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1. The problem on vibrations of an elastic half-space bounded by the vacuum
was posed by H. Lamb in his well-known article [1]. He considered a series
of problems on vibrations under the action of different forces. In some cases
he solved these problems completely, and in other cases he only presented
formulas containing divergent Fourier integrals. First, H. Lamb considered
the force periodic in time and spatial coordinates, and then he applied the
Fourier integral to arrive at the general case.

In the present work we propose a new method, which allows us to solve
some of H. Lamb’s problems by means of simple calculations. Our method
gives tools to determine displacements not only on the surface (as H. Lamb),
but also inside the half-space.

The essential feature of our method is the reduction of a problem with
three independent variables to one with one or two independent variables.

Two real variables can be reduced to one complex variable, and we can
use the theory of functions of a complex variable to find the solution.

First, we consider the problem discussed by H. Lamb on vibrations of
the half-space under the action of a vertical impact on the surface. Then,
we discuss problems when the source of the force is located inside the elastic
medium. Under some fundamental assumptions, we find a solution by reduc-
ing a number of independent variables. Obtained solutions satisfy initial and
boundary conditions.

Our general reasoning allows us to study the reflection of elastic waves of
special types on the plane.

For instance, we can solve the problem on vibration of an elastic layer.
2. Let us state the first problem on vibrations of the half-space under the

action of a vertical impact on the surface.
Assume that the surface of the medium is the (x, z)-plane and suppose

that the motion does not depend on the coordinate z. Then, our problem is
reduced to the two-dimensional problem, which is very important later.
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For the components of the displacement u and v we have

u =
∂ϕ

∂x
+
∂ψ

∂y
, v =

∂ϕ

∂y
− ∂ψ

∂x
, (1)

and the functions ϕ and ψ must satisfy the equations

∂2ϕ

∂t2
=

1
a2

(
∂2ϕ

∂x2
+
∂2ϕ

∂y2

)
,

∂2ψ

∂t2
=

1
b2

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
, (2)

where

a =
√

ρ

λ+ 2µ
, b =

√
ρ

µ
. (3)

Denote by ρ the density of the medium, λ and µ are the Lame elastic
constants.

Suppose thatR(x, t) is the vertical force acting along the x-axis and normal
to the surface y = 0. Then we have the boundary conditions[

2
∂2ϕ

∂x∂y
+
∂2ψ

∂y2
− ∂2ψ

∂x2

]∣∣∣∣
y=0

= 0, (4)

[(
b2

a2
− 2
)(

∂2ϕ

∂x2
+
∂2ϕ

∂y2

)
+ 2

∂2ϕ

∂y2
− 2

∂2ψ

∂x∂y

]∣∣∣∣
y=0

=
R(x, t)
µ

. (5)

To consider the case of the impact concentrated at the point x = 0 at the
moment t = 0, we pass to the limit.

Let

Pε(x, t) =
1
ε2
P

(
x

ε
,
t

ε

)
,

where P (x, t) is a function continuous in the rectangle

−1 ≤ x ≤ 1, 0 ≤ t ≤ 1,

P (x, t) ≡ 0 for |x| ≥ 1 or
∣∣∣∣t− 1

2

∣∣∣∣ ≥ 1
2
.

Let ϕε(x, y, t) and ψε(x, y, t) be solutions of equations (2) with conditions
(4) and (5), where we replace R(x, t) by Pε(x, t).

We consider the problem on vibrations under the action of the impact as
the limiting case of the stated problem as ε → 0.

Thus, we have

ϕ(x, y, t) = lim
ε→0

ϕε(x, y, t), ψ(x, y, t) = lim
ε→0

ψε(x, y, t).

The value of the impact is defined as

Q = lim
ε→0

ε∫
−ε

dx

ε∫
0

Pε(x, t) dt =

1∫
−1

dx

1∫
0

P (x, t) dt.
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After defining the functions ϕε and ψε, we have

ϕε(kx, ky, kt) = ϕε/k(x, y, t) and ψε(kx, ky, kt) = ψε/k(x, y, t).

This property of the functions ϕε and ψε is stipulated by the form of
equations (2), conditions (4) and (5), and by the definition of Pε(x, t). Passing
to the limit, we have

ϕ(kx, ky, kt) = ϕ(x, y, t) and ψ(kx, ky, kt) = ψ(x, y, t),

i.e., the functions ϕ and ψ are homogeneous of degree 0. Hence they depend
on two variables

ξ =
x

t
, η =

y

t
. (6)

Also, note the case when the potentials ϕ and ψ are homogeneous func-
tions. Let P (x) be an odd function for −1 ≤ x ≤ 1. In (5) we put

R(x, t) = 0 for t < 0 and R(x, t) =
1
ε2
P

(
x

ε

)
for t > 0.

In this case, we have

ε∫
−ε

R(x, t) dx =
1
ε

1∫
−1

P (x) dx = 0,

and the moment with respect to x = 0 is equal to

2
ε2

ε∫
0

xP

(
x

ε

)
dx = 2

1∫
0

xP (x) dx = q.

As ε → 0, we have the focused moment q applied at t = 0.
Therefore, we see that the case of homogeneous potentials can arise under

different mechanical circumstances. In this connection, later we will see that
a solution of the problem contains several arbitrary constants, defined by
mechanical conditions of the problem. It should be noted that we again deal
with nonuniqueness of the solution. Later we will have an equation on the
boundary of the existence domain of an analytic function. This equation will
express the fact that the real part of a linear operator must vanish on this
function. Assuming that the mentioned operator vanishes everywhere, we will
select the simplest solution of this equation. We will also be able to obtain
other solutions of the problem. For this, we equate this operator to a regular
function, whose real part has zero boundary value on the entire contour with
the exception of a unique singular point of this function. We will not study
the family of all solutions, but we hope to do it in a future paper.

Moving on to consideration of the functions ϕ and ψ, let us note a fact,
which we will encounter later.
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Using homogeneity of the functions ϕ and ψ, we reduce equations (2) to
two equations with two independent variables. Furthermore, by suitable choice
of these variables, we reduce these equations to the Laplace equation or the
vibrating string equation. Indeed, if the functions ϕ and ψ depend only on
quantities (6), then equations (2) take the form

(a2ξ2 − 1)
∂2ϕ

∂ξ2
+ 2a2ξη

∂2ϕ

∂ξ∂η
+ (a2η2 − 1)

∂2ϕ

∂η2
+ 2a2ξ

∂ϕ

∂ξ
+ 2a2η

∂ϕ

∂η
= 0,

(b2ξ2 − 1)
∂2ψ

∂ξ2
+ 2b2ξη

∂2ψ

∂ξ∂η
+ (b2η2 − 1)

∂2ψ

∂η2
+ 2b2ξ

∂ψ

∂ξ
+ 2b2η

∂ψ

∂η
= 0.

(7)

Characteristics for the first equation in (7) are determined by the ordinary
differential equation

(a2ξ2 − 1)dη2 − 2a2ξηdξdη + (a2η2 − 1)dξ2 = 0

and by a similar equation for the second equation.
The last equation can be written in the form

a2(ξdη − ηdξ)2 − (dξ2 + dη2) = 0.

Let ds be an element of the characteristic arc. Then we can write our
equation in the form

ξ
dη

ds
− η

dξ

ds
= ±1

a
,

hence we see that the characteristics touch the circle

ξ2 + η2 =
1
a2
.

The first equation in (7) is elliptic, if

ξ2 + η2 <
1
a2
, (8.1)

and hyperbolic, if

ξ2 + η2 >
1
a2
. (8.2)

In the last case, two families of characteristics are expressed by the equa-
tion

−Cξ ±
√
a2 − C2η + 1 = 0,

where C is an arbitrary constant. This equation gives for C two complex
conjugate values under condition (8.1). Let us begin our analysis with this
case. Then, we have the imaginary characteristics

ξ

ξ2 + η2
± i

η
√

1 − a2(ξ2 + η2)
ξ2 + η2

= C.
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Putting

σ =
ξ

ξ2 + η2
, τ =

η
√

1 − a2(ξ2 + η2)
ξ2 + η2

, (9.1)

we reduce the first equation in (7) to the Laplace equation

∂2ϕ

∂σ2
+
∂2ϕ

∂τ2
= 0. (10.1)

Similarly, under condition (8.2), by the real transform

σ =
ξ

ξ2 + η2
, τ =

η
√
a2(ξ2 + η2) − 1
ξ2 + η2

, (9.2)

we bring the first equation in (7) to the vibrating string equation

∂2ϕ

∂σ2
− ∂2ϕ

∂τ2
= 0. (10.2)

In the second part of our work we discuss a more general and simple way
of the reduction of equations (2) to canonical form (10.1) or (10.2).

3. Taking into account that the initial moment t = 0 of the action of
our force corresponds to the rest of the half-space and that vibrations cannot
propagate with a velocity more than the velocity of longitudinal vibrations,
we can assert that a required solution will vanish outside the circle

ξ2 + η2 =
1
a2
. (11.1)

Thus, to find the potential ϕ, we have to integrate equation (10.1).
As regards the search for the potential ψ, a should be replaced by b in all

previous formulas. The characteristics of the second equation in (7) will be
tangent to the circle

ξ2 + η2 =
1
b2
, (11.2)

and this equation will be reduced to (10.2) outside this circle. If the point
(ξ, η) is located not only outside circle (11.2), but also outside circle (11.1),
then the value of ψ must also vanish at this point.

Note that at each point outside circle (11.2) ψ is a sum of two terms1,
each of which is constant along one of two characteristics passing through
this point. Then we can assert that ψ can differ from zero outside circle (11.2)
only on the intervals of tangents between the point of tangency and the axis
1 The function ψ has the form

f1

 
ξ + η

p
b2(ξ2 + η2) − 1

ξ2 + η2

!
+ f2

 
ξ − η

p
b2(ξ2 + η2) − 1

ξ2 + η2

!
. – Ed.
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η = 0, and on such tangents, which have a projection on this axis less than
1
a

by counting from the origin of coordinates.
Therefore, for the transverse wave, the front in the (ξ, η)-plane consists

of the arc AB of circle (11.2) and two segments of tangents AA1 and BB1

such that OA1 = OB1 =
1
a

(see Fig. 1). For the longitudinal wave, i.e., for

the potential ϕ, the front consists only of semicircle (11.1). The shape of the
front of the transverse wave (see Fig. 1) can be immediately obtained from
the Fermat principle. It should be noted that vibrations propagate over the

surface with the velocity
1
a
, and each point of this surface is a source of

not only longitudinal, but also transverse vibrations. At the same time these

transverse vibrations propagate inside with the velocity
1
b
.

