
Conceptual Modelling as a New Entry in the
Bazaar: The Open Model Approach

Stefan Koch\ Stefan Strecker^, and Ulrich Prank^

^ Institute for Information Business, Vienna University of Economics and BA
Stefan.kochQwu-wien.ac.at

^ Information Systems and Enterprise Modelling, University Duisburg-Essen
{stef an. strecker I u l r ich. f rank}(9uni-due. de

Abstract . The present contribution proposes to transfer the main
principles of open source software development to a new context: con­
ceptual modelling; an activity closely related to software development.
The goal of the proposed "open model" approach is to collaboratively
develop reference models for everyone to copy, use and refine in a public
process. We briefly introduce conceptual modelling and reference mod­
els, discuss the cornerstones of an open modelling process, and propose a
procedure for initiating, growing and sustaining an open model project.
The paper concludes with a discussion of potential benefits and pitfalls.

1 Introduction

Open source software development [5] is Currently the prime example for collab­
orative development processes by geographically dispersed participants. Similar
joint eflForts have emerged in collaborative writing and publishing (i.e. open con­
tent [23]), and in other areas [32] such as open hardware, and open education
[16]. Recent research on open source projects has identified fundamental princi­
ples common to many collaborative development processes [30], e.g. the named
credit and anti-for king norm [35], which seem to carry over to collaborative
processes with outcomes other than source code. However, further research is
still required to determine possible boundaries for this, and the necessary pre­
conditions that have to be met in an area to make this transfer successful.

The present contribution proposes to apply the main principles behind open
source software development to conceptual modelling, an activity closely related
to software development [9]. The goal of the proposed "open model" approach
is to develop reference models for everyone to copy, distribute, use, and refine
with the collaboration of a large number of participants in a public process. Its
consequential objective is to encourage the development of software based on
these models as well as the models' use for research and teaching purposes.

Transferring the principles of open source software development to concep­
tual modelHng is of interest for both practical and scientific reasons. The use of
tried and tested reference models promises several advantages over "reinventing
the wheel"-approaches, e.g. (i) reduced time and eflPort in software design, (ii)

Please use the following format when citing this chapter:
Koch, S., Strecker, S., and Frank, U., 2006, in IFIP International Federation for
Information Processing, Volume 203, Open Source Systems, eds. Damiani, E., Fitzgerald,
B., Scacchi, W., Scotto, M., Succi, G., (Boston: Springer), pp. 9-20

10 Stefan Koch, Stefan Strecker, and Ulrich Prank

use of the knowledge of domain experts, and (iii) faciHtation of integration and
reuse (cf. Sec. 2). Prom a research point of view, an open model approach pro­
vides an opportunity to research whether and how the principles of open source
software development processes carry over to other contexts in general [32] and
to modelling in particular. Starting from the observation that the absence of
modelling activities in open source software development has been recognized as
problematic, e.g. [38, 24, 42], an open model approach also serves as a testbed
for investigating the effects of conceptual modelling and open models on open
source software development.

An ideological argument refers to the freedom of models: If it is accepted that
information needs to be freely accessible [33, 23], this should also pertain to the
models behind any software, even more so than the software's documentation,
given that the models are of much higher importance. Por example, problems
with a large code base becoming effectively closed due to high complexity might
be overcome at least to some degree when the underlying models are accessible.
Even if SAP would release the source code of R/3 , or Microsoft the code of
Windows or Office, these large software systems would be difficult to understand
without the underlying models. Releasing the appropriate models would be
of even greater importance than the release of source code. Given a free and
open model, alternative implementations of the same functionality will be easier
to produce. Other examples are the Netscape/Mozilla or OpenOffice projects,
which experienced difficulties in setting up a community.

In this paper, we briefly i;ntroduce conceptual modelling and reference mod­
els (Sec. 2), discuss the cornerstones of an open modelling process (Sec. 3.1),
and propose a procedure for initiating, growing and sustaining an open model
approach (Sec. 3.2). We will also discuss both benefits and pitfalls (Sec. 4), and
conclude with a summary and future work (Sec. 5).

