2. On a New Method in the Plane Problem
on Elastic Vibrations*

V. I. Smirnov and S. L. Sobolev

1. The problem on vibrations of an elastic half-space bounded by the vacuum
was posed by H. Lamb in his well-known article [1]. He considered a series
of problems on vibrations under the action of different forces. In some cases
he solved these problems completely, and in other cases he only presented
formulas containing divergent Fourier integrals. First, H. Lamb considered
the force periodic in time and spatial coordinates, and then he applied the
Fourier integral to arrive at the general case.

In the present work we propose a new method, which allows us to solve
some of H. Lamb’s problems by means of simple calculations. Our method
gives tools to determine displacements not only on the surface (as H. Lamb),
but also inside the half-space.

The essential feature of our method is the reduction of a problem with
three independent variables to one with one or two independent variables.

Two real variables can be reduced to one complex variable, and we can
use the theory of functions of a complex variable to find the solution.

First, we consider the problem discussed by H. Lamb on vibrations of
the half-space under the action of a vertical impact on the surface. Then,
we discuss problems when the source of the force is located inside the elastic
medium. Under some fundamental assumptions, we find a solution by reduc-
ing a number of independent variables. Obtained solutions satisfy initial and
boundary conditions.

Our general reasoning allows us to study the reflection of elastic waves of
special types on the plane.

For instance, we can solve the problem on vibration of an elastic layer.

2. Let us state the first problem on vibrations of the half-space under the
action of a vertical impact on the surface.

Assume that the surface of the medium is the (z,z)-plane and suppose
that the motion does not depend on the coordinate z. Then, our problem is
reduced to the two-dimensional problem, which is very important later.

* Tr. Seism. Inst., 20 (1932), 37 p.
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For the components of the displacement u and v we have
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and the functions ¢ and 1 must satisfy the equations
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Denote by p the density of the medium, A and p are the Lame elastic
constants.

Suppose that R(z,t) is the vertical force acting along the z-axis and normal
to the surface y = 0. Then we have the boundary conditions
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To consider the case of the impact concentrated at the point x = 0 at the
moment ¢t = 0, we pass to the limit.

Let
Po(x,t) = P<$ t)

[SINS)

R(z,t)

where P(z,t) is a function continuous in the rectangle

l<z<1, 0<t<I,
B 11
P(z,t)=0 for |z|>1 or t—§ > 3

Let e (x,y,t) and 9. (z,y,t) be solutions of equations (2) with conditions
(4) and (5), where we replace R(z,t) by P:(z,t).

We consider the problem on vibrations under the action of the impact as
the limiting case of the stated problem as £ — 0.

Thus, we have

p(r,y, 1) = limpe(z,y,1),  d(z,y,1) = lim e (@, y,1).

The value of the impact is defined as

1 1
—hm/dx/ (z,t)d :/dcb/P(xt)dt
100
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After defining the functions ¢, and ., we have

@E(kxa kya kt) = we/k(xayvt) and ws(k$7ky7kt) = ¢6/k(x7yat)'

This property of the functions ¢. and . is stipulated by the form of
equations (2), conditions (4) and (5), and by the definition of P.(z,t). Passing
to the limit, we have

o(kz, ky, kt) = p(x,y,t) and p(kz, ky, kt) = Y(z,y,1),

i.e., the functions ¢ and ¥ are homogeneous of degree 0. Hence they depend
on two variables

_r _Y
E=7 n=1 (6)

Also, note the case when the potentials ¢ and ¥ are homogeneous func-
tions. Let P(z) be an odd function for —1 < 2 < 1. In (5) we put

1
R(z,t)=0 for t<0 and R(z,t)= =P ) for t>o0.
€2 \e

In this case, we have

1

/ER(x,t) da = 6/113(35) dz =0,

and the moment with respect to z = 0 is equal to

€ 1
22/xp<x) dxz?/xp(:c)dz:q.
€ €
0 0

As ¢ — 0, we have the focused moment ¢ applied at ¢t = 0.

Therefore, we see that the case of homogeneous potentials can arise under
different mechanical circumstances. In this connection, later we will see that
a solution of the problem contains several arbitrary constants, defined by
mechanical conditions of the problem. It should be noted that we again deal
with nonuniqueness of the solution. Later we will have an equation on the
boundary of the existence domain of an analytic function. This equation will
express the fact that the real part of a linear operator must vanish on this
function. Assuming that the mentioned operator vanishes everywhere, we will
select the simplest solution of this equation. We will also be able to obtain
other solutions of the problem. For this, we equate this operator to a regular
function, whose real part has zero boundary value on the entire contour with
the exception of a unique singular point of this function. We will not study
the family of all solutions, but we hope to do it in a future paper.

Moving on to consideration of the functions ¢ and v, let us note a fact,
which we will encounter later.
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Using homogeneity of the functions ¢ and 1, we reduce equations (2) to
two equations with two independent variables. Furthermore, by suitable choice
of these variables, we reduce these equations to the Laplace equation or the
vibrating string equation. Indeed, if the functions ¢ and ¢ depend only on
quantities (6), then equations (2) take the form

(&52—1)‘92 + 2a%¢ Fp + (a2 —1)22 1 24 §7+22 8‘”:0
€2 ”aga a2 o€ Moy = -

202 9% 9, 0% 2 2 9% 2,00 2 o

(P€ = 1) gy + 2Wenge + (BP0 = 1) 5 + 2P0 + W =0,

Characteristics for the first equation in (7) are determined by the ordinary
differential equation

(a*&? — 1)dn® — 2a*&ndédn + (a’n? — 1)d€* = 0

and by a similar equation for the second equation.
The last equation can be written in the form

a?(&dn — nd¢)? — (d€* +dn*) =0

Let ds be an element of the characteristic arc. Then we can write our
equation in the form

dn df 1
= - 4=
ds  ds a’
hence we see that the characteristics touch the circle
1
E+n'=—.
a

The first equation in (7) is elliptic, if

E+n’< 1 (8.1)

< :
and hyperbolic, if
1
2 2

E4+n > P (8.2)

In the last case, two families of characteristics are expressed by the equa-

tion
—C¢é++va?2—-C?n+1=0,

where C' is an arbitrary constant. This equation gives for C' two complex
conjugate values under condition (8.1). Let us begin our analysis with this
case. Then, we have the imaginary characteristics

ny/1—a*(& +1?)

S
+1
€2+n2 €2+772

=C.
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Putting

¢ _n/1- @) ©.1)

0= 5>, T = y
§2+n2 §2+,’72

we reduce the first equation in (7) to the Laplace equation

0%y 0%
752 T g0z =0 (10.1)
Similarly, under condition (8.2), by the real transform
2062 L 12) — 1
3 _ m/a* (& + ) 9.2)

0= F5—>F, T = s
£2+772 £2+n2

we bring the first equation in (7) to the vibrating string equation

2 2
8—('0 — a—(p =0. (10.2)
0o2 0712

In the second part of our work we discuss a more general and simple way
of the reduction of equations (2) to canonical form (10.1) or (10.2).

3. Taking into account that the initial moment ¢ = 0 of the action of
our force corresponds to the rest of the half-space and that vibrations cannot
propagate with a velocity more than the velocity of longitudinal vibrations,
we can assert that a required solution will vanish outside the circle

1
2 2 _
&+ = o (11.1)
Thus, to find the potential ¢, we have to integrate equation (10.1).
As regards the search for the potential ¥, a should be replaced by b in all
previous formulas. The characteristics of the second equation in (7) will be

tangent to the circle
1

EHn’ =3, (11.2)
and this equation will be reduced to (10.2) outside this circle. If the point
(&,m) is located not only outside circle (11.2), but also outside circle (11.1),
then the value of ¥ must also vanish at this point.

Note that at each point outside circle (11.2) v is a sum of two terms
each of which is constant along one of two characteristics passing through
this point. Then we can assert that ¥ can differ from zero outside circle (11.2)
only on the intervals of tangents between the point of tangency and the axis

1

)

! The function ¢ has the form

E+nVo2 (& +n?) -1 =/ (E+n?) -1\
(ENEETIT) | (TR
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1
7 = 0, and on such tangents, which have a projection on this axis less than —
a

by counting from the origin of coordinates.
Therefore, for the transverse wave, the front in the (¢, 7n)-plane consists
of the arc AB of circle (11.2) and two segments of tangents AA; and BB

[ 1
such that OA; = OB; = — (see Fig. 1). For the longitudinal wave, i.e., for
a

the potential ¢, the front consists only of semicircle (11.1). The shape of the
front of the transverse wave (see Fig. 1) can be immediately obtained from
the Fermat principle. It should be noted that vibrations propagate over the

1

surface with the velocity —, and each point of this surface is a source of
a

not only longitudinal, but also transverse vibrations. At the same time these

1
transverse vibrations propagate inside with the velocity —.

b
B] D 0 C Al
£
BTA
n
Fig. 1.