Fig. 1.

The equation of the straight line AA1 in the (ξ, η)-plane is

aξ +
√
b2 − a2 η − 1 = 0. (12.1)

Returning to the variables x, y, t, we obtain the rectilinear front

ax+
√
b2 − a2 y − t = 0. (12.2)

To study equation (10.1), we introduce the complex variable

θ1 = σ + iτ =
ξ

ξ2 + η2
+ i

η
√

1 − a2(ξ2 + η2)
ξ2 + η2

.

This transform maps the semidisk

ξ2 + η2 <
1
a2
, η > 0,

onto the half-plane τ > 0 of the complex variable θ1, the diameter B1A1 onto
the intervals (−∞,−a) and (+a,+∞) of the axis τ = 0, and the semicircle
B1A1 onto the interval (−a,+a) of this axis (see Fig. 2). In the half-plane
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τ > 0 the potential ϕ is a harmonic function and can be expressed as the real
part of an analytic function Φ(θ1) = ϕ+ iϕ∗:

ϕ = Re [Φ(θ1)].

Fig. 2.

Similarly, introducing the complex variable

θ2 = σ + iτ =
ξ

ξ2 + η2
+ i

η
√

1 − b2(ξ2 + η2)
ξ2 + η2

,

in the semidisk
ξ2 + η2 <

1
b2
, η > 0,

we can express the potential ψ as the real part of a function Ψ(θ2) = ψ+ iψ∗

analytic in the half-plane τ > 0:

ψ = Re [Ψ(θ2)].

The formulas

θ1 =
ξ

ξ2 + η2
+ i

η
√

1 − a2(ξ2 + η2)
ξ2 + η2

,

θ2 =
ξ

ξ2 + η2
+ i

η
√

1 − b2(ξ2 + η2)
ξ2 + η2

(13)

prove that the values of θ1 and θ2 coincide at the points of the diameter CD
(see Fig. 1), which will be essential later.

It is easy to prove that on the plane θ2 the points D and C correspond to
the points +b and −b of the axis τ = 0, and the points B and A correspond
to the points +a and −a of this axis.

Let us now introduce the boundary conditions with respect to the new
variables. For any t > 0, there are no stresses on the surface of the half-space.
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Therefore, for ϕ and ψ we should take conditions (4) and (5) with P (x, t) = 0.
We obtain

D1(ϕ,ψ) =
[
2
∂2ϕ

∂ξ∂η
− ∂2ψ

∂ξ2
+
∂2ψ

∂η2

]∣∣∣∣
y=0

= 0,

D2(ϕ,ψ) =
[(

b2

a2
− 2
)(

∂2ϕ

∂ξ2
+
∂2ϕ

∂η2

)
+ 2

∂2ϕ

∂η2
− 2

∂2ψ

∂ξ∂η

]∣∣∣∣
y=0

= 0,

(14)

where we denote by D1 and D2 the linear operators on the left side of our
conditions. Differentiation with respect to ξ and η can be replaced by dif-
ferentiation with respect to θ1 and θ2. It is easy to see that for η = 0 we
have

∂θ1
∂ξ

= −θ2
1,

∂2θ1
∂ξ2

= 2θ3
1,

∂θ1
∂η

= −θ1
√
a2 − θ2

1,
∂2θ1
∂η2

= −2θ3
1,

∂2θ1
∂ξ∂η

= −2θ4
1 − a2θ2

1√
a2 − θ2

1

,

where the square root has the negative imaginary value for θ1 > a.
We have similar expressions for θ2. Conditions (14) take the form

Re
[
2θ
√
a2 − θ2Φ′′(θ) + 2

a2 − 2θ2

√
a2 − θ2

Φ′(θ)

−(2θ2 − b2)Ψ ′′(θ) − 4θΨ ′(θ)
]∣∣∣∣

τ=0

= 0,

Re
[
(b2 − 2θ2)Φ′′(θ) − 4θΦ′(θ)

−2θ
√
b2 − θ2Ψ ′′(θ) − 2

b2 − 2θ2

√
b2 − θ2

Ψ ′(θ)
]∣∣∣∣

τ=0

= 0.

(15)

Since θ1 and θ2 coincide on the axis η = 0, we denote the variables by θ
without index.

Conditions (15) must be satisfied on the part that corresponds to the
diameters of the semicircles.

Taking into account what we said about the correspondence between θ1,
θ2, ξ and η, we see that conditions (15) must be satisfied on the intervals
σ ≤ −b and σ ≥ +b. Note once again that the interval −a ≤ σ ≤ +a of
the variables θ1 and θ2 corresponds to the arcs of the semicircles, forming the
front of propagation of longitudinal and transverse vibrations. Consequently,
the functions ϕ and ψ, i.e., the real parts of Φ and Ψ , must vanish on this
interval. Taking into account that all coefficients on the left sides of (15) are
real for −a ≤ θ ≤ +a, we can assert that conditions (15) must be also satisfied
on the interval −a ≤ θ ≤ +a.
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Later, we show that these conditions must hold also on two intervals
−b ≤ θ ≤ −a and a ≤ θ ≤ b. For this purpose we consider an equation
of hyperbolic type for ψ in the curvilinear triangles AA1C and BB1D (see
Fig. 1). It is enough to consider the triangle BB1D. Introducing the variables

σ =
ξ

ξ2 + η2
, τ =

η
√
b2(ξ2 + η2) − 1
ξ2 + η2

, (16)

for ψ we have the vibrating string equation

∂2ψ

∂σ2
− ∂2ψ

∂τ2
= 0,

whose solution is
ψ = f1(σ + τ) + f2(σ − τ).

Since ψ is equal to zero outside circle (11.1), as above, we can assert that
the last expression for ψ contains at most one term different from zero on the
pieces of the characteristics, made of segments of tangents between the arc
BD and the axis η = 0.

The mentioned segments can be defined by the values of the real parameter
θ3,

θ3 =
ξ

ξ2 + η2
− η
√
b2(ξ2 + η2) − 1
ξ2 + η2

, a ≤ θ3 ≤ b, (17)

and the function ψ depends only on θ3 inside the triangle BB1D. It is easy
to see that the value of θ3 coincides on each tangent with the corresponding
value of θ2 on the arc BD. Hence, in view of continuity of ψ, in the triangle
BB1D we should take

ψ = Re [Ψ(θ3)].

On the interval B1D of the axis η = 0 the values of θ3 coincide with the
values of θ1.

Returning to conditions (14), we can express the derivatives with respect
to ξ and η by the derivatives with respect to θ1 and θ3. These variables can
be denoted by the same letter θ, and a ≤ θ ≤ b.

Conditions (14) take the form

Re
{

2θ
√
a2 − θ2Φ′′(θ) + 2

a2 − 2θ2

√
a2 − θ2

Φ′(θ)
}

−(2θ2 − b2)Re [Ψ ′′(θ)] − 4θRe [Ψ ′(θ)] = 0,

Re {(b2 − 2θ2)Φ′′(θ) − 4θΦ′(θ)} − 2θ
√
b2 − θ2Re [Ψ ′′(θ)]

−2
b2 − 2θ2

√
b2 − θ2

Re [Ψ ′(θ)] = 0,

a ≤ θ ≤ b.
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Hence conditions (15) must hold on the interval a ≤ θ ≤ b.
Considering the triangle AA1C, we can similarly show that conditions

(15) must hold also on the interval −b ≤ θ ≤ −a. Thus, conditions (15) are
established on the entire real axis of the plane θ.

The simplest conclusion from this fact is that the analytic functions on the
left sides of conditions (15) are equal to imaginary constants. This conclusion
is necessary, if we assume that the passage to the limit on the axis τ = 0 is
continuous everywhere. Thus, we obtain

−2θ
√
a2 − θ2Φ′′(θ) − 2

a2 − 2θ2

√
a2 − θ2

Φ′(θ) + (2θ2 − b2)Ψ ′′(θ) + 4θΨ ′(θ) = αi,

(b2 − 2θ2)Φ′′(θ) − 4θΦ′(θ) − 2θ
√
b2 − θ2Ψ ′′(θ) − 2

b2 − 2θ2

√
b2 − θ2

Ψ ′(θ) = βi,

where α and β are real constants.
Integrating the equations with respect to θ, we have

−2θ
√
a2 − θ2Φ′(θ) + (2θ2 − b2)Ψ ′(θ) = αiθ + C1,

(b2 − 2θ2)Φ′(θ) − 2θ
√
b2 − θ2Ψ ′(θ) = βiθ + C2,

(18)

hence,

Φ′(θ) =
−(αiθ + C1)2θ

√
b2 − θ2 − (βiθ + C2)(2θ2 − b2)

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

,

Ψ ′(θ) =
(αiθ + C1)(2θ2 − b2) − (βiθ + C2)2θ

√
a2 − θ2

(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

,

(19)

where C1 and C2 are complex constants. Consider real values of θ on the in-
terval −a ≤ θ ≤ +a. As above, this interval corresponds to the front of the
longitudinal wave and to a part of the front of the transverse wave. Conse-
quently, the real parts of Φ′(θ) and Ψ ′(θ) must be equal to zero on the interval
−a ≤ θ ≤ +a. Hence C1 and C2 are pure imaginary.

