Chapter 2

Derivatives and
Differentiation

2.1 What Is a Derivative?
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Figure 2.1: A generalized function, for use in illustrating the definition of
the first derivative.

When asked “What is the derivative at a point x of the function
v = f(x) plotted in Fig. 2.1,” students most often answer “the slope
of the line above that x.” That geometric interpretation is correct,
but a more mathematical definition is
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dy . flx+h) - flx)
ax = n% h '

Copying the figure and sketching the line from, say, f(4) to f(4+ h)
with h = 1, then h = 0.5, and then h = 0.1 may help you to see the
relationship between those two definitions.

2.2 Usefulness in Environmental Science

Derivatives arise in environmental science in two general ways. First,
many derivatives are fundamentally important; e.g.,:

rT rates of population change (2.1)

dm = mass flow rates (2.2)
dt

dx .

i velocities (2.3)

aTr

T rates of temperature change (2.4)

aT . .

a2 vertical temperature gradients (lapse rates) (2.5)
P

ar = pressure gradients (2.6)

dz

ac . .

Ix - concentration gradients. (2.7)

These will often arise as components of differential equations, as in
Chapters 4 and 5.

Secondly, as you likely recall from your calculus course, deriva-
tives arise in maximum and minimum {(extremum) problems. Recall
that the derivative of a function is zero at every local or global maxi-
mum or minimum point, as in Fig. 2.2, p. 21. Let’s consider an exam-
ple max-min problem, after first recalling some basic relationships.

* First, for any function y = x?, the derivative dy /dx = px?~1.

* The derivative of the sum of several terms is the sum of their
derivatives.
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0 1 2 3 4
X

Figure 2.2: Graph of a function with six maxima and minima in the range
from x = 0 to x = 4. What is the value of the derivative (dy/dx) at each of
these extreme points?

* Recall the quadratic formula. If f(x) = ax?+bx+c, then f(x) =0

when x = (=b + V/b? — 4ac)/2a.

Here’s the example problem: An ornithologist studying the (fic-
tional) black-booted albatross goes to twenty breeding colonies and
measures breeding success as a function of how densely packed the
breeding pairs are in the various colonies. She finds by polynomial
regression that the relationship can be approximated by

F=A+BD+CD?, (2.8)

where F is the average number of young fledged (successfully raised)
per breeding pair, D is the density of breeding pairs in the colony
(pairs m™?), A = 4, B = 2, and C = —2.1 This relationship is shown
in Fig. 2.3, p. 22. Because total area and suitable locations for breed-
ing of this species are limited, the researcher asks you to estimate
the breeding-pair density that would produce the maximal number
of young fledged per unit area of colony, assuming that Eqn. 2.8 is
reasonably accurate.

If F is young pair~! and D is pairs m~2, then § = FD gives the
number of young per square meter (check the units). The density

'The units of these coefficients are not particularly useful to work with, but are
whatever they need to be to make the equation come out right.
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Figure 2.3: Average number of young fledged (F) in relation to number of
breeding pairs (nests, D) per square meter, for the “black-booted albatross”
at different breeding colonies.

D that maximizes S = FD = AD + BD? + CD3 is the value for which
dS/dD = A+2BD+3CD? = 0. Applying the quadratic formula to that
equation yields D = (-B + +/B2 — 3AC)/(3C). Substituting numbers
yields values of about 1.215 and -0.549 pairs m~2 for D, of which
only the positive value makes sense. For that D, the success rate S is
about 4.23 young m~2.

General Tips for Solving Max-Min Problems

When you want to find the value of some variable x that causes an-
other variable y to be a maximum or a minimum, the following steps
may help:

1. Read the problem, and state in your own words what you know and
what you are trying to find. With the albatross problem, we could
start with a particular number of pairs per m?, and then could use
the equation for F to get the number of young per breeding pair.
What we don’t know is the number of pairs per m? that would
make the areal success a maximum.

2. Draw a diagram, label it, and identify what is constant and what
varies. Here we might guess at a curve of S plotted against D.
Clearly the curve should start at § = 0 when the breeding-pair
density is zero. A little thought would show that since the young
per nest goes to zero when adults become too dense, S must be
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zero for D > 2 as well. (See Fig. 2.3.) Thus, you can guess that the
curve reaches some maximum for D between 0 and 2 pairs per m?.

3. Always pay careful attention to units! Units are often the key to
a quick solution. Here S [young m~2] must equal D [pairs m~?]
times F [young pair~!].

