4

Classification and Reformulation

Motivation

Given the diversity of planning functions in the supply chain planning matrix
described in Chapter 2, and given the diversity of supply chains (each sup-
ply chain can be characterized by a combination of functional and structural
attributes, implying a huge diversity in planning requirements; see Section
2.3), a single advanced planning system or a single monolithic mathematical
programming planning model cannot represent all planning problems.

Therefore, in parallel to the supply chain typology, our approach for the
construction of planning models is to decompose and classify them based
on their main attributes: decisions, objectives, and constraints. This building
block approach and classification helps us and allows us first to construct a
model and an initial mathematical formulation for the planning problem to
be addressed.

Beyond modeling, there is a second and major motivation for this clas-
sification. Most real-life production planning problems are complex because
they involve many products and many resources, such as machines, storage
facilities, and plants, and many restrictions have to be satisfied by acceptable
production plans. This results in mixed integer programs of large size that are
usually very difficult to solve.

In Chapter 3 we have surveyed the state-of-the-art generic branch-and-
bound and branch-and-cut algorithms based on a priori reformulation, valid
inequalities, and separation. In the literature many reformulation results are
known and described for canonical production planning models, such as single-
item and/or single-resource problems, which are much simpler than the com-
plex real-life problems.

In order to be able to incorporate these reformulation results in specialized
branch-and-bound/cut algorithms for solving production planning models, it
is crucial to be able to identify which results to use, which requires one to

116 4 Classification and Reformulation

identify which canonical submodels are present in a model. The classification
scheme presented here pursues exactly this goal.

Objective

In the context of a decomposition approach, it is the specific objective of this
chapter to

e describe and classify the canonical production models frequently occurring
as relaxations or sub-models in real life production planning problems,

e identify and classify the reformulation results that are known for these
canonical models in order to design efficient branch-and-bound/cut algo-
rithms for solving practical production planning models.

For complex planning problems, the objective is also to present and illus-
trate the effectiveness of a systematic reformulation procedure allowing us to
take advantage — through the classification scheme — of reformulation results
for standard single-item subproblems to obtain improved formulations and to
design branch-and-cut optimization algorithms.

In Chapter 5 we then demonstrate how to use the classification scheme
and the reformulation procedure in practice, with appropriate software tools.

The (more) technical and detailed presentation and derivation of the refor-
mulation results listed here, as well as some additional reformulation results
and techniques useful for more complex models (but requiring a less automatic
approach) are given in Parts II to IV, and illustrated in Part V.

Contents

Step by step:

e In Section 4.1 we illustrate on the LS-U (uncapacitated lot-sizing) produc-
tion planning model the use and impact of reformulations on the perfor-
mance of the branch-and-bound/cut algorithm, namely the effect of using
the extended (or compact linear) reformulation technique and the cutting
plane reformulation technique defined in Chapter 3.

e In Section 4.2 we describe the decomposition approach used to reformulate
and solve complex planning models involving many items and resources,
starting from available reformulations for simpler (i.e., single-item, single-
machine) planning models.

e In Section 4.3 we describe our classification scheme for canonical single
item production planning models in the form of a three-field identifier
PROB-CAP-V AR for each model, and by giving a conceptual or verbal
description as well as an initial mathematical formulation for each model.

4.1 Using Reformulations for Lot-Sizing Models 117

e In Section 4.4 we describe a systematic reformulation procedure relying on
tables of extended and cutting plane reformulation results for the most
common single-item production planning models, including LS-U.

e In Section 4.5 we put together these ideas to illustrate the use and effective-
ness of the systematic reformulation procedure on the Master Production
Scheduling example from Section 1.2.

4.1 Using Reformulations for Lot-Sizing Models

In earlier chapters we have presented and illustrated the modeling and opti-
mization approach, as well as the generic branch-and-bound and branch-and-
cut algorithms used to solve the resulting models.

Model LS-U is the simplest high-level relaxation occurring in most produc-
tion planning models. So, finding good reformulations for LS-U is an impor-
tant first step. Here we use this model to illustrate the type of reformulation
results available for canonical single-item planning models, namely a priori
reformulations and cutting planes with separation.

The approach is illustrated on the first LS-U example described in Section
1.1. For simplicity, we recall here the initial formulation of this LS-U instance
characterized by

e the demand satisfaction constraint for the single product bike over eight
consecutive time periods,

e the variable upper bound constraint for the single product bike over eight
consecutive time periods, and

e the initial inventory of product bike.

NT NT-1
min cost = Z(p e +quy) + Z h st (4.1)
t=1 t=1
dem_sat; := St—1 +xr =dp + St for 1 <t< NT (4.2)
so = s_ini, sy7 =10 (4.3
NT
vuby = z < (Z di)y for1<t< NT (4.4)
k=t

x5t € Ry, yr € {0,1} for 1 <t < NT, (4.5)

where the variables are z; for production, s; for inventory, and y; for set-
up in period ¢, and the data are NT = 8, p = 100, ¢ = 5000, h = 5, d =
[400, 400, 800, 800, 1200, 1200, 1200, 1200] and s_ini = 200. This formulation is
O(NT) x O(NT); that is, it involves on the order of NT constraints and NT
variables (see Section 3.2), where NT represents the number of time periods
in the planning horizon.

118 4 Classification and Reformulation

The performance of the branch-and-bound algorithm (using the default
Xpress-MP optimizer, but without preprocessing and without using the cuts
generated by the solver) on this initial formulation (4.1)—(4.5) is reported in
Table 4.1.

Table 4.1. B&B Solution of the LS-U Example from Section 1.1

Formulation LP Val.| CPLP Val. | OPT Val.
Size Vars |CPLP Time| OPT Time
Algorithm Cons |CPLP Cuts |OPT Nodes
(4.1)—(4.5) 712,189 - 736,000
O(NT) x O(NT) 24 - 0

B & B 16 — 29

In Table 4.1, “Vars” and “Cons” represent the number of variables and
constraints in the formulation, “LP Val.” is the value of the initial linear
relaxation of the formulation. “CPLP Val.”, “CPLP Time” and “CPLP Cuts”
give, respectively, the value of the lower bound at the root node after the
addition of cutting planes, the cutting plane time at the root node, and the
number of cuts in the formulation at the end of the root node. “CPLP” values
are only reported for branch-and-cut algorithms (the Xpress-MP cuts are not
used in this toy example). “OPT Val.”, “OPT Time” and “OPT Nodes” are
the value of the optimal solution, the total run-time and total number of nodes
in the enumeration tree. Times are given in seconds, rounded to the nearest
integer.

In our analysis, we concentrate on the lower bound value at the root node
and on the total number of nodes in the enumeration tree. Both indicators
measure the quality of the formulation used. The run-time (rounded to 0
second) and the gap (always 0 when an optimal solution is found) do not give
much information in this tiny example.

Observation 4.1 There are 29 branch-and-bound nodes with the initial for-
mulation. Observe that this formulation is already using some tightening for
the variable upper bound constraint (4.4). If this constraint is replaced by the
simpler but usual big-M type constraint r; < My, with M = 10,000, that
is, if we do not introduce the tightest upper bound on xy in (4.4), then the
LP lower bound at the root node (“LP Val.”) is reduced to 703,500 and the
number of nodes needed to solve the model to optimality increases to 51 nodes.
So, some straightforward a priori formulation tightening is already included
in the initial model.

4.1.1 Using A Priori Extended Reformulations

As explained in Section 3.4, we look now for tight reformulations of LS-U, or
tight reformulations of high-level relaxations of LS-U.

4.1 Using Reformulations for Lot-Sizing Models 119

LS-U is polynomially solvable as it can be solved by dynamic program-
ming. Given the complexity equivalence between optimization and separation
discussed in Part II, it is natural to look for a compact (i.e., polynomial in
the number of variables and constraints) linear reformulation for LS-U. As
an example, we describe and test here a well-known extended reformulation
for LS-U.

Multi-Commodity Extended Reformulation

A classical way to tighten the formulation of fixed charge network flow prob-
lems is to decompose the flow along each arc of the network as a function
of its destination. This defines a so-called multi-commodity formulation by
assigning a different commodity to each destination node. The decomposition
by commodity allows one to tighten the formulation by decreasing the up-
per bounds in the variable upper bound constraints, which is important as
illustrated in Observation 4.1.

We have already given the network flow interpretation of LS-U in Figure
1.2 in Section 1.1. So we can apply the multi-commodity idea, and decompose
the flow (production) z; as a function of its destination node (demand period)
t,t+ 1, ..., NT. Similarly, we can decompose the flow (inventory) s; as a
function of its destination node (demand period) t + 1, ¢+ 2, ..., NT.

So, we consider as one specific commodity the demand to be satisfied in
each time period, and do not mix the commodities. Commodity ¢ corresponds
to the demand delivered in period t. We define the new variables x;; (i < ?)
as the production in period 4 of commodity ¢, and the new variable s;; (i < t)
as the inventory at the end of period i of commodity t.

In this reformulation, we further constrain the initial inventory s_ini to be
consumed in the first period; that is, so1 = s_ini and sos = 0fort =2,..., NT.
This can be done without loss of optimality, because s_ini < d; and there is
always an optimal solution where earlier production is delivered first (this is
called FIFO [= First In First Out] or FPFD [= First Produced First Delivered|
ordering).

Also, the variables sy, for t = 1,..., NT, do not exist because commodity
t must be delivered in period ¢, therefore no inventory of commodity ¢ may
exist at the end of period t¢.

If needed, for instance, in case of positive minimal stock at the end of the
planning horizon, an additional commodity can be created to correspond to
the end horizon inventory. This is not necessary here, as we assume that the
stock at the end of the horizon is zero.

The flow conservation constraint obtained for commodity ¢ = 5 is illus-
trated in Figure 4.1.

By modeling separately the demand satisfaction (flow conservation) for
each commodity, the LS-U model (4.1)-(4.5) can be reformulated as

120 4 Classification and Reformulation

X5t
""AQ

dt

Figure 4.1. The flow conservation global constraint for commodity ¢ = 5.