To find the constants, we express the projections of the displacements u,
v by the functions Φ and Ψ by using (1). We have

u = Re
[
Φ′(θ1)

∂θ1
∂x

+Ψ ′(θ2)
∂θ2
∂y

]
, v = Re

[
Φ′(θ1)

∂θ1
∂y

−Ψ ′(θ2)
∂θ2
∂x

]
. (20)

The expressions for θ1 and θ2 give

∂θ1
∂x

= −θ1 ∂θ1
∂t

,
∂θ1
∂y

= −
√
a2 − θ2

1

∂θ1
∂t

,

∂θ2
∂x

= −θ2 ∂θ2
∂t

,
∂θ2
∂y

= −
√
b2 − θ2

2

∂θ2
∂t

,

(21)
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where the square roots are negative imaginary for θ1 and θ2 > b. Indeed, for
the variables θ1 and θ2 we have

θ1 =
xt

x2 + y2
+ i

y
√
t2 − a2(x2 + y2)
x2 + y2

,

θ2 =
xt

x2 + y2
+ i

y
√
t2 − b2(x2 + y2)
x2 + y2

.

(22)

Consider now values of u and v on the axis x = 0. We assume that the
impact is concentrated at the point x = 0 and acts along the axis x = 0.

Hence u = 0 on this axis. Obviously, θ1, θ2,
∂θ1
∂t

and
∂θ2
∂t

are pure imaginary

on this axis. Consequently,
∂θ1
∂x

is real, and
∂θ2
∂y

is pure imaginary. From the

first of equations (20) we can conclude that C1 = β = 0. Denote C2 by −Ci,
where C is a real constant. Then, we can write

Φ′(θ) = i
−2αθ2

√
b2 − θ2 + C(2θ2 − b2)

F (θ)
,

Ψ ′(θ) = i
αθ(2θ2 − b2) + C2θ

√
a2 − θ2

F (θ)
,

(23)

where
F (θ) = (2θ2 − b2)2 + 4θ2

√
a2 − θ2

√
b2 − θ2. (24)

Formulas (23) contain two real constants α and C. Consider the displace-
ments u and v at a point of the axis y = 0 and assume that the time t tends

to infinity. Under these assumptions, the variables θ1 and θ2 equal
t

x
and tend

to infinity. The expression

F (θ) = (2θ2 − b2)2 − 4θ4

(
1 − a2

θ2

)1/2(
1 − b2

θ2

)1/2

= (2a2 − 2b2)θ2 + · · ·

has order θ2.
Using the expression for θ,

θ =
xt

x2 + y2
+ i

y
√
t2 − c2(x2 + y2)
x2 + y2

, c2 = a2 or b2, (25)

it easy to expand u and v in power series with respect to
1
t
. If α �= 0, then these

series begin with a constant term, and we have the displacements different
from zero as t → ∞. This term is equal to zero for α = 0. This fact forces us
to put α = 0. Then formulas (23) give us

Φ′(θ) = iC
2θ2 − b2

F (θ)
, Ψ ′(θ) = iC

2θ
√
a2 − θ2

F (θ)
. (26)
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The elementary potential ψ will be defined by the real part of the analytic
function Ψ(θ) not only inside the semidisk

ξ2 + η2 <
1
b2
,

but also in two triangles, if we replace θ2 by the variable θ3 defined above.
4. The constant C in (26) depends on the concentrated impact Q. Assume

that this constant is determined by the condition that Q is equal to 1. Also,
assume that the force Q(t) acts at the point x = 0 of the axis y = 0, where
Q(t) is a continuous function of t. Let ϕ0(x, y, t) and ψ0(x, y, t) be elementary
potentials at the given point (x, y) at the moment t. We can construct these
potentials by means of superposition of the effects of the action of the ele-
mentary impulses Q(t−H)dH concentrated at the moment t−H, where the
variable H belongs to the interval (H0,∞). We denote by H0 the time interval
necessary for the impulse to propagate to the point (x, y). For the longitudi-
nal wave, H0 is equal to a

√
x2 + y2. In the case of the transverse wave, the

expression for H0 depends on the position of the point (x, y). If this point is
located inside the angle AOB (see Fig. 1), where the front of the transverse
wave has the shape of a circular arc, then H0 = b

√
x2 + y2. If, on the contrary,

this point is located outside this angle, then we have H0 = ax +
√
b2 − a2 y.

These expressions for H0 follow immediately from equation (12.1) (in this case
we assume that x > 0). Finally, using equations (20) and (26), we obtain two
expressions for the components of the displacement:

u = CIm

∞∫
a
√

x2+y2

(2θ2
1 − b2)∂θ1

∂x

F (θ1)
Q(t−H) dH

+ CIm

∞∫
b
√

x2+y2

2θ2
√
a2 − θ2

2
∂θ2
∂y

F (θ2)
Q(t−H) dH, (27.1)

v = CIm

∞∫
a
√

x2+y2

(2θ2
1 − b2)∂θ1

∂y

F (θ1)
Q(t−H)dH

− CIm

∞∫
b
√

x2+y2

2θ2
√
a2 − θ2

2
∂θ2
∂x

F (θ2)
Q(t−H) dH. (27.2)

Expressions (27) are related to the case when (x, y) are located inside AOB,
i.e., if b2x2 ≤ a2(x2 + y2). In the case b2x2 ≥ a2(x2 + y2), we have

u = CIm

∞∫
a
√

x2+y2

(2θ2
1 − b2)∂θ1

∂x

F (θ1)
Q(t−H) dH
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+CIm

∞∫
ax+

√
b2−a2 y

2θ2
√
a2 − θ2

2
∂θ2
∂y

F (θ2)
Q(t−H) dH, (28.1)

v = CIm

∞∫
a
√

x2+y2

(2θ2
1 − b2)∂θ1

∂y

F (θ1)
Q(t−H) dH

−CIm

∞∫
ax+

√
b2−a2 y

2θ2
√
a2 − θ2

2
∂θ2
∂x

F (θ2)
Q(t−H) dH. (28.2)

In these formulas we should take

θ2 =
Hx

x2 + y2
+ i

y
√
H2 − b2(x2 + y2)

x2 + y2
for H2 ≥ b2(x2 + y2),

θ2 =
Hx

x2 + y2
− y
√
b2(x2 + y2) −H2

x2 + y2
for H2 ≤ b2(x2 + y2),

with the arithmetical square root. To determine the derivatives of θ with
respect to x and y, one can use formulas (21). Obviously, we should assume
that the behavior of the function Q(t) as t → −∞ is such that the integrals
mentioned above converge.

Formulas (27) and (28) coincide with the formulas derived in the work
of S. L. Sobolev [2], but the method described here is simpler and allows to
solve many other questions without any application of the Fourier integral.
It is known that such application frequently leads to essential complexities in
solving the problem.

The analysis of formulas (26), (27) and (28) was carried out in the men-
tioned work of S. L. Sobolev, nevertheless, we repeat some moments of this
analysis here.

First of all, note that in the case of the concentrated impact, the compo-
nents of u and v are infinite on circles (11.1) and (11.2). This fact follows from
the expressions for the derivatives

∂θ

∂x
and

∂θ

∂y
.

A unique exception are points on the axis η = 0, where the displacement
is equal to zero. The mentioned circumstance also take place on the parts
AC and BD of circle (11.2), which does not compose the front of the distur-
bance propagation. At the moments corresponding to such parts, we have the
beginning of a new phase of vibrations. On the lines

±aξ +
√
b2 − a2η = 1,
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which compose the front of the transverse wave, the derivatives
∂u

∂t
and

∂v

∂t
are infinite. This follows from the fact that Ψ ′(θ) contains the factor

√
a2 − θ2,

and the mentioned lines correspond to the case θ2 = a2.
The regular functions Φ(θ) and Ψ(θ) defined by (26) have two poles θ = ±c

on the real axis. These poles are roots of the equation

F (θ) = 0. (29)

It is easy to see that θ = c is a number reciprocal to the velocity of the
surface waves, which were first studied by Lord Rayleigh. Taking into account

that θ =
ht

x
on the real axis, we can assert that such poles give an infinite

displacement propagating on the surface in two directions with the velocity
1
c
. With the exception of these poles, the functions Φ(θ) and Ψ(θ) do not have

any singular point.
The proof of this fact is contained, for example, in the work of V. D. Kup-

radze and S. L. Sobolev [3]2.
5. It is now easy to obtain formulas for the displacement also in the case

when the force is distributed continuously along the axis y = 0. Let f(x) be a
density of this distribution. If the impact happens at the moment t = 0, then
the formulas have the form

u(x, y, t) = CIm

+∞∫
−∞

(2θ2
1 − b2)∂θ1

∂x

F (θ1)
f(ξ) dξ

+ CIm

+∞∫
−∞

2θ2
√
a2 − θ2

2
∂θ2
∂y

F (θ2)
f(ξ) dξ, (30.1)

v(x, y, t) = CIm

+∞∫
−∞

(2θ2
1 − b2)∂θ1

∂y

F (θ1)
f(ξ) dξ

− CIm

+∞∫
−∞

2θ2
√
a2 − θ2

2
∂θ2
∂x

F (θ2)
f(ξ) dξ, (30.2)

where

θ1 =
(x− ξ)t

(x− ξ)2 + y2
+ i

y
√
t2 − a2(x− ξ)2 − a2y2

(x− ξ)2 + y2
,

2 See corresponding reasoning in the paper [4] of Part I of this book (p. 148). – Ed.
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θ2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x− ξ)t
(x− ξ)2 + y2

+ i
y
√
t2 − b2(x− ξ)2 − b2y2

(x− ξ)2 + y2

for b2(x− ξ)2 + b2y2 < t2,

(x− ξ)t
(x− ξ)2 + y2

− y
√
b2(x− ξ)2 + b2y2 − t2

(x− ξ)2 + y2

for b2(x− ξ)2 + b2y2 > t2.

Note that the imaginary parts of all integrands in formulas (30) are equal
to zero outside the fronts of the corresponding waves. Assume that the force
is distributed not only along the axis y = 0, but the image of its action in time
is of unconcentrated nature. Then, multiplying the elementary potentials by
Q(ξ, t−H), we have to integrate with respect to H as in (27), (28), and with
respect to ξ as in (30). The lower limit of integration with respect to H in the
first integral is

a
√

(x− ξ)2 + y2.