2 Prospects of conceptual modelling

2.1 Bridging the gap

On a conceptual level, models represent abstractions of real-world phenomena
relevant to a certain modelling task (conceptual models) [9]. Conceptual models
are aimed at providing representations of software systems that are accessible
not only to modellers and software developers, but also to domain experts and
prospective end users. Por this reason, they focus on general concepts commonly
used within a certain domain abstracting from technical aspects.

By allowing for various abstractions, e.g. data abstraction, object abstrac­
tion, and process abstraction, they contribute to the reduction of complexity
and risk. On the other hand, they take into account certain characteristics of
implementation-level languages. Thus, conceptual models help to overcome the
notorious cultural chasm between developers and end users [20]. At the same
time, they support the communication among software developers, thus con­
tributing to more efficient coordination in software development projects.

The Open Model Approach 11

Furthermore, conceptual models are the instrument of choice to prepare for
integrating applications by defining common concepts for a set of applications.
Also, abstracting from technical details renders conceptual models better suited
for reuse than source code.

2,2 Reference models as silver bullets

The design of high quality conceptual models suited to guide the development
of large systems is a challenging task that requires outstanding expertise as well
as a thorough and costly analysis. This motivates the development of reference
models. A reference model is a conceptual model that comes with the claim to
suit not just one system, but a whole range of systems, e.g. a generic process
model for contract processing in the insurance industry. The claim pertains to
two aspects. On the one hand, reference models are intended to provide appro­
priate generalisations of existing domains. On the other hand, reference models
are aimed at delivering blueprints for good system design. Thus, reference mod­
els are descriptive and prescriptive at the same time. Reference models are a
reification of a very attractive vision: They promise higher quality of informa­
tion systems at less cost. However, adapting reference models for actual system
implementation often requires significant adaptations for a specific application.

The development of reference models currently takes place mainly in academia
and in large software companies. Reference models distributed as part of com­
mercial packages, e.g. Enterprise Resource Planning (ERP) software such as
SAP R/3 , have been adopted in practice. Their development process is typi­
cally a closed-shop effort on part of a software or consulting company, e.g. SAP,
with the respective copyright and patent issues attached.

Academic research has produced several modelling languages and associated
reference models in recent years, e.g. [31, 10]. Conceptual models in general
and reference models in particular have been a focus in information systems
(IS) research [41]. Research on reference models and modelling languages is
commonly subsumed in the field of enterprise modelling [4, 2].

With regard to the tremendous benefits to be expected from high quality
reference models, it seems surprising that there is only a small number of refer­
ence models available [6]—despite the remarkable amount of work on reference
models in academia. However, these models usually suffer from two deficiencies.
Firstly, they remain in a prototypical state—due to limited resources available
in single research projects. Secondly, they fail to be deployed in practice. While
the second shortcoming can in part be contributed to the first one, it is also
caused by the lack of eff*ective mechanisms to disseminate research results.

A recent survey on internet-based reference modelling [39] has shown that
only very little information on reference models is available on-line and that
most models are either published in part or entirely in print publications if at all.
The study implies that discussion about and construction of reference models
hardly ever is an open process and concludes that the internet offers potential
for further distributed, collaborative efforts to develop reference models.