The equation of the straight line AA; in the (£, n)-plane is

a +Vbv*—a?n—-1=0. (12.1)
Returning to the variables x, y, t, we obtain the rectilinear front

ar 4+ Vb2 —a?2y—t=0. (12.2)
To study equation (10.1), we introduce the complex variable

: § /1 —a?(& + 1)
0 =0+1it = +1
' &+’ &+’

This transform maps the semidisk
2 2 1
€ + n- < "9 n> Oa
a
onto the half-plane 7 > 0 of the complex variable 8, the diameter B;A; onto

the intervals (—oo, —a) and (+a,+00) of the axis 7 = 0, and the semicircle
B;1A; onto the interval (—a,+a) of this axis (see Fig. 2). In the half-plane
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7 > 0 the potential ¢ is a harmonic function and can be expressed as the real
part of an analytic function @(61) = ¢ + ip*:

© = Re[D(61)].

Fig. 2.

Similarly, introducing the complex variable

¢ /1 —b%(E2 +n?)

Oy =0 +it = i ,
2 €2 4+ 2 €2 4+ 2

in the semidisk )

52 + 772 < b72’ n > 07
we can express the potential ¢ as the real part of a function ¥(63) = ¢ + itp*
analytic in the half-plane 7 > 0:

1 = Re [W(@Q)]
The formulas
3 Ny 1 —a?(&% +n?)
0, = ,
1 §2+772+Z €2 112
(13)
3 /1= b%(82 +1?)
0 =
2 §2+772+Z €2 12

prove that the values of 6, and 6, coincide at the points of the diameter C'D
(see Fig. 1), which will be essential later.

It is easy to prove that on the plane 5 the points D and C' correspond to
the points +b and —b of the axis 7 = 0, and the points B and A correspond
to the points +a and —a of this axis.

Let us now introduce the boundary conditions with respect to the new
variables. For any ¢ > 0, there are no stresses on the surface of the half-space.
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Therefore, for ¢ and ¢ we should take conditions (4) and (5) with P(x,t) = 0.
We obtain

ocon o2 "], ="

s = b - L2, 2]
y=0

(14)
b2 32 82 82 82’(/1
Da(p, 1) = |:(a2 - 2) ((()ﬁf + 67;20> + 2(977]()20 — 2(()§(f9’r]:|

where we denote by D and D, the linear operators on the left side of our
conditions. Differentiation with respect to £ and n can be replaced by dif-
ferentiation with respect to 6; and 6. It is easy to see that for n = 0 we
have

00, , 0% 3 06

— =0 =203, —— = —6;\/a% - 62 00
o v oee T o voop

9%0, 201 -’63

oo a2 =62’

where the square root has the negative imaginary value for 6; > a.
We have similar expressions for 65. Conditions (14) take the form

2 9p2
Re [29\/@2 “ 00 (0) + 22— _w(0)

a2 — 02

)

y=0

= _20?3

—(26% — v* )W (9) — 49@/’(9)}

Re [(b2 —20%)®"(0) — 469’ (0)

2 9p2
—20/b% — 020" (6) — Qb%)zp'(e)] = 0.

N

Since 6; and 65 coincide on the axis n = 0, we denote the variables by 6
without index.

Conditions (15) must be satisfied on the part that corresponds to the
diameters of the semicircles.

Taking into account what we said about the correspondence between 61,
02, € and 7, we see that conditions (15) must be satisfied on the intervals
o < —b and 0 > +b. Note once again that the interval —a < ¢ < +a of
the variables #; and 05 corresponds to the arcs of the semicircles, forming the
front of propagation of longitudinal and transverse vibrations. Consequently,
the functions ¢ and v, i.e., the real parts of @ and ¥, must vanish on this
interval. Taking into account that all coefficients on the left sides of (15) are
real for —a < 6 < +a, we can assert that conditions (15) must be also satisfied
on the interval —a < 0 < +a.

7=0
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Later, we show that these conditions must hold also on two intervals
—b <0 < —a and a < 6 < b. For this purpose we consider an equation
of hyperbolic type for ¢ in the curvilinear triangles AA;C and BB1D (see
Fig. 1). It is enough to consider the triangle BB D. Introducing the variables

¢ o /PE )1 1)

0= 53> - )
52_’_,’72 £2+772

for 9 we have the vibrating string equation

oy _
do2 o2 7

whose solution is
Y= filo+7)+ fa(oc — 7).

Since 1 is equal to zero outside circle (11.1), as above, we can assert that
the last expression for ¢/ contains at most one term different from zero on the
pieces of the characteristics, made of segments of tangents between the arc
BD and the axis n = 0.

The mentioned segments can be defined by the values of the real parameter

937
2(¢2 2
0y — S AVA (S +n)—17 @< <b, (17)
€2 12 242
and the function ¥ depends only on #3 inside the triangle BB D. It is easy
to see that the value of 03 coincides on each tangent with the corresponding
value of A on the arc BD. Hence, in view of continuity of v, in the triangle
BB D we should take

¥ = Re [#(63)].

On the interval B D of the axis 7 = 0 the values of 3 coincide with the
values of 6.

Returning to conditions (14), we can express the derivatives with respect
to £ and n by the derivatives with respect to #; and 63. These variables can
be denoted by the same letter 8, and a < 0§ < b.

Conditions (14) take the form

” a? —20%
Re {29\/ a? — 029" (0) + 2\/ﬁ¢ (6)}
—(20% — b*)Re [W"' ()] — 46Re [W' ()] = 0,
Re {(b? — 20%)®"(0) — 409’ (0)} — 20+/b2 — 62Re [¥"(0)]
v — 262

2= Re ()] =0,

a<0<hb.
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Hence conditions (15) must hold on the interval a < ¢ < b.

Considering the triangle AA;C, we can similarly show that conditions
(15) must hold also on the interval —b < 6 < —a. Thus, conditions (15) are
established on the entire real axis of the plane 6.

The simplest conclusion from this fact is that the analytic functions on the
left sides of conditions (15) are equal to imaginary constants. This conclusion
is necessary, if we assume that the passage to the limit on the axis 7 = 0 is
continuous everywhere. Thus, we obtain

 op2
—20v/a? — 629" ( %4& (0) + (26% — bYW (0) + 409" () = ai,

b2 — 262
(b? — 20%)®" (0) — 409’ (0) — 20/b2 — 20" () — 2ﬂw'(9) = i,
where o and 3 are real constants.
Integrating the equations with respect to 6, we have

—20+/ a2 — 029/ () + (20% — b*)W' () = aif + C1,

(b2 — 20%)&' (0) — 29\/WW e, (18)
hence,
P () = —(if + C1)20v/b% — 02 — (Bif + Co) (262 — b?) |
(202 — b2)2 + 462\/a2 — 0202 — 92
() = (@0 + C)20° 1) — (Bif + Co)26v/a? — 62 19)

(202 — b2)2 + 462V/a? — 02/ — 62 ’

where C'; and Cy are complex constants. Consider real values of 6 on the in-
terval —a < 6 < +a. As above, this interval corresponds to the front of the
longitudinal wave and to a part of the front of the transverse wave. Conse-
quently, the real parts of @'(6) and ¥’(0) must be equal to zero on the interval
—a < 0 < 4a. Hence C; and Cy are pure imaginary.

To find the constants, we express the projections of the displacements wu,
v by the functions @ and ¥ by using (1). We have

66’2
y

u = Re qs’(ag?m (02) 22

001
dy

002

(652 20)

= Re {@’(91)

The expressions for #; and 0, give

B _ 00 00 500
ar = e oy - Ve Tl

00y _ _, 002 Wy [ 00

or o’ dy 2ot
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where the square roots are negative imaginary for 6, and 62 > b. Indeed, for
the variables 61 and 65 we have

xt Y12 — a?(x? + 92
b= 2+Zy 2(2 y)’
e +y T +y
(22)
xt Y12 — b2 (22 + y?
92: 3 2+Z 3 (2 )
e +y e +y

Consider now values of v and v on the axis x = 0. We assume that the

impact is concentrated at the point x = 0 and acts along the axis z = 0.

