the condition number of Q.

Proof. Let
q(Z) = ( — 20)TQ(Z — xg) = 7. (2.4.20)

We assume without loss of generality that Z # x¢ and thus » > 0. By the
optimality of Z, no integer point is contained in the interior of the following
ellipsoid:

E={zeR"|(z—z0)"Q(z —m) <r}.

Since the diameter of the circumscribed sphere of a unit cube in R™ is y/n, the
interior of a ball in R™ with diameter greater than \/n must contain at least one
integer point. It is clear that ellipsoid E contains the ball centered at zo with
diameter 24/7 Apin(Q@1). Hence, we have

TAmin(Q~1) < Vn. (2.4.21)

Notice also that ellipsoid E is enclosed in the ball centered at zy with diameter
24/7 Amax (Q~1). We therefore find from (2.4.20) and (2.4.21) that

||i - 370”2 < ma.x(Q
< max
- mln
— l max
2 mln(Q)
1
= 5\/ nK.

O

Let f : R® — R be a twice differentiable convex function satisfying the
following strong convexity condition:

0 <m < Amin(V3(2)) < Amax(VEf(2)) < M, VzeR". (2.4.22)
Consider
min{f(z) | z € R"} (2.4.23)
and

min{f(z) | z € Z"}. (2.4.24)
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THEOREM 2.9 Let xg be the unique optimal solution to (2.4.23). Then for
any optimal solution T to (2.4.24), it holds

1
|z — J}()”z < i\/nm,
where k1 = M /m.

Proof. Note that the condition (2.4.22) and Taylor’s Theorem imply
1 1
§m||x —z0l|2 < f(2) — flzo) < §M||a: —xol2, Vz € R™ (2.4.25)

Letr = f(Z) — f(zo). By (2.4.25), the convex level set {z € R" | f(z) —
f(zo) < 7} contains a sphere with diameter 2v/2rM—! and is enclosed in a
sphere with diameter 2v/2rm~1. The theorem then follows by using the same
arguments as in the proof of Theorem 2.8. |

Now we consider the mixed-integer convex program:
min{f(z) | z = (y,2)7, y € Z, z € RF}, (2.4.26)
where I > 0, k > 0, + k = n and f(x) satisfies condition (2.4.22).
THEOREM 2.10 Let x¢ be the unique optimal solution to (2.4.23). Then for

any optimal solution & of (2.4.26), it holds

1
|z — zoll2 £ =v/nk1,
2

where k1 = M/m.

Proof. Note that every sphere in R”™ with diameter y/n has a nonempty inter-
section with a k-dimensional hyperplane {z € R" | = = (y, 2)7, y = a} for
some integer a € Z'. The theorem can then be proved along the same line as
in the proof of Theorem 2.8. ]

One promising application of the above proximity results is their usage in
reducing the set of feasible solutions in integer programming problems.

EXAMPLE 2.2 Consider the following unconstrained quadratic integer pro-
gram:

min ¢(z) = 27:1:% — 18z129 + 4:5% — 3z9

stz e 72

The optimal solution of the continuous relaxation of this example is zy =
(0.5,1.5)"" with g(zg) = —2.25. Theorem 2.8 can be used to reduce the
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feasible region by setting the bounds for the integer variables. It is easy to
verify that k = 33.5627. From (2.4.19) we have || — zo||2 < (1/2)v2k =
4.0965. We can thus attach a box constraint —3 < 71 < 4, =2 < 29 < 5
to Example 2.2. This significant reduction in the feasible region may help
the solution process when a branch-and-bound algorithm is used as a solution
scheme. Applying a branch-and-bound procedure to Example 2.2 with the box
constraint yields an optimal solution Z = (1, 3)7 with ¢(z) = 0. We note
that Z cannot be obtained by rounding the continuous optimal solution zq since
a((0,1)7) = g((1,2)7) = 1, q((1, 1)T) = g((0,2)7) = 10.

The following example shows that the bound in (2.4.19) can be achieved in
some situations.

EXAMPLE 2.3 Consider the following problem:

It is easy to see that all vertices of the unit cube [0, 1] are the optimal
integer solutions of this problem. Since zo = (1/2,1/2,...,1/2)T, we get
|z — zoll2 = +/n/2. On the other hand, since @ = I, we have x = 1 and
Vnk[2 = /n/2.