NT NT
min cost := Z Z DTy +hosi) + Zq Ui (4.6)

i=1 t=i
dem_saty = Si_1,4 + Ty = Ojdy + 5iz for 1 <i<t<NT (4.7)
S01 = s-ini, Sot =0 for2<t< NT (4.8)
s =0 for 1 <t < NT (4.9)
vuby = zi < dyy; for1<i<t<NT (4.10)
sit, it € Ry, y; €4{0,1} for 1 <i<t< NT, (4.11)

where the notation J;; denotes 1 if i = ¢, and 0 otherwise. Constraint (4.7)
is the flow conservation constraint of commodity ¢ in all periods i =1, ..., ¢,
where the only period ¢ with a demand for commodity ¢ is ¢ = ¢. Constraints
(4.8) and (4.9) impose that there is no initial and no final inventory (end
of period t) of commodity ¢, except the initial inventory of commodity 1.
Constraint (4.10) forces the set-up variable y; to be 1 when there is production
for commodity ¢ in period i. Using the decomposition of the flow, the tightest
upper bound on x; is dt, where d; = dy — s_ini and dt dy for t > 1.
Constraint (4.11) imposes the nonnegativity and binary restrictions on the
variables. Finally, Constraint (4.6) expresses the cost of the production plan.

This extended reformulation does not contain the initial variables and
constraints. But it is nevertheless a valid reformulation of LS-U in the sense
of Definitions 3.3 and 3.13. This can observed because an equivalent refor-
mulation to (4.6)—(4.11) would be obtained by adding constraints to define
the initial variables as a function of the new decomposed variables (i.e.,

= Efg Ty and s; = Zi\gﬂ sy for all 4), and by keeping the original
objective function (4.1). The reformulation has then the same feasible solu-
tions in the original (z, s,y) space as the original model.

Testing the Multi-Commodity Extended Reformulation

Reformulation (4.6)—(4.11) is of size O(NT?) x O(NT?). We can now test
the effectiveness of the decomposition by commodity and tightening of the

4.1 Using Reformulations for Lot-Sizing Models 121

variable upper-bound constraints. The performance of the branch-and-bound
algorithm (again using the default Xpress-MP optimizer, but without prepro-
cessing and without the cuts generated by the solver) on the initial formulation
and on the multi-commodity reformulation are compared in Table 4.2.

Table 4.2. B&B Solution of the LS-U Example from Section 1.1, Comparison of
Initial and Multi-Commodity Formulations

Formulation LP Val.| CPLP Val. | OPT Val.
Size Vars |CPLP Time| OPT Time
Algorithm Cons |CPLP Cuts |OPT Nodes
(4.1)—(4.5) 712189 — 736,000
O(NT) x O(NT) 24 - 0

B & B 16 - 29
(4.6)—(4.11) 736,000 - 736,000
O(NT?) x O(NT?)| 72 - 0

B & B 72 - 1

We observe in Table 4.2 that the multi-commodity reformulation solves
LS-U without any branching. The LP value is the optimal value, and one
node suffices. The following theorem shows that this is not chance. The multi-
commodity reformulation solves all instances of LS-U without branching.

Theorem 4.1 The linear relazation of formulation ((4.6)-(4.11)) always has
an optimal solution with y integer, and solves LS-U. In other words, formula-
tion (4.7)-(4.11) is a tight extended formulation of the convex hull of feasible
solutions to LS-U. This is also called a complete linear description of LS-U.

The multi-commodity extended reformulation has been given here to illus-
trate the type of results one can obtain with reformulations. Other extended
reformulations giving a complete linear description of LS-U are known, as well
as extended reformulations for canonical models other than LS-U. Pointers
to these extended formulations are defined in our systematic reformulation
procedure in Section 4.4.

4.1.2 Using Cutting Planes

We have just described the multi-commodity reformulation for the single-
item model LS-U with NT periods. Although this reformulation is as tight as
possible, it has O(NT?) constraints and O(NT?) variables and a model with
32 time periods has over a thousand variables and a thousand constraints.
This may be too large a reformulation if it has to be applied to all items in a
large-size multi-item production planning model (see Section 4.2).

One way to overcome this difficulty is to look for a complete linear de-
scription of model LS-U in the initial variable space involving only O(NT)

122 4 Classification and Reformulation

variables. And if this complete linear description needs an exponential (in NT)
number of constraints, we can use the cutting plane and separation approach
described in Section 3.5 to avoid adding all these constraints a priori.

A Class of Valid Inequalities

A first class of valid inequalities can be easily identified from the fractional
solution of the linear relaxation of the initial formulation. Figure 4.2 represents
the optimal solution of the linear relaxation of (4.1)—(4.5), where missing arcs
correspond to arcs with zero flow.

X4 X2 X3 X4 X5 X6 X7 X8
200 400 800 800 1200 1200, 1200 1200
Y1 y2 y3 Y4 y5 Y6 y7 y8
0.028 0.059 0.125 0.143 0.250 0.333 0.5 1
—
200 @ @ @
8

400 400 800 00 1200 1200 1200 1200

Figure 4.2. The solution of the linear relaxation of (4.1)—(4.5).

To eliminate or cut off this fractional solution we have to look at periods
in which the corresponding y variable is fractional. Consider period 2 with
x2 = 400 but yo = 0.059. This value of y, is minimized because of the objec-
tive function, therefore ys is exactly the minimal value allowed by the set-up

forcing constraint (4.4); that is, y2 > (=) 722 where the notation dqs denotes

)
Ei:a dl'

Observe that this reasoning also applies to ys, but yg takes the value 1
because yg > (=)zs/dss = 1.

So, if period 2 was the last period of the horizon, we could also write
o < doyso as set-up forcing constraint, and ys would take the value 1 with the
current value of xs.

But ds is a valid upper bound on x5 only if period 2 is the last period or if
there is no stock at the end of period 2 (i.e., s = 0 and period 2 is separated
from the later periods as if period 2 were the last one). Hence a valid upper
bound on xs is x5 < dy + s9.

Therefore, a logical implication is

S$o=0 = 29 < dgyg.
This implication can be converted into the valid linear inequality
ry < days + S2

which is valid because in any feasible solution to LS-U:

4.1 Using Reformulations for Lot-Sizing Models 123

e FEither yo = 0 and the inequality is satisfied because y3 = 0 implies x5 = 0,
and 0 < sg;
e Orys =1and zs <dy+ so is a valid upper bound on x5.

This inequality is violated by the current fractional point from Figure 4.2,
and so we have simulated one pass of the separation problem. Using the same
reasoning and starting from the upper bound z; < dy + s; for any [> ¢t
(remember that d;; denotes Zé:t d;), the above valid inequality can easily be
generalized to

x < dyys + s forall1 <t <I<NT (4.12)

for arbitrary demand data and time period.

Complete Linear Description

We denote the set of feasible solutions of model LS-U, that is, the solutions of
(4.2)-(4.5), by X9~V The class (4.12) of valid inequalities does not suffice
to obtain a linear description of conv(XL9~Y) for any instance.

First we define the more general class of so-called (I,5) inequalities. It is
shown in Chapter 7, Proposition 7.4, that the inequalities

in < Zdﬂyi + s forall1 <I< NT and S C{l,...,1}(4.13)
€S i€s

are valid for X5~V As an example, the valid inequality xo + 25 < daays +
d3ays + s4 corresponds to the inequality (4.13) with [=4 and S = {2,3} C
{1,...,4}.

The next theorem simply states that the (,.5) inequalities suffice to obtain
the desired complete linear formulation. We can always eliminate the initial
inventory, as we did in the multi-commodity formulation, by assuming a FPFD
ordering and updating the (residual) demand vector accordingly. So, without
loss of generality we assume that s_ini = 0.

Theorem 4.2 Assuming dy > 0 for all t and s_ini = 0, a complete linear
description of conv(XT5=U) is

St—1 +xr =di + 8¢ for 1 <t < NT (4.14)
so=0, snyr=0 (4.15)
@y < dp NT Yt for 1 <t < NT (4.16)
S wi <> dayi + s for ISI<NT, SC{1,...,1} (4.17)
i€S i€s

Te, S, Yt € Ry, e < 1 for 1<t < NT. (4.18)

Note that if dy > 0, the (I,5) inequality 1 < dyy1 + s1 together with the
initial equation x1 = dj 4+ s1 and y; < 1 imply the equality y; = 1.

124 4 Classification and Reformulation
Separation Algorithm

We have obtained a complete linear programming formulation of LS-U in the
original variables (x, s,y). However, this formulation contains an exponential
number of (I,5) inequalities (4.13), and a cutting plane approach must be
used to avoid adding all these inequalities a priori to the formulation.

In order to use a class of valid inequalities in a cutting plane algorithm, the
associated separation problem must be solved. Given a solution to the linear
relaxation, it consists of either finding an inequality from the class violated
by the solution, or proving that all inequalities from the class are satisfied by
the given solution; see Chapter 3.

We denote by P9~V the initial (linear) formulation (4.2)—(4.4) of LS-U
together with x;,s; > 0 and 0 <y, < 1 for all ¢.

Separation Given (z*, s*,y*) € PLS~U:

e Either we find an (I, S) inequality violated by (z*, s*,y*);
e Or we prove that all (I, S) inequalities are satisfied by («*, s*, y*).

As the (1,) inequality may be rewritten as), g (2; — day;) < s, to find
the most violated (I,.5) inequality for fixed [€ {1,...,n}, it suffices to set

St={ief{l,....l} + (2] —day;) >0}

and test whether), _q. (2] — day;) > s}.

e If this holds, then the (I,S*) inequality is the most violated inequality for

the given value of [.
e Otherwise, there is no violated (I,.5) inequality for the given value of .

By enumerating over all possible values of [, we obtain a separation algo-
rithm for the (I, S) inequalities whose running time is O(NT?); see Section
3.2.

Testing the Cutting Plane Reformulation

Table 4.3 compares the performance of the three formulations (again using the
default Xpress-MP optimizer, without preprocessing or cuts generated by the
solver) proposed to solve our bike production planning example from Section
1.1:

The initial formulation (4.1)—(4.5) solved by branch-and-bound.
The multi-commodity a priori reformulation (4.6)—(4.11) solved by branch-
and-bound.

e The reformulation in the original space of variables using the initial formu-
lation (4.1)—(4.5) and the separation algorithm for the (I, S) inequalities
(4.13) in a branch-and-cut or cutting plane algorithm.