4. a. Try to write an equation of the form y = f(x), where y is the
quantity to be maximized or minimized, and x is the quantity you
can control. Here we would want S as a function of D, and the
units tell us directly that S = DF.

b. If there is more than one quantity that you can control, such
as x and z, then write an equation of the form y = g(x, z). Then
search for a relationship between x and z that allows you to elim-
inate z, and to convert y = g(x,z) to v = f(x). (This is not
needed for the present example.)

5. Solve for the value of x that makes df/dx = 0. Then determine
whether 7y is a maximum or a minimum for that x value.

6. State your conclusions in words.

Straightforward Nature of Differentiation

Differentiation can always be accomplished analytically (i.e., in terms
of symbols), by applying various definite rules. First, of course, one
needs to know certain basic derivatives, such as those of x?, e*, eb¥,
logx, logbx, sinbx, and cosbx. (Here b and p are constants, and
x is a variable.) Try writing down the derivatives of those functions;
then check your answers using any calculus text, or a table like that
in the Handbook of Chemistry and Physics (Lide 2005). Be sure to note
any exceptions to general rules.

Those specific derivatives follow from the definition of the deriva-
tive; i.e., from?

Af(X) oy fXFR) = f(X)
dx — n-o0 h )
2The symbol * « ” should be read as “is equal to by definition.” Distinguishing

equality by definition from equality that follows from a series of mathematical steps
can often aid understanding.
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For example, when you studied introductory calculus, you probably
carried out a series of calculations something like these, which show
that the derivative of x3 is 3x2:

dx® lim (x+ h)3 - x3
dx  h-0 h
o x3+3x%h +3xh?+ h3 - x3
= lim
h—-0 h
= }lll’I(l) 3x2 +3xh +h? = 3x2

Similar though often more complicated calculations lead to other
derivatives.

Environmental scientists using math as a tool can work most effi-
ciently if they memorize and know how to use these most common
derivatives, along with the rules that follow soon for differentiating
combinations of functions. However, computer software that can per-
form symbolic (analytic) calculations is becoming more readily avail-
able, and is worth learning too. As-a simple example for now, here’s
how to obtain the analytic derivative of f(x) = sin(bx) using MAT-
LAB®3,

To differentiate that function, we enter the following lines (the
parts to the left of the dots, that is) in the MATLAB command window:

syms b x..... Treat b and x as symbols rather than numeric values.
F=STNCB%X) v e Define the function.
diffCf) Perform the differentiation.

After you enter the third line, MATLAB returns the result in the form
ans = cos(b*x)*b.

Interestingly, we didn’t have to tell the program that x was the
variable and b a constant. Here’s the reason, taken from the MATLAB
help system: “The default symbolic variable in a symbolic expression
is the letter that is closest to ‘x’ alphabetically. If there are two equally
close, the letter later in the alphabet is chosen.” I recommend trying
your hand at using MATLAB (or a similar program) to obtain the other
derivatives listed above and below.

Important rules that aid in differentiation are the sum, product,
and quotient rules:

3This assumes availability of a version of MATLAB that includes the “Symbolic
Math Toolbox.”
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dlu+w) du  dw

dx  dx | dx
dluw) du dw
—apt hidhadt 2.
dx wdx +u”dx (2.9)
dujw) _( du _ dw /o,
dx —(wdx udx)/w

One rule we’ll use fairly often is the chain rule, which helps us deal
with functions of functions. For example, if v = f(x) and z = g(y),
then the dependence of z on x can be determined from z = g[ f(x)].
If we want to know how rapidly z changes with changes in x, we could
obtain dz/dx from the chain rule,

dz _dzy)dy(x) dg(y)df(x)
dx dy dx dy dx

For example, if z = y3 and y = e¥, then dz/dx = 3e3*. (Check this
out for yourself.)

To see how the chain rule might arise in practice, suppose the
turbidity T of the water in a stream is a function T = f(C), where C
is the concentration of clay particles in the water, and that C in turn
is a function C = g(V) of the stream velocity V. Now, suppose you
wanted to know how much turbidity T increases for a unit increase in
stream velocity V. That is, you want dT/dV. However, the functions
we know are f and g. To get dT/dV, we use the chain rule, here
adr/dv = (dT/dC) x (dC/dV). Because T = f(C) and C = g(V),
we can also write dT/dV = (df/dC) x (dg/dV)—this is just another
way of saying the same thing.

