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LIVER REGENERATION: A LINK
TO INFLAMMATION
THROUGH COMPLEMENT

Robert A. DeAngelis, Maciej M. Markiewski,
and John D. Lambris

1. INTRODUCTION

The liver is one of the largest organs in the body, involved in various tasks such
as the processing of dietary amino acids, carbohydrates, lipids, and vitamins,
phagocytosis of particulate material in the portal circulation, synthesis of serum
proteins, biotransformation of circulating metabolites, and detoxification and
excretion of endogenous waste products and pollutant xenobiotics into the bile'.
It is strategically located between the gastrointestinal tract and the rest of the
body, with a unique dual blood supply including the portal venous system. This
makes the liver an intermediate filter for most of the venous drainage of the ab-
dominal viscera, and a vital organ for maintaining metabolic homeostasis’.
These anatomical properties support the physiological functions of the liver but
also make it vulnerable to a wide variety of metabolic, toxic, microbial, circula-
tory, and neoplastic insults.

The large functional reserve of the liver usually prevents the appearance of
clinical symptoms of liver failure even if a significant portion of the parenchyma
is destroyed. However, the progression of diffuse liver disease or the strategic
disruption of bile flow may lead to life-threatening consequences’, demanding
regenerative capabilities from the liver to assure the restoration of structural and
functional integrity even after severe damage’. Various insults, such as surgery
or viral or toxic injury, can signal the mechanisms responsible for liver regen-
eration’. Barring extensive severe injury or other circumstances preventing the
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normal division of hepatocytes, signaling for regeneration results in the reentry
of mature quiescent liver cells into the cell cycle. The process of regeneration
continues until the liver regains its original size, with complete recovery of tis-
sue architecture’. Partial hepatectomy (PHx), in which two-thirds of the liver
mass is surgically removed’, is one of the most common models used to study
the regenerative response. PHx is considered a non-injurious procedure for the
remaining liver tissue, which undergoes a compensatory hyperplasia. Con-
versely, another model involving toxic injury induced by the injection of carbon
tetrachloride (CCl,) results in severe damage to liver tissue. Thus, after CCl,
injection the liver must both restore lost tissue mass and repair and remove in-
jured parenchyma.

Despite obvious differences between the surgical and injury models, the
molecular mechanisms that govern the regenerative response seem to be quite
similar. Furthermore, the factors involved in this phenomenon largely overlap
with those responsible for the induction of innate immunity, suggesting that liver
regeneration may utilize the mechanisms of an inflammatory response’. In addi-
tion, complement, an important player in innate immune reactions, has been
implicated as a crucial factor for liver regeneration.

2. LIVER REGENERATION AND INFLAMMATORY MEDIATORS

Liver regeneration requires the activity of multiple signaling pathways, assuring
the synchronized proliferation of liver cells, protection from apoptotic signals,
remodeling of extracellular matrix (ECM), and restoration of lobular architec-
ture’. The initiation of regeneration through PHx is associated with minimal in-
jury; therefore, an obvious inflammatory reaction that includes a significant
inflammatory infiltrate is not seen in the liver parenchyma under these
circumstances. However, elevated levels of acute-phase proteins in the blood,
activation of liver macrophages, and release of cytokines that are involved in
regulation of inflammatory responses to various pathogens suggest that PHx
does initiate an inflammatory reaction’. Unlike PHXx, injection of CClI, results in
an inflammatory infiltrate in the liver in response to necrosis. In this model, re-
generation is associated with significant tissue injury and an inflammatory re-
sponse not seen after PHx. Though cell death and the inflammatory reaction
may interfere with attempts to clearly elucidate the molecular background of
regeneration in the CCl, model, it can be seen as a better reflection of liver dis-
eases that trigger the regenerative response, such as viral hepatitis and toxic- or
drug-induced injury, and of the regeneration of liver parenchyma that occurs
after surgical resection carried out in response to various pathologies, including
primary or metastatic tumors’.
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2.1. Cytokines and Transcription Factors