Now, we give another example in which the strict inequality in (2.4.19) holds
while both ||Z —z¢||2 and & tend to infinity simultaneously. As a by-product, we
can get a method in constructing nonseparable quadratic test problems where
the distance between the continuous and integer solutions can be predetermined.

Let v; = (cos®,sinf)?, v; = (—sin#,cosf)”. Then v; and vy are or-
thonormal and the angle between vy and xj-axis is 6. For A\; > Ay > 0,
let

P = )\1?)1’01T -+ )\QUQUQT
B < Apcos? 4+ Agsin?@ (A — Ag)sinf cosf

(A1 — X2)sinfcos@ Apsin®6 + Apcos® 6 ) - (2427)

It follows that P is a 2 X 2 symmetric positive definite matrix and it has eigen-
values A and Ay with corresponding eigenvectors vy and vy, respectively.

EXAMPLE 2.4 Consider the following problem:
min{q(z) := (z — 20)T P~ Ha — x0) | z € Z*}, (2.4.28)
where P is defined by (2.4.27), zo = (0,1/2)7 and X5 € (0,1/4).

For any positive integer m > 0 and Ay € (0,1/4), we can determine the
values of 6 and \; such that axis zo = 0 supports ellipsoid F(zg, P71) = {z €
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R? | (z — 20)T P71 (z — z0) < 1} at (—m, 0). For ¢ € R, consider equation
q((t,0)T) = 1. From (2.4.27) and (2.4.28), this equation is equivalent to

a1t® 4 agt + a3 = 0, (2.4.29)
where
_ i 02 2
a; = A sin“6+ Agcos® 8,
ag = (A1 — Ag)sinfcosb,
1
as = 1)\1 c0s% 0 + =Xy sin® 0 — A\ e
4 4
Note that

ag —4dara3 = —A1Ao + 4)\1/\2()\1 sin? @ + Ag COS2 0).

Therefore, equation (2.4.29) has a unique real root if and only if
.2 2,_ 1
A1sin“ @ + Agcos® 8 = 1 (2.4.30)

If condition (2.4.30) holds, a1 = % and the root of equation (2.4.29) is

t= -2 = _9(\; — \g)sinf cos . (2.431)
2(11

Setting t = —m in (2.4.31), we get
(A1 — Ag2)sin(26) = m. (2.4.32)

Equations (2.4.30) and (2.4.32) uniquely determine the values of 6 € (0, 7/2)
and A\; > 1/4 for which (—m, 0)7 is the unique intersection point of ellipsoid
E(zo, P7') and z1-axis. By the symmetry of the ellipsoid, (m,1)7 is the
unique intersection point of E(zg, P~!) and the line 23 = 1. Since no integer
point other than (—m, 0)¥ and (m, 1)7 liesin E(zg, P71), Z1(m) = (—=m,0)T
and Z2(m) = (m, 1)T are the optimal solutions of (2.4.28).

Now, we set X\g = 1/5. For any positive integer m, let §(m) and A\ (m) be
determined from (2.4.30) and (2.4.32). Denote x(m) = A\1(m)/A2 = 51 (m).
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By (2.4.30) and (2.4.32), we have

|Z1(m) —wollz— [[Z2(m) — zoll2

= \/40u(m) ~ 1/5)2sin2[B(m))(1 ~ sin?[B(m)]) +

=19 (=) (- = 1) 3

Il
+
e

Thus, ||Z1(m) —zol|2 = ||Z2(m) —zo||2 — oo and k(m) — oo whenm — oo.
Moreover, since x(m) > 1, we have

|Z1(m) — xoll2 = \/ 2—15,%(771) + ; < —;— 2k(m).

2.5  Penalty Function Approach

Generally speaking, an unconstrained integer programming problem is easier
to solve than a constrained one. We discuss in this section how to convert a
general constrained integer programming problem into an unconstrained one
by using an exact penalty method. Consider the following problem:

(P)  min f(z)
st gi(z) <0,i=1,...,m,
hJ(CL') :0, j: 1,...,[,
z € X,
where f, g;(z) (i = 1,...,m) and h;(z) (j = 1,...,!) are continuous func-
tions, and X is a finite set in Z". Let

S={recX|gx)<0,i=1,...,m, hj(z) =0, j=1,...,1}.