Often we need to combine rules. For example, let’s differentiate
3
x
X) = ———=
y(x) e

with a series of elemental steps to illustrate the process. Experienced
mathematicians might perform many of these steps “in their heads,”
but here I illustrate the process in a way that even a novice can use
safely:

Let u # x3, from which du/dx = 3x?

Letv ¢ 1+e3% s« 1 andt®e3*sov=s+t Then
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ds dt

- _ = = 3x
A 0, so I 3e’*, and
dv = is‘_ fl_t_ _ 3x
dx dx dx 3e
Finally,
du dv
dy _ Vax " %ax | (1+e39(3x?) - (x?)(3e3Y)
dx v? (1 + e3%)2 .

The point is, you can combine the various rules to differentiate any
function analytically. In contrast, there are many functions that can-
not be integrated analytically, as we shall see in Chapter 3.

For another example, it is possible to differentiate

Jeosh{sin[log(x + 1)1}
(VX +1)2

In fact, differentiation of this function is straightforward (although
by no means simple) in the sense that it can proceed by a series of
definite, sequential steps. We will skip the details, however, and note
that there’s an easier way to obtain this derivative if we have access to
computer software that can perform symbolic math. (This functional-
ity is not available in current spreadsheets and similar programs, but
is provided by Maple, Mathematica, MATLAB, and some other pro-
grams.) To obtain the derivative using MATLAB, we could enter?

fx)

SYMS Xttt tae e ee et ee e e e Make x symbolic
f=sqrt(cosh(sin(log(x+1))))/((sqrt()+1)A2) ........ Define f
AiffCF) oo s Find the derivative

The result would be returned as

ans =
1/2/cosh(sin(Tog(x+IDIIA(L/2) /(XA (1/2)+1) A2
sinh(sin(log(x+1)))*cos(Tog(x+1))/(x+1)~
cosh(sin(log(x+IDIIA(L/2)/ (XA (L/2)+1)A3/xA(1/2)

Entering pretty(ans) “prettyprints” the answer in a somewhat more
readable form as

4In MATLAB, “log” refers to the natural, not common, logarithm.
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sinh(sin(log(x + 1))) cos(log(x + 1))
1/2 - -
1/2  1/2 2
cosh(sin(Tog(x + 1))) (x + 1) (x+ 1

1/2
cosh(sin(log(x + 1)))

The probability of correctly differentiating a function this complex
by hand on the first try is pretty small for most of us, and even if
we use MATLAB, we shouldn’t trust the result absolutely. Symbolic
programs sometimes make mistakes, and anyway, we might have
mistyped something. Besides, we could easily have made a mistake
copying down the answer, so how could we check this result? This
latter question is one you should consider every time you obtain
any mathematical result—how can you demonstrate, to yourself
and others, that a result you have just obtained is correct? That is
one of the subjects of § 2.4, but first we’ll take up some background
material that we’ll need there and later in the book.

2.3 Taylor Series; a Basis for Numerical Analysis

We now take a brief side trip from derivatives per se to consider a
mathematical relationship that underlies much mathematical analy-
sis, and (of interest to us) forms the basis for many methods of nu-
merical analysis. We consider only the basic ideas; for more informa-
tion on the present topic, see the sections on “Taylor polynomials”,
“infinite series”, and “Taylor series” in some calculus text.

In applied math, we are often interested in “nice” functions, for
which f(x) and all needed derivatives exist and are continuous over
the range of interest. There may be a few singularities where the
series is not valid, as in the function

1
F) =17
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at x = =1, but many of the functions we work with are defined for all
positive x, at least.

Nice functions can be expanded in Taylor Series, which have the
form:

B fa), S (a)
foo = fla)+ = —a) + 57
f”,(a,) _ 3 B o] f(‘l’l)(a) _ n
3 (x —a) +..._n§0 i (x —a)™. (2.10)

Note (because 0! = 1) that the first term can be written as

fla)
f(él) = _O_'— X

so it fits into the same pattern as all the other terms.

In this expression, the symbol ' denotes the second derivative
of f, ' is the third derivative, and £ is the nth derivative. Also,
recall that N! = 1 x2x...xN for all integer N > 1. Remember too that
0! = 1! = 1 by definition—this may seem odd, but it turns out to be
convenient in many situations. It is also consistent with the gamma
function of higher mathematics, which is related to factorials by the
relationI'(x + 1) = x! when x is an integer > 0. (The gamma function
is more general than factorials, being defined even for non-integer
values of x. It is part of many important statistical distributions.)