4.1 Using Reformulations for Lot-Sizing Models 125

Table 4.3. B&B and B&C Solution of the LS-U Example from Section 1.1, Com-
parison of Reformulations

Formulation LP Val.| CPLP Val. | OPT Val.
Size Vars |CPLP Time| OPT Time
Algorithm Cons |CPLP Cuts|OPT Nodes
(4.1)—(4.5) 712,189 - 736,000
O(NT) x O(NT) 24 — 0

B & B 16 — 29
(4.6)—(4.11) 736,000 - 736,000
O(NT?) x O(NT?) 72 — 0

B & B 72 - 1
(4.1)—(4.5) and (4.13)|[712,189| 736,000 736,000
O(NT) x O(2NT) 24 0 0

B & C 16 21 1

Our cutting plane algorithm requires six passes (and 21 cuts in total) to
solve this instance of LS-U without branching, where one pass is defined as
one iteration of cut generation for each [with 1 < [< NT, followed by a
single reoptimization.

4.1.3 Using Approximate Reformulations

The LS-U model is an ideal case. We know complete and compact (i.e., poly-
nomial in size) extended linear reformulations, as well as a complete linear
description in the original space of the convex hull of solutions conv(X5~U)
with a fast separation algorithm. So, when a practical production planning
problem involves LS-U as a submodel for an item, these reformulations are
very effective in improving the formulation.

In many other cases, we only have partial reformulation results for the
single-item submodels, say X ©S. That is, we have an initial formulation P%%,
some extended reformulation, or a class of valid inequalities in the original
space that defines only an approximation conv(X %) of the convex hull of
solutions, but is significantly smaller than the initial formulation; that is,

conv(X %) C eono(XE5) c PO,

These approximate or partial reformulations can be used in the same way —
a priori reformulations or cutting planes — as complete reformulations.

In all cases, the objective of the reformulation phase is to be able to use
the best known results for submodels embedded in the planning model to be
solved. This is the essence of the decomposition approach that we formalize
next.

126 4 Classification and Reformulation

4.2 The Decomposition Approach for Complex Models

As we have already seen in the examples of Chapter 2, and in the master
production scheduling example from Section 1.2.3, the structure of many,
or most, multi-item production planning problems looks very similar when
represented as mixed integer programs.

To be specific, the MPS example is more or less of the form

(MIPP"™) W* = min), Y, (piz} + hisi + qiy})

[si | +al=di+si, 2t <Clyl, yi <1 forallt], foralli (4.19)

[Za;kx; + szkyl <Lk forall k], forallt (4.20)
[z} < Ciyt, yi <1 foralli], forallt (4.21)
xiERﬁr, st eRl+7 y,ﬁEZl+ for all 4, t.

This can be written more compactly as
(MIPP"™) W* = min Y Y (pja}+ his,+ qiy;)
it

(%, s, y") € Y? for all 7 ,
('r7 87 y) E Z b

where Y represents the set of feasible solutions to the item i lot-sizing problem
(i.e., lot sizes ¢, set-ups 3*, and inventory levels s defined for all time periods
and satisfying the constraints (4.19) for item i), such as LS-U or some of its
variants. On the other hand Z represents the solutions satisfying the set of
linear constraints (4.20)—(4.21). The constraints defining Z are often called
coupling or linking constraints because they link together the items that have
to share the joint capacity.

This representation or scheme is not totally general, and certainly not
unique. For instance, we can also view the linking set Z as the intersection of
independent single-period sets. Now we can write the problem as the inter-
section of the time and period submodels as in formulation

(MIPPEIY) W' = min Y % (pjai+ hysi + qy;)

[t
(z',s",y") € V" for all 4
(zt, 5t,Yt) € Zt for all ¢ ,

where Z; represents the set of feasible solutions to the period ¢ submodel,
that is, the lot sizes x;, set-ups y; defined for all items, and satisfying the
constraints (4.20)—(4.21) for time period ¢.

4.2 The Decomposition Approach for Complex Models 127

The branch-and-bound /cut methods studied in Chapter 3, like most opti-
mization methods, are based on easy-to-solve relaxations of the initial prob-
lem. For example, the above problem can be solved by some standard MIP
software using a branch-and-bound algorithm based on the linear program-
ming relaxation LR of the initial formulation. We suppose that the initial
formulation for the lot-sizing sets Y is PY", and the initial formulation for
the period ¢ linking constraints in Z, is P#t. So, LR is defined by

LR = min 3% (piw) + his; + aiy;)
Pt
(z',s',y") € 28 for all 4
(4, 81, y1) € PZ for all ¢.

Unfortunately, this direct branch-and-bound approach can only be used for
the solution of small-size problems. In order to solve, or to find good solutions,
for more realistic or real-size problems, one has to work with better or tighter
relaxations or formulations providing improved lower bounds. Because of the
multi-item structure of the initial problem, most efficient solution approaches
are based on the following reformulation.

LB™ = min Y (pjr; + his; + qiy;)
[t
(z',s",y") € eonv(Y") for all i
(t,5¢,y:) € P% for all ¢,

where conv(Y?) represents a partial (or complete) reformulation of the convex
hull of the solutions of the single-item model Y. This bound LB®*™ can be
obtained in several ways:

e Either by branch-and-bound using an a priori and compact linear refor-
mulation of conv(Y?);

e Or by branch-and-cut using a reformulation of conv(Y?) involving many
constraints, combined with a separation algorithm; see Chapter 3.

In some cases, we may also know good (or complete) linear reformulations
for the single-period submodel. This in turn leads us to a stronger linear
programming relaxation

LB = min D> (piwi+ hysi + aiy)
it
(z, 5%, y") € conv(Y") for all
(x4, 8¢, y1) € conv(Zy) for all ¢,

where conv(Z;) represents an approximate (or complete) linear description of
the convex hull of the solutions of the single-period model Z;.

128 4 Classification and Reformulation

These new lower bounds LB*¢™ and LB{¢™ are never worse, and typically
much tighter than the linear relaxation bound LR. The following relations
always hold between these bounds.

LR < LB#e™ < LBitem < W+ .

Better lower bounds LB usually allow one to reduce the number of nodes
needed to prove optimality, or to obtain good quality solutions. But obtaining
these bounds requires more computing time than the time needed to obtain
LR because of larger models or more cuts to be added in the cutting plane
phase.

For any complex multi-item production planning problem to be solved by
an optimization approach, the best reformulation thus depends on

e the existence of reformulation results (approximate or tight compact ex-
tended reformulations, valid inequalities, efficient separation algorithms)
for the corresponding single-item and/or single-period submodels, and

e the impact of the reformulations on the computing time through a de-
creased number of branch-and-bound nodes but increased computing time
at each node.

The model classification scheme presented next is crucial for an implemen-
tation of the decomposition approach. It forces us to present the description,
analysis, and structuring of models in a way that facilitates the identifica-
tion of structured submodels. Then, the systematic reformulation procedure
of Section 4.4 identifies the submodels for which reformulation results are
available.

Note finally that other optimization methods such as Lagrangian relax-
ation, Lagrangian decomposition, and Dantzig—Wolfe or column generation,
exploit the same decomposition properties of the models. Instead of compact
reformulations, these methods require the repeated solution of optimization
problems defined over the single-item lot-sizing sets Y and the single-period
sets Z;. So to implement these algorithms, it is important to find efficient
algorithms to optimize over the single-item/period feasible sets.

The links with these other methods are discussed further in Chapter 6.

4.3 Model Classification

Most practical supply chain planning problems are multi-item, multi-machine,
and multi-level, but there exist very few reformulation results concerning such
models. Therefore, the main optimization approach in solving such problems
has been to integrate existing algorithms and known reformulation results for
single-item problems, using a decomposition approach.

We describe here a classification scheme for single-item production plan-
ning models that allows one to benefit from this knowledge. Based on this

4.3 Model Classification 129

scheme, the procedure to systematically reformulate and solve production
planning models is described in Section 4.4, and illustrated in Section 4.5 on
the GW master production scheduling example from Sections 1.2.2 to 1.2.4.

Parts II and III of this book describe the reformulation results according
to our scheme for single-item models. Thus for each problem appearing in
our classification, we need to describe in detail what results are known and
can be used to implement the optimization/decomposition approach for these
models. In Part IV we extend our classification to multi-item and multi-level
production planning problems, and again present the useful reformulation
results that are available. This structured knowledge is then exploited in Part
V in solving several industrial cases.

In this section, we describe the basic single-item classification, its nota-
tional conventions, and the corresponding mathematical formulations.

4.3.1 Single-Item Classification

Planning problems deal with sizing and timing decisions for purchasing, pro-
duction, or distribution of lots or batches. An item represents a physical prod-
uct. The finite planning horizon is divided into time periods, indexed by ¢,
1 <t < n, where n is the given number of time periods.

When considering canonical single-item models, for compactness of nota-
tions we use n to represent the length of the planning horizon. This notation
is used throughout Sections 4.3 and 4.4, and in Parts IT and III of the book.
Alternatively, when considering specific production planning instances, we use
NT to represent the number of time periods. Similarly, to represent the num-
ber of items in the multi-item models studied in Part IV, we use m in canonical
models and N1 in any particular planning instance.

We start by defining the basic single-item lot-sizing problem (LS). For a
single item, we represent by

e d; the demand to be satisfied in period ¢, that is forecast demand or
customer orders due in period t;
p} the variable or unit production cost in period ¢;
h} the unit cost for holding one unit in inventory at the end of period t;
q: the fixed set-up cost to be paid if there is a positive production in period
t;

e (; the upper bound on production or capacity in period ¢.

The fixed charge production cost function in period t is characterized by
the set-up cost ¢; and the unit production cost pj.

Problem LS is the problem of finding the production plan for the single
item, meeting the demand in every period, and satisfying the capacity restric-
tions; that is, the production is less than or equal to C} in every period t,
that minimizes the inventory and production costs. Note that in principle a
variable amount of initial stock is allowed, at a cost of h{, per unit.