In the second integral the lower limit is

b
√

(x− ξ)2 + y2

for
b2(x− ξ)2 ≤ a2[(x− ξ)2 + y2],

and
a|x− ξ| +

√
b2 − a2 y

for
b2(x− ξ)2 ≥ a2[(x− ξ)2 + y2].

6. All previous conclusions up to formulas (19) remain valid also in the
case of a focused force acting along the axis y = 0. In this case, we need
only to determine the constants in (19) somewhat differently. It is easy to
see that in this case the component v must vanish at the points on the axis
x = 0. Indeed, if we change the direction of the force acting along y = 0, then,
by the symmetry principle, the component v must remain unchanged on the
axis x = 0, at the same time u must change sign. On the other hand, the
displacement vector can only change its direction. Whence v = 0. Arguing in
the same way as above, by (26) we obtain the formulas

Φ′(θ) = −iC 2θ
√
b2 − θ2

F (θ)
, Ψ ′(θ) = iC

2θ2 − b2

F (θ)
. (31)

7. Before moving on to solving other problems, we present some general
considerations, which were essential in the preceding discussion and will be
even more important in the future. The essential moment in solving the prob-
lem is reducing the wave equation (2) for the potential
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c2
∂2ψ

∂t2
=
∂2ψ

∂x2
+
∂2ψ

∂y2
, c2 = a2 or b2,

to the Laplace equation in new independent variables σ and τ . In the case
c2 = b2, we obtained the solution of (2) with an arbitrary function of one
variable, which we denoted above by (σ− τ). In the first case, the dependence
of the complex variable θ = σ+iτ on the original variables (x, y, t) is expressed
by the formula

−θx−
√
c2 − θ2 y + t = 0. (32)

If we consider the three-dimensional space S with the coordinates (x, y, t),
then from the preceding computations it follows that equation (32) has com-
plex roots inside the cone

c2(x2 + y2) − t2 = 0. (33)

If we take a root θ of this equation with the positive imaginary part, then
for the root

√
c2 − θ2 in (32) we have to choose the negative imaginary value

for θ > c. Outside cone (33), i.e., for

c2(x2 + y2) − t2 > 0,

equation (32) has two real roots, and an arbitrary function of each of these
roots satisfies equation (2).

We point out a more general class of solutions of equation (2), which is
obtained by the reduction of this equation to the Laplace equation.

For the dependence of the new variable θ = σ+ iτ on the variables (x, y, t)
we use a linear function of x, y, and t with coefficients, which are analytic
functions of θ. Obviously, the coefficient at t may be taken equal to 1. This
leads us to the relation

t+ χ1(θ)x+ χ2(θ)y = χ(θ). (34)

Assume that in a domain of the space S this equation has a complex root
θ = σ+iτ , which is a function of (x, y, t). Consider a solution of (2), depending
only on σ and τ .

In this case, one can verify that equation (2) can be reduced to the form

∂2ϕ

∂σ2
+
∂2ϕ

∂τ2
= 0

under the condition
χ2

1(θ) + χ2
2(θ) = c2.

This circumstance is a consequence of the geometric nature of the lines
σ = const, τ = const, which are the straight lines in our three-dimensional
space S. However, since we do not use this fact, we will not discuss it in
detail. Taking into account that a harmonic function is mapped to a harmonic
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function under the action of the conformal mapping, we can take χ1(θ) as a
new complex variable. Then, in view of the condition mentioned above, we
have

χ2(θ) = ±
√
c2 − θ2,

and we can reduce relation (34) to the form

t− θx±
√
c2 − θ2 y − χ(θ) = 0. (35)

If this equation has a real root in a domain of the space S, then an arbitrary
function of this root satisfies equation (2).

All these assertions can be verified by simple calculation.
We present the corresponding formulas, since they will be useful later.
Denote by δ the left side of equation (35) and by δ′ the partial derivative

∂δ

∂θ
. We have

∂θ

∂x
=

θ

δ′
,

∂θ

∂y
= ∓

√
c2 − θ2

δ′
,

∂θ

∂t
= − 1

δ′
. (36)

The second-order derivatives are

∂2θ

∂x2
=

1
δ′

∂

∂θ

(
θ2

δ′

)
,

∂2θ

∂y2
=

1
δ′

∂

∂θ

(
c2 − θ2

δ′

)
,

∂2θ

∂t2
=

1
δ′

∂

∂θ

(
1
δ′

)
,

∂2θ

∂x∂y
=

1
δ′

∂

∂θ

(∓θ√c2 − θ2

δ′

)
.

(37)

By (36), if equation (35) has a real root θ in a domain of the space S, then
this root satisfies the inequality −c ≤ θ ≤ +c, and the function χ(θ) must
have real values.

Let us note also some formulas used later. Let θ be a complex root of (35),
let f(θ) be an analytic function. Using (36) and (37), we obtain the following
expressions for the derivatives of f(θ) with respect to (x, y, t):

∂2f

∂x2
=

1
δ′

∂

∂θ

[
f ′(θ)

θ2

δ′

]
,

∂2f

∂y2
=

1
δ′

∂

∂θ

[
f ′(θ)

c2 − θ2

δ′

]
,

∂2f

∂t2
=

1
δ′

∂

∂θ

[
f ′(θ)

1
δ′

]
,

∂2f

∂x∂y
= ∓ 1

δ′
∂

∂θ

[
f ′(θ)

θ
√
c2 − θ2

δ′

]
.

(38)

The same formulas remain valid for the function f(θ) of the real argument
θ, if θ is a real root of equation (35).

8. Let us now discuss the two-dimensional problem on vibrations of the
half-space under the action of a source of force F , located inside the half-
space. As before, assume that the elastic half-plane is y ≥ 0. Let x = 0,
y = f be the coordinates of the force source. We assume that the force action
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is concentrated at some moment. As above, we denote by t the time passed
from this moment.

Introduce two functions X(α, t) and Y (α, t) defined on

0 ≤ α ≤ 2π, 0 ≤ t ≤ 1.

Consider vibrations of the half-plane, being at rest at the moment t = 0,
under the action of stresses

1
ε2
X

(
α,

t

ε

)
and

1
ε2
Y

(
α,

t

ε

)
applied at the points of a circle of radius ε with center F (0, f), where the
interval of the action of stresses is 0 ≤ t ≤ ε. As ε → 0, we have vibrations
of the half-plane with a singularity at the point F (0, f) and with potentials
ϕ and ψ homogeneous in x, (y − f), and t. A similar result is obtained if the
moment is at t = 0. Note that the singularity of this type, generally speaking,
is homogeneous. We assume that our source has such singularity.

In another work we hope to conduct a mechanical analysis of this concept
of homogeneous singularity.

On the interval 0 ≤ t ≤ af there is no wave reflected from the plane y = 0
of the space S, and, as discussed above, the elementary potentials ϕ and ψ

depend only on the ratios
x

t
and

y − f

t
, i.e., they must remain constant on

the straight lines of the space S, passing through the point x = 0, y = f ,
t = 0. Subsequently, these lines will be called the rays of the space S. First
of all, we consider the case when the source F is the source of longitudinal
waves, i.e., we assume that the potential ψ is equal to zero on the interval
0 ≤ t ≤ af . The potential ϕ is not equal to zero only for

t2 > a2[x2 + (y − f)2],

i.e., inside the cone T0 of the space S with apex F . The equation of the cone
is

t2 − a2[x2 + (y − f)2] = 0. (39)

We consider only the inner part of this cone, where y ≥ 0 and t > 0.
Introduce the complex variable θ1 determined, as in (35), by the equality

t− θ1x+
√
a2 − θ2

1(y − f) = 0,

i.e.,

δ1 = t− θ1x+
√
a2 − θ2

1 y −
√
a2 − θ2

1 f = 0. (40)

Then ϕ must be the real part of an analytic function of the complex
variable θ1

ϕ1 = Re [Φ1(θ1)]. (41)
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Expression (40) sets in the correspondence to each ray inside the cone T0

a value of θ1, and ϕ1 remains constant along each ray. Consider this corre-
spondence in detail. Solving equation (40) with respect to θ1, we obtain

θ1 =
xt− i(y − f)

√
t2 − a2[x2 + (y − f)2]

x2 + (y − f)2
, (42)

where the radical is taken with “+” sign. The rays, located in the half-space
t > 0 and crossing the plane y = 0, correspond to the complex values of θ1
from the upper plane, i.e., with the positive imaginary part. Formula (42)
establishes the law of the correspondence between the rays and the values of
θ1. The family of rays, forming the part of the cone where t > 0, corresponds
to the entire complex plane with the cut (−a,+a) along the real axis. However,
the points of this cut correspond to the generators of the cone. The intervals
(−∞,−a) and (+a,+∞) of the real axis of θ1 correspond to the rays located
on the plane y = f , the imaginary axis corresponds to the rays of the plane
x = 0, and the upper half (0,+i∞) of this axis corresponds to the rays for
which y < f , and which further intersect the plane y = 0. From the last
fact and equation (40) it follows that in this equation the radical

√
a2 − θ2

1

is positive for the values of θ1 on the imaginary semiaxis (0,+i∞). This is
equivalent to the assumption that the value of the radical

√
a2 − θ2

1 is negative
imaginary for θ1 > a.

The generators of the cone T0 correspond to the front of propagation of
vibrations. Consequently, ϕ1 must vanish in the corresponding points, i.e.,
the function Φ1(θ1) in (41) must be purely imaginary on the cut (−a,+a).
The points of the axis of the cone T0 correspond to the source of different
moments, and this axis corresponds to the point of the plane θ1 at infinity.
Since we know the source, we do the singularity of Φ1(θ) at infinity.

Thus, the function Φ1(θ) is determined. A more detailed analysis of dif-
ferent sources will be conducted later. Our assumption, that the potential ϕ
remains constant along each ray emanating from the point x = 0, y = f ,
t = 0, leads us to the fact that the singularity of ϕ1 in the force source takes
place at all moments t > 0.

