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Abstract. Many students who enrol in the undergraduate program on
informatics at the Hellenic Open University (HOU) fail the introductory
course exams and drop out. We analyze their academic performance, derive
short rules that explain success or failure in the exams and use the accuracy of
these rules to reflect on specific tutoring practices that could enhance success.

1 Introduction

The Hellenic Open University’s (HOU) primary goal is to offer university-level
education using distance learning methods and to develop the appropriate material
and teaching methods to achieve this goal. The HOU offers both undergraduate and
postgraduate studies and its courses were initially designed and first offered in 1998
following the distance learning methodology of the British Open University. The
HOU was founded in 1992 and currently (2005) nearly 25,000 students are enrolled.

The undergraduate programme in informatics is heavily populated, with more
than 2,000 enrolled students. About half of them currently attend junior courses on
mathematics, software engineering, programming, databases, operating systems and
data structures. A key observation is that substantial failure rates are consistently
reported at the introductory courses.

Such failures skew the academic resources of the HOU system towards filtering
the input rather than polishing the output, from a quantitative point of view. Even
though this may be perfectly acceptable from an educational, political and
administrative point of view, we must analyse and strive to understand the
mechanism and the reasons of failure. This could significantly enhance the ability of
HOU to fine-tune its tutoring and admission policies without compromising
academic rigour.
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There are two key educational problems that have been identified as being core
aspects of these failures. The first is that these courses are heavy on mathematics and
adult students have not had many opportunities to sharpen their mathematical skills
since high-school graduation (which has typically occurred at about 10 years prior to
enrolling at HOU). The second is that the lack of a structured academic experience
may have rendered dormant one’s general learning skills and attitudes.

Our approach to investigating this problem uses increasingly rudimentary
technology for data analysis. We use genetic algorithms to derive short decision trees
that explain student failure [1, 2].

In this paper we expand that work by investigating differences in the accuracy of
the induced models. We focus on short models that are easier to communicate among
peers and question whether these differences might be attributed to the versatility of
the tutoring practices. The results support our intuition about which practices better
smooth out the disadvantages that arise due to some students’ special circumstances.
These results are now used as supporting data when we attempt to convince fellow
tutors of the potential of some specific tutoring practices.

This paper is structured in three subsequent sections. In the next section, we
briefly review the problem of predicting student performance at large, and the related
techniques we have been using at HOU. We then single out three modules which
have clearly different policies in dealing with students who have failed an exam and
devise a set of experiments to observe whether these policies can be evaluated by a
machine learning model. Finally, we argue about the ability to carry out these
experiments at a larger scale and discuss the potential implications of our findings
from an educational point of view.

2 Background

The work reported in this paper is part of an effort to analyze data at an institutional
level, so we first briefly cover some essential background. We first present the
application domain, then we present some key aspects of the technology used and,
finally, we summarize the results obtained to date.

2.1 Operational issues

The educational philosophy of Open Universities around the world is to promote
“life long education” and to provide adults with “a second educational chance” [3].
The method used is known as “distance learning” education, hence the widely used
acronym ODL standing for Open-and-Distance-Learning.

In open and distance learning, dropout rates are definitely higher than those in
conventional universities. Relatively recently, the Open Learning journal published a
volume on issues on student retention in open and distance learning, where
similarities and differences across systems is discussed, highlighting issues of
institutions, subjects and geographic areas [4].

The vast majority (up to 98%) of registered students in the “Informatics”
program, upon being admitted at HOU, selects the module “Introduction to
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Informatics” (INF10). Following that, and according to university recommendations,
they will typically select the modules “Fundamental Software Engineering” (INF11)
and “Mathematics” (INF12). These modules are the most heavily populated and
serve as test-beds for experimentation.

A module is the basic educational unit at HOU. It runs for about ten months and
is the equivalent of about 3-4 conventional university semester courses. A student
may register with up to three modules per year. For each module, a student is
expected to attend five plenary class meetings throughout the academic year (a class
contains about thirty students). Each meeting is about four hours long and may be
structured along tutor presentations, group-work and review of assigned homework.
Furthermore, each student must turn in some written assignments (typically four or
six), which contribute towards the final grade, before sitting a written exam.