00 00
Hence u = 0 on this axis. Obviously, 61, 65, 6—; and 8—; are pure imaginary

0
s real, and 2 s pure imaginary. From the
Ox dy
first of equations (20) we can conclude that C; = 8 = 0. Denote Cy by —C'%,
where C' is a real constant. Then, we can write

_—2003VP —§7 + C(26° — 1)

on this axis. Consequently,

P'(0) 7o) :
Y (23)
'(0) = Z,a9(29 —b )F—I(—G?QH\/CL —0 7
where
F(0) = (262 — b?)? + 46°V/a2 — 602/b2 — 62. (24)

Formulas (23) contain two real constants o and C'. Consider the displace-
ments v and v at a point of the axis y = 0 and assume that the time ¢ tends

t
to infinity. Under these assumptions, the variables 61 and 05 equal — and tend
x

to infinity. The expression
2 12\2 4 a?\'/? p2\ /2 ) o
has order §2.

Using the expression for 6,

xt Y t2 — 02(1172 + y2) 2 2 2
9:$2+y2+1 g , ¢ =a”orb, (25)

1
it easy to expand u and v in power series with respect to —. If a # 0, then these

series begin with a constant term, and we have the displacements different
from zero as t — oo. This term is equal to zero for a = 0. This fact forces us
to put @ = 0. Then formulas (23) give us

202 — b? 20va? — 62

() =iC—g V0 =iC— ¢

F0) (26)
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The elementary potential v will be defined by the real part of the analytic
function ¥(#) not only inside the semidisk

&+n* < b%
but also in two triangles, if we replace 5 by the variable 63 defined above.
4. The constant C' in (26) depends on the concentrated impact (). Assume
that this constant is determined by the condition that @ is equal to 1. Also,
assume that the force Q(t) acts at the point x = 0 of the axis y = 0, where
Q(t) is a continuous function of t. Let ¢q(z,y,t) and ¢ (z,y,t) be elementary
potentials at the given point (x,y) at the moment ¢t. We can construct these
potentials by means of superposition of the effects of the action of the ele-
mentary impulses Q(t — H)dH concentrated at the moment ¢t — H, where the
variable H belongs to the interval (Hp, c0). We denote by Hy the time interval
necessary for the impulse to propagate to the point (x,y). For the longitudi-
nal wave, Hy is equal to ay/22 + y2. In the case of the transverse wave, the
expression for Hy depends on the position of the point (z,y). If this point is
located inside the angle AOB (see Fig. 1), where the front of the transverse
wave has the shape of a circular arc, then Hy = by/x2 + 32. If, on the contrary,
this point is located outside this angle, then we have Hy = azx + vb% — a2 y.
These expressions for Hy follow immediately from equation (12.1) (in this case
we assume that = > 0). Finally, using equations (20) and (26), we obtain two
expressions for the components of the displacement:

[ (202 — 1)
uw= ClIm / WQ@—H) dH

< 92 992

c1 / 22~ b5, Q(t — HYdH (27.1)
+ S Sl TR , .
. F(6:)

b /I2+y2

7203 - %)%
v =CIm / MQ(t—H)dH

F(6y)
ar/x2+y?
T 20\/a? — 0322
— CIm / =V 205 (¢ — H)dH. 27.2
F0) Q( ) (27.2)
b I2+y2

Expressions (27) are related to the case when (z,y) are located inside AOB,
ie., if b?2? < a®(2? + y?). In the case b%2? > a?(2? + »2), we have

(202 — 1)
u = CIm / W@(t — H)dH
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T 205/ a? — 0222
S

23y
t— H)dH, (281
Q. (251)
ar+vb2—a2y

[5G

oo

202+/a? — 0392
~Clm / VYT 00 ot HYdH.  (28.2)
F(02)
ar+vb2—a2y

In these formulas we should take

Hx y/H? — b2 (a2 +1?) 2 12,2, 2
02:x2+y2+l e for H* > b*(x* +y°),
H (22 + y?) — 2
0, r y\/02 (22 + 12 for H? < b2 (2? + 1),

- x2 + y2 $2 + y2
with the arithmetical square root. To determine the derivatives of 6§ with
respect to  and y, one can use formulas (21). Obviously, we should assume
that the behavior of the function Q(t) as t — —oo is such that the integrals
mentioned above converge.

Formulas (27) and (28) coincide with the formulas derived in the work
of S. L. Sobolev [2], but the method described here is simpler and allows to
solve many other questions without any application of the Fourier integral.
It is known that such application frequently leads to essential complexities in
solving the problem.

The analysis of formulas (26), (27) and (28) was carried out in the men-
tioned work of S. L. Sobolev, nevertheless, we repeat some moments of this
analysis here.

First of all, note that in the case of the concentrated impact, the compo-
nents of 4 and v are infinite on circles (11.1) and (11.2). This fact follows from
the expressions for the derivatives

90 o
Ox oy’

A unique exception are points on the axis 7 = 0, where the displacement
is equal to zero. The mentioned circumstance also take place on the parts
AC and BD of circle (11.2), which does not compose the front of the distur-
bance propagation. At the moments corresponding to such parts, we have the
beginning of a new phase of vibrations. On the lines

+al + Vb2 —a2n =1,
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0 0
which compose the front of the transverse wave, the derivatives a—qz and a—:
are infinite. This follows from the fact that ¥’/ (#) contains the factor va? — 62,
and the mentioned lines correspond to the case 62 = a?.
The regular functions ¢(#) and ¥ () defined by (26) have two poles § = £¢

on the real axis. These poles are roots of the equation
F(6)=0. (29)

It is easy to see that 6 = c¢ is a number reciprocal to the velocity of the
surface waves, which were first studied by Lord Rayleigh. Taking into account

ht
that 6 = — on the real axis, we can assert that such poles give an infinite
x
displacement propagating on the surface in two directions with the velocity
1
—. With the exception of these poles, the functions ¢(6) and ¥ () do not have
c
any singular point.

The proof of this fact is contained, for example, in the work of V. D. Kup-
radze and S. L. Sobolev [3]%.

5. It is now easy to obtain formulas for the displacement also in the case
when the force is distributed continuously along the axis y = 0. Let f(z) be a
density of this distribution. If the impact happens at the moment ¢ = 0, then
the formulas have the form

202 _ b2 061
u(z,y,£) = CIm / OO b)02 (e e

7020, /a? — G322
+CIm/ #Jf(f)d& (30.1)
(263 — v?) %0
v(w,y,t) = Clm/el))auf(f)df
/ 902
_CIm/ W20 ~ by f(&)de, (30.2)
E F(02)
where
9 _ ("E—g)t + \/t2—02 ZL'— )2_a2y2
SN CETIEEE (@—2+y>

2 See corresponding reasoning in the paper [4] of Part I of this book (p. 148). — Ed.
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Y e et Yl T
@—2+ T @-P+P

for b%(z — €)% 4 b%y? < 2,

(z—Ot gV’ + b0y 1
(x =)+ (v -+

02

for b?(z — €)% +b%y? > 2
Note that the imaginary parts of all integrands in formulas (30) are equal
to zero outside the fronts of the corresponding waves. Assume that the force
is distributed not only along the axis y = 0, but the image of its action in time
is of unconcentrated nature. Then, multiplying the elementary potentials by
Q(&,t— H), we have to integrate with respect to H as in (27), (28), and with
respect to £ as in (30). The lower limit of integration with respect to H in the
first integral is
av/(x —&)? +y2.

In the second integral the lower limit is

bv/(z = €)% + ¢

for
V(- €)* < a®[(x - &) + ¢,
and
alx — &+ Vb2 —a?y
for

b (x —€)* 2 a®[(z — €)% + 4.