Define a penalty function P(z) such that: P(z) = 0 for z € S and P(z) >
e > 0 forxz ¢ S. A typical penalty function for (P) is

m 1
= max(gi(z),0) + > _ h¥(x). (2.5.1)
i=1 j=1
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Define the penalty problem of (P) as follows:
(PEN) min T(z, ) = f(2) + pP(z), u>0.

Since T'(x, 1) = f(z) forx € Sand S C X, we have v(P) > v(PEN).

THEOREM 2.11 Let f be a lower bound of mingcx f(z) and v > 0 be a
lower bound of minme}\s P(z). Suppose that X \ S # 0. Then, there exists
a o such that for any p > o, any solution x* that solves (PEN) also solves
(P) and v(PEN) = v(P).

Proof. Let

_vP) -/

Ho = 5 . (2.5.2)
Forany x € X \ S and any p > po,
T(e,p) = f(@)+pP()

> f(@)+ woP(x)

> flz)+ w(P)~f)

> v(P)

Therefore, the minimum of 7'(z, 1) over X must be achieved in S. Since
T(xz,u) = f(x)forany z € S, we conclude that x* solves (P) and v(PEN) =
T(z* p) = f(z*) = v(P). .

COROLLARY 2.2 Let f be an upper bound of v(P). If m = 0 and h; (j =
1,...,1) are integer-valued functions on X, then for any p > o = f — f,

any solution z* solves (PEN) also solves (P), where P(z) = 22:1 hjz(m) in
problem (PEN).

Proof. Since h; is integer-valued, we deduce that P(x) > 1 foranyz € X\ §
and hence « can be taken as 1. Moreover, v(FP) > f, thus, by (2.5.2), up <
f— f. The conclusion then follows from Theorem 2.11. O

If hj(z) > Oforany z € X, j = 1,...,1, then P(z) in Corollary 2.2 can

be taken as P(z) = 25:1 hj(x).

2.6  Optimality Conditions for Unconstrained Binary
Quadratic Problems

2.6.1 General case
We consider the following unconstrained binary quadratic optimization problem:

1
B i = =27 2
(BQ) me{rgllr,ll}n q(x) 2x Qx + b x,
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where () is a symmetric matrix in R"*™ and b € R™. Notice that any binary
quadratic problem with y; € {l;,u;}, %=1, ..., n, can be transformed into the
form of (BQ) by the linear transformatlon i = Ui+ (ui — L)(z +1)/2,
1 =1,. . It is clear that (BQ) is equivalent to the following continuous
quadratlc problem

(CQ) min q(z) = }—mTQm + b7z,
s.t. :v =1,1=1,.

Problem (C(Q) is essentially a nonconvex continuous optimization problem
even if matrix () is positive semidefinite. Thus, problem (CQ) is the same as
hard as the primal problem (BQ).

To motivate the derivation of the global optimality conditions, let’s consider
the relationship between the solutions of the following two scalar optimization
problems with a > 0O:

1
(SQ) min {§a3:2 +bx |z e {~1,1}}

and 1
(SQ) min {EaxQ +bz|—-1<z<1}.

We are interested in conditions under which v(SQ) = v(SQ), and furthermore

(SQ) and (SQ) have the same optimal solution. Note that we can rewrite az?

+bx as La(z + 2)% - —g% It can be verified that when a < |b] and b > 0, z*
= —1 solves both (SQ) and (SQ) and when a < |b| and b < 0, z* = 1 solves
both (SQ) and (SQ). In summary, a < |b| is both a necessary and sufficient
condition for generating an optimal solution of the integer optimization problem
(SQ) by its continuous optimization problem (S@Q).
Consider the following Lagrangian relaxation of problem (C'Q):

min L(z,y) = q( +Zyz$ - 1),

where y; € R is the Lagrangian multiplier for constraint z2 = 1,7 = 1,...,n.
Define two n x n diagonal matrices X = diag(z) and Y = diag(y). The
Lagrangian relaxation problem of (CQ) can be expressed as

(LCQ) h(y) = min[za" (@ + 2V} + ¥z ~ ¢,

where e is an n dimensional vector with all components equal to 1. The dual
problem of (C'Q)) is then given as

(DQ)  max hiy),
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where
domh = {y € R" | h(y) > —o0}.