We have embarked on an effort to analyze the performance of high-risk students
[1, 2, 5]. Key demographic characteristics of students (such as age, sex, residence
etc), their marks in written assignments and their presence or absence in plenary
meetings may constitute the training set for the task of explaining (and predicting)
whether a student would eventually pass or fail a specific module. It is important to
mention that the great majority of students dropped out after failing to deliver the
first one or two written assignments. It is, thus, reasonable to assert that predicting a
student’s performance can enable a tutor to take early remedial measures by
providing more focused coaching, especially in issues such as priority setting and
time management.

2.2 Summarizing the technology: decision trees and genetic algorithms

Assgn, in [3.6]
ny g -
Assgng <3

.....

Fig. 1. A sample decision tree

A decision tree [6] for the failure analysis problem could look like the one in Figure
1. In essence, it conveys the information that a mediocre grade at an assignment,
tumed in at about the middle (in the time-line) of the module (containing 4
assignments altogether), is an indicator of possible failure at the exams, whereas a



12 Artificial Intelligence Applications and Innovations

non-mediocre grade refers the alert to the last assignment. An excerpt of a training
set that could have produced the above tree could be the one shown in Table 1.

Table 1. A sample decision tree training set

Assgn; Assgn, Assgn; Assgny Exam
4.6 7.1 38 9.1 PASS
9.1 5.1 4.6 3.8 FAIL
7.6 7.1 5.8 6.1 PASS

Genetic algorithms can directly evolve binary decision trees [7] that explain and/or
predict the success/failure patterns of junior undergraduate students. To do so, we
evolve populations of trees according to a fitness function that allows for fine-tuning
decision tree size vs. accuracy on the training set. At each time-point (in genetic
algorithms dialect: generation) a certain number of decision trees (population) is
generated and sorted according to some criterion (fitness). Based on that ordering,
certain transformations (genefic operators) are performed on some members of the
population to produce a new population. This is repeated until a predefined number
of generations is reached (or no further improvement is detected).

These concepts form the basis of the GATREE system [8], which was built using
the GALlib toolkit [9]. A mutation may modify the test attribute at a node or the class
label at a leaf. A cross-over may exchange parts between decision trees.

The GATREE fitness function is:

fitness(Tree,) = CorrectClassified? * —2—.
size; +x

The first part of the product is the actual number of training instances that a
decision tree (a member of a population) classifies correctly. The second part of the
product (the size factor) includes a factor x which has to be set to an arbitrary big
number. Thus, when the size of the tree is small, the size factor is near one, while it
decreases when the tree grows big. This way, the payoff is greater for smaller trees.
Of course, this must be exercised with care since we never know whether a target
concept can be represented with a decision tree of a specific size.

2.3 Summarizing past findings and setting the context

Initial experimentation [1] consisted of several Machine Learning techniques to
predict student performance with reference to the final examination. The WEKA
toolkit [10] was used and the key finding, also corroborated by our tutoring
experience, is that success in the initial written assignments is a strong indicator of
success in the examination. A surprising finding was that demographics were not
important.

Follow-up experimentation [2] using the GATREE system [8] initially produced
significantly more accurate and shorter decision trees. That stage confirmed the
qualitative validity of the original findings (also serving as result replication) and set
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the context for experimenting with accuracy-size trade offs. That experimentation
spanned three academic years, covered the three introductory modules INF10, INF11
and INF2, and validated that genetic induction of decision trees could indeed
produce very short and accurate trees that could be used for explaining failures.

We have already documented that drop-out is a significant issue in ODL
universities. What is most important, however, is that drop-out usually occurs early
in the studies. Failure on a senior year course should simply postpone graduation as
the fundamental commitment to studying has been already made. However, failure in
a junior course, and for the HOU case, this refers to the INF10, INF11 and INF12
modules, can contribute to a decision to drop out both because the learning
investment is not yet large enough to warrant a certain attitude of persistence and
because the student may not have had the time to familiarize oneself with the
distance learning mode of education (which, given time, allows one to dovetail
studying more effectively with other activities).