6. All previous conclusions up to formulas (19) remain valid also in the
case of a focused force acting along the axis y = 0. In this case, we need
only to determine the constants in (19) somewhat differently. It is easy to
see that in this case the component v must vanish at the points on the axis
x = 0. Indeed, if we change the direction of the force acting along y = 0, then,
by the symmetry principle, the component v must remain unchanged on the
axis x = 0, at the same time w must change sign. On the other hand, the
displacement vector can only change its direction. Whence v = 0. Arguing in
the same way as above, by (26) we obtain the formulas

J2 _ o2 2 12
2Wve — 6 ;(9) o vy =i (31)

&(0) = —iC 20

7. Before moving on to solving other problems, we present some general
considerations, which were essential in the preceding discussion and will be
even more important in the future. The essential moment in solving the prob-
lem is reducing the wave equation (2) for the potential
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20 Py 0% 2

2 =a® or b?,

o2~ 92 oy’

to the Laplace equation in new independent variables ¢ and 7. In the case
c? = b%, we obtained the solution of (2) with an arbitrary function of one
variable, which we denoted above by (o — 7). In the first case, the dependence
of the complex variable § = o+i7 on the original variables (x, y, t) is expressed
by the formula

—Ox— 2 —-02y+t=0. (32)

If we consider the three-dimensional space S with the coordinates (x,y,t),
then from the preceding computations it follows that equation (32) has com-
plex roots inside the cone

At +y?) -2 =0. (33)

If we take a root 6 of this equation with the positive imaginary part, then
for the root v/¢2 — 62 in (32) we have to choose the negative imaginary value
for 6 > c. Outside cone (33), i.e., for

A +y*) -2 >0,

equation (32) has two real roots, and an arbitrary function of each of these
roots satisfies equation (2).

We point out a more general class of solutions of equation (2), which is
obtained by the reduction of this equation to the Laplace equation.

For the dependence of the new variable § = o +i7 on the variables (z,y,t)
we use a linear function of x, y, and ¢ with coefficients, which are analytic
functions of . Obviously, the coefficient at ¢ may be taken equal to 1. This
leads us to the relation

t+ x1(0)x + x2(0)y = x(0). (34)

Assume that in a domain of the space S this equation has a complex root
6 = o+it, which is a function of (x, y, t). Consider a solution of (2), depending
only on ¢ and 7.
In this case, one can verify that equation (2) can be reduced to the form
0? 02
Po P
dc2 = 012
under the condition
X3 (0) +x3(0) = ¢.

This circumstance is a consequence of the geometric nature of the lines
o = const, 7 = const, which are the straight lines in our three-dimensional
space S. However, since we do not use this fact, we will not discuss it in
detail. Taking into account that a harmonic function is mapped to a harmonic
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function under the action of the conformal mapping, we can take x1(0) as a
new complex variable. Then, in view of the condition mentioned above, we
have

x2(0) = £V % — 02,

and we can reduce relation (34) to the form
t—0x+t+/c?—602y—x(0) =0. (35)

If this equation has a real root in a domain of the space S, then an arbitrary
function of this root satisfies equation (2).

All these assertions can be verified by simple calculation.

We present the corresponding formulas, since they will be useful later.

Denote by 6 the left side of equation (35) and by ¢’ the partial derivative

o))
—. h
50 We have
00 0 00 c? — 02 00 1
9z o 87y_$T’ - (36)
The second-order derivatives are
Fo_ 10 (N 00102 p
0x2  &00\¢ ) Oy: 808 o’ ’
(37)

0 19 <1) 926 19 (;9%02)
5 '

oz 509\ oxdy & 00
By (36), if equation (35) has a real root # in a domain of the space S, then
this root satisfies the inequality —¢ < 6 < +¢, and the function x(6) must
have real values.
Let us note also some formulas used later. Let 6 be a complex root of (35),
let f(#) be an analytic function. Using (36) and (37), we obtain the following
expressions for the derivatives of f(#) with respect to (z,y,t):

2f 1 a{ 92] o2 f

0 ? — 62
- = 4 N -
or2 & 00 1(0) o’ ]’

1 /
2~ 000 {f ©) &

e\/ﬁ} |

I i 2 _ ZJ l
a2 5o 5| auoy = Tooe {f O—%

f 10 { 1} 0% f 10

The same formulas remain valid for the function f () of the real argument
0, if 0 is a real root of equation (35).

8. Let us now discuss the two-dimensional problem on vibrations of the
half-space under the action of a source of force F', located inside the half-
space. As before, assume that the elastic half-plane is y > 0. Let = 0,
y = [ be the coordinates of the force source. We assume that the force action
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is concentrated at some moment. As above, we denote by ¢ the time passed
from this moment.
Introduce two functions X («,t) and Y («, t) defined on

0<a< 2, 0<t<1.

Consider vibrations of the half-plane, being at rest at the moment t = 0,
under the action of stresses

1
—X oz,E and iY oz,E
g2 € g2 €

applied at the points of a circle of radius & with center F(0, f), where the
interval of the action of stresses is 0 < ¢t < e. As ¢ — 0, we have vibrations
of the half-plane with a singularity at the point F'(0, f) and with potentials
¢ and ¥ homogeneous in z, (y — f), and ¢. A similar result is obtained if the
moment is at t = 0. Note that the singularity of this type, generally speaking,
is homogeneous. We assume that our source has such singularity.

In another work we hope to conduct a mechanical analysis of this concept
of homogeneous singularity.

On the interval 0 < t < af there is no wave reflected from the plane y = 0
of the space S, and, as discussed abov]ecz, the elementary potentials ¢ and ¢
y—

x
depend only on the ratios — and , i.e., they must remain constant on

the straight lines of the space S, passing through the point z = 0, y = f,
t = 0. Subsequently, these lines will be called the rays of the space S. First
of all, we consider the case when the source F' is the source of longitudinal
waves, i.e., we assume that the potential i is equal to zero on the interval
0 <t < af. The potential ¢ is not equal to zero only for

t2 > a’[2? + (y - )°],

i.e., inside the cone Tj of the space S with apex F. The equation of the cone
is

t* —a®’la® + (y - f)] = 0. (39)

We consider only the inner part of this cone, where y > 0 and ¢t > 0.
Introduce the complex variable 6; determined, as in (35), by the equality

t =61z +/a® -0y - f) =0,

b=t~ Ohwt\Ja2 — 03y —\Ja> 62 f = 0. (40)

ie.,

Then ¢ must be the real part of an analytic function of the complex

variable 60,
Y1 = Re [@1 (01)] (41)
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Expression (40) sets in the correspondence to each ray inside the cone Tj
a value of 61, and ¢; remains constant along each ray. Consider this corre-
spondence in detail. Solving equation (40) with respect to 61, we obtain

ot —i(y — )12 —a2[22 + (y — [)?]
24 (y — f)? ’

where the radical is taken with “+” sign. The rays, located in the half-space
t > 0 and crossing the plane y = 0, correspond to the complex values of 6,
from the upper plane, i.e., with the positive imaginary part. Formula (42)
establishes the law of the correspondence between the rays and the values of
01. The family of rays, forming the part of the cone where ¢t > 0, corresponds
to the entire complex plane with the cut (—a, +a) along the real axis. However,
the points of this cut correspond to the generators of the cone. The intervals
(=00, —a) and (4a, +00) of the real axis of 8; correspond to the rays located
on the plane y = f, the imaginary axis corresponds to the rays of the plane
x = 0, and the upper half (0,+ioc0) of this axis corresponds to the rays for
which y < f, and which further intersect the plane y = 0. From the last
fact and equation (40) it follows that in this equation the radical \/a? — 6%
is positive for the values of #; on the imaginary semiaxis (0,+ioc). This is
equivalent to the assumption that the value of the radical \/a? — 67 is negative
imaginary for 6 > a.

The generators of the cone Ty correspond to the front of propagation of
vibrations. Consequently, (¢, must vanish in the corresponding points, i.e.,
the function @4(61) in (41) must be purely imaginary on the cut (—a,+a).
The points of the axis of the cone Ty correspond to the source of different
moments, and this axis corresponds to the point of the plane #; at infinity.
Since we know the source, we do the singularity of @;(6) at infinity.

Thus, the function @;(0) is determined. A more detailed analysis of dif-
ferent sources will be conducted later. Our assumption, that the potential ¢
remains constant along each ray emanating from the point z = 0, y = f,
t = 0, leads us to the fact that the singularity of ¢1 in the force source takes
place at all moments ¢ > 0.

9. The given elementary potential ¢; determines the motion when ¢ < af.
For t > af we have to add two more potentials: one - for the longitudinal
wave, and another 1 for the transverse wave. We select these potentials in
the same way as above, i.e., we assume that these potentials must remain
constant along some rays of the space S. These rays are called the reflected
rays. Beginning with the construction of o, first of all, we note that s must
be the real part of an analytic function:

©2 = Re [D2(02)], (43)

6, = (42)

where 05 is defined by equation (35) for ¢ = a. We choose the function x(6)
in this equation such that the values of 6; and 65 coincide for y = 0, i.e., we
select x(0) as in equation (40).