9. The given elementary potential ϕ1 determines the motion when t < af .
For t > af we have to add two more potentials: one ϕ2 for the longitudinal
wave, and another ψ1 for the transverse wave. We select these potentials in
the same way as above, i.e., we assume that these potentials must remain
constant along some rays of the space S. These rays are called the reflected
rays. Beginning with the construction of ϕ2, first of all, we note that ϕ2 must
be the real part of an analytic function:

ϕ2 = Re [Φ2(θ2)], (43)

where θ2 is defined by equation (35) for c = a. We choose the function χ(θ)
in this equation such that the values of θ1 and θ2 coincide for y = 0, i.e., we
select χ(θ) as in equation (40).
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Then, for θ2 we have the equation

δ2 = t− θ2x−
√
a2 − θ2

2 y −
√
a2 − θ2

2 f = 0. (44)

It is easy to verify that these reflected rays generate the cone

t2 − a2[x2 + (y + f)2)] ≥ 0

with apex (0,−f, 0). We select in equation (44) the opposite sign of the radical
than in equation (40), so the rays going to the domain t > 0, y > 0, correspond
to the complex values of θ2 with the positive imaginary parts.

Constructing the potential ψ1, we should put c = b in equation (35). The
term χ(θ) is chosen in the same way as in equation (40). The sign of the
radical in the coefficient at y should be taken such that the rays, along which
y and t increase, correspond to the values of θ with the positive imaginary
parts. It is easy to show that we should take “−” sign.

Then, for θ3 we have the equation

δ3 = t− θ3x−
√
b2 − θ2

3 y −
√
a2 − θ2

3 f = 0. (45)

For y = 0 the values of θ3 coincide with the values of θ1 and θ2.
The potential ψ1 is the real part of an analytic function

ψ1 = Re [Ψ(θ3)]. (46)

Before we construct the functions Φ2(θ2) and Ψ(θ3), let us point out the
connection between the variables θ. For this purpose, consider the section of
the main cone T0 by the plane y = 0, where we have the reflection. In the
section we have the hyperbola

t2 − a2(x2 + f2) = 0.

Each point (x, t) of the plane y = 0, located inside this hyperbola, for
which

t2 − a2(x2 + f2) ≥ 0 and t > 0,

corresponds to a complex value of θ1 from the upper half-plane or the real
axis. By the construction of equations (44) and (45), the values of θ2 and θ3
coinciding with the values of θ1 correspond to the point (x, t). Thus, choosing
the point (x, t), we define the complex values of θ2 and θ3 from the upper half-
plane. Substituting these values into (44) and (45), we obtain two reflected
rays in the space S. The potential ϕ2 remains constant along one of these rays,
and ψ1 remains constant along another one. The values of y and t increase
along these reflected rays. Hence the addition of the potentials ϕ2 and ψ1

does not influence the motion for t < af and does not change the initial data.
If we fix a point (x, y) and a moment t, then the corresponding values of θ2
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and θ3 from the upper half-plane are obtained from equations (44) and (45).
Obviously, it is impossible to define complex θ2 and θ3 for some points (x, y, t).

This corresponds to the fact that the reflected rays do not fill the entire
domain t > 0, y > 0.

If, for example, the reflected ray of the potential ϕ2 does not pass through
the point (x, y, t), then we should not add the potential ϕ2 at this point in
order to construct the solution.

It is easy to verify that, by (35), the complex value of θ characterizes some
direction in the space S without any dependence on the term χ(θ). Thus, the
above reasoning gives us the law of the correspondence between the directions
of the incident and reflected rays. We will not discuss this anymore, since our
goal is only the effective construction of the solution.

For the displacement components we have

u = Re
[
Φ′

1(θ1)
∂θ1
∂x

+ Φ′
2(θ2)

∂θ2
∂x

+ Ψ ′(θ3)
∂θ3
∂y

]
,

v = Re
[
Φ′

1(θ1)
∂θ1
∂y

+ Φ′
2(θ2)

∂θ2
∂y

− Ψ ′(θ3)
∂θ3
∂x

]
.

(47)

Inside the hyperbola t2−a2(x2 +f2) = 0 on the plane y = 0 the boundary
conditions expressing the absence of stresses must hold. However, note that
the variables θ1, θ2 and θ3 coincide for y = 0. This allows us to omit index.
Furthermore, let δ′ without index denote the general value of the variables δ′1,
δ′2 and δ′3 for y = 0. Using (38), we can write the boundary conditions in the
form

Re
{

1
δ′

∂

∂θ

−2θ
√
a2 − θ2[Φ′

1(θ) − Φ′
2(θ)] + (b2 − 2θ2)Ψ ′(θ)

δ′

}∣∣∣∣
y=0

= 0,

Re
{

1
δ′

∂

∂θ

(b2 − 2θ2)[Φ′
1(θ) + Φ′

2(θ)] − 2θ
√
b2 − θ2Ψ ′(θ)

δ′

}∣∣∣∣
y=0

= 0.

(48)

The expressions under the sign of the real part Re contain the complex
variable θ, which can take arbitrary values from the upper half-plane, and the
real variable x, which appears in the formula for δ.

First, note that θ can be expressed in terms of x and t. This follows from
formula (42) for y = 0.

Thus, in the expression

δ′ = −x+
θ√

a2 − θ2
f (49)

we can replace x by means of the formula

x =
t

θ
−

√
a2 − θ2 f

θ
.
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Hence we have one complex variable θ and one real parameter t under the
sign of the real part on the left sides of (48).

Consider the interval (−a,+a) of the real axis of the plane θ, corresponding
to the generators of the cone T0, i.e., to the front of propagation of vibrations
on the plane y = 0. All three potentials ϕ1, ϕ2 and ψ must vanish on this front,
i.e., the real parts of the functions Φ1, Φ2 and Ψ must be equal to zero on this
interval. Obviously, we can make the same conclusion about the derivatives
Φ′

1, Φ
′
2, and Ψ ′. Taking into account that the radical

√
a2 − θ2 is real on this

interval, we can assert that conditions (48) are satisfied for each positive real
value of t on the interval −a < θ < +a. Fix now a value of t and prove that
conditions (48) will be satisfied for this value of t and for all θ from the upper
half-plane. If t is fixed, and x is changing from

−
√
t2 − a2f2

a

to

+

√
t2 − a2f2

a
,

then the complex variable

θ =
xt

x2 + f2
± i

f
√
t2 − a2(x2 + f2)
x2 + f2

describes a curve l, issuing from a pointA on the interval (−a,+a) and arriving
at another point B on the same interval. The curve l together with the interval
AB of the real axis form a closed contour. By (48) for fixed t the expressions
for θ and t along this contour have zero real parts. Then, these real parts must
vanish on the entire upper half-plane of θ. Making the change of variables

t = θx+
√
a2 − θ2 f,

we can conclude that conditions (48), where δ′ is defined by (49), must hold
for an arbitrary value of x on the entire upper half-plane of θ. Let us prove
that we then have

−2θ
√
a2 − θ2[Φ′

1(θ) − Φ′
2(θ)] + (b2 − 2θ2)Ψ ′(θ) = 0,

(b2 − 2θ2)[Φ′
1(θ) + Φ′

2(θ)] − 2θ
√
b2 − θ2Ψ ′(θ) = 0.

(50)

Denoting by σ1(θ) the left side of the first of these equalities and putting

σ2(θ) =
θf√

a2 − θ2
,

we can express the first condition in (48) in the form

σ′
1(θ)[−x+ σ2(θ)] − σ′

2(θ)σ1(θ)
[−x+ σ2(θ)]2

= Ci,
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where C is a real constant depending only on x, and θ can take arbitrary values
in the upper half-plane. From the last equality it follows that the coefficient
at x and the term independent of x in the numerator of this fraction must
vanish. Hence σ1(θ) = 0, i.e., the first equality in (50) holds. Similarly, we can
prove the second equality.

Solving equations (50) with respect to Φ′
2(θ) and Ψ ′(θ), we obtain

Φ′
2(θ) =

−(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

F (θ)
Φ′

1(θ),

Ψ ′(θ) = −4θ(2θ2 − b2)
√
a2 − θ2

F (θ)
Φ′

1(θ),

(51)

where
F (θ) = (2θ2 − b2)2 + 4θ2

√
a2 − θ2

√
b2 − θ2. (52)

The fractions in (51) are real on the interval −a < θ < +a of the real
axis. On the other hand, the real part of the function Φ1(θ) vanishes on this
interval. Whence, by condition, the real parts of Φ′

2(θ) and Ψ ′(θ) also vanish on
this interval. Integrating, we can choose additive constants in the expressions
for the potentials Φ2(θ) and Ψ(θ) such that the real parts of Φ2(θ) and Ψ(θ)
will also be equal to zero. By formulas (51) and (47), we can determine the
displacement components.

10. Let us point out some consequences of the obtained formulas. Consider
equation (40) having complex roots inside the cone T0 and real roots from the
interval −a < θ < +a on the generators of this cone. As is known, these
generators correspond to the front of propagation of the longitudinal wave
in the domain t > 0, y > 0 of the space S. Let θ1 = θ0 be a value from
the interval −a < θ1 < +a, let λ0 be a corresponding generator. If we put
θ1 = θ0 in equation (40), then we have the equation of the plane tangent to
the cone T0 along λ0. Therefore points (x, y, t) in the exterior of the cone T0

correspond to real values of θ1 from the interval −a < θ1 < +a. Then, δ′′1 = 0
along each generator λ0, i.e., the derivative of the left side of equation (40)

is equal to zero. Hence the derivatives
∂θ1
∂x

and
∂θ1
∂y

are infinite along these

generators, and we have infinite displacements on the front of propagation of
the longitudinal wave. The study of equations (44) and (45) leads to a similar
conclusion, and we have infinite displacements on the fronts of reflected waves.

Expanding the left side of equation (40) in powers of (θ1 − θ0), we can

conclude that
∂θ1
∂x

and
∂θ1
∂y

are infinite of the orders

1√
x− x0

and
1√

y − y0
,

respectively.
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Let us now move on to finding asymptotic estimates of the obtained solu-
tion as t → ∞. This will give us the phenomenon of surface waves in the clear
form.