12 Stefan Koch, Stefan Strecker, and Ulrich Frank

Reference models seem to be an ideal subject for an open, community-driven
development process. The modelling process necessitates a higher level of ab­
straction than programming. Its overall complexity allows for the involvement
of a diversity of participants ranging from developers to users to domain ex­
perts and reviewers, among others. Following Raymond [30], a larger number
and a greater diversity of eyeballs on a modelling task is required to conceive
high quality conceptual models. Note, however, the differences between con­
ceptual models and source code. It is likely that the number of eyeballs on
models will be less than those on code if only due to the fact that evaluating a
reference model to suggest improvements requires different skills and interests.
The transparency of a conceptual model fosters the coordination of the vari­
ous contributions. An open model project would not only allow for bundling
academic resources. Rather, it could serve as a common medium for organizing
the exchange between academia and practice, thus fostering its acceptance and
deployment. With respect to the division of labour, a reference model could be
used as a common reference in various disciplines. On a higher level of abstrac­
tion, for instance, business experts could analyse and eventually redesign busi­
ness processes, while software experts could focus on the design of supporting
information systems. Hence, reference models could support cross-disciplinary
cooperation and contribute to the coherent integration of state-of-the-art knowl­
edge from multiple disciplines.

3 Conceptual modelling as an open process

3.1 Cornerstones of the open model process

In the following, we assume that it is possible to initiate, grow and sustain
collaborative processes with outcomes other than source code based on the
fundamental principles behind open source software development. Distributed
modelling processes are a particular instance of such collaborative processes, in
particular, reference modelling processes in which stakeholders in the process
collaborate to develop reference models. Therefore the following cornerstones
of open source development need to be adopted to the open model approach:

Appropriate licence. An appropriate model licence is required to ensure that
everyone is allowed to copy, distribute, use and modify the model (open model)
[33, 29]. The hcence should explicitly allow for the model's use in proprietary
software development to promote its adoption and deployment in practice, while
aiming for widest possible range of participants [34].

Roles and stakeholders. The open modelling process should be designed to facil­
itate contributions from practitioners (e.g. domain experts, business analysts)
and academics (e.g. researchers, students) alike. The role of practitioners is
twofold: While they can and should participate in the modelling task itself,
they serve as the most important form of quality assurance and review. Most

The Open Model Approach 13

often, they will be in the best position to judge the relevance and correctness of
business processes modelled against business requirements and practice. Based
on common elements in open source team structures, we identify the following
roles in an open modelling process:

- Maintainer: The maintainer is responsible for either the whole model or a
distinct sub-model. Whether several maintainers are introduced, or become
necessary, depends both on the size of the domain, and the success of the ini­
tiative. Depending on the organisational model chosen, this can be either an
owner/maintainer, benevolent dictator, or trusted lieutenant [30], deciding on
whether a submission is accepted, when a new official version is released etc.,
or, if a democratic structure is adopted, mostly an administrative position.
These positions will be filled by people who have demonstrated long-term and
high quality commitment, so that their authority is accepted by the others.

- Modeller: The position of a modeller is analogous to the commiter in open
source software development, in that he has the right to perform changes to
the model. The right to do this directly is normally linked to several prior
submission that have successfully passed quality control.

- Contributor: Any person can fill the role of contributor, and propose changes
to the model. These need to be passed over to a modeller or maintainer, in
order to pass quality control and be accepted. If this is done several times, a
contributor might advance to modeller position.

- Reviewers: As in software development, quality assurance is an important
task in an open model project. Open source projects employ several mech­
anisms to this end [45], with extensive peer review as the most prominent
example. In an open model project, an official position of reviewer might
be established. Naturally, everyone filling up another role might become re­
viewer, e.g. any modeller could automatically be assigned this additional role.
The most important task is to review any proposed changes to the model,
and to decide according to relevance and quality. Practitioners are very much
suited for this role in order to provide feedback from their experience.

- End users: Anybody can become an end user of an open model. Of special in­
terest are those who become active participants, by either reporting problems
or suggesting ideas, or by submitting changes to the model directly.

As empirical research on open source software development teams has
shown, in most projects a small inner group forms [25, 19], surrounded by a
larger number of contributors, and an even greater number of participants not
directly involved in programming, but other tasks like bug reporting. A simi­
lar structure might appear in an open model project. It should also be noted
that both structure and processes in open source software projects have been
found to change over time in accordance with the needs and the evolution of
the product, which in turn is of course shaped by the community [43]. In an
open model initiative, both team organisation and processes should, therefore,
be flexible enough to be adapted to changing needs should they arise.