64 V. I. Smirnov and S. L. Sobolev

Then, for 3 we have the equation

by =t~ Opw —\Ja? — 03y — \Ja? — 63 f = 0. (44)
It is easy to verify that these reflected rays generate the cone
2 —a’lz® + (y+ /)] = 0

with apex (0, —f,0). We select in equation (44) the opposite sign of the radical
than in equation (40), so the rays going to the domain ¢ > 0, y > 0, correspond
to the complex values of 0, with the positive imaginary parts.

Constructing the potential 11, we should put ¢ = b in equation (35). The
term x(#) is chosen in the same way as in equation (40). The sign of the
radical in the coefficient at y should be taken such that the rays, along which
y and t increase, correspond to the values of § with the positive imaginary

“_»

parts. It is easy to show that we should take sign.
Then, for 83 we have the equation
b=t — O3z — /12 — 03y —\Ja? — 63 f = 0. (45)

For y = 0 the values of 03 coincide with the values of 6; and 65.
The potential ¥, is the real part of an analytic function

Y1 = Re [¥(63)]. (46)

Before we construct the functions @2(02) and ¥(6s), let us point out the
connection between the variables 6. For this purpose, consider the section of
the main cone Tj by the plane y = 0, where we have the reflection. In the
section we have the hyperbola

t? —a*(2® + f?) =0.

Each point (x,t) of the plane y = 0, located inside this hyperbola, for
which
2 —a*(@*+ f?)>0 and t>0,

corresponds to a complex value of 6; from the upper half-plane or the real
axis. By the construction of equations (44) and (45), the values of 05 and 65
coinciding with the values of 8; correspond to the point (z,t). Thus, choosing
the point (z,t), we define the complex values of 05 and 3 from the upper half-
plane. Substituting these values into (44) and (45), we obtain two reflected
rays in the space S. The potential @5 remains constant along one of these rays,
and v remains constant along another one. The values of y and t increase
along these reflected rays. Hence the addition of the potentials o and
does not influence the motion for ¢ < af and does not change the initial data.
If we fix a point (z,y) and a moment ¢, then the corresponding values of 0,
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and 03 from the upper half-plane are obtained from equations (44) and (45).
Obviously, it is impossible to define complex 65 and 03 for some points (z, y, t).

This corresponds to the fact that the reflected rays do not fill the entire
domain t > 0, y > 0.

If, for example, the reflected ray of the potential o does not pass through
the point (z,y,t), then we should not add the potential o at this point in
order to construct the solution.

It is easy to verify that, by (35), the complex value of 6 characterizes some
direction in the space S without any dependence on the term x/(6). Thus, the
above reasoning gives us the law of the correspondence between the directions
of the incident and reflected rays. We will not discuss this anymore, since our
goal is only the effective construction of the solution.

For the displacement components we have

. , 801 ’ a92 / 803
u=Re {@1(91) o + 452(92)7633 + ¥ (63) By ]7
(a7)
00 00 00
v = Re [@3(91) 8yl + ‘15'2(92)7; - W’(‘gs)a;]-

Inside the hyperbola t2 —a?(2% + f?) = 0 on the plane y = 0 the boundary
conditions expressing the absence of stresses must hold. However, note that
the variables 61, 65 and 63 coincide for y = 0. This allows us to omit index.
Furthermore, let ¢’ without index denote the general value of the variables 47,
8% and % for y = 0. Using (38), we can write the boundary conditions in the
form

10 —20V/a® — GZ[,(0) — D4(0)] + (b2 — 26%)%'(0)
Re{é/a@ L 5/2 } y:OZO;
(48)
10 (b2 — 262)[®,(0) + ()] — 2052 — G20 (6)
Re{é’@@ 1 26’ }yO—O.

The expressions under the sign of the real part Re contain the complex
variable 6, which can take arbitrary values from the upper half-plane, and the
real variable x, which appears in the formula for §.

First, note that 8 can be expressed in terms of x and ¢. This follows from
formula (42) for y = 0.

Thus, in the expression

0
—r —
/a2 _ 02 f
we can replace x by means of the formula

Va2 f
R

§ = (49)

xr =

|+
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Hence we have one complex variable 6 and one real parameter ¢ under the
sign of the real part on the left sides of (48).

Consider the interval (—a, 4+a) of the real axis of the plane 6, corresponding
to the generators of the cone Tp, i.e., to the front of propagation of vibrations
on the plane y = 0. All three potentials ¢1, @s and ¥ must vanish on this front,
i.e., the real parts of the functions @, ® and ¥ must be equal to zero on this
interval. Obviously, we can make the same conclusion about the derivatives
&), &, and ¥'. Taking into account that the radical v/a? — 62 is real on this
interval, we can assert that conditions (48) are satisfied for each positive real
value of ¢ on the interval —a < 6 < +a. Fix now a value of ¢ and prove that
conditions (48) will be satisfied for this value of ¢ and for all 6 from the upper
half-plane. If ¢ is fixed, and x is changing from

12 _q2f2
e
to
2 q2f2
VE—EP
a
then the complex variable
0 xt :tif t2 — a?(2? + f?)
2172 + f2 1’2 + f2

describes a curve [, issuing from a point A on the interval (—a, +a) and arriving
at another point B on the same interval. The curve [ together with the interval
AB of the real axis form a closed contour. By (48) for fixed ¢ the expressions
for 6 and t along this contour have zero real parts. Then, these real parts must
vanish on the entire upper half-plane of §. Making the change of variables

t=~0x++\/a2—-062f,

we can conclude that conditions (48), where ¢’ is defined by (49), must hold
for an arbitrary value of x on the entire upper half-plane of 6. Let us prove
that we then have

—20/ a2 — 02[® (0) — D4 (0)] + (b* — 20*)W'(0) = 0,
(b% — 202)[D(0) + P4 (0)] — 201/ b2 — 620 () = 0.

Denoting by o1(0) the left side of the first of these equalities and putting
0f
/a2 — 2’
we can express the first condition in (48) in the form

o1 (0)[=z + 02(0)] — 05(0)01(0)
[z + 02(0))?

(50)

0'2(0) =

= Cht,
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where C'is a real constant depending only on z, and 6 can take arbitrary values
in the upper half-plane. From the last equality it follows that the coefficient
at x and the term independent of x in the numerator of this fraction must
vanish. Hence o1 (f) = 0, i.e., the first equality in (50) holds. Similarly, we can
prove the second equality.

Solving equations (50) with respect to @4(0) and ¥’ (6), we obtain

— (202 — b?)? + 402V/aZ — 0252 — 02

Py(0) = FO) P (9), .
51
2 2\ /a2
7(0) = _40(20 ;(3)\/ 2 92@,1(9)7
wher
o F(0) = (26> — b%)% + 462/ a2 — 621/2 — 02, (52)

The fractions in (51) are real on the interval —a < § < +a of the real
axis. On the other hand, the real part of the function @1 (6) vanishes on this
interval. Whence, by condition, the real parts of @4 (6) and ¥’ (#) also vanish on
this interval. Integrating, we can choose additive constants in the expressions
for the potentials @2(0) and ¥(6) such that the real parts of P5(0) and ¥(6)
will also be equal to zero. By formulas (51) and (47), we can determine the
displacement components.

10. Let us point out some consequences of the obtained formulas. Consider
equation (40) having complex roots inside the cone Ty and real roots from the
interval —a < 6 < +a on the generators of this cone. As is known, these
generators correspond to the front of propagation of the longitudinal wave
in the domain ¢t > 0, y > 0 of the space S. Let §; = 6y be a value from
the interval —a < 67 < +a, let Ay be a corresponding generator. If we put
61 = 6y in equation (40), then we have the equation of the plane tangent to
the cone Ty along A\g. Therefore points (x,y,t) in the exterior of the cone Tj
correspond to real values of 6; from the interval —a < 6; < +a. Then, §7 =0
along each generator Ag, i.e., the derivative of the left side of equation (40)

00 00
is equal to zero. Hence the derivatives 8—1 and a—l are infinite along these
€z Y

generators, and we have infinite displacements on the front of propagation of
the longitudinal wave. The study of equations (44) and (45) leads to a similar
conclusion, and we have infinite displacements on the fronts of reflected waves.
Expanding the left side of equation (40) in powers of (61 — ), we can
0
conclude that a—l and —— are infinite of the orders
z

dy

respectively.
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Let us now move on to finding asymptotic estimates of the obtained solu-
tion as t — oo. This will give us the phenomenon of surface waves in the clear
form.