Lipopolysaccharde (LPS), a strong activator of innate immunity, may be present
in increased concentration in the portal blood flow after PHx"’. This factor is
known to be necessary for proper liver regeneration, as both germ-free athymic
and LPS-resistant mice show impaired regeneration after PHx'’. LPS is thought
to be one of the earliest signals that starts the regenerative process, likely arriv-
ing from the gut to engage receptors on Kupffer cells, the resident macrophages
of the liver'. Activation of Kupffer cells results in production of pro-inflam-
matory cytokines such as tumor necrosis factor-alpha (TNF-0) and interleukin
(IL)-6. TNF-o. activates the nuclear factor-kappa B (NF-xB) transcription factor
in macrophages and hepatocytes." This response leads to secretion of IL-6,
mainly from Kupffer cells, which in turn activates the transcription factor signal
transducer and activator of transcription (STAT) 3 in hepatocytes”". Studies
using mice deficient in TNF receptor 1 (TNFR1)""* or IL-6""'"" have shown that
these cytokines are necessary for liver regeneration. The ability of IL-6 admini-
stration to correct the defect in hepatocyte DNA synthesis seen in TNFRI1-
deficient mice (TNFR1") after PHx suggests that the role of TNF- in liver re-
generation is mediated by IL-6".

NF-xB and STAT3 participate in the induction of immediate-early genes
important for liver cell growth and hepatoprotection'". NF-kB regulates the cell
cycle regulator cyclin D1, Stimulation of the IL-6 receptor (IL-6R/gp130) by
IL-6 promotes cell growth not only through STAT3 activation™, but also through
activation of the mitogen-activated protein kinase (MAPK) signaling cascade™.
There is some debate that IL-6 may be more important as a hepatoprotective
factor rather than as a mitogen >, IL-6 activates the pro-survival proteins
phosphoinositol 3 kinase (PI3K) and Akt in addition to STAT3, which is also
involved in hepatoprotection””. NF-xB has also been shown to be an anti-
apoptotic factor during liver regeneration. When NF-kB activation is inhibited,
such as through the action of a superrepressor transgene of the NF-xB inhibitor,
IxBa, or by treatment with gliotoxin, liver regeneration after PHx is impaired
and apoptosis of hepatocytes occurs instead of proliferation’*. NF-xB regulates
genes for anti-apoptotic proteins”” and prevents TNF-o-induced hepatocyte
death™".

The cytokines and transcription factors mentioned here, along with some of
their targets, are also involved in inflammation. Most notable of these is TNF-,
which is released by mast cells and macrophages in the initial phase of the in-
flammatory response”. In endothelium, TNF-o. (along with IL-1, which is in-
volved in the acute-phase response in the liver’) induces a spectrum of changes,
mostly regulated at the transcriptional level, referred to as endothelial activa-
tion®. In particular, TNF-o. induces the synthesis of endothelial adhesion mole-
cules, other cytokines, chemokines, growth factors, eicosanoids, nitritic oxide,
and enzymes associated with matrix remodeling.” Additionally, it increases the
surface thrombogenicty of the endothelium®. TNF also causes aggregation and



20 R.A. DEANGELIS ET AL.

priming of neutrophils, leading to augmented responses of these cells to other
mediators and release of proteolytic enzymes from mesenchymal cells, thus con-
tributing to tissue damage™™.

