
Path-based formulations of a bilevel toll setting
problem

Mohamed Didi-Biha1, Patrice Marcotte2 and Gilles Savard3

1 Laboratoire d’Analyse non linéaire et Géométrie, Université d’Avignon et des
Pays de Vaucluse, Avignon, France mohamed.didi-biha@univ-avignon.fr

2 CRT, Département d’Informatique et de Recherche Opérationnelle, Université
de Montréal, Montréal (QC), Canada marcotte@iro.umontreal.ca

3 GERAD, Département de Mathématiques et de Génie Industriel, École
Polytechnique de Montréal, Montréal (QC), Canada gilles.savard@polymtl.ca

Summary. A version of the toll setting problem consists in determining profit
maximizing tolls on a subset of arcs of a transportation network, given that users
travel on shortest paths. This yields a bilevel program for which we propose efficient
algorithms based on path generation.

Key words. Pricing. Bilevel programming. Networks. Column generation.
Combinatorial optimization.

1 Introduction

Bilevel programming offers a convenient framework for the modelling of pric-
ing problems, as it allows to take explicitly into account user behaviour. One of
the simplest instances was analyzed by Labbé et al. [8], who considered a toll
optimization problem (TOP) defined over a congestion-free, multicommodity
transportation network. In this setting, a highway authority (the “leader”)
sets tolls on a subset of arcs of the network, while the users (the “follower”)
assign themselves to shortest4 paths linking their respective origin and desti-
nation nodes. The goal of the leader being to maximize toll revenue, it is not
in its interest to set tolls at very high values, in which case the users will be
discouraged from using the tolled subnetwork. The problem, which consists
in striking the right balance between tolls that generate high revenues and
tolls that attract customers, can be formulated as a combinatorial program
that subsumes NP-hard problems, such as the Traveling Salesman Problem

4 It is assumed that costs and travel times are expressed in a common unit, i.e.,
the monetary perception of one unit of travel time is uniform throughout the user
population.

 pp. ,Optimization with Multivalued MappingsS. Dempe and V. Kalashnikov (eds.),
Media, LLC©2006 Springer Science + Business

29-50

30 Mohamed Didi-Biha, Patrice Marcotte and Gilles Savard

(see Marcotte et al [11] for a reduction). Following the initial NP-hardness
proof by Labbé et al., complexity and approximation results have also been
obtained by Roch et al. [12] and Grigoriev et al. [5].

The aim of the present work is to assess the numerical performance of path-
based reformulations of TOP, and to show their ability to solve to optimality
medium-sized instances, and to near optimality large-scale instances. This
stands in contrast with arc-based methods that have been proposed by Labbé
et al. [8] and Brotcorne et al. [1]. Note that Bouhtou et al. [2] have recently
proposed, together with arc-based methods, a path-based approach operating
on a compact reformulation of the problem.

The structure of the paper is as follows: Section 2 introduces three Mixed
Integer Programming (MIP) formulations for TOP; Section 3 introduces a
path generation framework; Section 4 details a sequential implementation;
Section 5 presents numerical results achieved on randomly generated test
problems; Section 6 concludes with avenues for further research.

2 A bilevel formulation

In this section, we present three MIP formulations of TOP. The first, initially
proposed by Labbé et al. [8], relies on the optimality conditions associated
with an arc-commodity formulation. The second utilizes both arc and path
variables, while the third is entirely path-based.

TOP can be analyzed as a leader-follower game that takes place on a
multicommodity network G = (K,N,A) defined by a set of origin-destination
couples K, a node set N and an arc set A. The latter is partitioned into the
subset A1 of toll arcs and the complementary subset A2 of toll-free arcs. We
endow each arc a ∈ A with a fixed travel delay ca. Toll arcs a ∈ A1 also involve
a toll component ta, to be determined, that is expressed in time units, for the
sake of consistency. The demand side is represented by numbers nk denoting
the demand for travel between the origin node o(k) and the destination d(k)
associated with commodity k ∈ K. With each commodity is associated a
demand vector bk whose components are, for every node i of the network:

bki =

⎧⎨⎩
−nk if i = o(k),
nk if i = d(k),
0 otherwise.

Letting xk
a denote the set of commodity flows and i+ (respectively i−) the

set of arcs having i as their head node (respectively tail node), TOP can be
formulated as a bilevel program involving bilinear objectives at both decision
levels:

Path-based formulations of a bilevel toll setting problem 31

TOP: max
t,x

∑
k∈K

∑
a∈A1

tax
k
a

subject to ta ≤ tmax
a ∀a ∈ A1

∀k ∈ K

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

xk ∈ arg min
x̄

∑
a∈A1

(ca + ta)x̄a +
∑

a∈A2

cax̄a

subject to
∑

a∈i−
x̄a −

∑
a∈i+

x̄a = bki ∀i ∈ N

x̄a ≥ 0 ∀a ∈ A.
In the above formulation, the leader controls both the toll and flow vari-

ables. However the lower level ‘argmin’ constraint forces the leader to assign
flows to shortest paths with respect to the current toll levels. In order to pre-
vent the occurrence of trivial situations, the following conditions are assumed
to hold throughout the paper:

1. There does not exist a profitable toll vector that induces a negative cost
(delay) cycle in the network. This condition is clearly satisfied if all delays
ca are nonnegative.