Let £ =2 — L, =y, where ¢ is a positive root of the equation F(f) =0,

1

i.e., — is the known velocity of the Rayleigh wave [2]. Assuming that £ and 7
c

remain bounded, let us construct the asymptotic expansions for 6; and 65 up

1
to the terms of order 2 It is easy to see that we have

b= CE_ “””‘“W‘f)+o<1)
- t 2 )
(53)
2 2 _ 2 1
= D
Hence,
001 c? 1 001  .cvVe? —a? 1
ax—‘t+OQJ’@-"”t+OQJ’
(54)
a0y c? 1 00y /2 —a? 1
6m__t+0(ﬁ>’m/_zt+0 7))

By F(c) =0, one can also verify that

_C2§_ic\/cj—7a2(n—f) +O<1), (55)

F(61) = F'(c)

_ 2 Ton/ 2 — a2
F(02) = F'(c) it Ct G(77+f)+0<t12)' (56)
Similarly, for 63 we obtain
2 ) o a— 1
0= c— C8 YE Ve aT T (L), (57)
t t t 2
03 c? 1 003 /2 —1b? 1
6mt+0<ﬁ> oy T to\g) Y

This allows us to write the asymptotic expansions for the displacement
components up to the term of order 7 Taking into account (47) and (51)3,
we have

3 The authors use also the formula

. i 2 _ p2 ; 2 _ 2
€ +icV/e? —b2n+icV/e? —a f+0<l).fEd.

F(02) = F'(0 : .
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w = Re —(2¢2 = b%)? — 4?2 — a2V 2 — b2
a F'(c)
" —c & (c) ide(2¢? — b?)V/e? — a2
c) —
i+ ) F(o)
N 1
x ey 45’1(0)}—1—0(), (59.1)
—c€+ iV —bn+iver —ad? f t
Re —(2¢2 = b*)? — 42V 2 — a2V e2 — b2
v =
F'(c)
" ive? —a? o)+ ide(2¢? — b?)V/ e — a?
—cE+iVE—at(n+f) F'(c)

—c / 1
Xc§+imn+imf¢1(c)} +O<t>' (59.2)

Our analysis allows us to note that at infinity vibrations produce the wave

1
propagating with the velocity — with bounded amplitude. It is easy to see
c

that this wave is a natural generalization of the Rayleigh wave?.

In the case of the concentrated source of the force inside the medium, we
see that the surface wave has nonperiodic nature. We should also mention that
the exponential law of damping in the depth is not valid anymore. Obviously,
the concept of wave length does not make sense.

11. Let us now move on to the source of transverse waves. As in the previ-
ous problem, we assume that this source is regular, i.e., the given elementary
potential of the transverse waves 1 is the real part of a regular analytic
function

Y1 = Re[¥1(61)], (60)

where the complex variable 6, is defined by an equation similar to (40),

b=t —biw /12— 03y — 02— 03 f =0 (61)
In this case, the cone Tj is defined by the equation
2 =0 z* + (y— f)?] =0, (62)

and the rays located inside this cone correspond to the plane of the complex
variable 67 with the cut (—b,+b) along the real axis. The values of §; on this
cut correspond to the generators of the cone. We look for the potential of
longitudinal reflected waves in the form of the real part of a function analytic
in the upper half-plane

¢ = Re [®(62)), (63)

4 These waves were studied by S. L. Sobolev in his work cited above.
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where 65 is defined by the equation

by =t~ Oyw —\Ja2 — 03y — \Jb2 63 f =0. (64)

As before, we chose an equation such that it coincides with equation (61)
for y = 0. In the section of cone (62), by the plane y = 0, we have the
hyperbola

2= b2+ f*) =0, t>0. (65)

Each point P from the interior of this hyperbola corresponds to a complex
value of 6; from the upper half-plane, and points of the hyperbola correspond
to values of 6 on the interval (—b, +b) of the real axis. To obtain a reflected
ray I, of the potential ¢ of the longitudinal wave passing through a point P
with coordinates (x,t) of the plane y = 0, we should take the corresponding
value of #; and substitute it for 6, into equation (64). This ray I, passes
through the point P, and equation (64) defines its direction.

As we have already noted, the direction of the straight lines, obtained from
equation (64), is completely defined by the first three terms on the left side of
this equation. Hence the direction is the same as one obtained from equation
(44) with the same value of §. The straight lines of equation (44) form the
already known cone with apex x =0, y = —f, t = 0 and the apex angle equal

1
to arctan —. For this cone as well as for the cone T from our problem, the

values of g from the upper half-plane correspond to the rays along which y
and t increase simultaneously. When the value of # tends to a point of the real
interval (—a,4a), the direction of the corresponding ray coincides with the
direction of the corresponding generator of the cone. When 6 tends to a point
of the real axis outside the interval (—a,+a), the ray direction is parallel to
the plane y = 0 in the limit. In the present case, the points of hyperbola (62)
correspond to the values of 67 on the interval (—b, +b). Let A and B be the
points of this hyperbola for §; = +a (see Fig. 3).

Fig. 3.

The arc AB of the hyperbola corresponds to the values of #; from
—a < 01 < +a.

The infinite branches AA; and BB; correspond to the values of 61 from
the intervals a < #; < b and —b < 6; < —a. The above reasoning leads us to
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the following conclusion: if a point P(z,t) tends to a point on the arc AA;
or BBy, then the angle between the corresponding ray [, of the reflected
longitudinal wave and the plane y = 0 tends to zero. The limit for the points
located on these arcs is on the plane y = 0.

Substituting into (64) instead of 5 some value from the interval (a,b) or
(—b, —a), we obtain the equation of the ray I, ; passing through a point of the
arc AA; or BB; and located on the plane y = 0:

t— Oz — /b2 — 02 f =0.

It is easy to show that the last equation defines the tangents to hyperbola
(65). Hence, for each point of the arcs AA; and BBy of the hyperbola, the cor-
responding ray of the reflected longitudinal potential is tangent to hyperbola
(65) at this point.

Later we will see that the potential of the reflected longitudinal waves will
be equal to zero only on the interval (—a, +a) of the real axis, as in the case of
the longitudinal source, but it will not be equal to zero on the intervals (a, b)
and (—b, —a). Also, it will not vanish in two domains of the plane bounded by
the arcs AA; and BBj of the hyperbola and two tangents to the hyperbola
at the points A and B. We denote these domains by (I) and (II). There is no
incident transverse wave in these domains. To satisfy the boundary conditions,
we have to define the potential 15 of the reflected transverse wave not only
inside hyperbola (65), but also outside this hyperbola in the domains (I) and
(I1).

We will see later how to do it. We now move on to the definition of
inside the hyperbola, i.e., for complex values of 8 from the upper half-plane.
Here, 15 is the real part of an analytic function

Y2 = Re [¥2(03)], (66)

where 63 is defined by the equation

By =t —Oyw — \Jb2 — 03y — /02 — 02 f = 0, (67)
which defines the conical beam T} of rays with apex

Fl(z:O7 y:_fv tZO)

1
and angle arctang at the apex. We consider only those rays of this beam

which pass through the domain y > 0, ¢ > 0 of the space S.

Let us now write the boundary conditions for the mentioned points, i.e.,
for the values of # from the upper half-plane. The values of 6, > and 03
coincide for y = 0. Denoting by 6 this common value, we have
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1 0 20/ — 020 (0) + (b2 — 202) (W () + W4 (6)] B
Re{fme ¢ 1 2 } . (68)

10 (b2 — 20%)8'(0) + 203/62 — 2w (6) — W5(6)] B
Re{&@ﬂ 5 ! } y:O_ 0,

where ¢’ is the derivative of the expression (¢t — 0z — /b? — 62 f) with respect
to 6.
As in the case of the source of longitudinal waves, from above we obtain

20/ a2 — 028/ (0) + (b2 — 262)[¥](0) + W4(0)] = 0,

(69)
(b? — 20%)@'(0) + 20/ b2 — 62[W; (0 (0)] = 0.
Then, we can define the functions ¢'(6) and ¥;(6)
40(26% — b*)Vb? — 62
w(0) = PN C ),
F()
(70)
b - QPPN VIR,
1(0) =

The potential 17 of the transverse waves propagating from the source must
vanish on the wave front. It means that the real parts of the functions ¥, (6)
and ¥{(6) must be equal to zero for —b < § < +b. Taking into account that
the fractions in (70) are real for —a < 6 < +a, we can assert that ¢'(9) and
W4 (0) have zero real part for —a < 6 < +a. This fact is not valid anymore
on the intervals a < § < b and —b < # < —a, since the indicated fractions
contain the radical va? — #2. Therefore, in the domains (I) and (II) of the
plane y = 0 the potential ¢ equal to the real part of ®#(6) is not equal to
zero. These domains are generated by the rays [, ; or the lg, corresponding
to the real values of 6 from the intervals (a,b) and (—b, —a). If we substitute
such value of 6 for f3 into equation (67), we have the equation of some plane
in the space S. The section of this plane by the plane y = 0 is the ray lj.
It is easy to see that this plane is tangent to the cone 77 of the reflected
transverse wave. Thus, we have the family of planes tangent to the cone T}
along the generators passing through the points P of the arcs AA; and BB,
of the hyperbola. Consider one of the planes tangent to the cone along the
generator F; P. Let 6 be the real value of the parameter 6, corresponding to
this generator Fj P. Denote by Uy the domain of this tangent plane, bounded
by the generator F; P and the ray lp of the plane y = 0, and located in the
half-space y > 0. The values of 6 belong to the intervals (a,b) or (—b, —a).