130 4 Classification and Reformulation

Our classification is dictated by the difficulty of solving single-item plan-
ning problems, or more precisely by the optimization and reformulation results
presented in the literature. There are three fields PROB-C AP-V AR. In each
field, we use [z,y, z]' to denote the selection of exactly one element from the
set {z,y, 2}, and [z,y, 2]* to denote any subset of {x,y,z}. We simply use
x,y,z to denote the selection of all the elements in the set {x,y,z}. Fields
that are empty are dropped.

4.3.2 Description of the Field PROB

In the first field PROB, there is a choice of four problem versions PROB =
[LS,WW,DLSI,DLS]*.

LS (Lot-Sizing): This is the general problem defined above.

WW (Wagner—Whitin): This is problem LS, except that the variable pro-
duction and storage costs satisfy h} + p; — p;,; > 0 for 0 < t < n, where
Py = P41 = 0. This condition means that, if set-ups occur in both periods ¢
and t + 1, then it is more costly to produce in period ¢t and stock till period
t+1, than to produce directly in period ¢+ 1. In other words, given the set-ups
it always pays to produce as late as possible. This condition is often referred
to as the absence of speculative motive for early production. We define a new
inventory cost as hy = hi +p; —p;;; > 0 for 0 < ¢t < n (see formulations
below).

We name this cost condition WW because it was first introduced in the
seminal paper of Wagner—Whitin. It is a little technical, but we show in Part
IT that it allows one to reduce the running time of the optimization algo-
rithms, and to simplify the reformulation of the planning models. Moreover
this condition is very often satisfied by the cost coefficients encountered in
practice.

DLSI (Discrete Lot-Sizing with Variable Initial Stock): This is problem LS
with the restriction that there is either no production or production at full
capacity C; in each period t.

DLS (Discrete Lot-Sizing): This is problem DLSI without an initial stock
variable.

4.3.3 Description of the Field CAP

The second field C AP concerns the production limits or capacities CAP =
[C,CC,U]'. The three CAP variants of problem PROB are

PROB-C (Capacitated): Here the capacities C; vary over time.

4.3 Model Classification 131

PROB-CC (Constant Capacity): This is the case where C; = C, a constant,
for all periods t.

PROB-U (Uncapacitated): This is the case when there is no limit on the
amount of the item produced in each period. In the absence of other con-
straints limiting the total amount produced over all items, this case means
that the capacity C} in each period ¢ suffices to satisfy all the demands up to
the end of the horizon.

Before presenting the third field VAR containing the many possible exten-
sions, we present mixed integer programming formulations of the four basic
variants with varying capacities PROB-C.

4.3.4 Mathematical Formulations for PROB-CAP

The standard formulation of LS as a mixed integer program involves the
variables

e 1; the amount produced in period ¢ for 1 <t < n,

e s, the stock at the end of period ¢ for 0 < ¢ < n, and

e y; = 1if the machine is set up to produce in period t, and y; = 0 otherwise,
for1 <t <n.

We also use the notation di; = Ei:k d,, throughout.
LS-C can be formulated as

min Zp;xt + Z hyse + Z QY (4.22)
t—1 t=0 t=1

St—1+xr =di + 8¢ for1<t<n (4.23)
xr < Cyyy for1<t<n (4.24)
r€RY, se R ye{o,1}", (4.25)

and XT5=C¢ denotes the set of feasible solutions to (4.23)—(4.25). Constraint
(4.23) represents the flow balance constraint in every period ¢, the inflows are
the initial inventory s; 1 and the production x;, the outflows are the demand
d; and the ending inventory s;. Constraint (4.24) represents the capacity re-
striction and also fixes the set-up variable y; to 1 whenever there is positive
production (i.e., z; > 0). This constraint is also called a variable upper bound
(VUB) constraint. The objective (4.22) is simply the sum of the set-up, in-
ventory, and variable production costs.
WW-C can be formulated just in the space of the s,y variables as

132 4 Classification and Reformulation

n n
> hesi+ Y aye (4.26)
=0 =1

t
seo1+ Y Cutpu > diy forl<k<t<n (4.27)
u=k
se R ye {01}, (4.28)

and X"WW=C denotes the set of feasible solutions to (4.27)—(4.28). To de-
rive this formulation, the constraint (4.23) is used to eliminate z; from the
objective function (4.22). Specifically,

D_piw+ Y hise =) pi(si st di)) hist
t=1 t=0 t=1 t=0

= Z(h; + Pt = Pig)se + Zp;dt

t=0 t=1
n n
= Z hysy + Zp;dt)
t=0 t=1

where py = pj,,1 = 0. So, by defining h; = h}{ + p; — p;,, the objective
function (4.22) becomes (4.26) to within the constant Y, pjd;.

Now as h; > 0 for all ¢, it follows that once the set-up periods are fixed (the
periods ¢ in which y; = 1), the stocks will be as low as possible compatible
with satisfying the demand and respecting the capacity restrictions. Based
on this argument it is possible to prove that it suffices to find a minimum
cost stock minimal solution in order to solve WW-C, where a stock minimal
solution is a solution satisfying

Sh— 1—maX(O max [drt — ZCuyu (4.29)

In the proposed formulation (4.26)—(4.28) for WW-C, because of the pres-
ence of the initial stock sy, any combination of set-up periods is feasible, and
constraint (4.27) imposes a lower bound on the stock variables. The objective
function (4.26), together with h; > 0, guarantees that there exists an optimal
solution to (4.26)—(4.28) that satisfies (4.29). It follows that the proposed for-
mulation is valid, though its (s,y) feasible region is not the same as that of
LS-C. Specifically (s,y) is feasible in (4.27)—(4.28) if and only if there exists
(x,s',y) feasible in (4.23)—(4.25) with s’ < s.

Remark 1. Whether the Wagner-Whitin cost condition is satisfied or not,
the WW relaxation consisting of the constraints (4.27) is valid for problem
LS, and often provides a very good approximation to the convex hull of solu-
tions for problem LS.

4.3 Model Classification 133

Remark 2. Even though each single item subproblem may have WW costs,
the existence of other constraints such as multi-item budget (production ca-
pacity) constraints or multi-item storage capacity constraints (PQ in the
multi-item classification of Section 12.1) destroys the stock minimal solution
property for individual items, and thus the items are more correctly classified
as LS, rather than WW.

Remark 3. On the other hand, if in a multi-item problem the constraints
linking together the different items involve only the set-up or start-up variables
(PM in the multi-item classification of Section 12.1), then the stock minimal
property of solutions is preserved, and the single items can be classified as
WW if their costs satisfy the WW condition.

DLSI-C can be formulated by adding z; = Cy; in the formulation of
LS-C. By summing constraints (4.23) from 1 up to ¢, one gets s; = so +
Z’;zl 2, — dy;. Then, after elimination of the variables s; > 0 and x; = Cyyy,
we obtain an equivalent formulation of DLSI-C' just in the space of the sg and
the y variables, and X PL50=C ig used to denote the set of feasible solutions
to (4.31)-(4.32),

min hgsg + Z QY (4.30)
t=1
t
so+ Y Cuyu > duy for1<t<n (4.31)
u=1
so € RL, ye{0,1}", (4.32)

where hg and g} are the new objective coefficients of variables so and y; ob-
tained after eliminating the variables s; and x; by substitution. Specifically,
the objective function (4.22) can be rewritten as

D hise+ Y P+ Y aw
t=0 t=1 t=1
n t n n
= hgso + Z hi(so + Z Culu — d1p) + Zpgctyt + Z QtYt
t=1 u=1 t=1 t=1
= (hp+ > _hp)so— D> hidie+ > (a+ (0, + > hi)Cyr -
t=1 t=1 t=1 u=t

Then defining ho = hyy + > 1, h; and q; = q: + (P, + >n_, h!,)Ct, it reduces
to (4.30) except for the constant — > -, hjdy;.

We also use the notation XPL5:=C with 0 < k < n — 1 to denote the
set of solutions of problem DLSI-C, which is problem DLSI-C except that

134 4 Classification and Reformulation

the initial inventory is located in period k, and production can occur in pe-
riods k + 1 up to n. Problem DLSI-C involves thus variables s, € R_1Ir and
Yk+ls--->Yn € {Oa 1}

DLS-C can be formulated just in the space of the y variables by fixing
S = 0:

n
min Z a0y (4.33)
t=1
t
Z Cuy > dyg foralll1<t<n (4.34)
u=1
y € {0,1}™ (4.35)

The set XPL5=¢ denotes the set of feasible solutions to (4.34)(4.35). We
say that DLS has Wagner-Whitin costs if q; > q;,, for all ¢, and without
introducing a new problem class we denote this special case as DLS(WW)-C.

Observation 4.2 The constant or uncapacitated problems PROB-[CC, U]}
are all polynomially solvable. There is a polynomial dynamic programming
algorithm solving LS-CC and the other seven problems can all be seen as
special cases.

All four varying capacity instances PROB-C' are N P-hard, because all four
problems are polynomially reducible to the 0—1 knapsack problem. This means
that there are no polynomial algorithms known for them and, from complezity
theory, it is very unlikely that there exists a polynomial algorithm for any of
them.

We come back to the implications of these observations, to the relation-
ships between these different problems, and to the analysis of algorithms and
reformulations for these problems in Part II. So far, we consider that we have
different versions of the single-item lot-sizing problem, along with mixed in-
teger programming formulations adapted to each problem class.

4.3.5 Description of the Field VAR

The third field V AR concerns extensions or variants to one of the twelve prob-
lems PROB — C' AP defined so far; that is, VAR = [B, SC, ST, LB, SL, SS]*.
Although such variants can be combined, for simplicity we describe these
variants in turn, and give a typical formulation for each problem LS-C-

(B, SC,ST,LB,SL,SS]*.

B (Backlogging): Demand must still be satisfied, but it is possible to satisfy a
demand later than required. This occurs, for example, when a factory does not
have enough capacity to deliver to all customers on time in a given period.
Usually, the backlog or shortfall implies a penalty cost proportional to the
amount backlogged and to the duration of the backlog.