Let ξ = x− t
c , η = y, where c is a positive root of the equation F (θ) = 0,

i.e.,
1
c

is the known velocity of the Rayleigh wave [2]. Assuming that ξ and η

remain bounded, let us construct the asymptotic expansions for θ1 and θ2 up

to the terms of order
1
t2

. It is easy to see that we have

θ1 = c− c2ξ

t
− i

c
√
c2 − a2(η − f)

t
+O

(
1
t2

)
,

θ2 = c− c2ξ

t
+ i

c
√
c2 − a2(η + f)

t
+O

(
1
t2

)
.

(53)

Hence,

∂θ1
∂x

= −c2

t
+O

(
1
t2

)
,

∂θ1
∂y

= −i c
√
c2 − a2

t
+O

(
1
t2

)
,

∂θ2
∂x

= −c2

t
+O

(
1
t2

)
,

∂θ2
∂y

= i
c
√
c2 − a2

t
+O

(
1
t2

)
.

(54)

By F (c) = 0, one can also verify that

F (θ1) = F ′(c)
−c2ξ − ic

√
c2 − a2(η − f)
t

+O

(
1
t2

)
, (55)

F (θ2) = F ′(c)
−c2ξ + ic

√
c2 − a2(η + f)
t

+O

(
1
t2

)
. (56)

Similarly, for θ3 we obtain

θ3 = c− c2ξ

t
+ i

c
√
c2 − b2η

t
+ i

c
√
c2 − a2 f

t
+O

(
1
t2

)
, (57)

∂θ3
∂x

= −c2

t
+O

(
1
t2

)
,

∂θ3
∂y

= i
c
√
c2 − b2

t
+O

(
1
t2

)
. (58)

This allows us to write the asymptotic expansions for the displacement

components up to the term of order
1
t
. Taking into account (47) and (51)3,

we have
3 The authors use also the formula

F (θ3) = F ′(c)
−c2ξ + ic

√
c2 − b2η + ic

√
c2 − a2f

t
+ O

„
1

t2

«
. – Ed.
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u = Re
{−(2c2 − b2)2 − 4c2

√
c2 − a2

√
c2 − b2

F ′(c)

× −c
−cξ + i

√
c2 − a2(η + f)

Φ′
1(c) −

i4c(2c2 − b2)
√
c2 − a2

F ′(c)

× i
√
c2 − b2

−cξ + i
√
c2 − b2η + i

√
c2 − a2 f

Φ′
1(c)
}

+O

(
1
t

)
, (59.1)

v = Re
{−(2c2 − b2)2 − 4c2

√
c2 − a2

√
c2 − b2

F ′(c)

× i
√
c2 − a2

−cξ + i
√
c2 − a2(η + f)

Φ′
1(c) +

i4c(2c2 − b2)
√
c2 − a2

F ′(c)

× −c
−cξ + i

√
c2 − b2η + i

√
c2 − a2 f

Φ′
1(c)
}

+O

(
1
t

)
. (59.2)

Our analysis allows us to note that at infinity vibrations produce the wave

propagating with the velocity
1
c

with bounded amplitude. It is easy to see

that this wave is a natural generalization of the Rayleigh wave4.
In the case of the concentrated source of the force inside the medium, we

see that the surface wave has nonperiodic nature. We should also mention that
the exponential law of damping in the depth is not valid anymore. Obviously,
the concept of wave length does not make sense.

11. Let us now move on to the source of transverse waves. As in the previ-
ous problem, we assume that this source is regular, i.e., the given elementary
potential of the transverse waves ψ1 is the real part of a regular analytic
function

ψ1 = Re [Ψ1(θ1)], (60)

where the complex variable θ1 is defined by an equation similar to (40),

δ1 = t− θ1x+
√
b2 − θ2

1 y −
√
b2 − θ2

1 f = 0. (61)

In this case, the cone T0 is defined by the equation

t2 − b2[x2 + (y − f)2] = 0, (62)

and the rays located inside this cone correspond to the plane of the complex
variable θ1 with the cut (−b,+b) along the real axis. The values of θ1 on this
cut correspond to the generators of the cone. We look for the potential of
longitudinal reflected waves in the form of the real part of a function analytic
in the upper half-plane

ϕ = Re [Φ(θ2)], (63)

4 These waves were studied by S. L. Sobolev in his work cited above.
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where θ2 is defined by the equation

δ2 = t− θ2x−
√
a2 − θ2

2 y −
√
b2 − θ2

2 f = 0. (64)

As before, we chose an equation such that it coincides with equation (61)
for y = 0. In the section of cone (62), by the plane y = 0, we have the
hyperbola

t2 − b2(x2 + f2) = 0, t > 0. (65)

Each point P from the interior of this hyperbola corresponds to a complex
value of θ1 from the upper half-plane, and points of the hyperbola correspond
to values of θ1 on the interval (−b,+b) of the real axis. To obtain a reflected
ray lx,t of the potential ϕ of the longitudinal wave passing through a point P
with coordinates (x, t) of the plane y = 0, we should take the corresponding
value of θ1 and substitute it for θ2 into equation (64). This ray lx,t passes
through the point P , and equation (64) defines its direction.

As we have already noted, the direction of the straight lines, obtained from
equation (64), is completely defined by the first three terms on the left side of
this equation. Hence the direction is the same as one obtained from equation
(44) with the same value of θ. The straight lines of equation (44) form the
already known cone with apex x = 0, y = −f , t = 0 and the apex angle equal

to arctan
1
a
. For this cone as well as for the cone T0 from our problem, the

values of θ from the upper half-plane correspond to the rays along which y
and t increase simultaneously. When the value of θ tends to a point of the real
interval (−a,+a), the direction of the corresponding ray coincides with the
direction of the corresponding generator of the cone. When θ tends to a point
of the real axis outside the interval (−a,+a), the ray direction is parallel to
the plane y = 0 in the limit. In the present case, the points of hyperbola (62)
correspond to the values of θ1 on the interval (−b,+b). Let A and B be the
points of this hyperbola for θ1 = ±a (see Fig. 3).

Fig. 3.

The arc AB of the hyperbola corresponds to the values of θ1 from
−a < θ1 < +a.

The infinite branches AA1 and BB1 correspond to the values of θ1 from
the intervals a ≤ θ1 < b and −b ≤ θ1 < −a. The above reasoning leads us to
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the following conclusion: if a point P (x, t) tends to a point on the arc AA1

or BB1, then the angle between the corresponding ray lx,t of the reflected
longitudinal wave and the plane y = 0 tends to zero. The limit for the points
located on these arcs is on the plane y = 0.

Substituting into (64) instead of θ2 some value from the interval (a, b) or
(−b,−a), we obtain the equation of the ray lx,t passing through a point of the
arc AA1 or BB1 and located on the plane y = 0:

t− θ2x−
√
b2 − θ2

2 f = 0.

It is easy to show that the last equation defines the tangents to hyperbola
(65). Hence, for each point of the arcs AA1 and BB1 of the hyperbola, the cor-
responding ray of the reflected longitudinal potential is tangent to hyperbola
(65) at this point.

Later we will see that the potential of the reflected longitudinal waves will
be equal to zero only on the interval (−a,+a) of the real axis, as in the case of
the longitudinal source, but it will not be equal to zero on the intervals (a, b)
and (−b,−a). Also, it will not vanish in two domains of the plane bounded by
the arcs AA1 and BB1 of the hyperbola and two tangents to the hyperbola
at the points A and B. We denote these domains by (I) and (II). There is no
incident transverse wave in these domains. To satisfy the boundary conditions,
we have to define the potential ψ2 of the reflected transverse wave not only
inside hyperbola (65), but also outside this hyperbola in the domains (I) and
(II).

We will see later how to do it. We now move on to the definition of ψ2

inside the hyperbola, i.e., for complex values of θ from the upper half-plane.
Here, ψ2 is the real part of an analytic function

ψ2 = Re [Ψ2(θ3)], (66)

where θ3 is defined by the equation

δ3 = t− θ3x−
√
b2 − θ2

3 y −
√
b2 − θ2

3 f = 0, (67)

which defines the conical beam T1 of rays with apex

F1(x = 0, y = −f, t = 0)

and angle arctan
1
b

at the apex. We consider only those rays of this beam
which pass through the domain y > 0, t > 0 of the space S.

Let us now write the boundary conditions for the mentioned points, i.e.,
for the values of θ from the upper half-plane. The values of θ1, θ2 and θ3
coincide for y = 0. Denoting by θ this common value, we have
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Re
{

1
δ′

∂

∂θ

2θ
√
a2 − θ2Φ′(θ) + (b2 − 2θ2)[Ψ ′

1(θ) + Ψ ′
2(θ)]

δ′

} ∣∣∣∣
y=0

= 0,

Re
{

1
δ′

∂

∂θ

(b2 − 2θ2)Φ′(θ) + 2θ
√
b2 − θ2[Ψ ′

1(θ) − Ψ ′
2(θ)]

δ′

} ∣∣∣∣
y=0

= 0,

(68)

where δ′ is the derivative of the expression (t− θx−√
b2 − θ2 f) with respect

to θ.
As in the case of the source of longitudinal waves, from above we obtain

2θ
√
a2 − θ2Φ′(θ) + (b2 − 2θ2)[Ψ ′

1(θ) + Ψ ′
2(θ)] = 0,

(b2 − 2θ2)Φ′(θ) + 2θ
√
b2 − θ2[Ψ ′

1(θ) − Ψ ′
2(θ)] = 0.

(69)

Then, we can define the functions Φ′(θ) and Ψ ′
2(θ)

Φ′(θ) =
4θ(2θ2 − b2)

√
b2 − θ2

F (θ)
Ψ ′

1(θ),

Ψ ′
2(θ) =

−(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

F (θ)
Ψ ′

1(θ).