LPS, thought to be an initial stimulator of liver regeneration, also activates
the complement system through the alternative pathway”. In fact, there are
many potential connections between complement and liver regeneration based
on what is known about interactions of the factors discussed above with the
complement pathways. The anaphylatoxin C5a, the effector molecule resulting
from cleavage of complement protein C5, acts on macrophages to induce cyto-
kine release, including TNF-0/**. The role of the C3a anaphylatoxin (originat-
ing from cleavage of C3) in modulation of TNF-o. and IL-1p production and
release in macrophages is not as well characterized as that for C5a, but some
published data indicate that C3a and C3a desArg may stimulate production of
these cytokines™. C3a signaling appears to be costimulatory to LPS signaling
and, depending on the pathophysiological background and target cell population,
may have stimulatory as well as inhibitory characteristics”. C3a and C5a may
therefore contribute to the induction of transcription factors indirectly through
their effects on cytokines. Indeed, both C3a and C5a are known to enhance the
release of IL-6 in response to LPS in peripheral blood mononuclear cells and
Kupffer cells in the liver™™. C5a is also important for NF-xB- and MAPK-
dependent release of IL-6 by neutrophils during sepsis”. Additionally, C5a acti-
vates the lipooxygenase pathway of arachidonic acid (AA) metabolism in neu-
trophils and monocytes, leading to acceleration of eicosanoid production by
these cells”. Previous reports have emphasized the importance of eicosanoids,
specifically prostaglandins and their potential effect on CREB transcription fac-
tor signaling, in liver regeneration after PHx""*.

2.2. Growth Factors, Metalloproteases, Adhesion Molecules, and
Acute Phase Proteins

Growth factors, including hepatocyte growth factor (HGF), also contribute to
hepatocyte proliferation during regeneration. Active HGF is produced by cleav-
age of pro-HGF by urokinase plasminogen activator (uPA) and plasminogen
proteases, a part of the fibrinolysis system™*. The involvement of this system in
inflammation can be illustrated by the role of plasminogen activator (released
from enodothelial cells and leukocytes activated during the inflammatory re-
sponse) in cleaving plasminogen to generate the matrix protease plasmin, a mul-
tifunctional enzyme, which in turn can cleave complement C3 to produce C3
fragments. Also, plasminogen can degrade fibrin to form fibrin split products,
which may have permeability-inducing properties”, and plasmin can activate
Hageman factor, which can trigger multiple cascades to amplify the inflamma-
tory response“.

When uPA is blocked, production of HGF is delayed, as is liver regenera-
tion.*® HGF can activate pathways for PI3K, ERK (an MAPK protein), and Akt,
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which are involved in growth and hepatoprotection, as mentioned above”. Con-
ditional knockout mice for the HGF receptor Met have increased sensitivity to
hepatocyte apoptosis and impaired recovery from damage when the liver is in-
jured, further indicating that the HGF-Met pathway is involved in hepatocyte
survival”. Interestingly, delayed recovery in these mice is associated with a per-
sistent inflammatory reaction. C3 may promote the release of HGF from adhe-
sive granulocytes and monocytes”, while in alveolar macrophages uPA and C5a
act synergistically to upregulate TNF-o production, suggesting another potential
link between complement and cytokine production during regeneration”.

Proteases, especially metalloproteases (MMP), are intricately involved in
liver regeneration by regulating activation of certain signaling factors, including
HGF, and contributing to angiogenesis for restoration of liver architecture.
Aside from being involved in HGF processing, plasminogen may also contribute
to angiogenesis in the liver, as plasminogen-deficient mice have an impaired
increase in microvessel density during regeneration’. Lack of tissue inhibitor of
metalloprotease (TIMP)-1 leads to increased MMP activity in the regenerating
liver and may result in greater release of HGF from the ECM. Indeed, an in-
crease in activated HGF is observed in TIMP-1-deficient (TIMP-17) mice”.
TNF-o can be shed from the cell surface by TNF-o-converting enzyme (TACE),
which is inhibited by TIMP-3". TIMP-3 deficiency results in overproduction of
hepatic TNF-q, leading to hepatocyte apoptosis and liver failure”. VEGF is an-
other important angiogenic factor for liver regeneration, involved in the recon-
struction of liver sinusoids through proliferation of sinusoidal endothelial cells,
which promotes hepatocyte proliferation”. It can be released from the ECM to
initiate signaling, perhaps by MMP-9, which is induced during liver regenera-
tion”"”. Intriguingly, C5a can also be involved in angiogenesis. C5a-stimulated
HUVEGC:s reveal increased expression of genes involved in endothelial adhesion,
migration, and angiogenesis”. In some cases, MMPs may be detrimental to the
liver. After injection of CCl,, MMP-2 expression is increased in IL-6" livers,
which show greater damage and liver failure compared to wild-type livers”.
Additionally, injury and apoptosis in IL-6" livers is reduced when MMP-2 is
inhibited. Providing yet another link between the complement system and liver
regeneration, complement proteins have been shown to interact with MMPs as
targets and regulators of these enzymes™ ™