2. For each commodity, there exists at least one path composed solely of
toll-free arcs.

Under the above assumptions, the lower level optimal solution corresponds to
a set of shortest paths, and the leader’s profit is bounded from above.

A single-level reformulation of TOP is readily obtained by replacing the
lower level program by its primal-dual optimality conditions. If one expresses
the latter by the equality of the primal and dual objectives, we obtain the
nonlinearly-constrained program

MIP: max
t,x,λ

∑
k∈K

∑
a∈A1

tax
k
a

subject to ta ≤ tmax
a ∀a ∈ A1

∀k ∈ K

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
a∈i−

xk
a −
∑

a∈i+
xk

a = bki ∀i ∈ N

λk
j − λk

i ≤ ca + ta ∀a = (i, j) ∈ A1

λk
j − λk

i ≤ ca ∀a ∈ A2∑
a∈A1

(ca + ta)xk
a +
∑

a∈A2

cax
k
a = (λk

o(k) − λk
d(k))n

k

xk
a ≥ 0 ∀a ∈ A.

32 Mohamed Didi-Biha, Patrice Marcotte and Gilles Savard

Now, for each commodity k ∈ K, one can substitute for the flow variables
the proportion of the demand d(k) assigned to arc a, and replace the node
demand bki by the unit demand ek

i = sgn(bki). Slightly abusing notation, we
still denote the flow proportions by xk

a. Since there exists an optimal extremal
solution for the lower program (and the bilevel program as well) one may
assume, without loss of generality, that the variables xk

a are binary-valued,
i.e., each commodity flow is assigned to a single path.

Next, we introduce unit commodity toll revenues tka and replace the bilinear
term tax

k
a by the commodity toll tka, which we force to take the common value

ta whenever the associated flow xk
a assumes the value ‘one’. These operations

yield a mixed-integer program that involves relatively few integer variables,
i.e., one per toll arc and per commodity.

MIP I: max
t,x,λ

∑
k∈K

∑
a∈A1

nkt
k
a

subject to ta ≤ tmax
a ∀a ∈ A1

∀k ∈ K

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
a∈i−

xk
a −
∑

a∈i+
xk

a = ek
i ∀i ∈ N

λk
j − λk

i ≤ ca + ta ∀a = (i, j) ∈ A1

λk
j − λk

i ≤ ca ∀a ∈ A2∑
a∈A1

(caxk
a + tka) +

∑
a∈A2

cax
k
a = λk

o(k) − λk
d(k)

−Mkx
k
a ≤ tka ≤Mkx

k
a ∀a ∈ A1

−M(1− xk
a) ≤ tka − ta ≤M(1− xk

a) ∀a ∈ A1

xk
a ∈ {0, 1} ∀a ∈ A1

xk
a ≥ 0 ∀a ∈ A2.

Note that, in the formulation MIP I, the parameter Mk can be set, for every
commodity index k, to any value that exceeds the difference between the
cost C∞

k of a shortest path that uses only arcs in A2 and the cost C0
k of a

shortest path with all tolls set at zero or, if tmax
a is bounded, to tmax

a , simply.
As for M , it can assume any value larger than the maximum of the Mk’s.
These assignments ensure that formulation MIP I is equivalent to the original
bilevel program. In the case where tolls cannot assume negative values, i.e.,
subsidies are forbidden, these bounds have been refined by Dewez [4].

We now provide two path-based formulations for TOP. To this aim, we
introduce the set Pk of paths from o(k) to d(k) and denote by Ik

a the set of

Path-based formulations of a bilevel toll setting problem 33

elements of Pk that contain a, i.e.,

Ik
a = {p ∈ Pk | a ∈ P}, ∀ a ∈ A, ∀ k ∈ K.

With each path p ∈ Pk, we associate the indicator variable zp, which takes
the value 1 if path p is used by commodity k, and takes the value 0 otherwise.
From the identity

xk
a =
∑
p∈Ik

a

zp, ∀ a ∈ A, ∀ k ∈ K,

there comes the arc-path formulation

MIP II: max
t,z,λ,s

∑
k∈K

∑
a∈A1

nkt
k
a

subject to

∀k ∈ K

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λk
i − λk

j = ca + ta − sk
a ∀a = (i, j) ∈ A1

λk
i − λk

j = ca − sk
a ∀a = (i, j) ∈ A2

0 ≤ sk
a ≤M(1−

∑
p∈Ik

a

zp) ∀a ∈ A

−Mk

∑
p∈Ik

a

zp ≤ tka ≤Mk

∑
p∈Ik

a

zp ∀a ∈ A1

tka ≤ ta ≤ tmax
a ∀a ∈ A1∑

p∈Pk

zp = 1

zp ∈ {0, 1} ∀p ∈ Pk,

where s is the vector of slack variables associated with the dual constraints.
The first three constraints ensure that the selected paths are optimal with
respect to the current toll vector. The fourth and fifth ones, together with
the max operator, ensure that the commodity revenue tka is equal to the true
revenue ta whenever arc a lies on the path actually used by commodity k,
hence that the model is consistent. The set of values that can be assumed by
the constants M and Mk is the same as that for MIP I.