4.3 Model Classification 135

Note that this backlogging variant is limited to independent or external
demand, as the quantity backlogged is only a virtual flow used to model
shortfalls in the delivery process and not a physical flow.

SC (Start-Up Costs): It is necessary to accurately model capacity utilization
to obtain feasible production plans. This often requires one to model the
capacity consumed when a machine starts a production batch, or when a
machine switches from one product to another. In these cases, we obtain so-
called set-up or start-up time models, changeover time models, or models
with sequencing restrictions. However, in many cases, less accurate models
involving only set-up or start-up costs are considered. Such models can be
seen as obtained by relaxing (in the Lagrangian sense; see Chapter 6) the
set-up or start-up time restrictions.

The simplest single-item start-up cost model is the following. If a sequence
of set-ups starts in period ¢, a start-up cost g; is incurred, which can be seen
as the direct start-up cost plus an estimate of the opportunity cost of the
start-up time or capacity consumed.

ST (Start-Up Times): As already explained, start-up times are used to model
capacity utilization more accurately. The resulting models are more precise,
but often more difficult to solve than their start-up cost variant.

If a sequence of set-ups starts in period t, the capacity C; is reduced by
an amount ST;. We use ST(C) to indicate the start-up time ST is constant
over time; that is, ST; = ST for all ¢t.

LB (Minimum Production Levels): In some problems, in order to guarantee a
minimum level of productivity, minimum batch sizes or production levels are
imposed. For instance, this feature is often used in combination with start-up
costs to approximate start-up time models and avoid small batches in the
solutions. This constraint may also be imposed for technological reasons.

If production takes place in period ¢, a minimum amount LB; must be
produced. We use LB(C') to denote constant lower bounds over time, i.e.
LB; = LB for all t. Note that this leads to variable lower-bound constraints,
and not simple lower bounds.

SL (Sales and Lost Sales): In some cases, the demands to be satisfied are not
fixed in advance. This occurs, for instance, when capacity is too low to satisfy
the total potential demand, or when the selling price does not always cover
the marginal cost of production. The optimization problem becomes then a
profit maximization problem, with additional sales variables.

In the single-item problem, we model this case in the following way. In
addition to the demand d; that must be satisfied in each period, an additional
amount up to u; can be sold at a unit price of ¢;.

Note that this variant can also be used to model the Lost Sales variant
in which, as opposed to backlogging, it is possible to not deliver part of the

136 4 Classification and Reformulation

demand. In this case, the demand from period ¢ that has to be satisfied is d;,
and the additional demand that may be lost or not delivered is u;. The unit
price ¢; represents in this case the penalty cost that is avoided for each unit
of the additional demand effectively delivered.

SS (Safety Stocks): The last variant that we consider is present in many
practical applications, and absent from most scientific publications. When the
demand is an output of a forecasting system, it is not known with certainty.
Therefore, a minimum amount of planned inventory, called the safety stock,
is required at the end of each period so as to handle this uncertainty, and to
avoid delivery shortages when actual demand exceeds forecast demand.

The variants described here are common variants included in the field
V AR. These plus additional variants concerning either changes in the demand
model, production constraints/costs, or sales constraints, are described and
analyzed in Chapter 11.

4.3.6 Mathematical Formulations for PROB-CAP-VAR
Backlogging

The standard formulation of PROB-C'AP-B as a mixed integer program in-
volves the additional variables

e 1, the backlog at the end of period ¢ for t = 1,...,n.

This cumulated shortfall r; in satisfaction of the demand in period ¢ is
charged at a cost of b} per unit. It is assumed throughout that ro = 0.

This leads to the following formulation for problem LS-C-B.

n n n n
min Z hyst + Z bire + Zpéxt + Z Qe (4.36)
t=0 =1 =1 t=1

St—1 —Ti—1+ Ty =dp +5¢ — 1y forl1<t<n (4.37)
x; < Cyyy for1<t<n (4.38)
z,r € R}, se RV ye{0,1}", (4.39)

and XE5~C¢=B denotes the set of feasible solutions to the constraints (4.37)—
(4.39).

Problem WW-C AP-B is problem LS-C AP-B except that the costs satisfy
the WW cost condition. With backlogging, the costs are said to be Wagner—
Whitin if both hy = p, +h} —pi,; > 0 and by = p;; + b, —p; > 0 for
1 <t < n— 1. This means that, with respect to backlogging, there are no
speculative motives for late production.

4.3 Model Classification 137

As an extension of the simple formulation (4.26)—(4.28) for WW-C, it can
be proved that the following formulation involving only the s,r,y variables,
is a valid and sufficient formulation for WW-C-B.

min Z htst + Z tht + Z qtYt (440)
t=0 t=1 t=1

l

Sgp—1+ 7+ Z Cuy > diy for1<k<i<n (4.41)
u=k
se R reRY, ye{0,1}". (4.42)

The notation X"WW=C¢=5 i5 used to represent the set of feasible solutions to

the constraints (4.41)—(4.42).

The validity and sufficiency of formulation (4.41)—(4.42) is based on the
following nontrivial result. When the objective function (4.40) of WW-C-B
satisfies hy, by > 0 for all ¢, it suffices to find a minimum cost stock minimal and
backlog minimal solution in order to solve WW-C-B, where a solution is called
stock minimal (resp., backlog minimal) if si_1 = max;>x[dg — ZL:]@ Culyu —
| (vesp. if 7, = maxy<[dp — Zfl:k Cutyy — Sk—1]7).

After elimination of the s1,...,s, variables, DLSI-C-B has the following
feasible region in the (so,7,¥y) space,

t
S0+ 1+ Z Cuyu > diy for1<t<n (4.43)
u=1
so € Ri,re R, yel0,1]". (4.44)

and XPESIo=C=B denotes the set of feasible solutions to (4.43)—(4.44).
Finally, DLS-C-B is obtained from DLSI-C-B by setting sy = 0.

Start-Up Costs

The basic formulation for LS-C-SC requires the introduction of new variables

e z; = 1 if there is a start-up in period t; that is, there is a set-up in period
t, but there was not in period ¢ — 1, and z; = 0 otherwise.

The resulting formulation for LS-C-SC' is

138 4 Classification and Reformulation

n n n n
min Zp;xt + Z hisy + Z Qe + Z G121t (4.45)
t=1 t=0 t=1 t=1

Si—1+xp = d;p + 8¢ for1<t<n (4.46)
xr < Cyyy for1<t<n (4.47)
2t 2 Yp — Yi—1 for1<t<n (4.48)
2t S Yy forl1<t<n (4.49)
2 <1 —yq for1<t<n (4.50)
reRY, se Rfrl, y,z € {0,1}", (4.51)

and the set of feasible solutions to (4.46)—(4.51) is denoted by X15-¢=5¢,
We assume that yg, the state of the machine at time 0, is given as data.
The additional constraints (4.48)—(4.50) define the values of the additional
start-up variables. These constraints are a linearization of the constraint z; =
y+(1 — y¢—1), for all t. There can be a start-up in period ¢ (i.e., zz = 1) only
if there is a start-up in period t (see (4.49)) and no start-up in period ¢t — 1
(see (4.50)), and there must be a start-up in period ¢ if both events occur
simultaneously (see (4.48)).

The formulations of [WW, DLSI, DLS]*-C-SC, as well as their corre-
sponding feasible sets X WW.PLSIo.DLS]'=C=SC 4r6 ohtained by just adding
the constraints (4.48)-(4.50) and the integrality restrictions z € {0,1}" to the
formulations [WW ,DLSI,DLS]*-C given above.

Start-Up Times

The basic formulation for LS-C-ST requires the same start-up variables z;
as the start-up cost model LS-C-SC. The formulation for LS-C-ST is the
same as for LS-C-SC ((4.45)-(4.51)), except that the variable upper bound
constraint (4.47) has to be replaced by the constraint

Tt < Ctyt — STtZt for 1 <t<n.

Minimum Production Levels

The basic formulation for LS-C-LB requires no additional variables. The
formulation for LS-C-LB is the same as for LS-C ((4.22)—(4.25)), augmented
with the variable lower bound constraint

xy > LBy for1<t<n.

Sales

The standard formulation of LS-C-SL as a mixed integer program involves
the additional variables

4.3 Model Classification 139

e v, the amount sold in period ¢, on top of the fixed demand d;, for 1 <t < n,

and is given by

max Z(Ctvt — piry) — Z hyst — thyt (4.52)
=0 =1

t=1

Si—1 +xp = di + vs + 8¢ forl1<t<n (4.53)
xp < Cyyy for1<t<n (4.54)
v < uy for1<t<n (4.55)
z,v€ R}, se R ye {01}, (4.56)

where the objective (4.52) maximizes the contribution to profit, and the flow
balance constraint (4.53) is updated to take the sales outflow into account.
Constraint (4.55) models the simple upper bound on sales.

Safety Stocks

To incorporate this requirement, we just need to add a simple lower bound
SS; on the stock level at the end of period t; that is, s; > SS; for all periods
twith1 <t<n

4.3.7 The Classification PROB-CAP-VAR

We have described the three fields PROB-C AP-V AR of the single-item lot-
sizing classification, namely,

[LS,WW, DLSI, DLS]'~[C,CC,U]'—
[B,SC, ST, ST(C), LB, LB(C), SL, SS]*

where one entry is required from each of the first two fields, and any number
of entries from the third.

For instance, WW-U (in place of WW-U-)) denotes the uncapacitated
Wagner—Whitin problem, whereas DLSI-CC-B, ST denotes the constant ca-
pacity discrete lot-sizing problem with initial stock variable, backlogging, and
start-up times.

Observation 4.3 It turns out that almost all the variants PROB-[CC,U]*-
VAR are still polynomially solvable if the start-up times or lower bounds, if
any, are constant (versions ST(C),LB(C)).

This terminates the description of the classification for single-item prob-
lems. It is clearly beyond the scope of this description to give a complete
mathematical programming formulation of all possible variants from the clas-
sification. These different formulations are described in more detail in Parts
II and III.