14 Stefan Koch, Stefan Strecker, and Ulrich Frank

Motivation and incentives. A key success factor pertains to establishing con­
vincing incentives for participation in order to attract participants and to reach
a critical mass of contributors. The question of motivation has been extensively
researched in the area of open source software development [21, 12, 14, 15]
showing that several different possible motivational factors both intrinsic and
extrinsic are relevant. For an open community to work effectively, it is necessary
to establish convincing incentives for all participants.

A key incentive to suppQrt open source projects originates from the joy of
programming and the rewarding experience of creating an artefact that works
and is recognized by peers. Conceptual models will usually not be executable,
but peer-recognition as reputation mechanism still applies. In fact, most motiva­
tional factors are likely to carry over to open models, with the exception of those
directly related to coding. On the other hand, people might also gain intrinsic
motivation from modelling, though a common perception is that programmers
do not like this activity. It remains to be seen whether and how developers
perceive the value of open models and the participation in open modelling pro­
cesses. Nevertheless, the development of models can be very appealing: It is a
challenging task, hence, offering reputation for those who submit sustainable
contributions. Also, as a blueprint for multiple systems, an open model is re­
warding its designers with the practical relevance of their work. However, it
is not sufficient to rely on these incentives only. There is need for additional
incentives for all groups involved in the development of a reference model.

A researcher's contributions to a reference model could be acknowledged as a
substantial academic achievement—similar to a publication. In order to evaluate
such a contribution adequately,, some sort of a review process would then be
required, for example an adapted version of the democratic votes as used in the
Apache project [7]. Incentives for practitioners seem hard to establish at first.
However, the demand for system architectures and other forms of blueprints
from practitioners points to their recognition of the value of reference models.
It would also be possible for participants to pursue related business models, for
example by providing related services like consulting or implementations.

There are also several explanations for the viability and stability of open
source software development, including a reputation-based gift culture [30, 44],
a craftsman-model with programmijig as an immanent good [30, 36] or eco­
nomic models [22] like the cooking-pot market [11], as an inverse tragedy of the
commons [30] or as user innovation networks [40]. Again, all of these might be
used to argue the stability of an open model initiative.

Parallelisation of work. Maybe the most important characteristic of open source
software development is the strong parallelisation of work, especially software
testing, using a large number of participants ("Given a large enough beta-tester
and co-developer base, almost every problem will be characterized quickly and
the fix obvious to someone.'' [30]). In order to reduce duplicate work, to ensure
motivation and to keep the participants' interest, fast release cycles (^'Release
eary, release often" [30]) are necessary. For an open model initiative, this point

The Open Model Approach 15

is also of relevance. As modelling involves creativity and a higher level of ab­
straction than programming, innovative contributions are even more required.
The main question is whether the parallelisation of work is possible. To en­
sure this, the following preconditions need to be met: (i) appropriate tools for
this cooperation, i.e. a model versioning system as described below, (ii) a mod­
elling language supporting appropriate modularity as described below, and (iii)
a modelling task extensive enough to bring several people to bear, which is why
especially reference modelling is put to the center of this proposal.

Modularity. Achieving a modular design is seen as an important precondition
to be able to paralleHse large amounts of work on an artefact [26, 28, 8, 1].
Otherwise, costs for coordination and communication would grow exponentially
and would negate benefits from higher headcount. Also in open modelling, this
precondition is likely to exist. Therefore an appropriate modelling language is
necessary that allows for modularity, especially on several levels of abstraction.

Collaboration tools. As most participants in open source software development
teams are distributed around the globe without personal contact, communi­
cation and collaboration are achieved by appropriate tools, especially mailing
lists, source code versioning systems, bug reporting and management and oth­
ers. This also constitutes a precondition for the parallelisation of work. For an
open model approach, comparable tools are needed. While for most communi­
cation needs the same tools like mailing lists can be employed, a substitute for
source code versioning systems like CVS [8] or SVN might be needed. Although
many models can be reduced to a text-based representation, for example using
appropriate XML-schemas, models are by nature more visually oriented. There­
fore a versioning system which explicitly supports visual inspection of models
and especially changes to models would be important. We are not currently
aware of a free product that fulfills- these criteria, but such a tool should be
implemented, probably in the context of a first such project.