This formulation involves
∑

k∈K |Pk| binary variables. Although this num-
ber grows exponentially with the size of the network, it may very well be less
than the number of variables involved in MIP I, whenever the number of
‘reasonable’ paths is small. In Section 3, we present a procedure that limits
the number of paths to be considered, and consequently makes this approach
practical for realistic instances of TOP.

34 Mohamed Didi-Biha, Patrice Marcotte and Gilles Savard

The third formulation, MIP III, is entirely path-based. Let us first intro-
duce T k, the profit raised from commodity k, as well as Lk, the disutility (cost
plus delay) associated with the shortest path p actually used by commodity
k. Since at most one path is used for every commodity, we obtain

T k =
∑

a∈p∩A1

ta

and

Lk =
∑
a∈p

(ca + ta)

= T k +
∑
p∈Pk

zp

∑
a∈p

ca.

This leads to the path formulation MIP III, that involves a smaller number
of variables than formulation MIP II.

MIP III: max
t,z,L

∑
k∈K

nkT
k

subject to ta ≤ tmax
a ∀a ∈ A1

∀k ∈ K

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T k ≤
∑

a∈p∩A1

ta +Mk(1− zp) ∀ p ∈ Pk

∑
a∈p∩A1

ta +
∑
a∈p

ca −Mp
k (1− zp) ≤ Lk ≤

∑
a∈p∩A1

ta +
∑
a∈p

ca

∀ p ∈ Pk

Lk = T k +
∑

p∈Pk

zp

∑
a∈p

ca

∑
p∈Pk

zp = 1

zp ∈ {0, 1} ∀ p ∈ Pk.

In this formulation, a suitable value for Mp
k is given by:

Mp
k =
∑
a∈p

ca +
∑
a∈p

tmax
a − C0

k .

3 A path generation algorithm

In this section we propose an algorithmic framework that relies on the follow-
ing three observations:

Path-based formulations of a bilevel toll setting problem 35

• lower level solutions correspond to some shortest paths for each origin-
destination pair;

• for a given lower level extremal solution (collection of shortest paths), one
may efficiently recover a set of revenue-maximizing tolls that is compatible
with this solution;

• one may expect to extract higher revenues from toll arcs belonging to
paths having low rather than large initial delays. (This should come at no
surprise.)

The algorithm generates a sequence of extremal lower level solutions, or
multipath P , which corresponds to vectors of commodity paths, one per com-
modity, e.g.,

P = (p1, p2, . . . , p|K|),with pk ∈ Pk.

We denote by C the set of all multipaths:

C = {(p1, . . . , p|K|) | pk ∈ Pk; k = 1, . . . , |K|}.

Given a multipath P ∈ C, we define c(P) as the sum of delays on the arcs
belonging to at least one of its paths, i.e.,

c(P) =
|K|∑
k=1

nk

∑
a∈pk

ca.

Without loss of generality, we assume that the elements of C are indexed in
nondecreasing order of their respective total delays:

c(P 1) ≤ c(P 2) ≤ . . . ≤ c(P |C|).

The algorithm explores multipaths in increasing order of total delay, and stops
as soon as no progress can be achieved. One iteration of the generic algorithmic
scheme is composed of the following operations:

1. Generate the ith multipath P i;
2. Update upper bound on total revenue;
3. Optimize toll schedule with respect to current multipath;
4. Update lower bound on total revenue;
5. If lower and upper bounds coincide, stop with an optimal solution to TOP.

The efficiency of the procedure rests on the quality of lower and upper bounds,
which are crucial in limiting the scope of the enumeration process, and on the
design of an efficient algorithmic procedure for generating multipaths. Those
are considered in turn.

36 Mohamed Didi-Biha, Patrice Marcotte and Gilles Savard

3.1 Upper bound

Let p∞k (respectively p0
k) denote the shortest path from o(k) to d(k) in the

graph G obtained by setting all tolls to +∞ (respectively 0) and let α∞
k

(respectively α0
k) denote the corresponding delay, i.e.,

α∞
k =

∑
a∈p∞

k

ca

α0
k =
∑
a∈p0

k

ca.

For a given commodity index k in K, an upper bound on the revenue raised
from this commodity k is given by the product of the demand nk and the gap
between α∞

k and α0
k, i.e.,

UB(pk) = nk(α∞
k − α0

k).

This bound can actually be tightened by making it dependent on the delay of
the multipath under consideration:

UB(P) =
∑
k∈K

nk(α∞
k −

∑
a∈pk

ca).

3.2 Lower bound

If the lower level solution (multipath) is known a priori, all bilinear constraints
become linear, and the resulting program is easy. Its solution yields a toll vec-
tor t that maximizes revenue while being compatible with the multipath. This
operation is tentamount to solving an inverse problem. Loosely speaking, an
inverse optimization problem occurs when one wishes to estimate the param-
eters of a primary optimization problem whose optimal solution is known a
priori. In general, the set of such parameters is not unique, and one may
therefore optimize a secondary objective over this set. In the context of toll
optimization, one seeks tolls that maximize revenue (the secondary objective)
while inducing a predetermined lower level solution, i.e., a toll-compatible
multipath. The resulting toll schedule provides the best solution compatible
with the multipath, and thus a valid lower bound on the problem’s optimum
value.