Adhesion molecule expression is necessary for interactions between endo-
thelial cells and leukocytes during extravasation and migration, one of the most
important events that occurs soon after induction of the innate immune re-
sponse”. This process results in leukocytes leaving the bloodstream and entering
the interstitial space to travel to the site of inflammation. Anaphylatoxins,
mainly C5a, participate in endothelial activation during extravasation and migra-
ton. CSa-stimulated HUVECs upregulate genes for E-selectin, ICAM-1,
VCAM-1, and IL-6". Anaphylatoxins also influence the expression of adhesion
molecules on leukocytes. It has been postulated that C5a is involved in eosino-
phil adhesion to bronchial epithelial cells during allergic inflammation in the
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airways”. Another study showed that C5a is an activator of integrin-dependent
adhesion and transmigration in eosinophils and neutrophils”. These examples
indicate that anaphylatoxins can play a role in the process of extravasation, di-
rectly influencing the expression of adhesion molecules on endothelial cells as
well as leukocytes. However, anaphylatoxins are also indirectly involved in this
process through regulation of TNF-o and IL-1 expression. These two cytokines
appear to be major regulators of adhesion molecule expression on both leuko-
cytes and endothelium. Adhesion molecules are also necessary for liver regen-
eration. Mice deficient in ICAM-1 show impaired regeneration, with a decrease
in the recruitment of leukocytes and levels of TNF-o. and IL-6%. Complement,
which regulates ICAM-1 expression during inflammation, may potentially regu-
late ICAM-1 expression during regeneration, as well, perhaps to increase re-
cruitment of lymphocytes to the liver through adhesion to sinusoidal endothelial
cells”.

Activation of transcription factors after PHx leads to upregulation of acute
phase proteins, such as serum amyloid protein, hemopexin, and complement
(C)-reactive protein**”'. Upregulation of serum amyloid A, serum amyloid A2,
and haptoglobin precursor after PHx has also been noted in our recent study on
the liver proteome™. Increased synthesis of acute-phase proteins is a hallmark of
acute inflammatory reactions mediated by the innate immune system®. Com-
plement is also involved in the acute-phase response. C5a contributes to produc-
tion of several acute-phase proteins in liver cell lines”. C5a has also been shown
to act synergistically with LPS to enhance production of the acute-phase protein
o,-macroglobulin in hepatocytes™. It is possible that C5a acts during liver regen-
eration, either directly or indirectly through other signaling factors, to upregulate
production of acute-phase proteins required for liver mass restoration.

2.3. Natural Killer T (NKT) Cells

NKT cells display characteristics common to both classical T and natural killer
(NK) cells”. Most NKT cells are reactive against the glycolipid-binding non-
polymorphic major histocompatibility complex class 1-like glycoprotein CD1d™.
Interestingly, besides being expressed on antigen-presenting cells of the immune
system, CD1d is constitutively expressed on parenchymal liver cells””. NKT
cells can contribute to both the Th1 and Th2 adaptive immune responses through
their production of large amounts of, respectively, interferon-gamma (IFN-y)
and IL-4 upon activation™'". TL-4 production by a liver population of NKT cells
can also lead to production of antibody that activates complement to promote
recruitment of T cells during contact sensitivity'".

Recently, NKT cells have been suggested to play a role in liver regenera-
tion. The number of NKT cells in the liver in mice increases very quickly after
PHx, dependent upon signaling through adrenergic receptors'”. Blocking of
adrenergic receptors inhibits accumulation of NKT cells in the regenerating
liver”. Tt is possible that expansion of the NKT cell population can impair re-
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generation of the liver. In one study, an increase in NKT cell numbers due to IL-
12 stimulation was shown to exacerbate injury during the early phases of liver
regeneration'”. Increased production of IFN-y by the expanded population of
NKT cells could partly explain this detrimental effect, as IFN-y is known to play
a role in hepatitis-induced acute liver failure'”. Increased NKT cells could po-
tentially lead to increased C3 production by liver epithelial cells as well. A mi-
togen for T-lymphocytes, which also contributed to NKT cell expansion in one
study'os, stimulated C3 release from rat epithelial cells in the liver'™. In this case,
increased C3 may further contribute to liver damage caused by NKT cells.