In words, Egn. 2.10 states the remarkable fact that the value of a
function (left-hand side) can be determined everywhere if you know
its value and the value of all its derivatives at a single point x = a
(right-hand side). The equality holds within some “radius of conver-
gence” R; i.e., it is valid for [x —aj < R. We say that f(x) is “expanded
about a.”

In the particular case when a = 0, the series is called a Maclaurin
series, and it then takes the form:

- a)05

2 3
f(x) = F£O) + x £ (0) + %—f”(O) + %f’”(O) o

Some important Maclaurin series, ones that are sometimes consid-
ered in higher math to be the definitions of the functions they repre-
sent, are:

2 X3 x4 P

X
X _ — —
e ~exp(x)~1+x+2!+3!+4!+...+n!+... (2.11)
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x2 x*  x6

cosx=1——2!—+—4!~—a+.
o xd x5 X7
Slnx—x—-?)—!—kﬁ—?!%—

Note how these three series involve the same kinds of terms, but
in different combinations and with different signs. Exercise 14, p. 41,
demonstrates some interesting implications of these series.

Taylor Series Example

We won'’t often use Taylor series directly and explicitly in this book,
but familiarity with them is useful because they provide important
background for many of the analyses we will perform. To see how the
series work, we consider a simple function here to allow comparing
our results with easily calculated values. The Taylor series for f(x) =
Jx (or x1/?) expanded about a = 4 is

S (4)

Fx) = VR = f(@)+f (&) (x—a) + LB (g2 ST

o T(X~4)3+...

We can simplify this, but must do so carefully. To get f'(4), first
differentiate f(x) symbolically, and then substitute 4 for x. That is,
you must differentiate ./x for the variable x, not for the constant
value, 4. The same principle holds for the higher derivatives. In sym-
bols, then>:

, af dx'?2 1 _ 11
_ L2, a4y _ax'm 1 a1 1
Sx) =xb% fl(x) O = dx 5% WS
" R VY S _ 3 5.
S(x) = 7% i f (X)~8x ;
15
(4) _ 12 72
S0 6% : etc.
Now substitute x = 4 (because a = 4):
vy 2V vV b
f(4)=2; f(4)—2\/£—;~(2)(2) =7 f(4) = OREED
P = = S py = L

(8)(32) 256’ (16)(128) 2048

SRecall that the derivative of x” is px?~1.
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Putting this all together yields the Taylor series for f(x) = /x
expanded around a = 4:

L e-ai 3
@62* Y @ese

flx)=Vx =2+(x—4)/4—(x—-4)?/64+3(x—4)3/1536—... (2.12)

forall x = 0.
To use this series, we know that f(4) = /4 = 2. Thus to get f(4.1)
(i.e., v4.1), calculate

f(x>=2+i-<x—4>— (x—4)°—.... or

(41-4) 41-4?2 3(41-4)3
4 64 1536
0.1 0.01  0001(3)

= 41=2+—Z— 64 + 1536 P

V4.1 =2+ 0.025 - 0.00015625 + 0.000001953 — ...

f41)=v/41=2+

or

~ 2.024845703.

Compare that with the direct result v4.1 = 2.024845673 from a cal-
culator.

Now, for various x values try different polynomial orders (i.e., ter-
minate the infinite series at earlier and earlier terms):

- . ~ 1 —4) — 1 _ 4)? —4)3
(n=23): f(x)~2+4(x 4) 64(x 4)c + 1536(X 4)
—_— . ~ .1. J— _—1 —_ 2
n=2): f(x)~2+4(x 4) 64(x 4)

n=1): f(x)z2+%(x—4)

mn=0): fx)y=2

Table 2.1, p. 31, shows the relative error; i.e.,

approx f(x) —true f(x) _ absolute error

el

relative error #
true f(x) true value

that results from using different levels of approximation with various
values of x — a. In the present case, the relative error is

_ (Taylor series for /x) ~ \/x

RE N
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Table 2.1: Relative errors resulting from approximating f(x) = ./x for dif-
ferent values of x (columns), using the Taylor series of Eqn. 2.12 with differ-
ent numbers of terms (rows). The square root function is expanded about
a = 4. n = 4 corresponds with truncating the series at the cubic term, etc.