Let LB(P) denote the optimal value of the inverse optimization problem
associated with the multipath P = {pk}k∈K , i.e.,

LB(P) = max
t∈D

|K|∑
k=1

nk

∑
a∈pk∩A1

ta

where

Path-based formulations of a bilevel toll setting problem 37

D =
{
t |
∑
a∈pk

ca +
∑

a∈pk∩A1

ta ≤
∑
a∈p̄k

ca +
∑

a∈p̄k∩A1

ta ∀p̄k ∈ Pk ∀k ∈ K
}
.

While the number of constraints that define the set D is exponential, the
associated separation problem can be solved in polynomial time. Indeed, a
shortest path oracle can be used to check whether a given toll vector t lies in
D, and exhibit, whenever t /∈ D, a violated constraint. It follows from a result
of Grötschel et al [6] that the inverse optimization problem is polynomially
solvable. Alternatively, Labbé et al [8] have shown how to reduce the inverse
problem to a transshipment problem over a suitably defined network, and for
which polynomial algorithms are well known.

3.3 Computation of the ith shortest multipath

The computation of multipaths in increasing order of their fixed costs is an
essential part of the sequential algorithm. In this subsection, we describe a
procedure to compute the ith shortest multipath

P i = (pi(1)
1 , p

i(2)
2 , . . . , p

i(|K|)
|K|),

where i(k) denotes the ranking of the path associated with commodity k. In
particular, the shortest multipath is

P 1 = (p1
1, p

1
2, . . . , p

1
|K|).

ith shortest multipath

Step 0 [Initialization]
Set j ← 1, and LIST ← ∅.
Compute p1

k and p2
k and set j(k) ← 1, k = 1, . . . , |K|.

P 1 = (p1
1, p

1
2, . . . , p

1
|K|).

Step 1 If j = i, stop: the ith multipath has been obtained.
Step 2 [updating of LIST]

For all l ∈ {1, . . . , |K|}, let P j,l ← (p1, . . . , p|K|), where pk = p
j(k)
k

if k �= l, and pl = p
j(l)+1
l . Set LIST ← LIST ∪ P j,l.

Set j ← j + 1.
Step 3

Remove the least costly multipath from LIST distinct from
P 1, . . . , P j−1, and output this element P j as the jth shortest
multipath.

Step 4
Let j0 ∈ {1, . . . , j−1} and l0 ∈ {1, . . . , |K|} such that P j = P j0,l0 .
Compute pj0(l0)+2

l0
and set j0(l0) ← j0(l0)+ 1. Return to step 1.�

38 Mohamed Didi-Biha, Patrice Marcotte and Gilles Savard

The above algorithm requires the knowledge of commodity paths, sorted
in increasing order of their costs. To this end, we adopt a procedure proposed
by Lawler [10], which we describe, for the sake of completeness. Let the arcs of
the directed graph be numbered 1, . . . ,m. For a given path p, let xj = 1 if arc
j is contained in p, and xj = 0 otherwise. Given an integer i, the procedure
generates the first i shortest paths in sequence.

ith-shortest path algorithm

Step 0 [Initialization]
Compute a shortest path x(1) = (x(1)

1 , x
(1)
2 , . . . , x

(1)
m), without fix-

ing the values of any variables.
LIST ← {x(1)} and j ← 1.

Step 1 [Output the jth shortest path]
Remove the least costly solution from LIST and output this so-
lution, denoted by x(j) = (x(j)

1 , x
(j)
2 , . . . , x

(j)
m), as the jth shortest

path.
Step 2 If j = i, stop; the ith shortest path has been obtained.
Step 3 [Update of LIST]

Assume that the jth shortest path was obtained by fixing the
following conditions

x1 = x2 = · · · = xq = 1,
xq+1 = xq+2 = · · · = xs = 0,

where a reordering has been assumed for notational purposes.
Leaving these variables fixed as they are, createm−s new shortest
path problems that must satisfy the additional conditions

xs+1 = 1− x(j)
s+1,

xs+1 = x
(j)
s+1, xs+2 = 1− x(j)

s+2,

...
xs+1 = x

(j)
s+1, xs+2 = x

(j)
s+2, . . . , xm−1 = x

(j)
m−1, xm = 1− x(j)

m .

Compute optimal solutions (i.e, the shortest path subject to con-
ditions above) to each of these m− s problems and place each of
the m − s solutions in LIST, together with a record of the vari-
ables which were fixed for each of them. Set j = j + 1. Return to
Step 1. �

Remark that the first time Step 3 is executed, q = s = 0

Path-based formulations of a bilevel toll setting problem 39

3.4 Algorithm specification

We now formerly state the algorithm. Let LB∗ be the current best profit,
P ∗ the associated multipath, and UB∗ the current upper bound. Note that,
since the upper bound is non increasing, UB∗ is actually the same as UB(P)
evaluated at the current multipath. Let N denote the number of distinct
multipaths.

Multipath Algorithm

Step 0 [Initialization]
LB∗ ← −∞.
i← 1.

Step 1 [Multipath generation and evaluation]
Generate the ith smallest element of C,
P i = (pi(1)

1 , p
i(2)
2 , . . . , p

i(|K|)
|K|).