3.2 Procedure for implementing an open model project

Prom having identified the cornerstones of an open model process as described
above, several necessary decisions and steps can be derived for the implemen­
tation of such an initiative.

1. Choosing an appropriate licence: An appropriate licence should allow for
several effects to take place. On the one hand, it should be as free and
open as possible to ensure the highest possible number of participants [34],
while avoiding ideological debates. On the other hand, using the model as a
base for commercial implementations should not be impossible. Therefore,
the licence would certainly need to conform to the Open Source Definition
[29], while GPL-compatibility, i.e. being copyleft [33], might be problematic.
Whether an existing licence from the field of documentation, e.g. creative
commons, fulfills these prerequisites and could be adopted, or whether a
new licence needs to be defined is still to be determined.

16 Stefan Koch, Stefan Strecker, and Ulrich Frank

2. Choosing a suitable reference model domain: The domain of the reference
model to be developed should also be chosen so as to attract a large number
of participants, for whom the domain's problems are "scratching an itch"
[30]. Also the scope should be large enough to allow for a sufficient number
of people to work on the model.

3. Choosing appropriate abstractions: Models of business processes have shown
to be a suitable abstraction for understanding a domain. They can be as­
sociated with further abstractions such as information models, e.g. object
models or resource models. Therefore, it seems reasonable to focus on busi­
ness process models as a common reference for all participants and as an
instrument to integrate additional abstractions.

4. Choosing corresponding modelling languages and tools: Developing business
process models, object models and other abstractions requires the selection
of appropriate modelling languages. These decisions have to take into ac­
count the availability of corresponding tools, which are almost mandatory
in order to cope with model complexity, to allow for automated syntax and
integrity checks as well as for automated transformation into other repre­
sentations such as implementation-level languages. The modelling languages
themselves should support modularity and extensibility, e.g. to define busi­
ness processes on several levels, which have been shown to be critical success
factors in open source development [28]. Also, far spread knowledge in the
chosen languages would increase the number of possible participants. In ad­
dition, storage and management of explanations, discussions and reasonings
for the documented models and any change to them must be provided.

5. Design the appropriate processes: The necessary processes especially regard­
ing decision making, i.e. new releases, conflict resolution [37] and the release
management [17] should be designed. This also includes accounting for the
participants' motivations by setting up appropriate incentive schemes.

6. Preparing the necessary infrastructure: As detailled above, the necessary
infrastructure for coordination and communication needs to be set up. This
includes standard tools like maiUng lists or bug tracking, but especially
versioning might need further enhancements to existing systems. A survey of
reference models and reference modelHng on the internet [39] has shown that
the internet is hardly ever used to provide reference models. This reluctance
is a problem, and will have to be overcome.

7. Delivering a plausible promise in form of a first prototype: To start the com­
munity building process, an initial set of open models needs to be released
to the interested public. This prototype should give a plausible promise that
an interesting initiative is starting, and that joining it would be wortwhile.

8. Continuously evaluating processes, products and community: During the
lifetime of the initiative, all aspects will need to be monitored. This in­
cludes the processes and the community, where appropriate methods for
analysing open source software projects e.g. regarding concentration mea­
sures or evolution could be adopted [13].

The Open Model Approach 17

4 Discussion

From an academic point of view, reference models are appealing, because their
claim for general validity makes them resemble scientific theories. Taken the
complexity of some domains, reference models could serve as a medium to co­
ordinate research in large teams. Thus, they could serve as object and objecti-
vation of research in IS.