140 4 Classification and Reformulation

4.4 Reformulation Results: What and Where

In this section, we list first the reformulation results available (the “What”)
for the most common or standard single-item lot-sizing problems, classified
according to the scheme described in Section 4.3.

More precisely, we give the results in the form of three reformulation tables
for the uncapacitated and constant capacity single-item models:

The basic models [LS, WW, DLSI, DLS]'-[U, CC]! without variants.
The models with backlogging [LS, WW, DLSI, DLS)'-[U, CC]'-B.
The models with start-up costs [LS, WW, DLS]|!*-[U, CC]*-SC.

Note that we do not give reformulation tables for models with varying
capacity (value C of the field C AP) because there are no complete reformula-
tion results available for these high-level relaxations, due to the fact all these
models define NP-hard optimization problems.

For variants other than backlogging or start-up costs, there are only a few
results available. The partial reformulation results known for these models,
and the reformulation results for lower-level relaxations contained in these
models, are given in Parts II to IV of the book.

For each model in these tables, we indicate the reformulation results in
three sections.

e Formulation reports on the existence and the size (order of the number
of constraints and variables) of tight and compact linear a priori reformu-
lations.

e Separation gives the complexity of the separation algorithms for the tight
reformulations in the original variable space.

e Optimization contains the complexity of the best optimization algorithm
known for the model.

In each case, we indicate a reference to the research paper or publication
containing, to our knowledge, the original result, as well as a pointer to the
section in this book where the result is described in detail.

The tables also indicate the missing results. An asterisk * indicates that
the family of inequalities only gives a partial description of the convex hull
of solutions. A triple asterisk *** indicates that we do not know of any result
specific to the particular problem class.

Even if they are not used in a direct solution approach by branch-and-
bound/cut, we have included results for the associated optimization problems
because they are very much related to the other results, and because other
optimization methods such as Lagrangian relaxation or Dantzig—Wolfe de-
composition require the solution of the optimization version of these standard
models.

Finally, we conclude this section by providing a reformulation procedure
(the “Where”) indicating how to use the results in the tables, and build im-
proved formulations for complex production planning models. Note that this

4.4 Reformulation Results: What and Where

141

procedure requires the use of the classification scheme and reformulation ta-
bles, but does not require any knowledge about the mathematical description
or analysis of the reformulations.

4.4.1 Results for PROB-[U, CC]

In Table 4.4 we present results for the models [LS, WW, DLSI, DLS]-[U, CC].
Note that the entries [DLSI, DLS]-U have been left blank as the results and
algorithms are trivial. In the Formulation entries for LS-U, FL denotes a
facility location reformulation, SP denotes a shortest path reformulation, and
MC' denotes the multi-commodity reformulation already presented in Section

4.1.1.
Table 4.4. Models PROB-[U, CC]
| I LS | ww | DLSI | DLS |
Formulation Cons x Vars Cons x Vars |Cons x Vars|Cons x Vars
U SP O(n) x O(n?) [O(n?) x O(n) —— ——
FL O(n?) x O(n?)
MC O(n?) x O(n?)
Section 7.4.2 Section 7.5
(100, 61, 145 [140]
cc O(n®) x O(m*) [0(n?) x O(n?)| O(n) x O(n) [O(n) x O(n)
Section 9.6.3 Section 9.5.3 | Section 9.4.2 | Section 9.3.1
[176] [140] [125, 140] Folklore
Separation
U O(nlogn) O(n) —— ——
Section 7.4.1 Section 7.5
[23] [140]
cc * O(n”logn) O(nlogn) O(n)
Section 9.6.2/3 | Section 9.5.2 | Section 9.4.1 | Section 9.3.1
[139] [140] [85, 125, 140]| Folklore
Optimization
U O(nlogn) O(n) —— ——
Section 7.3 Section 7.3
3, 63, 187] 3, 63, 187]
cc O(n?) O(n%logn) | O(n*logn) | O(nlogn)
Section 9.6.1 Section 9.5.1 | Section 9.4 |Section 9.3.2
[71, 171] [178] [178] [178]

Reading these tables is straightforward. Looking at the WW—-CC entry in
the Formulation block, we see that, for the problem with Wagner—Whitin
costs and constant capacities, there is an extended formulation with O(n?)
constraints and O(n?) variables that gives the convex hull. Details are to be

142 4 Classification and Reformulation

found in Section 9.5.3. We see also in the WW-C'C' entry in the Separation
block that there is a separation algorithm for the same problem whose running
time is O(n? logn). Finally we see from the WW-CC entry in the Optimiza-
tion block that the fastest known algorithm to find an optimal solution for
this problem runs in O(n?logn).

4.4.2 Results for Backlogging Models PROB-[U,CC]-B

Now we consider the same problems but with backlogging. The results are

given in Table 4.5.

Table 4.5. Models with Backlogging PROB-[U,CC|-B

LS

wWw

DLSI

DLS

Formulation Cons x Vars Cons x Vars | Cons x Vars | Cons x Vars
U SP O(n) x O(n?) | O(n?) x O(n) —— ——
FL O(n?) x O(n?)
Section 10.2.2 | Section 10.2.3
(22, 137] [140]
cc O(n®) x O(n®) [0(n%) x O(nH)| O(n?) x O(n) | O(n) x O(n)
Section 10.3.4 | Section 10.3.3 | Section 10.3.2 |Section 10.3.1
[178, 180] [125, 178] [125, 176] [125]
Separation
U * O(n?) —— ——
Section 10.2.2 | Section 10.2.3
[137] [140]
cc * * O(n?) O(n)
Section 10.3.4 |Section 10.3.3 |Section 10.3.2 |Section 10.3.1
[134, 104, 125 [125] [125]
Optimization
U O(nlogn) O(n) —— ——
Section 10.2.1 | Section 10.2.3
[3, 63, 187] [3, 63, 187]
cc O(n?) O(n?) O(n*logn) O(n?)
Section 10.3.4 | Section 10.3.3 |Section 10.3.2 |Section 10.3.1
[176] [176] [176] [176]

4.4.3 Results for Start-Up Cost Models PROB-[U, CC]-SC

Finally we list in Table 4.6 the results for problems with start-up costs.

DLS(WW) refers to the special case of DLS-CC-SC with just set-up
and start-up costs in which the set-up costs are non-increasing over time (i.e.,
G+ > qi+1; see Section 10.5.1).

4.4 Reformulation Results: What and Where

Table 4.6. Models with Start-Up Costs PROB-[U, CC]-SC

143

| | LS | ww] DLS
Formulation Cons x Vars Cons x Vars Cons x Vars
U SP(SC) O(n®) x O(n*)[O(n?) x O(n) —

FL(SC) O(n?) x O(n?)

Section 10.4.2

Section 10.4.3

(170, 191] 140)
ccC * ok ok . O(n?) x O(n?)
(WW) O(n?) x O(n)
Section 10.5.1
[165, 163]
Separation
U on®) Exercisel0.13 ——
Section 10.4.2 Section 10.4.3
(170, 191] 140]
cc om?) * * ok % *
Section 10.5 Section 10.5.1
[46] [164]
Optimization
U O(nlogn) O(n) ——
Section 10.4.1
3, 63, 187] 3, 63, 187
cC o) ok % o(n?)

Section 10.5
[71]

(WW) O(nlogn)
Section 10.6
[67, 147, 164]

Finally there is a reformulation for WW-U-B, SC, described in Section

10.6, with O(n?) constraints and O(n) variables.

4.4.4 The Reformulation Procedure

Here we present general guidelines on how to use the classification scheme and
the reformulation tables in order to obtain good or state-of-the-art formula-
tions for production planning models.

We demonstrate the approach in detail in the next section on the Mas-

ter Production Scheduling Example from Chapter 1, and on elementary case
studies in Chapter 5.

Rule 1. Construct an initial model and a mathematical formulation using

the classification scheme from Section 4.3. In particular, characterize or
classify the single-item models as PROB-C AP-V AR.

144 4 Classification and Reformulation

Rule 2. For each single-item model, select appropriate reformulations by
identifying the closest cell or cells in the reformulation tables.
The choice of a reformulation depends often on a compromise between its
quality or tightness and its size. Therefore, several reformulations can be
selected. From a given cell identified from the classification, we can move
to other cells in order to obtain valid or allowed reformulations of the
model. The allowed moves are
o move upwards CC = U, usually performed to reduce the size of the
reformulation or the number of cuts generated.
e towards the right LS = WW usually to reduce the size of the refor-
mulation or the number of cuts generated.
o towards the right WW = {DLSI};} k=0, .. n-1-
towards the left WW = LS.

Rule 3. The different reformulations identified should then be implemented,
tested, and compared in terms of solution quality and computing time.

The allowed moves from cell to cell given in Rule 2, as well as some other
moves, are justified by the following relations that exist between the sets of
feasible solutions associated with the problems in the classification; see Section

4.3.
Xprob—cap—SC C Xp7'ob—cap

)

prob—CC —var prob—U —var
X cX

)
n—1
XLsfcapfvar C XWW7cap7var C ﬂ XDLSkacapfvar

k=0
where in each relation prob, cap, and var represent any fixed value of the
fields PROB, CAP, and V AR, respectively. For instance, as any solution of
Xprob=CC-var js included in the larger set XPro=U=var any valid constraint
or formulation for the larger set XProb=U=var is also valid for XProb—CC—var,
and thus the move C'C = U is allowed.

The move WW = LS is justified by the discussion and remarks in Sec-
tion 4.3 relative to the choice between classification LS or WW for the field
PROB. In a multi-item lot-sizing problem where the single items satisfy the
WW cost condition, the classification and formulation LS are more appropri-
ate when additional constraints (such as linking capacity constraints) destroy
the stock minimal characteristic of optimal solutions.

As an illustration, consider a multi-item single-level single-machine prob-
lem. Suppose that the subproblem for each item is classified as WW-CC-B.

e We identify first the cell WW-CC-B in Table 4.5. A reformulation is
proposed, but O(n?)xO(n?) appears very large, because this reformulation
must be applied individually to all items.