UB∗ ←
∑

k∈K

nk(α∞
k −

∑
a∈p

i(k)
k

ca).

Compute LB(P i) by inverse optimization.
Set LB∗ ← max{LB∗, LB(P i)}.

Step 2 [Stopping criterion]
If UB∗ ≤ LB∗ or i = N , stop. The optimal solution is the multi-
path P ∗ that has achieved the best lower bound.
i← i+ 1 and return to step 1. �

In order to prove the correctness of the algorithm, it suffices to remark that
the upper bound UB∗ does not increase at each iteration, so that an optimal
multipath cannot be missed. Note that the algorithm may have to scan the
entire list of multipaths, and that it may terminate with the local upper bound
UB∗ being strictly less than the lower bound LB∗. This can be observed on
the single-commodity example illustrated in Figure 1, taken from Labbé et
al. [9]. In this example, the first multipath P 1 (a single path in this case)
generated is {(1 − 2 − 3 − 4 − 5)}. Its upper bound is 22 − 6 = 16 while its
lower bound (this easy to check), is equal to 15. The algorithm stops after
generating P 2 = {(1 − 2 − 4 − 5)}, whose upper bound 11 is less than the
lower bound of the first path. There does not exist a path that achieves an
upper bound equal to the optimal value.

3.5 Redundant paths

A serious drawback of formulations MIP II and MIP III is that all paths
between all origin-destination pairs must be enumerated a priori. Obviously,

40 Mohamed Didi-Biha, Patrice Marcotte and Gilles Savard

2 3 4 5
2 2 2 0

10 12

9

1

Fig. 1. The multipath algorithm terminates with LB∗ �= UB∗

many paths are suboptimal and irrelevant. For instance, one need not consider
paths that contain toll-free subpath that are not shortest subpaths. Along
this line of reasoning, Kraaij [7] constructed a Shortest Path Graph Model
(SPGM), equivalent to TOP, where subpaths between toll arcs are replaced
by single arcs with cost set to that of a shortest subpath; similarly, subpaths
from the origins to the tail of toll arcs, and from the head of toll arcs to the
destinations, are shrunk to single arcs. While this preprocessing does not affect
the combinatorial nature of the problem, it may reduce computing times by a
(roughly) constant factor. Note that, in some cases, the SPGM may contain
more arcs than the original network, and the computational burden of setting
up an SPGM may actually greatly exceed that of solving the resulting problem
(see [2]).

While we have not adopted the SPGM formulation, we have implemented
a technique for eliminating a subset of dominated paths, according to the
criterion outlined in the following lemma. This allows to limit the number of
problems created at step 3 of the ith-shortest path algorithm.

Lemma 3.1 (Bouhtou et al [2]) Consider an instance of TOP where tolls
are restricted to be nonnegative. Let p and p∗ be two paths between an origin-
destination pair k ∈ K, and let p = (p1, p2) and p∗ = (p1

∗, p
2
∗) denote their

partition into toll and toll-free arcs, respectively. Assume that p1
∗ ⊆ p1 and

that ∑
a∈p∗

ca ≤
∑
a∈p

ca.

If p, together with a toll schedule t, is optimal for TOP, it follows that the
couple (p∗, t) is also optimal for TOP.

Based on the above result, one may reduce the number of problems generated
at step 3 of the ith shortest path algorithm by only considering the toll arcs
and undominated paths. Suppose, without loss of generality, that the arcs
of A1 are numbered 1, . . . , |A1| and that the jth shortest path contains arcs

Path-based formulations of a bilevel toll setting problem 41

1, . . . , r, r ≤ |A1|. Suppose, moreover, that the jth shortest path is the shortest
path obtained by fixing the following variables

x1 = x2 = . . . = xp = 1,
xr+1 = xr+2 = . . . = xq = 0,

and the other toll variables (non fixed) verify

x
(j)
p+1 = x

(j)
p+2 = . . . = x

(j)
r = 1,

x
(j)
q+1 = x

(j)
q+2 = . . . = x

(j)
|A1| = 0.

Leaving the fixed variables as they are, create r−p new shortest path problems
that must satisfy the additional conditions

xp+1 = 0,
xp+1 = 1, xp+2 = 0,

...
xp+1 = xp+2 = . . . = xr−1 = 1, xr = 0.

4 A block sequential heuristic (BLOSH)

While, as we shall see in the next section, the three MIP reformulations and
the exact multipath algorithm allow to tackle medium size problems, the NP-
hard nature of TOP will ultimately limit the size of problems that can be
solved to prove optimality. The main limitation is due both to the large num-
ber of commodities and their interactions. To circumvent the problem, we
have implemented a windowing technique that consists in optimizing over a
subset of commodities at a time, keeping fixed the paths associated with the
(temporarily) fixed commodities. This results in a block sequential heuristic
(BLOSH), reminiscent of the Gauss-Seidel approach, well known in optimiza-
tion. At each iteration, the subproblems are solved using either one of the
algorithms presented previously. For our purpose, we have used the MIP III
formulation, which involves a small number of binary variables, and proved ef-
ficient for solving problems involving a small number of commodities. MIP III
was solved using the commercial software CPLEX [3].