The evaluation of conceptual models is a challenging task - both with re­
spect to quality assurance and from an epistemological perspective [9]. Due
to their claim for excellence, this is even more the case for reference models.
The concept of truth is only of Umited use for evaluating them, since they are
usually aimed at intended systems or future worlds. Hence, a discoursive eval­
uation is the only remaining option. This requires not only the participation
of researchers, domain experts, prospective users, but also an open culture of
critique and construction. An open model community could provide for that
and hence contribute to a multi-perspective evaluation of reference models that
is difficult to achieve as long as reference models are subject of single research
projects only. Therefore, any model should be accompanied with reasonings
about the model, changes to the mpdel and discussions about these.

Reference models could also serve as a subject for teaching, e.g. in IS or
Computer Science. Students could study and enhance reference models in order
to get a differentiated,, but still abstract imagination of application domains, of
which a reference model provides the relevant concepts. Therefore, it could serve
as a foundation for the development of application level standards ("business
language") or enterprise level ontologies [3, 18]. A reference model represents the
body of knowledge of the participating disciplines. It also includes best practices
and therefore can be regarded as a blueprint for knowledge management as well.

Finally, open source software development itself might benefit from the es­
tablishment of open models. The absence of modelling activities has been a
center of critique on open source software development, e.g. [38, 24, 42], and
has been held responsible, among others, for insufficient documentation, lost
possibilities for reuse or missing information for effort estimations. Therefore,
open source software projects are prime candidates for experiencing positive
effects of open model projects, and vice versa, as any open model project would
benefit from one or more open implementations being pursued.

The main challenge for an open model initiative is to reach a critical mass of
participants to start a sustainable open process. This will hinge mostly, besides
the necessary infrastructure being in place to reduce transaction costs, on the
motivation of potential participants. In this paper, we have discussed possible
incentives for several groups, but if these fail in practice, the project might not
get off the ground. While not the only factor, the question whether people can
be found in large enough quantities for which modelling poses an interesting,
challenging and therefore in itself rewarding activity remains to be seen.

18 Stefan Koch, Stefan Strecker, and Ulrich Frank

5 Summary and future work

In this paper, we have proposed to adopt the principles of open source software
development for the collaboration of geographically dispersed project partici­
pants and their joint efforts to another context: conceptual modelling. The goal
of the proposed "open model" approach is to develop reference models for ev­
eryone to copy, use, refine and later implement with the collaboration of a large
number of participants in a public process.

To this end, the cornerstones of open source development need to be
adopted, and in some cases adapted. This led to a list of decisions and steps
to be considered for implementing such an initiative. The important next step
would be to verify the viability of the open model process in the light of a
real-world example, i.e. preparing the set-up of such a project. Following [27],
it seems prudent to create a technological infrastructure which facilitates ex­
change of ideas and models among interested parties, i.e. to make discussions
and models available to the open source community and the public at large.
Especially for the first project, initial funding for preparing the infrastructure,
especially an open "model versioning system", and also for developing a proto­
type is required. Also, it is necessary to educate relevant groups of prospective
participants. We intend to pursue the proposed approach and found an open
model initiative. After all, we are convinced that such an initiative would yield
substantial benefits, both in itself, and as an academic field study.

References

1. Terry Bollinger, Russel Nelson, Karsten M. Self, and Stephen J. Turnbull.
Open-source methods: Peering through the clutter. IEEE Software, 16(4):8-11,
July/August 1999.

2. Nikunj P. Dalai, Manjunath Kamath, William J. Kolarik, and Eswar Sivaraman.
Toward an integrated framework for modeling enterprise processes. Communica­
tions of the ACM, 47(3):83-87, 2004.

3. Jos de Bruijn, Dieter Fensel, Uwe Keller, and Rubn Lara. Using the web service
modeling ontology to enable semantic e-business. Communications of the A CM,
48(12):43-47, 2005.

4. Dursun Delen, Nikunj P. Dalai, and Perakath C. Benjamin. Integrated modeling:
the key to holistic understanding of the enterprise. Communications of the ACM,
48(4):107-112, 2005.