4.5 A Production Planning Example: Reformulation and Solution 145

e We can move upwards from CC to U in Table 4.5 to find a relaxation.
The relaxation WW-U-B is obtained for which a tight and more compact
O(n?) x O(n) reformulation is indicated.

e We can move towards the right in Table 4.5 to find another relaxation.
We obtain the relaxations DLSI-CC-B, for k = 0,...,n — 1, for which
a tight O(n?) x O(n) reformulation is again known for each k. However,
this leads to an O(n3) x O(n?) formulation, which is again large.

4.5 A Production Planning Example: Reformulation and
Solution

We have already illustrated on a MPS example in Section 1.2.4 that the struc-
ture of a MIP formulation can be used in order to improve both the quality of
the solution and the final duality gap (see Table 1.5). Such improvements were
based on the reformulation of simple (low-level) structures embedded in the
problem, such as single mixed integer constraints or single-node flow struc-
tures (see Chapter 8). Moreover, they are obtained automatically by using
state-of-the-art branch-and-cut solvers.

Here we show how to profit from the classification scheme to recognize more
global structures that are specific to production planning problems. It is then
possible to use the known reformulation results for these canonical planning
structures in order to obtain an even better formulation of the initial problem.

As a simple and basic illustration of this principle (more comes later in
the case studies in Chapter 5 and in Part V), we analyze the initial formu-
lation (1.1)—(1.7) of our MPS example and observe that the Wagner—Whitin
cost condition is satisfied because there are no production costs and there are
positive inventory costs. Moreover, constraints (1.2)—(1.4) define an uncapac-
itated lot-sizing structure for each product and constraint (1.3) defines safety
stocks for each item. Therefore each single-item submodel is classified as

WW-U-SS.

Observe that the single-item problems could be classified as LS-U-SS be-
cause the capacity constraints linking the different items are likely to destroy
the stock minimal structure of optimal solutions (see the discussion and re-
marks in Section 4.3 relative to the choice between classification LS or WW
for multi-item problems).

We illustrate here how to use some known a priori reformulation results
for these single-item submodels. These reformulations are given here for com-
pleteness, but they are analyzed in depth in Parts IT and III.

Removing the Safety Stocks

First, note that the reformulation Table 4.4 does not include the safety stock
variant. So, before applying the WW —U reformulation with O(n?) constraints

146 4 Classification and Reformulation

and O(n) variables from Table 4.4, we apply a standard linear programming
trick to remove the simple lower bound on the inventory variables, that is, to
remove the safety stocks.

The inequality st > SS{_; — Di always holds because the entering stock
of item 4 in period ¢ that is not used to satisfy some demand in period ¢
must be part of the inventory at the end of period t. Therefore, and without
loss of generality, we can tighten the safety stock for each item ¢ and for
t=1,---,NT by setting

SSi = max{SS!_, — Di SSi},

where SS¢ is the initial inventory of item i.

Then, we can eliminate the lower bounds on inventory by defining net
inventory variables ns} := si — SS; > 0 for all i and ¢. After replacing the
inventory variables by the net inventory variables (i.e., replacing st everywhere
by nst 4+ SS}), we obtain the following equivalent formulation.

min ZZ ns; + ZZ SS; (4.57)
it it

nsi_, +xi = ND! 4 ns! for all i,¢ (4.58)
zi < Mly; for all i,t (4.59)
Z oot 4 Zﬂiyi <ct for all ¢ (4.60)
Z atkzt < OF forallt and k= 2,3 (4.61)
iEFk

nsy =0, ns; € R} for all 4,¢ (4.62)
zj € RL, y; € {0,1} for all i,¢, (4.63)

where ND! := Di+ SS} — SS;_, >0 is the net demand of item i in period
t, and where the upper bound M} on the production of item i € F* in period
t in constraint (4.59) is taken as

Cl _ ﬁi Ck

otl ’

NT
M} =min{) NDj,
I=t

.

ik

Extended Reformulation WW-U

Each single-item model (4.57)—(4.59) and (4.62)—(4.63) in the above formula-
tion is classified as WW-U. Table 4.4 indicates the existence of the following
linear reformulation with O(n?) constraints and O(n) variables for this WW-
U model (written for item i, translated directly for the net demand data N D?
and the net inventory variables nsi); see Chapter 7.

4.5 A Production Planning Example: Reformulation and Solution 147

nsi_, +xt = NDi 4 nst for all ¢ (4.64)
l J
nsi_y > NDi(1-> w) for all ¢, 1 (4.65)
Jj=t u=t
ns;, zj € RL, y; € [0,1] for all 4,¢ (4.66)

The O(n?) constraints (4.65) impose that the stock at the end of period ¢t — 1
must contain the demand of period j > ¢ if there are no set-ups in periods ¢
up to j (ie., if >/ _ y, =0).

The first reformulation consists of constraints (4.57)—(4.63), plus the con-
straints (4.65) for all items instead of the constraints (4.59). It is easily imple-
mented in Mosel. The results obtained with the Xpress-MP Optimizer using
this a priori reformulation are compared in Table 4.7 with the results ob-
tained using the initial or basic formulation (4.57)—(4.63), with and without
the Xpress-MP system cuts. Column “LP Val.” gives the initial linear relax-
ation or lower-bound value before the Xpress-MP cuts, and column “XLP
Val.” gives the lower bound obtained at the root node after the addition of of
Xpress-MP cuts.

Table 4.7. Extended Reformulation WW-U for the GW MPS Example

Algorithm Vars |LP Val.|XLP Val.||Best LB|Best UB t. (secs)
Formulation Cons Ncuts |/Best UB Gap (%)
Basic form. B & B || 540 | 2893 2893 3341 0

(w/o Xpress-MP cuts) || 405 0 6415 47.92
Basic form. B & C || 540 | 2893 5481 5614 56

(with Xpress-MP cuts)|| 405 239 5746 2.30
WW-U B&C 540 | 5395 5496 5652 269

(with Xpress-MP cuts)|| 1845 18 5732 1.40

NI =12 and NT = 15. Maximum 600 second runs.

The optimization was stopped after 600 seconds. With the WW-U re-
formulation, we obtain a slightly better feasible solution (see column “Best
UB”), and better initial (see column “XLP Val.”) and final lower bounds (see
column “Best LB”). The column “Best UB t.” gives the time in seconds to
find the best feasible solution. The duality gap is reduced to 1.40%. Note that
these results are obtained with the combination of the generic Xpress-MP cuts
(with default branch-and-cut parameter settings) and the specific production
planning reformulations.

Other Extended Reformulations

As we already observed, the single-item problems can also be classified as
LS-U because the capacity constraints linking the different items are likely to

148 4 Classification and Reformulation

destroy the stock minimal structure of optimal solutions. Therefore the known
reformulations for model LS-U given in Table 4.4 (namely the facility loca-
tion (F'L), shortest path (SP), and multi-commodity (MC') reformulations;
see Chapter 7) could also be used and tested (Rule 3 of the reformulation
procedure).

We have described the multi-commodity reformulation at the beginning of
this chapter. As another example, the facility location reformulation for the
single-item LS-U model (4.58)—(4.59), (4.62)—(4.63) (without lower bounds on
the net inventory) is defined on the extended variable space xil, for all items
i, periods t and | > ¢, where z¢, represents the amount of item i produced in
period t to satisfy net demand in period | > ¢.

Using the facility location reformulation and the substitutions z! =
Yoty and nsp = DI DHiA 141 L}y, the final facility location reformula-
tion of (4.57)—(4.63) is

min ZZZ (I —t)xl, + ZZ SS; (4.67)

t >t

Zzgl = NDj for all 4,1 (4.68)
zl, < NDiyi for all 4,¢,0 with [>t (4.69)
Z Z ol + Z Byl < Ct for all ¢ (4.70)

i I>t

Z Zoﬂk L<cr forallt and k=2,3 (4.71)
i€Fk 1>t
zi, € RL, yi € {0,1} for all i,t,] with I >t . (4.72)

The shortest path reformulation is derived directly from the dynamic pro-
gramming algorithm used to solve LS-U, and is described in Chapter 7.

As a last reformulation, we can also implement and test the O(n?) x O(n?)
extended reformulation for the single-item constant capacity model WW-CC
referred to in Table 4.4 and described in Chapter 9. For some items, the total
demand over the planning horizon is larger than the production capacity of
one period. Therefore, for each item i, with i € F*, one can define a constant
upper bound on production

7 k
_min{ZND lﬂ , ©

2

atk

such that 2¢ < U'y! is valid for all ¢. In any case, model WW-CC is larger
than, but at least as strong, as model WW-U.

The results obtained using these extended reformulations with the Xpress-
MP Optimizer are compared in Table 4.8 with the results obtained using the

4.5 A Production Planning Example: Reformulation and Solution 149

initial or basic formulation. All the results have been obtained with the default
branch-and-cut system from Xpress-MP.

Table 4.8. Extended Reformulations for the GW MPS Example

Algorithm Vars |[LP Val.|XLP Val.||Best LB|Best UB t. (secs)
Formulation Cons Ncuts |[|Best UB Gap (%)
Basic form. B & B || 540 | 2893 2893 3341 0
(w/o Xpress-MP cuts) || 405 0 6415 47.92
Basic form. B & C || 540 | 2893 5481 5614 56
(with Xpress-MP cuts)|| 405 239 5746 2.30
WW-U B&C 540 | 5395 5496 5652 269
(with Xpress-MP cuts)|| 1845 18 5732 1.40
LS-U (MC) B & C{|2880| 5395 5503 5667 88
(with Xpress-MP cuts)|| 2925 26 5732 1.13
LS-U (FL) B & C [|1620| 5395 5526 5702 534
(with Xpress-MP cuts)|| 1665 59 5730 0.49
LS-U (SP) B & C ||1620| 5395 5486 5672 419
(with Xpress-MP cuts)|| 417 22 5730 1.01
WW-CC B & C 2160| 5395 5480 5651 319
(with Xpress-MP cuts)|| 2205 23 5732 1.41

NI =12 and NT = 15. Maximum 600 second runs.