More precisely, let us consider a partition K into the set of active and inac-
tive commodities (origin-destination pairs), i.e., K = K1∪K2. The restricted
MIP III formulation then takes the form:

42 Mohamed Didi-Biha, Patrice Marcotte and Gilles Savard

MIP III–R: max
t,z,L

∑
k∈K

nkT
k

subject to

∀k ∈ K1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T k ≤
∑

a∈p∩A1

ta +Mk(1− zp) ∀ p ∈ Pk

∑
a∈p∩A1

ta +
∑
a∈p

ca −Mp
k (1− zp) ≤ Lk ≤

∑
a∈p∩A1

ta +
∑
a∈p

ca

∀ p ∈ Pk

Lk = T k +
∑

p∈Pk

zp

∑
a∈p

ca

∑
p∈Pk

zp = 1

zp ∈ {0, 1} ∀ p ∈ Pk

∀k ∈ K2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T k =
∑

a∈p
i(k)
k ∩A1

ta

Lk ≤
∑

a∈p∩A1

ta +
∑
a∈p

ca ∀ p ∈ Pk

Lk = T k +
∑

a∈p
i(k)
k

ca.

In practice, the number of active commodities, |K1| is small with respect
to the number of inactive commodities |K2|. In that case, MIP III-R involves
a small number of binary variables and is efficient. A pseudocode for the
algorithm is outlined below.

Path-based formulations of a bilevel toll setting problem 43

Algorithm BLOSH

Step 0 [initialization]
Compute a feasible paths solution and the associated optimal tax
vector (e.g. based on the shortest multipath).
Let k be the number of active commodities.
i← 1.

Step 1
K1 ← {[(i− 1) mod |K|] + 1, [(i) mod |K|] + 1, . . . , [(i+ k − 2)
mod |K|] + 1}
K2 ← K \K1

Solve MIP III–R and let V i be its optimal value.
If V i = V i+1, stop.

Step2
i← i+ 1.
Return to step 1.

5 Numerical results

The numerical tests have been performed on randomly generated networks,
and give a good idea of the various algorithms’ behaviour with respect to
the size of the instances. They have been conducted in two steps. We first
tested the multipath algorithm on medium-size instances, rapidly showing
the limitations of this approach. We then assessed the efficiency of the three
MIP formulations, using the commercial MIP solver CPLEX 6.0, versus that
of the sequential heuristic. The tests were performed on a SUN ULTRA60
workstation.

The main parameters of the test problems were |N | (number of nodes), |A|
(number of arcs), |A1| (number of toll arcs), |K| (number of commodities).
For each toll-free arc (respectively toll arc), an integer fixed cost ca was uni-
formly chosen in the interval [2,20] (respectively [0,6]). The origin-destination
pairs were uniformly chosen, and their demands set to uniform random vari-
ables on the interval [20,100]. Finally, to ensure connectivity of the underlying
graph and the existence of toll-free paths for each origin-destination pair, a
Hamiltonian circuit composed only of toll-free arcs was integrated within the
network.

Tables 1,2 and 3 illustrate the (in)efficiency of the multipath algorithm.
Each table presents the solution of 10 randomly generated problems. We ob-
serve that the multipath approach can solve small to medium scale problems,
but fails on larger instances. Whenever the number of commodities increases,
the approach rapidly shows its limits, mainly due to the large number of mul-
tipaths with similar length values. This disappointing performance is due to
the existence of nearly identical multipaths. This resulted in upper bounds

44 Mohamed Didi-Biha, Patrice Marcotte and Gilles Savard

that decrease very slowly, as well as lower bounds that increase by steps, after
having stalled for several iterations. This can be observed on Figures 2, 3 and
4.

The next tables illustrate the performance of CPLEX on the three MIP
formulations, comparing with algorithm BLOSH, for various problem sizes.
Each MIP problem was solved with the default parameters of CPLEX 6.0.
Running times include the elimination of dominated multipaths.

Algorithm BLOSH was initiated with a shortest multipath. The first k
active commodities (set to 20) were chosen as follows: we solved independent
TOP problems, one for each commodity and reordered them from higher to
lower revenue. These revenues were obtained by inverse optimization.

Random networks were generated for various values of the main param-
eters (|N |, |A|, |A1| and |K|). The results of our computational experiments
are presented in Tables 4 to 9, where each line corresponds to one specific
instance. Column headers show the instance number, as well as the running
times and the number of Branch-and-Bound nodes explored by CPLEX, for
the three MIP formulations. We also indicated, in the BLOSH column, the
percentage of optimality reached by the algorithm, 100% indicating that an
optimal solution was obtained.

Tables 4 and 5 provide the running times for the four algorithms. While
no clear conclusion could come out concerning the average number of nodes,
MIP III came out the winner, as it could process each node much faster. On
these medium-sized problems, Algorithm BLOSH converged to an optimal
solution on all but two instances, with running times slightly less, on the
average, that those of MIP III. In Tables 6, 7, 8 and 9, we focused on the
following issues:

– How close is the solution provided by BLOSH to an optimal solution?
– How many iterations are required for BLOSH to converge?