The domains Uy fill a domain R in the space S. In this domain we define
the potential 9 as a function of the real variable 6. This function is constant
in each Uy. As already mentioned in Sect. 7, an arbitrary function of a real
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root 6 of equation (67) in the domain R satisfies the wave equation (2) for
c=b.

Our choice of Uy allows us to assert that we did not break the initial
conditions, since we have t > a f for Uy. Similar circumstances will be valid for
the future problems, and we will not discuss it anymore. As we will see later,
our procedure always determines the potential continuously. Moving on to the
effective computation of this potential, we have to choose a function of #, which
defines the potential 5 in the domain R such that the boundary conditions
are always satisfied in the domains (I) and (IT) of the plane y = 0. The second
formula in (70) gives us ¥4(6) on the intervals (a,b) and (—b, —a). Integrating
along the real axis, we obtain W5(6). Obviously, one can put Wy(+a) = 0.
It is easy to prove that if the potential 15 is equal to the real part of the
indicated function ¥5(#) on the planes Uy, then the boundary conditions will
be satisfied also in the domains (I) and (II) of the plane y = 0. Indeed,
returning to equalities (69), we can assert that they hold also on the intervals
a <6 <band —b < 0 < —a. However, the real part of ¥{(d) is equal to
zero on these intervals, and the coefficients of this function in equation (69)
do not contain the radical v/a? — 62. Hence these coefficients are real. Taking
into account once again the fact that ¢’ is also real, in the discussed case we
have the condition in form (68) with ¥{(6) =0, i.e.,

1 0 20va? — 629 (0) + (b — 202)W5(0)

Req —— =0,
5 00 S’ =0
1 0 (b? —20%)9'(0) — 202 — 620 (0)

Req — = =0.
8 00 & =0

These equations show that the boundary conditions hold in the domains
(I) and (II) of the plane y = 0. Thus, the problem is solved.

Let us note again that the value of 12 on Uy is equal to the value of this
function along the generator Fy P, through which Uy passes.

12. Let us now derive some consequences of the obtained results. As in
Sect. 10, we can prove that the displacements are infinite on the fronts of the
waves. We will not return to this point anymore.

If we cross the constructions made in the space S by the plane ¢ = const,
we obtain the fronts of the waves at the time moment ¢ (see Fig. 4). Let us take
sufficiently large ¢t such that the plane ¢ = const to pass through the domain
R of the space S. In this case, the front of the transverse waves consists of
three parts. The first part is the arc AHB of the circle that is the section
of the cone Ty by the plane ¢ = const. This is a wave propagating from the
source. The second part is the arc AEF B of the circle that is the section of
the cone T; by the plane t = const. The third part consists of two lines CE
and DF' that are the sections Uy, and U_, by the plane ¢t = const. This last
part is generated by the longitudinal waves propagating along the plane y = 0

1
with the velocity —. The points E and F are the points of the intersection
a
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of the plane ¢ = const with the generators of the cone Tj, corresponding to
the values § = 4a. The front of the longitudinal waves is the curve CGD
enveloping the lines

Oz +a?2—02y+\b2—02f=t, —a <0< +a, t=const.

All these fronts propagate according to the Fermat principle. As in the pre-
vious case, one can give asymptotic representations of the displacements and
to reveal the surface wave. The explanation is completely analogous to the
above one.

Fig. 4.

13. The presented approach can be applied not only to the two-dimensional
problem on vibrations of the half-space, but it also gives the general law of
reflection of a beam of rays of special type from a plane in the space S.

For this special type, the potential (longitudinal or transverse) is the real
part of an analytic function of # in the upper half-plane, where 6 is a root of
the equation

t—0xt\c2—02y—x(0)=0, c=aorb.

As mentioned above, this form is equivalent to form (34). We will say that
in this case vibrations have imaginary potentials.

The indicated analytic function satisfies also some boundary conditions.
In the last cases it is necessary to consider real values of 6 which correspond
to planes in the space S. The potential must remain constant on each of these
planes. We do not consider the entire plane, but rather only its part concluded
between the reflective plane and the terminal position of the ray obtained when
0 from the upper half-plane tends to the discussed real value corresponding to
the plane. The presented method gives, for example, a solution of the problem
on vibrations of a layer.

Let 2f be the thickness of the plane layer bounded by the lines y = 0 and
y = 2f. Suppose that we have a source of longitudinal type at the point x = 0,
y = f with the singularity of the type described above. Let the potential of
this source be given by the formula
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@ = Re [D(0)], (71)

where the analytic function @() is defined on the entire plane with the cut
(—a,4+a) along the real axis; let the real part of ¢(f) be equal to zero on
this cut. Consider the part 2 of the space S, bounded by the planes y = 0
and y = 2f. Denote by Sy the first of these planes, and the second by S;. If
we are at rest for ¢ < 0, then we have longitudinal vibrations with the given
potential ¢ for 0 < t < af. The rays corresponding to this wave form the cone

1
To with apex (z =0, y = f, t = 0) and angle arctan — at the apex. At the
a

moment ¢ = af we have reflected rays of longitudinal and transverse waves
with respect to the planes Sy and S;. All these rays follow the direction of
growth of t. Hence, in the domain {2 bounded by the planes ¢t = 0 and t = af,
the displacement is defined by the fundamental cone Tp. In expression (71), 6
is defined by the equality

t—0r++va2—602y—+a2—-0%2f=0.

Let 7 and 17 be the potentials of the longitudinal and transverse waves
reflected from the plane Sy, let 5 and ¥y be the analogous potentials for the
reflection from Sj.

We have

¢1=Re[01(01)] and o1 =Re[¥1(0})], (72)

where 61 and 0] are complex values from the upper half-plane, defined by the

equations
t—b1x— /a2 — 02y — /a2 — 02 f =0,
le— 02— 07y — /a2 —0>f=0.

Equations (51) allow us to obtain the functions @,(61) and ¥;(6;) for
values of the argument from the upper half-plane

SRR NIV,
F(0) ’

(73)

P1(0) =

(74)

—40(20% — b?)/a2 — 02
F(0)

v (0) = P ().
In this case, the real parts of @} () and ¥ (0) are equal to zero on the interval
—a < 0 < +a. These reflected rays pass through points of the plane Sy,
located inside the hyperbola t? — a?(z2 + f?) = 0. The rays fall on the plane
S1 above the line ¢t = 3af.

Values of 6 from the lower half-plane correspond to rays of the cone Ty,
falling on the plane S;. Let

@2 = Re[P2(02)], 12 = Re[Wa(63)] (75)
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be the potentials of the longitudinal and transverse waves reflected from the
plane S;. Complex values of 63 and 6, from the lower half-plane must coincide
with 6 for y = 2f. Tt is easy to see that 65 and ) are defined by the equations

t—Osz —\fa? — 63y +3/a2 — 03 f =0,
(76)

L= the 12— 02y 22— 02 f—\Ja2— a7 =0

The derivatives of the functions &, and ¥y are determined by the formulas
obtained from (74) by the sign change in front of the radical va? — 62 in the
second formula. The displacement of the layer, bounded by the planes t = f
and t = 3f in the domain {2, is determined by the potentials ¢, 1, w2, 91,
and 5. Further, we have to consider the reflection of the rays corresponding
to the potentials @1, w2, 11, and ,. First, consider the potential ;. The
corresponding rays reflected from the plane Sy fall on the plane S; and create
reflected rays of longitudinal and transverse vibrations. Let us introduce the
corresponding potentials

@3 = Re[P3(03)], 13 = Re[¥s(63)], (77)

where the variables 63 and 65 from the upper half-plane must coincide for
y = 2f with 6, defined by the first equation in (73). It is easy to see that the
equations on these variables have the form

t — 03z + /a2 — 03y —5y/a? — 03 f =0,

t—egx+\/b2—9g2y—2\/b2—932f—3 a2 — 02 f=0.