We observe in Table 4.8 that the results obtained with the different re-
formulations are similar. In 600 seconds, the best lower bound is achieved by
the facility location reformulation, and the best feasible solution is obtained
by the shortest path and the facility location reformulations. As expected,
the LS-U reformulations tend to lead to (slightly) better lower bounds than
the WW-U reformulation. The capacitated model WW-CC' has no additional
effect, probably because the capacity is always shared between items and the
bound U? on the individual production batches is not binding. The duality gap
computed with the best lower and upper bounds among all the reformulations
is 0.49%.

Given the good results obtained with the facility location reformulation,
we solved the problem with this reformulation without any time limit, in order
to obtain the optimal solution. The optimal solution is the solution of value
5730 found in less than 600 seconds, and it took 1195 seconds and 386,700
nodes in total to prove its optimality.

Reformulations in the Original Variable Space by Cutting Planes

We can observe in Table 4.8 that the better results (lower and upper bounds)
have been obtained at the price of a large increase in the size of the formu-
lation. This may slow down the solution of the linear relaxations, and reduce

150 4 Classification and Reformulation

the number of branch-and-bound nodes evaluated within the time limit of 600
seconds.

An alternative leading to the same lower bound at the root node would
be to reformulate the single-item models LS-U using the complete linear re-
formulation by valid inequalities in the original variable space (4.14)—(4.18)
described in Section 4.1.2. Tt involves an exponential number of (,.S) con-
straints (4.17) that can be added using the separation algorithm described in
Section 4.1.2.

We have tested this approach at the root node, starting from the basic
formulation (4.57)—(4.63) where the safety stocks have been removed, by per-
forming the following:

Solving the linear relaxation;

Solving the separation problem for each item ¢ and each period [;
Adding to the formulation each violated (I,.5) inequality identified;
Re-optimizing the new linear relaxation (only after the generation of cuts
for all items ¢ and all periods 1);

Solving again the separation problem for each item and period;
Repeating this procedure until no more violated (I, S) inequalities are gen-
erated.

This can be easily implemented in the Mosel modeling language. On our
MPS test problem, this procedure requires 14 passes (i.e., 14 iterations of
cut generation for all items and periods with a single reoptimization) and
generates 933 violated (I,S) cuts in total, in about 20 seconds. In order to
reduce the size of the model, these cuts have been added as model cuts; that
is, inactive cuts are removed from the model and put into a cut pool. In this
way, only 458 of the cuts are kept in the final formulation at the top node.

Then the resulting formulation at the root node is passed to Xpress-MP,
and the default MIP solver is used. The results of this cut-and-branch ap-
proach are given in Table 4.9.

Table 4.9. Cutting Plane Reformulation for the GW MPS Example

Algorithm Vars |LP Val.|CPLP Val.|XLP Val.|Best LB||Best UB t.

Formulation Cons Ncuts Ncuts |Best UB|| Gap (%)

Basic form. B & Cj|| 540 | 2893 5395 5479 5672 492

with (I, S) cuts and 405 458 52 5730 1.01
Xpress-MP cuts

NI =12 and NT = 15. Maximum 600 second runs.

We observe in Table 4.9 that the lower bound obtained with the 458 (I, S)
inequalities generated as cuts at the root node before the addition of Xpress-
MP cuts (see column “CPLP Val.”) is effectively the same as the lower bound
obtained with the extended reformulations (column “LP Val.” in Table 4.8).

4.5 A Production Planning Example: Reformulation and Solution 151

This holds because all reformulations define complete linear descriptions of
the single item models.

Although this formulation is of the same quality as and of smaller size
than the extended formulations, which allows one to evaluate more nodes in
the same amount of time, the best lower bound obtained after 600 seconds is
not better than with the extended reformulations. This may be due to the fact
that we do not generate additional violated (I, S) inequalities in the branch-
and-bound tree, and therefore the bounds in the tree may be worse than with
the tight extended reformulations.

Note also that the optimal feasible solution is again found in less than 600
seconds.

Heuristic Primal Solutions

The reformulations used and tested so far are mainly aimed at improving
the lower or dual bound on the objective function, but are not specifically
designed to produce good feasible or primal solutions quickly.

So to obtain better upper bounds, we apply the relax-and-fix construc-
tion heuristic and the relaxation-induced neighborhood search improvement
heuristic described in Section 3.6.

For relax-and-fix we have decomposed the planning horizon into three
equal parts.

e In the first iteration, we relax the set-up variables for periods in {6, ..., 15},
solve the resulting MIP', and then fix the set-up decisions for periods in
{1,...,5}.

e In the second iteration, with the fixed set-up decisions for periods in
{1,...,5}, we relax the set-up variables for periods in {11,...,15}, solve
the resulting MIP? and we additionally fix the set-up decisions for periods
in {6,...,10}.

e In the third and last iteration, with the fixed set-up decisions for periods
in {1,...,10}, we optimize the set-up decisions for periods in {11,...,15}.

This corresponds to R = 3, Q' = {1,...,5}, Q*> = {6,...,10}, Q3 =
{11,...,15}, Ut = U? =) in the notation of Section 3.6.2.

To test the ability of the algorithm to generate good solutions quickly, we
have limited the computation time of each iteration to maximum 40 seconds.
So, we fix variables at their values in the best solution obtained after maximum
40 seconds, and the relax-and-fix algorithm takes maximum 120 seconds in
total. Note that the only true lower bound produced by this relax-and-fix
procedure is the best lower bound obtained at the end of the first iteration
(solution of MIP?') before any variable fixing.

We have implemented the relax-and-fix procedure in Mosel. This simply
requires three successive runs of almost identical models. The only modifica-
tions are the status of the binary variables from relaxed to binary, and from

152 4 Classification and Reformulation

binary to fixed. The results obtained are given in Table 4.10 using the WW-U
and WW-CC reformulations.

First, the running times of the relax-and-fix heuristic are only 41 and 43
seconds, respectively, with formulations WW-U and WW-CC, because the
time limit of 40 seconds is reached only for the second iteration MIP?. Next,
the relax-and-fix heuristic produces feasible solutions quickly, but of relatively
moderate quality (“R&F Val.”) compared to those obtained in 600 seconds
without this procedure (see “Best UB” in Table 4.9). Also, the lower bounds
obtained are very weak (see “Best LB” in Tables 4.10 and 4.9).

Table 4.10. Heuristic solution for the GW MPS Example

Formulation Algorithm Vars [LP Val.|Best LB||R&F Val. | R&F Time
Cons RINS Val.|RINS Time
WW-U B&C/R&F/RINS 540 | 5395 5429 5928 41
(with Xpress-MP cuts) 1845 5743 2
WW-CC B&C/R&F/RINS |[2160| 5395 5429 5770 43
(with Xpress-MP cuts) 2205 5730 2

NI =12 and NT = 15; Maximum 160 second runs.

We have also tested the relax-and-fix heuristic on the basic formulation
(4.57)—(4.63). It failed to produce a feasible solution because the program
obtained at iteration 2, after fixing the set-up decisions for periods {1,...,5},
was infeasible. Due to the weak relaxed model for periods {6, ...,15} (i.e., no
reformulation is used), the set-up decisions obtained for the first periods do
not anticipate the capacity problems in later periods and lead to an infeasible
solution.

Therefore, it appears to be very important for the feasibility and quality of
the relax-and-fix procedure to start with a good formulation of the problem,
that is, with a good linear relaxation, or to find another way to anticipate the
capacity restrictions in later periods.

Finally we have implemented and tested the relaxation-induced neighbor-
hood search improvement heuristic described in Section 3.6.2. Specifically, we
fix the set-up variables that have the same value (0 or 1) in the linear relax-
ation (root node solution) and in the solution obtained by relax-and-fix. We
then solve the resulting M IP using the default Xpress-MP, with a time limit
of 40 seconds (maximum 160 seconds, including relax-and-fix). The results in
Table 4.10 show that the RINS procedure is able to improve the relax-and-fix
solution, and even once to produce the optimal solution (“RINS Val.”), in
almost no additional running time.

The next chapter shows how to use the classification scheme and the re-
formulation procedure in practice, and includes two small case studies.

Notes 153

The objective of Parts II to IV is to present all the available reformulation
approaches and results in a systematic way. Then, as in our illustrative exam-
ple, Part V uses these results with the support of the classification scheme to
solve industrial case studies.

Exercises

Applications and exercises relative to the classification scheme and the refor-
mulation procedure are given in the case studies of Chapters 5 and 14.

Notes

Sections 4.1 The multi-commodity reformulation for fixed charge network
flow problems, implemented and tested in Section 4.1.1, was proposed by
Rardin and Choe [145].

Sections 4.3 and 4.4 The classification scheme and the reformulation tables
are taken from Wolsey [194]. An earlier and somewhat different classification
scheme has been proposed by Bitran and Yanasse [28], and these authors
also prove that the four varying capacity problems PROB-C are N P-hard,
because these problems are polynomially reducible to the 0—1 knapsack prob-
lem.

Section 4.5 The formulations and results presented here (and in Section
4.1) have been implemented and obtained using the Mosel algebraic modeling
language (version 1.4.1) and the default version of the Xpress-MP Optimizer
MIP solver (version 15.30). In particular the separation algorithm used to
generate the (I,.5) inequalities (4.13) has been directly coded in Mosel. See
http://www.dashoptimization.com for more information about this soft-
ware. All the tests reported here have been carried out on a 1.7 GHz PC
(centrino) with 1 GB of RAM running under Windows XP.

Apart from the multi-commodity reformulation, the reformulations of the
single-item problems WW-U and LS-U used here are studied in detail in
Chapter 7. The WW-CC reformulation is studied in Chapter 9. Appropriate
references to these results are given in these chapters.

An introduction to the techniques used to prove that some valid inequal-
ities suffice to describe the convex hull of solutions to a model is given in
Section 6.4. For a general presentation of the various techniques that can be
used to prove that some valid inequalities are facet defining, and for related
topics, we refer the reader to Nemhauser and Wolsey [126].

2 Springer
http://www.springer.com/978-0-387-29959-4

Production Planning by Mixed Integer Programming
FPochet, ¥.; Wolsey, LA,

2008, XXV, 500 p., Hardcover

ISBN: @78-0-387-200859-4