By regulations, a student who fails a module examination can sit the exam on the
following academic year. Such students are only assigned to student groups for
examination purposes and the group tutor is responsible for marking their papers
only; we thus refer to them as “virtual” students (should they fail their exam for a
second year, they must take the module afresh, in which case they are conventionally
assigned to a group and cease to be virtual).

Virtual students are not entitled to attending plenary sessions, and to having their
assignments graded by the group tutor (as a matter of fact they are not even
requested to submit assignments). In practice this regulation may be relaxed by a
tutor, who may opt to extend an invitation to attend some plenary sessions to these
virtual students usually. Usually, all tutors of a module will either accept or decline
to relax the regulation. Of course, there is no focused follow-up of the progress of
virtual students, as opposed to the case with typical students.

Any attempt to address these realities involves a political decision that must
necessarily take into account the university’s administrative regulations.

One step taken by tutors of the INF10 and INF11 modules is to hold a plenary
marking session of tutors for each module after an examination, and to discuss
variations in individual marking styles based on a predefined assignment of points to
exam questions. This is especially important for problems that involve design or
prose argumentation. We note that this practice is not widespread within HOU.

A further ad hoc step taken (during the 2003-4 academic year) by the INF11
tutors was to group all virtual students in one group and assign one experienced tutor
to that group, as opposed to the usual practice of distributing virtual students across
tutors. These students were fully supported by an asynchronous discussion forum
and by synchronous virtual classrooms. The tutor did neither hold a physical meeting
nor correct any assignments. This was in line with the HOU regulations and,
coincidentally, served as a convenient constraint on the “degrees of freedom” of the
educational experiment.

We now establish interesting indicators on the effectiveness of these approaches.
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3 The experimental environment

We use GATREE for all experiments (even the basic version allows for unlimited
experimentation with the x parameter in the fitness function, essentially treating x as
an accuracy-vs.-size bias “knob”).

For all experiments we used the default settings for the genetic algorithm
operations (cross-over probability at 0.99, mutation probability at 0.01, error rate at
0.95 and replacement rate at 0.25). All experiments were carried out using 10-fold
cross-validation, on which all averages are based. Because the data sets are
reasonably large, ranging from 500 to 1000 student records, and because 10-fold
cross-validation is a widely acceptable testing methodology, we opt to not report
standard deviations. The experiments were made with a
generations/population: 150/150 configuration.

All data refer to the 2003-4 academic year. They do not differentiate between
typical and virtual students.

Our methodology is the following: we attempt to use the student data sets to
develop success/failure models represented as decision trees. We then use the
differences between the models derived when we omit some attributes to reflect on
the importance of these attributes. The results are then used to comment on
alternative educational policies for dealing with virtual students.

We first try to deal with the issue whether we might be able to obtain an overall
(typical and virtual students included) model that deals with explaining (and,
ultimately, predicting) exam success, across the three modules that have three
distinct policies.

The first experimental session attempted to produce short decision trees that
could be used to explain the failure model of students in each module. For this, the x
knob was set to 1000 (the minimum possible value). For each module, four (4)
experimental batches were conducted and the results are shown in Table 3.

Table 2. Results for x=1000, gen/pop:150/150 GATREE decision trees

Data Set Accuracy (in %) Size (in nodes)
INF10: Basic 78.20 3
INF10: Basic_T 78.20 3
INF10: Basic_Y 82.58 6
INF10: Basic_TY 82.02 6
INF11: Basic 82.82 5
INF11: Basic T 82.05 5
INF11: Basic Y 81.28 6
INF11: Basic TY 81.54 6
INF12: Basic_T 62.37 6
INF12: Basic_T 63.39 6
INF12: Basic_ Y 67.97 6
INF12: Basic TY 68.81 6
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A few words on notation are in order (which apply for all experimental sessions
reported in this paper). The Basic version of the training set consists of all student
records, where the only available attributes are the assignment grades and the class
attribute is the pass/fail flag. The Basic_T version of the training set includes the
tutor as an attribute, whereas the Basic_Y version includes as an attribute the year of
first sitting the exam for that module. The Basic_TY version includes both additions.
The gen/pop configuration refers to the number of generations and the population
size.