3. THE ROLE OF COMPLEMENT IN LIVER REGENERATION

The complement system plays a crucial role in the early innate immune re-
sponse, and we have thus far postulated several potential links between this sys-
tem and regeneration of the liver based on factors common to both. However,
recent studies have provided evidence for a definitive role for complement in the
regenerative response. C3 appears to be activated early after the initiation of
liver regeneration, as cleavage products are observed in the serum 2-3 hours
after CCl, injection"” and PHx (personal observation). Exemplifying the recipro-
cal nature of complement proteins and cytokines, C3 and C5 have been shown to
be involved in cytokine production during early liver regeneration. Following
PHX, increases in TNF-o. and IL-6 mRNA are observed'”. In mice lacking C3
(C3") and in mice treated with an inhibitory antagonist for the C5a receptor
(C5aR), there is a reduction in TNF-o and IL-6 mRNA levels. Further, both of
these cohorts also show impaired activation of NF-kB and STAT3'”. Thus, both
C3 and C5 (most likely through the activities of C5a) are necessary for the initial
priming events of liver regeneration. Due to this defect in priming, hepatocytes
in both C3” and C5” mice do not enter the cell cycle and overall proliferation is
greatly reduced during liver regeneration'”"”. This lack of cell proliferation re-
sults in an inability of complement-deficient mice to completely restore their
liver mass after insult.

Complement is also involved in protection of the liver from damage during
regeneration, perhaps again through its role in liver cell priming. After PHx,
both C3” and C5” livers display severe damage and, in some animals, liver fail-
ure and mortality'”. A similar defect in liver regeneration is observed in C5"
mice after CCl, injection. Though CCI, normally induces damage in livers, C5"
mice have a much more diffuse and extensive pattern of liver necrosis and apop-
tosis after injection of CCl, compared to wild-type mice, along with an increase
in lipid content, known to be detrimental to liver regeneration and function'™ "
Thus, both C3 and C5 are necessary to prevent injury during the restoration of
liver mass.

C3 and C5 are not only separately required for cell division and hepatopro-
tection but also function in a cooperative manner. When both complement pro-
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teins are absent, in double-deficient C3/C5” animals, an even greater reduction
in hepatocyte proliferation is observed after PHx than that seen in singly defi-
cient livers. In addition, the injury observed in C3/C5” livers is more severe than
damage occurring in C3” or C5” livers.'” This additive effect suggests that C3
and C5 each have specific functions during regeneration of the liver, and do not
just control redundant mechanisms.

C3 and CS5 are cleaved into their effector fragments following activation of
the complement system. Further analysis of liver regeneration after PHx and
CCl, injection in complement-deficient mice has demonstrated the importance of
these effector molecules, especially the anaphylatoxins C3a and C5a. Defects in
cytokine signaling and transcription factor activation have already been noted
when mice were treated with a C5aR antagonist. These mice also display im-
paired liver regeneration and increased liver injury and mortality after PHx'*
Reconstitution of C5” mice with murine C5 restores cell division and greatly
diminishes injury to near-wild-type levels following injection of CCI,"”. C5a has
been shown to be the main effector for this improvement in recovery, as it can
be accomplished through reconstitution with only the C5a component of CS5,
while blockage of the C5aR with antagonist impairs regeneration in a manner
similar to that seen in C5" mice. C3a has also been shown to be involved in
proper liver regeneration. Reconstitution of C3” mice with murine C3a restores
hepatocyte proliferation to wild-type levels and reverses post-PHx liver damage
seen in C3” mice”'”. The importance of both anaphylatoxins has been demon-
strated by single or double reconstitution of C3/C5" mice following PHx. When
these mice are treated with only C3a or C5a, defects in regeneration are only
partially corrected. However, double reconstitution with both anaphylatoxins
restores regenerative parameters to levels similar to those seen in wild-type
mice, further confirming the cooperative effects of C3 and C5'. Finally, cell
division in C3aR" mice after CCI, injection is impaired, again showing the im-
portance of C3a for regeneration'”. However, the defect is not as severe as in
C3" mice, suggesting that C3 may have other functions aside from those medi-
ated by C3a.