Note that the necessary and sufficient conditions for h(y) > —oo are:

(i) There exists an z such that (Q + 2Y )z + b =0;

(i) The matrix () + 2Y is positive semidefinite.

Although problem (C'Q) is nonconvex, if we are lucky enough to find out an
Z that is feasible in (CQ) and § € dom h such that ¢(Z) = h(g), then T must
be a global optimal solution to (CQ).

THEOREM 2.12 Let Z = Xe be feasible in (CQ). If
XQXe+ Xb < Amin(Qe, 2.6.1)

where Amin(Q) is the minimum eigenvalue of matrix @), then T is a global
optimal solution of (CQ) or (BQ).

Proof. Let
17=——;-(XQXe+X’b). (2.6.2)
Let Y = diag(). Then
(Q+2V)z+b = QXe+2VYXe+b
= QXe+2Xy+b
= QXe—-X%QXe—- X%+
= 0’

where the last equality is due to X2 = I when Z is feasible to (CQ). This
implies that Z is a solution to (LCQ) with y = 4 when Q + 2Y is positive
semidefinite.

From (2.6.1) and (2.6.2), we have

Amin(2Y) = min (=XQXe — Xb); > ~Anin(Q).
1<itn
Thus,
)\mm(Q + 2?) Z Amm(Q) + /\min(zy) Z 0.
We can conclude that matrix Q + 2V is positive semidefinite. Thus ¢ defined in

(2.6.2) belongs to dom h. The remaining task in deriving the sufficient global
optimality condition is to prove that the dual value h(7) attains the objective
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value of the feasible solution Z,

h(g) = felliRr}L{%xT(Q +2V)z 4 bz — 1)
= —%:ET(Q +27)z — ey
= ——;-GTX'(Q +2V)Xe—ely
= 5T XQXe 2y

1 e o _
= —2—eTXQX6+bTXe

= q(Z),
where the fact of XY Xe = X?Y e =Yeisused in the fourth equality and (2.6.2)
is applied in the fifth equality. a

The next theorem gives a necessary global optimality condition for (CQ) or

(BQ).
THEOREM 2.13 Ifz* = X*e is a global optimal solution to (CQ), then

X*'QX%e+ X*b < diag(Q)e, (2.6.3)

where diag(Q) is a diagonal matrix formed from matrix Q) by setting all its
nondiagonal elements at zero.

Proof. Let e; be the -th unit vector in R™. If z* is optimal to (C'Q), then ¢(z*)
< q(z) for every feasible z to (C'Q). Especially, setting z = z* — 2z e; in the
above relation yields

zie; Qrt +aibie; <qy, i=1,...,n,

where g;; is the i-th diagonal element of (). [

The above derived sufficient and necessary global optimality conditions for
the unconstrained binary quadratic problem (B(@) can be rewritten in the fol-
lowing form where the two bear a resemblance,

Sufficient Condition for (BQ):  X(Q — Anin(Q)]) Xe < —Xb,
Necessary Condition for (BQ):  X(Q — diag(Q)I)Xe < —Xb.

Note that g;; > Anin(Q) for alli =1, ..., n. Thus, diag(Q)e > Apmin(Q)e.

Obviously, sufficient condition (2.6.1) implies necessary condition (2.6.3).
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2.6.2 Convex case

We now consider a special case of (BQ)) where matrix @ is positive semi-
definite. Consider the following relaxation of (BQ)):

— 1 .
(BQ) min ¢(z) = -2—IL'FQ{E + bl
s.t. x?ﬁ L,i=1,...,n

It is clear that (BQ) is a continuous convex minimization problem when gq is
convex. It is also obvious that if z € {—1,1}" is optimal to (BQ), then z is
also optimal to problem (BQ@). On the other hand, if z* € {—1, 1}" is optimal
to problem (BQ), then v(BQ) < g(z*).

THEOREM 2.14 Assume that Q is positive semidefinite. Then x* € {—1,1}"
is an optimal solution to both (BQ) and (BQ) if and only if

X'QX e+ X"b <0, (2.6.4)
where X* = diag(z*) and e = (1,...,1)T.