5. Joseph Feller and Brian Fitzgerald. Understanding Open Source Software Devel­
opment. Addison-Wesley, London, 2002.

6. Peter Fettke and Peter Loos. Systematische Erhebung von Referenzmodellen -
Ergebnisse einer Voruntersuchung. Working Papers of the Research Group Infor­
mation Systems & Management 19, University of Mainz, Mainz, Germany, 2004.

7. Roy T. Fielding. Shared leadership in the Apache project. Communications of
the ACM, 42(4):42-43, April 1999.

8. Karl Fogel. Open Source Development with CVS. CoriolisOpen Press, 1999.

The Open Model Approach 19

9. Ulrich Frank. Conceptual Modelling as the Core of the Information Systems
Discipline — Perspectives and Epistemological Challenges. In Proceedings of the
Fifth America's Conference on Information Systems (AMCIS 99), pages 695-697,
Milwaukee, 1999. Association for Information Systems (AIS).

10. Ulrich Frank. Multi-Perspective Enterprise Models as a Conceptual Foundation
for Knowledge Management. In Proceedings of the Thirty-Third Annual Hawaii
International Conference on System Sciences. IEEE CS Press, 2000.

11. Rishab Aiyer Ghosh. Cooking pot markets: an economic model for the trade in
free goods and services on the Internet. First Monday, 3(3), March 1998.

12. Rishab Aiyer Ghosh. Understanding free software developers: Findings from the
floss study. In Joseph Feller, Brian Fitzgerald, Scott A. Hissam, and Karim R.
Lakhani, editors. Perspectives on Free and Open Source Software, pages 23-46.
MIT Press, 2005.

13. Michael Hahsler and Stefan Koch. Discussion of a large-scale open source data
collection methodology. In Proceedings of the Hawaii International Conference on
System Sciences (HICSS-38), Big Island, Hawaii, 2005.

14. Alexander Hars and Shaosong Ou. Working for Free? Motivations for Partici­
pating in Open-Source Projects. International Journal of Electronic Commerce,
6(3):25-39, 2002.

15. Guido Hertel, Sven Niedner, and Stefanie Hermann. Motivation of software de­
velopers in open source projects: An internet-based survey of contributors to the
Linux kernel. Research Policy, 32(7): 1159-1177, 2003.

16. Kei Ishii and Bernd Lutterbeck. Unexploited resources of online education for
democracy - why the future should belong to OpenCourseWare. First Monday,
6(11), November 2001.

17. Niels Jorgensen. Putt ing it all in the trunk: Incremental software engineering in
the FreeBSD project. Information Systems Journal, l l(4):321-336, 2001.

18. Ejub Kajan and Leonid Stoimenov. Toward an ontology-driven architectural
framework for b2b.' Communications of the ACM, 48(12):60-66, 2005.

19. Stefan Koch. ProfiUng an open source project ecology and its programmers.
Electronic Markets, 14(2):77-88, 2d04.

20. Sari Kujala. User involvement: a review of the benefits and challenges. Behaviour
& Information Technology, 22(1): 1-16, January-February 2003.

21. Karim R. Lakhani and Robert G. Wolf. Why hackers do what they do: Under­
standing motivation and effort in free/open source software projects. In Joseph
Feller, Brian Fitzgerald, Scott A. Hissam, and Karim R. Lakhani, editors. Per­
spectives on Free and Open Source Software, pages 3-22. MIT Press, 2005.

22. Josh Lerner and Jean Tirole. Economic perspectives on open source. In Joseph
Feller, Brian Fitzgerald, Scott A. Hissam, and Karim R. Lakhani, editors. Per­
spectives on Free and Open Source Software, pages 47-78. MIT Press, 2005.

23. Lawrence Lessig. The Future of Ideas: The Fate of the Commons in a Connected
World. Random House, New York, 2001.

24. Steve McConnell. Open-source methodology: Ready for prime time? IEEE Soft­
ware, 16(4):6-8, July/August 1999.

25. Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two case studies of
Open Source software development: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology, l l(3):309-346, 2002.