In fact, C3 does appear to have an additional function. It is not only neces-
sary for promoting liver cell growth and preventing injury through the actions of
C3a, but also for clearing damaged tissue through deposition of C3b/iC3b. As
mentioned, C3 cleavage products are present in serum soon after the initiation of
liver regeneration. Twenty four to 36 hours after injection of CCl,, a second,
even greater wave of C3 cleavage occurs. The timing of this second wave corre-
lates with local deposition of C3 within damaged liver parenchyma'”’. Though
wild-type and C3" mice show similar levels of initial liver injury early after
CCl, injection, there is delayed clearance of damaged parenchyma in C3™ mice.
Phagocytosis of necrotic and apoptotic tissue is facilitated by engagement of the
CR3 receptor on macrophages with C3b/iC3b deposited in areas of injury'"'”.
Thus, the delayed clearance of damaged tissue in C3” mice is caused by the ab-
sence of C3 deposition in these areas.
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Figure 1. Complement involvement in liver regeneration. Initiation of liver regeneration signals
complement activation. C5a and possibly C3a bind to their receptors (C5aR, C3aR) on Kupffer cells,
and, together with LPS signaling through Toll-like receptor (TLR) 4, stimulate release of TNF-o. and
IL-6. TNF-a acts in an autocrine manner on Kupffer cells and, with IL-6 and C5a, activates the NF-
kB and STATS3 transcription factors in hepatocytes. HGF binds to the Met receptor on hepatocytes
after cleavage of pro-HGF by urokinase plasminogen activator (uPA) and plasminogen proteases.
Immediate-early gene products and acute-phase proteins (APP) induced by NF-xB and STATS3,
along with HGF, stimulate cell growth and hepatoprotective pathways. Complement also contributes
to the clearance of damaged tissue, through C3b/iC3b deposition and its interaction with the CR3
receptor on macrophages. When complement components (C’) are absent or inhibited, regeneration
can be impaired at any of these steps, resulting in liver failure and occasional mortality.
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A schematic representation of liver regeneration and the steps in which
complement is involved is shown in Figure 1. In summary, complement seems
to have multiple functions during liver regeneration: C3a and C5a are necessary
for proper priming of liver cells and progression through the cell cycle, promot-
ing growth and inhibiting cell death, while C3b/iC3b is needed to promote
clearance of injured tissue and prevent development of a more severe inflamma-
tory response that may lead to further injury.

Without C3 and CS5, the liver is unable to undergo proper tissue repair and
cell proliferation. In many cases, this leads to liver injury, failure, and increased
mortality. These studies demonstrate the important functions of complement
during liver regeneration, and strengthen the connection between regeneration
and the inflammatory response.

4. CONCLUSION

We have emphasized here the similarities that exist between the inflammatory
and regenerative responses in terms of mediators involved, providing evidence
that liver regeneration includes an inflammatory reaction. Particular emphasis
has been placed on the role of complement, an early and fundamental player in
innate immunity, in regeneration of the liver. During the inflammatory response
there are multiple interactions existing between several complement proteins
and the network of pleiotropic mediators, the cytokines. Through cytokine func-
tions, complement is involved in precise and balanced regulation of innate and
adaptive immune responses and the control of cellular growth and apoptosis.
Additionally, through cytokine signaling and other, more direct processes, com-
plement is now known to be vital for proper liver regeneration. Thus, the inter-
actions between various complement proteins and cytokines are essential for
both immune responses and tissue regeneration, and provide a new link in the
expanding chain connecting these two biological phenomena.
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