Proof. Assume that x* satisfies (2.6.4). For any y € R”, consider the
Lagrangian relaxation of problem (BQ):

h(y) = min L(z,y) = q(z) + Zyl zf —1). (2.6.5)

Let )
v =5 (X"QX"e+ X7b),

which is nonnegative according to the assumption in (2.6.4). Furthermore,
matrix (Q + 2Y™) is positive semidefinite, where Y* = diag(y*). As the same
as in proving Theorem 2.12, we can prove that z* solves problem (2.6.5) and
h(y*) = q(z*). Thus, z* € {—1,1}" is optimal to (BQ), thus an optimal
solution to (BQ).

To prove the converse, assume that z* € {—1,1}" solves both (BQ) and
(BQ). Then from the KKT conditions for (B@), there exists a j € R”. such
that (Q + 2Y)z* + b =0, where Y = diag(). Thus,

X'QX’e+ X' = X*"(Qz*+0b)
= —2X*Yz*
= —2Ye<O.
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Notice that problem (BQ) is a box constrained convex quadratic program-
ming problem and hence is much easier to solve than (BQ). Solving (BQ),
however, in general only yields a real solution. The next result gives a sufficient
condition for getting a nearby integer optimal solution to (BQ) based on a real
optimal solution to (B@).

THEOREM 2.15 Assume that Q is a real positive semidefinite matrix and

x* is an optimal solution to (BQ). If z* € {—1,1}" satisfies the following

conditions:

() 2} =} fora} € {—1,1}, and

(i) Z*Q(z* — z*) < Anin(Q)e, where Z* = diag(z*) and Apin(Q) is the
minimum eigenvalue of @,

then z* is an optimal solution to (BQ).

Proof. There exists Lagrangian multiplier vector y € Ry such that z* satisfies
the following KKT conditions for (BQ):

(Q+2Y)z* +b =0,
vil(zH)?—-1]=0,i=1,...,n,
where Y = diag(y). Let § = 2* — z* and A = diag(d). It can be verified that
yi0; =0,i=1,...,n. Thus AY =0. We have
Z*QZ%e+Zb = Z'Qz"+Z%b
= Z¥[Q(z" + ) + b]
= Z*(=2Yz" + Q9J)
(X* 4+ A)(—2Yz" + Q9)
=2y 4+ Z*Q6 — 2AY z*
-2y + Z7°Q(z" — 2¥)

Il

< ZFQ(2 — ).
Thus Z*Q(z* — 2*) < Anin(Q)e implies Z*QZ*e + Z*b < Apin(Q)e. Ap-
plying Theorem 2.12 concludes that z* is optimal to (BQ). O

The above theorem can be used to check the global optimality of an integer
solution by rounding off a continuous solution.

EXAMPLE 2.5 Consider problem (BQ) with
4 2 0

, b= (4,4,3,3)T.

2
2
Q= 2
4

N O N

4 0
0 4
2 2
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For this problem, we have A, (Q) = 1.0376 and the optimal solution to
(BQ) is z* = (-0.875,—0.875,—1,0.625)7. Rounding z* to its nearest
integer point in {—1,1}", we obtain z* = (—1, —1,—1,1)7. It can be verified
that Z*Q(z* — z*) = (0,0, —0.75,1)T < 1.0376 X € = A\pnin(Q)e is satisfied.
Thus, by Theorem 2.15, z* is an optimal solution to (BQ).

2.7  Notes

The concept of relaxation in integer programming was first formally pre-
sented in [76]. The framework of the branch-and-bound method for integer
programming was first presented in [124]. More about implicit enumeration
techniques can be found in [176].

In 1965, Glover first introduced the back-track scheme in his algorithm for
solving linear 0-1 programming problems [77]. Based on Glover’s previous
work, Geoffrion [73] proposed a framework for implicit enumeration using the
concept of the back-tracking scheme which was used later to simplify the well-
known additive algorithm of Balas [7] for linear 0-1 programming problems.
Both Glover [77] and Geoffrion [73] proved Theorem 2.3 separately using
induction.

The relationship between the integer and continuous solutions in mathe-
matical programming problems has been an interesting and challenging topic
discussed in the literature. Proximity results were first established in [43] (see
also [28][191]) for linear integer programming and then extended to linearly
constrained convex separable integer programming problems in [102][225] (see
also [11]). The proximity results for nonseparable convex function were ob-
tained in [204].

There is almost no optimality condition derived in the literature for nonlinear
integer programming problems. The binary quadratic optimization problem
may be the only exception for which optimality conditions were investigated
(seee.g., [15][179)).
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