The first observation is that the basic model for INF10 simply has a root and two
leaves! A slightly larger model, which also tests on the year, is enough to increase
sizeably the explanation accuracy.

A casual first observation of the above findings seems to suggest that the tutor
attribute is relatively not important (note that we acknowledge that we do not report
our results with statistical significance, but we have opted to focus on educated
selections of experiments that can demonstrate easily observable trends).

A further observation is that the INF11 module demonstrates a clear “smoothing”
of model accuracies across the various versions of its training set. We take this to be
a first indication of the success of the INF11 approach to virtual students as it
essentially conveys the information that the failure explanation must be traced solely
to academic performance (i.e. assignments).

Very short trees may be very concise to communicate but might lack the
representational power to detect delicate regularities in the data. We have thus
followed-up the experimental results above with increasing x to 10000 to allow for
larger trees to be generated. However, for space reasons, we will directly jump to the
case where this “tweaking” of the x knob, was accompanied by larger-scale
experimentation in terms of generations and populations as well.

The results are shown in Table 4. (Note that we have dropped the reporting of
model sizes as they were very close to the ones reported for the shorter experiments.)

Table 4. Results for gen/pop:300/300 GATREE decision trees

Data Set Accuracy, x = 1000 (in %)  Accuracy, x = 10000 (in %) _
INF10: Basic 78.20 77.42
INF10: Basic_T 78.20 77.30
INF10: Basic Y  83.60 84.61
INF10: Basic TY 83.37 83.60
INF11: Basic 82.05 79.74
INF11: Basic T 81.28 80.26
INF11: Basic Y  82.31 84.36
INF11: Basic TY 81.03 83.33
INF12: Basic 62.54 65.08
INF12: Basic T 63.73 64.07
INF12: Basic Y 70.51 72.03

INF12: Basic TY 70.68 73.05
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The results are very interesting, to say the least.

Starting from the INF11 module, we see that the short trees are indeed excellent
as far as consistency goes. When we go to larger trees, the year attribute creates a
performance gap that was not evident before.

This has a two-fold interpretation. On one hand, the larger trees now produced
seem to be less well-fitted than the smaller ones (note the accuracy reduction for
non-year-inclusive data-sets). This could well be an indication of over-fitting. On the
other hand, it suggests that the year attribute has importance; this would concur well
with the explanation that students who have failed to pass through the examination
filter may be unlikely to have confidence to pursue their studies actively.

Is this finding contradicting the shorter experiments? One needs to examine the
results for the other modules to glimpse at the (negative) answer.

First, we observer that for INF12, the year attribute remains a top contributor to
the model. For INF10 and INF11 short trees again suggest that the year attribute is
less important than for INF12, quite markedly so for INF11, where the year attribute
is essentially suppressed. For larger trees, both for INF10 and INF11, the importance
of the year attribute seems to rise but at the expense of an overall reduction trend for
the Basic models. This lends weight to the over-fitting argument but still is plausible,
as we said above, since one cannot easily wipe out the a priori disadvantage of
virtual students.

However, we also note that the increase in accuracy for the INF10 models that
use the year attribute is easily seen to be less that the corresponding accuracy for the
INF12 models. This observation combined with the observation that the average
accuracies for INF10 are also larger than the average accuracies for INF12 may be
also interpreted as an indicator that the plenary “marking” session of INF10 helps
trim out potential grading inconsistencies. Of course, this may be also a contributor
to the underlying quality of the INF11 models, but at the resolution level we are
working, we cannot easily confirm or refute the level of this contribution,

Summarising, the importance of the year attribute is only evident for larger trees
for the modules that employ the post-exam plenary marking session. Still, that rising
importance is clearly less evident than in the INF12 module. Moreover, that evidence
is still less proclaimed for the INF11 module that employs a further approach to
dealing with virtual students.