(78)

The functions @4 and ¥4 are determined through &} by the formulas obtained
from (74) by the sign change in front of the radical va? — 62 in the second
formula.

Introduce the potentials ¢4 and 4 for rays corresponding to the reflection
of the beam of rays of transverse vibrations with the potential i; from the
plane Sy,

¢a =Re[04(04)], s = Re[¥a(0})], (79)

where 0, and 6} from the upper half-plane satisfy the equations

t—Oazt\Ja2 — 03y —2\/02 — 03 f — 3,/ — 63 =0,
(80)

t—egx+\/b2—9:12y—4\/b2—9ff—\/a2—9ff:0.

The functions @), and ¥, are determined through ¥] by the formulas obtained
from (70) by the sign change in front of the radical in the first formula
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_ —40(20% — b))V — 02

2 22 2 (81)
o) - T = IV R ),

Note that the range of the argument of the function ¥j(6) consists of
the upper half-plane and the interval (—a,+a), and the real part of ¥7(f)
vanish on this interval. Analogous results are valid for all remaining functions
obtained by the reflection from the planes Sy and S;. It is completely clear
how we should continue the calculations.

In the case of a source of transverse vibrations we have somewhat different
circumstances.

14. Assume that the formula ¢ = Re[¥(6)] gives us the potential of a
source of transverse vibrations, where the variable 6 is defined by the equation

t— 0+ Vb2 — 02y — /b2 — 02 f =0, (82)

and the range of change of this variable is the entire complex plane with
the cut (—b,+b) along the real axis. We construct the potentials p; and 1
reflected from the plane Sy,

01 =Re[P1(01)], ¢1=Re [%(9/1)}» (83)
where
&,(0) = 46(26? —;(29))\/@ — 62 (),
2 212 2 (84)
e )

Real values of 0 from a < |6] < b correspond to rays of longitudinal vibrations
in the plane Sy and to the plane, where ¥;(0) is equal to a constant defined
by (84).

For 6; and 6] we have the equations

t— 61z — /a2 — 02y — /b2 — 02 f =0,
1= V0 9/129* l9’12f:0-

Further, consider the reflection of the obtained rays of longitudinal vibra-
tions from the plane S;. We have the potentials of reflected longitudinal and
transverse vibrations g9 and g,

(85)

@2 = Re[Py(02)], 12 = Re[Wa(6y)]. (86)

For the variables 65 and 6} we have the equations
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t— Oz + a2—9§y—\/b2—9§f—3 a?—0%f=0,

(87)
t— '2x+\/b2—9’22y—3\/b2—9’22f—2 az— 0,2 f =0,
and the functions @, and ¥} are defined by the formulas
(902 _ p2)\2 2. /a2 — 02/02 _ 02
&(0) (20% — b*)? + 40*Va? — 62V/b% — 6 & (0),
F(0)
(88)
4 2 _ A2 2 2 12
wy(e) = B D),

F(0)

The rays of longitudinal vibrations of the potential ¢, corresponding to
the real values of 6 from a < |f] < b, remain in the plane Sy. Hence the range
of 05 and 6 is the upper half-plane and the interval (—a, +a). This fact is
valid for the variable 6 in (88), and the real parts of @, (6) and ¥4 () are equal
to zero on the interval (—a,+a).

Consider now the reflection of rays of transverse vibrations with the po-
tential ¢; from the plane S;. Introduce the potentials for the reflected rays

@3 = Re[P3(03)], 3 = Re[¥3(03)], (89)
where
t—0Osx + a2—9§y—3\/b2—9§f—2 a?—03f=0,
(90)
t— 04+ /b2 — 057y —5\/b2— 02 f=0
and s o
—46(262 — 2 — 02
ay(0) = 0DV Py,
F(0)
(91)
—(2602 — %)% + 462V a? — 62V/b2 — 92
w4(0) = ( ) 50 w1(0).

Let us make some additional comments about real values of 6 such that
a< || <b.

For @4(0) and ¥4(#) we obtain values with nonzero real parts. From the
first equation in (90) it follows that the rays of longitudinal vibrations corre-
sponding to these values of 8 are located in the plane S;. The second equation
defines a family of planes, on which ¥3(6) remains constant. It is easy to ver-
ify the boundary conditions by considering the potentials in domains of the
plane S, filled with the rays of longitudinal vibrations. Let us consider these
domains in detail.

For every real value of § from the inequality a < |f| < b, the equation of
the corresponding ray located in the plane S is
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t—0x—3vb2—02f=0, y=2f.

Substituting into the second equation in (90) 6 for 64 and putting y =
2f, we obtain the same equation . Hence the indicated ray of longitudinal
vibrations coincide with the section of the plane, where W5(6) is constant.
The same can be obtained putting y = 2f in the second equation in (85), i.e.,
the plane, on which ¥ (6) is constant, crosses the plane S; along the same ray
lp. When the rays of the potential 3 reflect from the plane Sy, the range of
0 is the upper half-plane with the interval (—a, +a) of the real axis. The real
part of @45(0) is equal to zero along this interval.

Using the same argument, we can obtain solutions of problems with differ-
ent boundary conditions, for example, with the absence of the displacements,
etc.

15. Using the above method in the case when the source is located inside
the medium, it is easy to solve also the first problem in the very compact
form: the two-dimensional problem on vibrations of the half-space under the
action of an impact concentrated on the surface.

Let the source of vibrations be located at the point

O(x=0,y=0,t=0)

of the space S, let the complex potentials $(6;) and ¥ (6;) of longitudinal and
transverse vibrations correspond to this source. Consider two cones T7 and T5

1
with apex O and angles arctan — and arctan 3 at the apex. Write down the

t—01x — /a2 — 602y =0, (92)
t—0x— /02 -0y =0. (93)

Complex values of 6; from the upper half-plane correspond to rays passing
through the point O and moving inside the cone T; in the domain y > 0,
t > 0 of the space S. Real values of 6y such that |6;| > a correspond to rays
located in the plane y = 0. Finally, real values of 6; from the interval (—a, +a)
correspond to generators of the cone T7. Completely analogous correspondence
will take place between rays inside the cone T» and complex values of 6.

Let OA and OA; be generators of T} in the plane y = 0, let OB and OB
be generators for T. Using (38), one can write the condition that the stress
is equal to zero inside the angle BOB; at all points of the plane y = 0

Re {59[29\/& — 020 (0) + (b — 292)u7’(9)]} —0,

equations for #; and 67,

Re {889[(1)2 —20%)®'(0) — 20/b% — 92@(0)]} =0.
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Note that points inside the angle BOB; correspond to real values of 6 such
that |#] > b. Consider now the angles AOB and A;OB;. Here we have the
potential @1 (0) of longitudinal vibrations. To satisfy the boundary conditions,
we have to apply transverse vibrations. This corresponds to the fact that longi-
tudinal vibrations propagating over the surface generate transverse vibrations
inside. In this case, the argument of the function @4 () takes real values from
the intervals (a,b) and (—b, —a). For these values of 6, equation (93) defines
planes tangent to the cone Ts. Let us take the parts of these planes between
the plane y = 0 and the generators of the cone T5.

Denote by Uy these parts. On each Uy the potential of transverse vibra-
tions must be constant, and we have to choose the functions w(f) such that
the boundary conditions are satisfied in the angles AOB and A;OBj. Since
|| < b, we can write these conditions in the form

Re{ 2520V —F0(0) + (7 2671 0)] | <0,
(99

0]
Re {69[(1)2 —20%)9'(0) — 20/b% — 9%’(9)]} =0.
Since the potential is continuous, the value of w(f) must coincide with the
real part of ¥(#) on the generator of the cone Ts, along which Uy touches
the cone. Then conditions (95) coincide with conditions (94), i.e., conditions
(94) must be satisfied also for a < |#] < b. Since velocity of vibrations cannot

be greater than —, we must assume that the potentials of longitudinal and
a

transverse vibrations must vanish for —a < 6 < a, i.e., conditions (94) will be
also satisfied for these values of #. Thus, these conditions must be satisfied on
the entire real axis. Calculating the functions ¢(6), ¥(6#), and the potentials

¢ =Re[®(0)], ¢ =Rel¥(0)],

we have to continue v into the exterior of the cone 75 along the planes Upy.
The establishment of conditions (94) for all real values of 6 is the essential
fact in solving the first problem.
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