(70)

The potential ψ1 of the transverse waves propagating from the source must
vanish on the wave front. It means that the real parts of the functions Ψ1(θ)
and Ψ ′

1(θ) must be equal to zero for −b ≤ θ ≤ +b. Taking into account that
the fractions in (70) are real for −a ≤ θ ≤ +a, we can assert that Φ′(θ) and
Ψ ′

2(θ) have zero real part for −a ≤ θ ≤ +a. This fact is not valid anymore
on the intervals a < θ < b and −b < θ < −a, since the indicated fractions
contain the radical

√
a2 − θ2. Therefore, in the domains (I) and (II) of the

plane y = 0 the potential ϕ equal to the real part of Φ(θ) is not equal to
zero. These domains are generated by the rays lx,t or the lθ, corresponding
to the real values of θ from the intervals (a, b) and (−b,−a). If we substitute
such value of θ for θ3 into equation (67), we have the equation of some plane
in the space S. The section of this plane by the plane y = 0 is the ray lθ.
It is easy to see that this plane is tangent to the cone T1 of the reflected
transverse wave. Thus, we have the family of planes tangent to the cone T1

along the generators passing through the points P of the arcs AA1 and BB1

of the hyperbola. Consider one of the planes tangent to the cone along the
generator F1P . Let θ be the real value of the parameter θ, corresponding to
this generator F1P . Denote by Uθ the domain of this tangent plane, bounded
by the generator F1P and the ray lθ of the plane y = 0, and located in the
half-space y > 0. The values of θ belong to the intervals (a, b) or (−b,−a).

The domains Uθ fill a domain R in the space S. In this domain we define
the potential ψ2 as a function of the real variable θ. This function is constant
in each Uθ. As already mentioned in Sect. 7, an arbitrary function of a real
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root θ of equation (67) in the domain R satisfies the wave equation (2) for
c = b.

Our choice of Uθ allows us to assert that we did not break the initial
conditions, since we have t > af for Uθ. Similar circumstances will be valid for
the future problems, and we will not discuss it anymore. As we will see later,
our procedure always determines the potential continuously. Moving on to the
effective computation of this potential, we have to choose a function of θ, which
defines the potential ψ2 in the domain R such that the boundary conditions
are always satisfied in the domains (I) and (II) of the plane y = 0. The second
formula in (70) gives us Ψ ′

2(θ) on the intervals (a, b) and (−b,−a). Integrating
along the real axis, we obtain Ψ2(θ). Obviously, one can put Ψ2(±a) = 0.
It is easy to prove that if the potential ψ2 is equal to the real part of the
indicated function Ψ2(θ) on the planes Uθ, then the boundary conditions will
be satisfied also in the domains (I) and (II) of the plane y = 0. Indeed,
returning to equalities (69), we can assert that they hold also on the intervals
a ≤ θ ≤ b and −b ≤ θ ≤ −a. However, the real part of Ψ ′

1(θ) is equal to
zero on these intervals, and the coefficients of this function in equation (69)
do not contain the radical

√
a2 − θ2. Hence these coefficients are real. Taking

into account once again the fact that δ′ is also real, in the discussed case we
have the condition in form (68) with Ψ ′

1(θ) = 0, i.e.,

Re
{

1
δ′

∂

∂θ

2θ
√
a2 − θ2Φ′(θ) + (b2 − 2θ2)Ψ ′

2(θ)
δ′

}∣∣∣∣
y=0

= 0,

Re
{

1
δ′

∂

∂θ

(b2 − 2θ2)Φ′(θ) − 2θ
√
b2 − θ2Ψ ′

2(θ)
δ′

}∣∣∣∣
y=0

= 0.

These equations show that the boundary conditions hold in the domains
(I) and (II) of the plane y = 0. Thus, the problem is solved.

Let us note again that the value of ψ2 on Uθ is equal to the value of this
function along the generator F1P , through which Uθ passes.

12. Let us now derive some consequences of the obtained results. As in
Sect. 10, we can prove that the displacements are infinite on the fronts of the
waves. We will not return to this point anymore.

If we cross the constructions made in the space S by the plane t = const,
we obtain the fronts of the waves at the time moment t (see Fig. 4). Let us take
sufficiently large t such that the plane t = const to pass through the domain
R of the space S. In this case, the front of the transverse waves consists of
three parts. The first part is the arc AHB of the circle that is the section
of the cone T0 by the plane t = const. This is a wave propagating from the
source. The second part is the arc AEFB of the circle that is the section of
the cone T1 by the plane t = const. The third part consists of two lines CE
and DF that are the sections U+a and U−a by the plane t = const. This last
part is generated by the longitudinal waves propagating along the plane y = 0

with the velocity
1
a
. The points E and F are the points of the intersection
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of the plane t = const with the generators of the cone T0, corresponding to
the values θ = ±a. The front of the longitudinal waves is the curve CGD
enveloping the lines

θx+
√
a2 − θ2 y +

√
b2 − θ2 f = t, −a ≤ θ ≤ +a, t = const.

All these fronts propagate according to the Fermat principle. As in the pre-
vious case, one can give asymptotic representations of the displacements and
to reveal the surface wave. The explanation is completely analogous to the
above one.

Fig. 4.

13. The presented approach can be applied not only to the two-dimensional
problem on vibrations of the half-space, but it also gives the general law of
reflection of a beam of rays of special type from a plane in the space S.

For this special type, the potential (longitudinal or transverse) is the real
part of an analytic function of θ in the upper half-plane, where θ is a root of
the equation

t− θx±
√
c2 − θ2 y − χ(θ) = 0, c = a or b.

As mentioned above, this form is equivalent to form (34). We will say that
in this case vibrations have imaginary potentials.

The indicated analytic function satisfies also some boundary conditions.
In the last cases it is necessary to consider real values of θ which correspond
to planes in the space S. The potential must remain constant on each of these
planes. We do not consider the entire plane, but rather only its part concluded
between the reflective plane and the terminal position of the ray obtained when
θ from the upper half-plane tends to the discussed real value corresponding to
the plane. The presented method gives, for example, a solution of the problem
on vibrations of a layer.

Let 2f be the thickness of the plane layer bounded by the lines y = 0 and
y = 2f . Suppose that we have a source of longitudinal type at the point x = 0,
y = f with the singularity of the type described above. Let the potential of
this source be given by the formula
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ϕ = Re [Φ(θ)], (71)

where the analytic function Φ(θ) is defined on the entire plane with the cut
(−a,+a) along the real axis; let the real part of Φ(θ) be equal to zero on
this cut. Consider the part Ω of the space S, bounded by the planes y = 0
and y = 2f . Denote by S0 the first of these planes, and the second by S1. If
we are at rest for t < 0, then we have longitudinal vibrations with the given
potential ϕ for 0 ≤ t < af . The rays corresponding to this wave form the cone

T0 with apex (x = 0, y = f, t = 0) and angle arctan
1
a

at the apex. At the
moment t = af we have reflected rays of longitudinal and transverse waves
with respect to the planes S0 and S1. All these rays follow the direction of
growth of t. Hence, in the domain Ω bounded by the planes t = 0 and t = af ,
the displacement is defined by the fundamental cone T0. In expression (71), θ
is defined by the equality

t− θx+
√
a2 − θ2 y −

√
a2 − θ2 f = 0.

Let ϕ1 and ψ1 be the potentials of the longitudinal and transverse waves
reflected from the plane S0, let ϕ2 and ψ2 be the analogous potentials for the
reflection from S1.

We have
ϕ1 = Re [Φ1(θ1)] and ψ1 = Re [Ψ1(θ′1)], (72)

where θ1 and θ′1 are complex values from the upper half-plane, defined by the
equations

t− θ1x−
√
a2 − θ2

1 y −
√
a2 − θ2

1 f = 0,

t− θ′1x−
√
b2 − θ′1

2 y −
√
a2 − θ′1

2 f = 0.

(73)

Equations (51) allow us to obtain the functions Φ1(θ1) and Ψ1(θ1) for
values of the argument from the upper half-plane

Φ′
1(θ) =

−(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

F (θ)
Φ′(θ),

Ψ ′
1(θ) =

−4θ(2θ2 − b2)
√
a2 − θ2

F (θ)
Φ′(θ).

(74)

In this case, the real parts of Φ′
1(θ) and Ψ ′

1(θ) are equal to zero on the interval
−a ≤ θ ≤ +a. These reflected rays pass through points of the plane S0,
located inside the hyperbola t2 − a2(x2 + f2) = 0. The rays fall on the plane
S1 above the line t = 3af .

Values of θ from the lower half-plane correspond to rays of the cone T0,
falling on the plane S1. Let

ϕ2 = Re [Φ2(θ2)], ψ2 = Re [Ψ2(θ′2)] (75)
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be the potentials of the longitudinal and transverse waves reflected from the
plane S1. Complex values of θ2 and θ′2 from the lower half-plane must coincide
with θ for y = 2f . It is easy to see that θ2 and θ′2 are defined by the equations

t− θ2x−
√
a2 − θ2

2 y + 3
√
a2 − θ2

2 f = 0,

t− θ′2x−
√
b2 − θ′2

2 y + 2
√
b2 − θ′2

2 f −
√
a2 − θ′2

2 f = 0.

(76)

The derivatives of the functions Φ2 and Ψ2 are determined by the formulas
obtained from (74) by the sign change in front of the radical

√
a2 − θ2 in the

second formula. The displacement of the layer, bounded by the planes t = f
and t = 3f in the domain Ω, is determined by the potentials ϕ, ϕ1, ϕ2, ψ1,
and ψ2. Further, we have to consider the reflection of the rays corresponding
to the potentials ϕ1, ϕ2, ψ1, and ψ2. First, consider the potential ϕ1. The
corresponding rays reflected from the plane S0 fall on the plane S1 and create
reflected rays of longitudinal and transverse vibrations. Let us introduce the
corresponding potentials

ϕ3 = Re [Φ3(θ3)], ψ3 = Re [Ψ3(θ′3)], (77)

where the variables θ3 and θ′3 from the upper half-plane must coincide for
y = 2f with θ1 defined by the first equation in (73). It is easy to see that the
equations on these variables have the form

t− θ3x+
√
a2 − θ2

3 y − 5
√
a2 − θ2

3 f = 0,

t− θ′3x+
√
b2 − θ′3

2 y − 2
√
b2 − θ′3

2 f − 3
√
a2 − θ′3

2 f = 0.