4 Conclusions — Focusing on the application domain

We believe that, as of yet, we do not need to experiment with still larger trees, larger
populations and more generations, just like we have so argued before [2]. We have
observed that large trees give easily rise to the over-fitting phenomenon and that
relatively few generations and reasonably small populations could deliver directly
usable results. Furthermore, a small accurate model is a very important tool at the
hands of a tutor, to assist in the task of continuously monitoring a student’s
performance with reference to the possibility of passing the final exam. Qur setting
of parameter x in the accuracy-size trade-off in this paper again confirms this view.
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We intend to continue favouring GATREE compared to other software for the
particular data analysis tasks, because it incurs a less steep learning curve on the part
of a user. However, we have used other software as (simply) another way of
replicating the results in the data sets that we have used [2].

We cannot yet answer whether the approach of the INF11 tutors is an approach
that would have had replicable educational results in the other modules. The most
obvious reason is that exact replication of the above experiments is impossible. Had
we wanted to experiment with INF11 approach in INF10, we cannot hope to ever
again observe the given set of students and their assignment to groups within
modules, as well as the given set of tutors and their assignment to groups. This is one
of the reasons that we progressively narrowed down our experiments: we started at
only one undergraduate programme, then focused on the most junior and well-
subscribed modules, then singled out the two ones that demonstrated one difference
only at the policy level.

Having taken these careful steps, we believe that, when one focuses on limiting
drop-out, the presented analysis suggest that the effective smoothing-out of the year-
and-tutor factors in the success-failure model should benefit from a purely
educational decision: by assigning an experienced tutor to directly deal with virtual
students. The other alternative, which is to train all tutors to be more active in
discussion fora and more proficient in virtual classroom techniques, may be a grand
goal with far-reaching benefits, but could demand a substantial mentality shift of the
tutors and substantial vocational training resources, entailing significant political
decisions.

Are the conclusions and the advice too strong? We think not, taking into account
that differences are in the order of several percentage points, with consistent standard
deviations, whereas individual performances are in the order of 70% (and not, for
example, 95%, where a few percentage points might be less important). Moreover,
the validity of the results is strengthened by the fact that we have conducted the
experiment in the most controlled of environments. An obvious extension of this
work is to try to see whether differences are more or less pronounced in less
controlled environments (for example, in senior year modules, where the student
population is drawn from more than one academic admission stage).

This observation then sets the context for the wider goal of this research. We
investigate the building an “early warning and reaction system” for students with
“weak” performance. This research has also operational and political aspects, besides
the obvious technical ones.

From both an operational and technical viewpoint, one must set a scheme to
validate the performance of a model based on subsequent years’ statistics and not
simply on cross-validation testing. It is important to note that the approach is self-
contained in the sense that it can be readily applied to data available at the university
registry.

Deploying this scheme as an organization-wide process would also lend support
to our preference for short models. We believe that a small accurate model is a very
important tool at the hands of a tutor, to assist in the task of continuously monitoring
a student’s performance with reference to the possibility of passing the final exam. A
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small model is easier to communicate among peers, easier to compare with
competing ones and can have wider applicability.

Political issues are much subtler, of course, and we have already pin-pointed one.

A sensitive point is that it would be unwise to simply consider the higher or
lower overall absolute accuracy rate of (any) model in one module as an indicator of
success of an approach, at least at this early stage of the research. It is for this reason
that in the experiments described above we never pit one module’s accuracy against
another module’s accuracy; besides referring to different student populations
(including differences in population sizes), a module also refers to different tutors
and to another scientific field.

We believe that such an approach would distract us from our goal. What is more
important, we claim, is to detect and observe the trends within the module itself and
try to understand what actions need to be taken at the module level.

In [2] we argued that using a system like GATREE and an approach like the one
documented above to produce and operationally use success/failure models raises the
fundamental question of whether we measure the performance of actors (students or
tutors) or the performance of the system at large (the ODL system implemented in
HOU). We also conjectured that it is the latter alternative that has the most potential
from an educational point of view.

Given that we have successfully used raw data (student records) to a posteriori
justify an educational policy, as opposed to compute an individual student model per
se, we believe that this conjecture is now better founded.
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