On the larger instances, it was not always possible to answer the first question,
due to excessive running times. Indeed, MIP III could not reach an optimal so-
lution, or prove that such solution was reached, within the imposed time limit
set respectively at 10 000 seconds (Tables 6 and 7) and 15 000 seconds (Table
9). Three instances (marked with an asterisk in Table 7) were subsequentially
allowed 40 000 of CPU time and yet failed to reach an optimum. Actually, the
best solution achieved by MIPIII was improved for most instances reported in
Tables 8 and 9, i.e., whenever the deviation from MIPIII’s best value exceeded
100 in the corresponding entry of the percentage column.

Finally, note that it is not straightforward to compare our numerical results
with those obtained by the MIP formulation of Bouhtou et al. [2]. Indeed:

– The nature of the problems generated in their paper is quite different
from ours. First, the number of paths between OD pairs is less than 3, on
average it is of the order of 30 undominated paths for our instances.

– The proportion of toll arcs is much higher in our experiments.

Path-based formulations of a bilevel toll setting problem 45

– Computers used are from different generations.

This being said, the ratio of improvement between MIP I and MIP III is
comparable to the ratio observed in [2] between MIP I (AMIP according to
their notation) and their path-based formulation PMIP, once the computa-
tional time associated with the generation of the SPGM has been taken into
account. Note that, on the set of problems considered by these authors, most
of the running time is spent in the preprocessing phase.

6 Conclusion

In this paper, we have proposed new approaches, based on path variables, for
addressing an NP-hard problem having applications in the context of optimal
pricing. The two main results of the paper were to assess the quality of MIP
reformulations of TOP, and to show that the best formulation (MIP III) could
be used as the core of a promising heuristic procedure (BLOSH). We are
currently working along two lines of attack. First, we wish to embed the most
efficient procedures within a decomposition framework. Second, sophisticated
techniques (partial inverse optimization) are being investigated, with the aim
of improving the upper bound of the multipath algorithm (which is typically
of very bad initial quality) and of reducing the number of multipaths explored
in the course of the algorithm.

References

1. Brotcorne, L, Labbé, M., Marcotte, P., Savard, G., “A bilevel model for toll op-
timization on a multicommodity transportation network”, Transportation Sci-
ence, 35, 345–358, 2001.

2. Bouhtou, M., van Hoesel, S., van der Kraaij, A., Lutton, J.-L., “Tariff optimiza-
tion in networks”, Research Memorandum 041, METEOR, Maastricht Research
School of Economics of Technology and Organization, 2003.

3. CPLEX, ILOG CPLEX, v6.0, 2000.
4. Dewez, S., On the toll setting problem. PhD thesis, Université Libre de Bruxelles,

Institut de Statistique et de Recherche Opérationnelle, 2004.
5. Grigoriev, A., van Hoesel, S., van der Kraaij, A., Uetz M., Bouhtou, M., “Pric-

ing Network Edges to Cross a River”, Research Memorandum 009, METEOR,
Maastricht Research School of Economics of Technology and Organization, 2004.

6. Grötschel, M., Lovász, L., Schrijver, A., “The ellipsoid method and its conse-
quences in combinatorial optimization”, Combinatorica, 1, 169–197, 1981.

7. van der Kraaij, A., Pricing in networks. PhD thesis, Proefschrift Universiteit
Maastricht, 2004.

8. Labbé, M., Marcotte, P., Savard, G., “A bilevel model of taxation and its ap-
plications to optimal highway pricing”, Management Science, 44, 1608–1622,
1998.

46 Mohamed Didi-Biha, Patrice Marcotte and Gilles Savard

9. Labbé, M., Marcotte, P., Savard, G., “On a class of bilevel programs”, In: Non-
linear Optimization and Related Topics, Di Pillo and Giannessi eds., Kluwer
Academic Publishers, 183-206, 1999.

10. Lawler, E.L., “A procedure to compute the K best solutions to discrete optimiza-
tion problems and its application to the shortest path problem”, Management
Science, 18, 401-405, 1972.

11. Marcotte, P., Savard, G. and Semet, F. “A bilevel programming approach to the
travelling salesman problem”, Operations Research Letters, 32, 240-248, 2004.

12. Roch, S., Savard, G., Marcotte, P.,“Design and analysis of an algorithm for
Stackelberg network pricing”, Networks, 46, 57-67, 2005.

Instances Nodes time (s) gap (%)

1 42 0.11 0.00
2 287 0.12 0.00
3 27 0.13 0.00
4 102 0.17 0.00
5 21 0.14 0.00
6 8 0.12 0.00
7 152 0.17 0.00
8 86 0.16 0.00
9 54 0.17 0.00
10 194 0.20 0.00

Table 1. Problems with 60 nodes, 200 arcs, 20 tolled arcs and 10 O-D-pairs

Instances Nodes time (s) gap (%)

1 1061001 14022.78 18.04
2 1161001 14006.93 7.46
3 2313001 14006.94 8.91
4 495542 2559.90 0.00
5 1375001 14002.36 3.78
6 1270001 14021.93 21.00
7 1220001 14024.66 20.70
8 78019 1017.52 0.00
9 1501001 14012.94 3.92
10 1219001 14015.69 8.86