(78)

The functions Φ′
3 and Ψ ′

3 are determined through Φ′
1 by the formulas obtained

from (74) by the sign change in front of the radical
√
a2 − θ2 in the second

formula.
Introduce the potentials ϕ4 and ψ4 for rays corresponding to the reflection

of the beam of rays of transverse vibrations with the potential ψ1 from the
plane S1,

ϕ4 = Re [Φ4(θ4)], ψ4 = Re [Ψ4(θ′4)], (79)

where θ4 and θ′4 from the upper half-plane satisfy the equations

t− θ4x+
√
a2 − θ2

4 y − 2
√
b2 − θ2

4 f − 3
√
a2 − θ2

4 f = 0,

t− θ′4x+
√
b2 − θ′4

2 y − 4
√
b2 − θ′4

2 f −
√
a2 − θ′4

2 f = 0.

(80)

The functions Φ′
4 and Ψ ′

4 are determined through Ψ ′
1 by the formulas obtained

from (70) by the sign change in front of the radical in the first formula
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Φ′
4(θ) =

−4θ(2θ2 − b2)
√
b2 − θ2

F (θ)
Ψ ′

1(θ),

Ψ ′
4(θ) =

−(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

F (θ)
Ψ ′

1(θ).

(81)

Note that the range of the argument of the function Ψ ′
1(θ) consists of

the upper half-plane and the interval (−a,+a), and the real part of Ψ ′
1(θ)

vanish on this interval. Analogous results are valid for all remaining functions
obtained by the reflection from the planes S0 and S1. It is completely clear
how we should continue the calculations.

In the case of a source of transverse vibrations we have somewhat different
circumstances.

14. Assume that the formula ψ = Re [Ψ(θ)] gives us the potential of a
source of transverse vibrations, where the variable θ is defined by the equation

t− θx+
√
b2 − θ2 y −

√
b2 − θ2 f = 0, (82)

and the range of change of this variable is the entire complex plane with
the cut (−b,+b) along the real axis. We construct the potentials ϕ1 and ψ1

reflected from the plane S0,

ϕ1 = Re [Φ1(θ1)], ψ1 = Re [Ψ1(θ′1)], (83)

where

Φ′
1(θ) =

4θ(2θ2 − b2)
√
b2 − θ2

F (θ)
Ψ ′(θ),

Ψ ′
1(θ) =

−(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

F (θ)
Ψ ′(θ).

(84)

Real values of θ from a ≤ |θ| ≤ b correspond to rays of longitudinal vibrations
in the plane S0 and to the plane, where Ψ1(θ) is equal to a constant defined
by (84).

For θ1 and θ′1 we have the equations

t− θ1x−
√
a2 − θ2

1 y −
√
b2 − θ2

1 f = 0,

t− θ′1x−
√
b2 − θ′1

2 y −
√
b2 − θ′1

2 f = 0.

(85)

Further, consider the reflection of the obtained rays of longitudinal vibra-
tions from the plane S1. We have the potentials of reflected longitudinal and
transverse vibrations ϕ2 and ψ2,

ϕ2 = Re [Φ2(θ2)], ψ2 = Re [Ψ2(θ′2)]. (86)

For the variables θ2 and θ′2 we have the equations
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t− θ2x+
√
a2 − θ2

2 y −
√
b2 − θ2

2 f − 3
√
a2 − θ2

2 f = 0,

t− θ′2x+
√
b2 − θ′2

2 y − 3
√
b2 − θ′2

2 f − 2
√
a2 − θ′2

2 f = 0,

(87)

and the functions Φ′
2 and Ψ ′

2 are defined by the formulas

Φ′
2(θ) =

−(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

F (θ)
Φ′

1(θ),

Ψ ′
2(θ) =

4θ
√
a2 − θ2(2θ2 − b2)

F (θ)
Φ′

1(θ).

(88)

The rays of longitudinal vibrations of the potential ϕ1, corresponding to
the real values of θ from a ≤ |θ| ≤ b, remain in the plane S0. Hence the range
of θ2 and θ′2 is the upper half-plane and the interval (−a,+a). This fact is
valid for the variable θ in (88), and the real parts of Φ′

2(θ) and Ψ ′
2(θ) are equal

to zero on the interval (−a,+a).
Consider now the reflection of rays of transverse vibrations with the po-

tential ψ1 from the plane S1. Introduce the potentials for the reflected rays

ϕ3 = Re [Φ3(θ3)], ψ3 = Re [Ψ3(θ′3)], (89)

where

t− θ3x+
√
a2 − θ2

3 y − 3
√
b2 − θ2

3 f − 2
√
a2 − θ2

3 f = 0,

t− θ′3x+
√
b2 − θ′3

2 y − 5
√
b2 − θ′3

2 f = 0

(90)

and

Φ′
3(θ) =

−4θ(2θ2 − b2)
√
b2 − θ2

F (θ)
Ψ ′

1(θ),

Ψ ′
3(θ) =

−(2θ2 − b2)2 + 4θ2
√
a2 − θ2

√
b2 − θ2

F (θ)
Ψ ′

1(θ).

(91)

Let us make some additional comments about real values of θ such that
a < |θ| < b.

For Φ′
3(θ) and Ψ ′

3(θ) we obtain values with nonzero real parts. From the
first equation in (90) it follows that the rays of longitudinal vibrations corre-
sponding to these values of θ are located in the plane S1. The second equation
defines a family of planes, on which Ψ3(θ) remains constant. It is easy to ver-
ify the boundary conditions by considering the potentials in domains of the
plane S1, filled with the rays of longitudinal vibrations. Let us consider these
domains in detail.

For every real value of θ from the inequality a < |θ| < b, the equation of
the corresponding ray located in the plane S1 is
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t− θx− 3
√
b2 − θ2 f = 0, y = 2f.

Substituting into the second equation in (90) θ for θ′3 and putting y =
2f , we obtain the same equation . Hence the indicated ray of longitudinal
vibrations coincide with the section of the plane, where Ψ3(θ) is constant.
The same can be obtained putting y = 2f in the second equation in (85), i.e.,
the plane, on which Ψ1(θ) is constant, crosses the plane S1 along the same ray
lθ. When the rays of the potential ϕ3 reflect from the plane S0, the range of
θ is the upper half-plane with the interval (−a,+a) of the real axis. The real
part of Φ′

3(θ) is equal to zero along this interval.
Using the same argument, we can obtain solutions of problems with differ-

ent boundary conditions, for example, with the absence of the displacements,
etc.

15. Using the above method in the case when the source is located inside
the medium, it is easy to solve also the first problem in the very compact
form: the two-dimensional problem on vibrations of the half-space under the
action of an impact concentrated on the surface.

Let the source of vibrations be located at the point

O(x = 0, y = 0, t = 0)

of the space S, let the complex potentials Φ(θ1) and Ψ(θ′1) of longitudinal and
transverse vibrations correspond to this source. Consider two cones T1 and T2

with apex O and angles arctan
1
a

and arctan
1
b

at the apex. Write down the

equations for θ1 and θ′1,

t− θ1x−
√
a2 − θ2

1 y = 0, (92)

t− θ′1x−
√
b2 − θ′1

2 y = 0. (93)

Complex values of θ1 from the upper half-plane correspond to rays passing
through the point O and moving inside the cone T1 in the domain y > 0,
t > 0 of the space S. Real values of θ1 such that |θ1| > a correspond to rays
located in the plane y = 0. Finally, real values of θ1 from the interval (−a,+a)
correspond to generators of the cone T1. Completely analogous correspondence
will take place between rays inside the cone T2 and complex values of θ′1.

Let OA and OA1 be generators of T1 in the plane y = 0, let OB and OB1

be generators for T2. Using (38), one can write the condition that the stress
is equal to zero inside the angle BOB1 at all points of the plane y = 0

Re
{
∂

∂θ
[2θ
√
a2 − θ2Φ′(θ) + (b2 − 2θ2)Ψ ′(θ)]

}
= 0,

Re
{
∂

∂θ
[(b2 − 2θ2)Φ′(θ) − 2θ

√
b2 − θ2Ψ ′(θ)]

}
= 0.

(94)
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Note that points inside the angle BOB1 correspond to real values of θ such
that |θ| > b. Consider now the angles AOB and A1OB1. Here we have the
potential Φ1(θ) of longitudinal vibrations. To satisfy the boundary conditions,
we have to apply transverse vibrations. This corresponds to the fact that longi-
tudinal vibrations propagating over the surface generate transverse vibrations
inside. In this case, the argument of the function Φ1(θ) takes real values from
the intervals (a, b) and (−b,−a). For these values of θ, equation (93) defines
planes tangent to the cone T2. Let us take the parts of these planes between
the plane y = 0 and the generators of the cone T2.

Denote by Uθ these parts. On each Uθ the potential of transverse vibra-
tions must be constant, and we have to choose the functions ω(θ) such that
the boundary conditions are satisfied in the angles AOB and A1OB1. Since
|θ| ≤ b, we can write these conditions in the form

Re
{
∂

∂θ
[2θ
√
a2 − θ2Φ′(θ) + (b2 − 2θ2)ω′(θ)]

}
= 0,

Re
{
∂

∂θ
[(b2 − 2θ2)Φ′(θ) − 2θ

√
b2 − θ2ω′(θ)]

}
= 0.

(95)

Since the potential is continuous, the value of ω(θ) must coincide with the
real part of Ψ(θ) on the generator of the cone T2, along which Uθ touches
the cone. Then conditions (95) coincide with conditions (94), i.e., conditions
(94) must be satisfied also for a ≤ |θ| ≤ b. Since velocity of vibrations cannot

be greater than
1
a
, we must assume that the potentials of longitudinal and

transverse vibrations must vanish for −a ≤ θ ≤ a, i.e., conditions (94) will be
also satisfied for these values of θ. Thus, these conditions must be satisfied on
the entire real axis. Calculating the functions Φ(θ), Ψ(θ), and the potentials

ϕ = Re [Φ(θ)], ψ = Re [Ψ(θ)],

we have to continue ψ into the exterior of the cone T2 along the planes Uθ.
The establishment of conditions (94) for all real values of θ is the essential

fact in solving the first problem.
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