26. Alessandro Narduzzo and Alessandro Rossi. The role of modularity in free/open
source software development. In Stefan Koch, editor, Free/Open Source Software
Development, pages 84-102. Idea Group Publishing, 2004.

20 Stefan Koch, Stefan Strecker, and Ulrich Frank

27. David M. Nichols and Michael B. Twidale. The Usability of Open Source software.
First Monday, 8(1), January 2003.

28. Tim O'Reilly. Lessons from open-source software development. Communications
of the ACM, 42(4):32-73, April 1999.

29. Bruce Perens. The open source definition. In Chris DiBona, Sam Ockman, and
Mark Stone, editors, Open Sources: Voices from the Open Source Revolution.
O'Reilly and Associates, 1999.

30. Eric S. Raymond. The Cathedral and the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary. O'Reilly and Associates, 1999.

31. August-Wilhelm Scheer. Business Process Engineering: Reference Models for In­
dustrial Enterprises. Springer-Verlag, Berlin, Germany, 2nd edition, 1994.

32. Clay Shirky. Open source outside the domain of software. In Joseph Feller, Brian
Fitzgerald, Scott A. Hissam, and Karim R. Lakhani, editors, Perspectives on Free
and Open Source Software, pages 483-488. MIT Press, 2005.

33. Richard M. Stallman. Free Software, Free Society: Selected Essays of Richard M.
Stallman. GNU Press, Boston, Massachusetts, 2002.

34. Katherine J. Stewart, Tony Ammeter, and Likoebe Maruping. A preliminary
analysis of the influences of licensing and organizational sponsorship on success
in open source projects. In Proceedings of the Hawaii International Conference
on System Sciences (HICSS-38), Big Island, Hawaii, 2005.

35. Katherine J. Stewart and Sanjay Gosain. The Impact of Ideology on Effective­
ness in Open Source Software Development Teams. Working paper. Depart­
ment of Decision and Information Technologies, University of Maryland, 2005.
Forthcoming in MIS Quarterly, h t t p : / /www.smi th .umd .edu / f acu l ty /k s t ewar t /
Researchinf o/K JSResesLTch. htm.

36. Linus Torvalds. FM interview with Linus Torvalds: What motivates free software
developers? First Monday, 3(3), March 1998.

37. Ruben van Wendel de Joode. Managing conflicts in open source communities.
Electronic Markets, 14(2): 104-113, 2004.

38. Paul Vixie. Software engineering. In Chris DiBona, Sam Ockman, and Mark
Stone, editors. Open Sources: Voices from the Open Source Revolution. O'Reilly
and Associates, 1999.

39. Jan vom Brocke. Internetbasierte Referenzmodellierung - State-of-the-Art und
Entwicklungsperspektiven. Wirtschaftsinformatik, 46(5):390-404, 2004.

40. Eric von Hippel. Open source software projects as user innovation networks. In
Joseph Feller, Brian Fitzgerald, Scott A. Hissam, and Karim R. Lakhani, editors.
Perspectives on Free and Open Source Software, pages 267-278. MIT Press, 2005.

41. Ron Weber. Ontological Foundations of Information Systems. Coopers & Ly-
brand, Melbourne, 1997.

42. Greg Wilson. Is the open-source community setting a bad example? IEEE Soft­
ware, 16(l):23-25, January/February 1999.

43. Yunwen Ye, Kumiyo Nakakoji, Yasuhiro Yamamoto, and Kouichi Kishida. The
co-evolution of systems and communities in free and open source software devel­
opment. In Stefan Koch, editor, Free/Open Source Software Development, pages
59-82. Idea Group Publishing, 2004.

44. David Zeitlyn. Gift economies in the development of open source software: an­
thropological reflections. Research Policy, 32(7):1287-1291, 2003.

45. Luyin Zhao and Sebastian Elbaum. Quality assurance under the open source
development model. The Journal of Systems and Software, 66:65-75, 2003.

http://www.springer.com/978-0-387-34225-2