Table 2. Problems with 60 nodes, 200 arcs, 40 tolled arcs and 20 O-D-pairs

Path-based formulations of a bilevel toll setting problem 47

Fig. 2. Upper and lower bounds: instance 1 (60,200,20,10)

Fig. 3. Upper and lower bounds: instance 1 (60,200,40,20)

48 Mohamed Didi-Biha, Patrice Marcotte and Gilles Savard

Instances Nodes time (s) gap (%)

1 550001 14010.68 39.20
2 933001 14029.33 14.03
3 849001 14019.97 17.17
4 482001 14012.71 28.91
5 729001 14019.96 30.34
6 697001 14012.32 21.81
7 645001 14019.11 28.36
8 645001 14013.17 16.05
9 1016001 14015.23 25.54
10 1112001 14026.46 39.12

Table 3. 90 nodes, 300 arcs, 60 tolled arcs and 40 O-D-pairs

Fig. 4. Upper and lower bounds: instance 1 (60,300,60,40)

Path-based formulations of a bilevel toll setting problem 49

Instance MIP I MIP II MIP III BLOSH

Nodes time (s) Nodes time (s) Nodes time (s) % time (s)

1 48 9.48 44 2.50 46 0.97 100.00 1.32

2 30 3.98 32 2.02 20 0.88 100.00 1.42

3 30 6.70 42 1.63 41 0.47 100.00 0.77

4 144 21.00 45 4.98 67 1.03 100.00 1.59

5 29 8.13 15 1.69 26 0.46 100.00 0.73

6 40 5.97 32 3.31 88 1.02 100.00 1.37

7 36 7.28 55 3.76 62 0.99 100.00 1.39

8 14 5.37 16 1.86 29 0.63 100.00 0.77

9 62 9.70 50 2.91 52 0.59 100.00 0.80

10 12 4.16 9 1.07 16 0.42 100.00 0.58

Table 4. 60 nodes, 20 O-D pairs, 200 arcs, 40 tolled arcs.

Instance MIP I MIP II MIP III BLOSH

Nodes time (s) Nodes time (s) Nodes time (s) % time (s)

1 5010 5998.84 77500 19806.00 6881 34.11 99.76 12.51

2 496 147.98 232 114.89 1015 3.85 100.00 3.80

3 87 79.23 49 7.63 154 2.46 100.00 3.49

4 243 146.00 361 51.45 479 3.61 100.00 4.44

5 1076 830.20 1618 473.02 622 3.99 100.00 4.36

6 346 808.50 312 259.06 1264 8.61 100.00 7.74

7 425 237.03 1903 260.51 1829 6.87 100.00 5.27

8 145 67.19 295 47.39 856 7.34 100.00 8.04

9 736 2350.88 1129 904.61 3638 19.97 98.29 8.34

10 264 274.21 182 43.40 179 5.00 100.00 6.61

Table 5. 90 nodes, 40 O-D pairs, 300 arcs, 60 tolled arcs.

Instance MIP III BLOSH

Nodes time (s) % time (s)

1 61897 460.00 97.08 25.37

2 2570196 29661.00 99.21 44.30

3 3542 38.00 98.81 11.12

4 202271 1027.00 97.76 20.52

5 38777 120.00 99.42 10.88

6 43588 239.00 98.20 16.05

7 378033 2609.00 98.75 33.67

8 133873 1002.00 98.39 26.09

9 3170 42.00 99.95 11.65

10 12549 181.00 99.24 31.57

Table 6. 120 nodes, 60 O-D pairs, 400 arcs, 80 tolled arcs.

50 Mohamed Didi-Biha, Patrice Marcotte and Gilles Savard

Instance MIP III BLOSH

Nodes time (s) % time (s)

1 800166 11304 97.15 122

2 852734 5739 97.46 66

3 3615113 39555 99.28 102

4 3059449 27559 100 91

5(*) 518756 10056 96.22 162

6 2129948 35160 99.39 127

7 182957 2868 100 133

8(*) 432250 10057 99.86 170

9(*) 1905100 10045 102.06 132

10 488533 5116 97.54 95

Table 7. 150 nodes, 80 O-D pairs, 600 arcs, 120 tolled arcs.

Instance MIP III BLOSH

Nodes time (s) % time (s)

1 532884 10080 112.74 108

2 610662 10086 99.65 118

3 361924 10121 121.45 182

4 580082 10091 131.76 126

5 711571 10076 98.53 103

6 626277 10078 104.40 103

7 857079 10068 100.39 84

8 430176 10102 103.76 145

9 342673 10107 103.94 158

10 426247 10094 107.84 138

Table 8. 200 nodes, 100 O-D pairs, 800 arcs, 160 tolled arcs.

Instance MIP III BLOSH

Nodes time (s) % time (s)

1 11591 15998 133.66 4991

2 20794 15181 123.98 4430

3 14927 15753 132.47 5139

4 47401 13597 114.17 2880

5 16987 14649 119.20 3962

6 36033 13690 117.84 2992

7 37476 13823 116.80 3006

8 24560 14778 109.41 4040

9 24274 15144 122.73 4450

10 16280 15195 118.39 4425

Table 9. 500 nodes, 200 O-D pairs, 5000 arcs, 1000 tolled arcs.

http://www.springer.com/978-0-387-34220-7