x—a: 0 0.1 0.4 4 36
n x=4 x =4.1 x =4.4 x=8 x=40
4 0 1.5x 108 3.5%x10°% 0.016 12.0
3 0 ~9.5%x 1077 =56x10"> -0.028 -2.5
2 0 7.6x107° 0.0011 0.061 0.74
1 0 -0.012 -0.047 -0.29 -0.68

Note that the relative errors decrease in size as the number of
terms increases except when x —a = 36. This occurs because when x
is far from a, (x —a)¥ in the numerator of terms increases faster than
k!in the denominator, until eventually k becomes large enough. This
table illustrates (though it can’t be considered a proof) that when
using a few terms of a Taylor Series (or some other polynomial) to
approximate a function:

¢ evaluating the function at a point close to the expansion point
(x ~ a) reduces error, and

* for x values close enough to a, more terms tend to yield greater
accuracy. On the other hand, if |x — a| is large, then adding a few
terms can increase the error. Many more terms would be required
before the series would begin to converge for x = 40.

The take-home point is that approximating functions over small
intervals is generally desirable.
Eqn. (2.12) can be rewritten as f(x) =

+2 constant term
-1 +0.25x (x —4)/4
-0.25 +0.125x —0.015625x2 (x —4)2/64

~0.125+0.09375x—-0.023438x2 +0.00195312x3  3(x —4)3/1536
+....

This is equivalent to f(x) =~ 0.625 + 0.46875x — 0.039062x° +
0.0019531x3, which illustrates that a Taylor series truncated after
n + 1 terms is an nth order polynomial.
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Figure 2.4: Two Taylor-series approximations to the cosine function, with
a = 21 (left) and a = 5 (right). The vertical line marks the value of a in each
case. Note that the approximation based on the first six terms (fs, Eqn. 2.14)
approximates the function well over a wider range than the one based on
only the first four terms (f3, Eqn. 2.13).

Any “nice” function (one that is continuous, with all necessary
derivatives also defined and continuous) can be written as an infinite
polynomial of the general form f(x) = a + bx + cx? + dx3 +....
We will make frequent use of low-order polynomials to approximate
more complicated functions. The theory of Taylor series, which we
have barely touched on, provides the motivation.

As a further example, consider approximating the cosine function
with terms through the third and fifth order of its Taylor series. That
is, take f{x) = cosx, where:

cosa
2!

f3(x) gcoschs—li—a(x—a)— (x~a)2+s—1§1'—a(x—a)3, (2.13)

and, adding two more terms,

sina

5 (x —a)’. (2.14)

f5(x) & f3(x) + E‘.’f'ﬂ(x —a)t

The plots in Fig. 2.4 compare these approximations with the actual
cosine function, for a = 27t and a = 5, respectively.

2.4 Numerical Differentiation

In Chapter 3, we look at analytic integration, but then derive methods
for calculating numerical values for definite integrals. Because not all
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functions can be integrated analytically, such numerical methods are
essential tools in applied math.

Even though, as just discussed, all practical functions can be dif-
ferentiated analytically (except at points of discontinuity), there are
several reasons why we sometimes want to differentiate numerically
as well:

* We may need the derivative of a function that we know only as a
table of values of the form [x, f(x)]. For example, this situation
might arise if we had a table of daily measurements of the volume
of water in a reservoir.

* If a function is very messy, and we need its derivative at only one
point, numerical differentiation may be the easiest way to obtain
it. For example, the temperature distribution along the length of
a cooling fin in a heat exchanger might be of the form

T(x)=T,

coshm(L — x) + (h/mk) sinhm(L — x)
coshmlL + (h/mk) sinhmlL

+ (To — Tq)

If we needed dT/dx only at x = 0 as a step in calculating the
total rate of heat loss from the fin, numerical differentiation might
produce an acceptable answer most quickly.

* Numerical differentiation can form the basis for numerical meth-
ods for solving differential equations. We take up this topic later.

* Numerical derivatives can be very useful for checking whether an
analytic derivative is correct or not. An example will follow shortly
after we see how to do it.

To carry out numerical differentiation, first consider how we might
approximate the slope of a function y = f(x) at a particular point
xo. One method, called the forward difference approximation, is il-
lustrated with Fig. 2.5 (left), p. 34. With this method, the derivative at
X = X is approximately

dy y(xo+h) - y(xo)
dx = h :

The forward difference method would be exact only for a linear func-
tion, y = a + bx.
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——

X, X Xo X

Figure 2.5: Graphs of a generalized function illustrating the forward differ-
ence numerical derivative (left) and the central difference numerical deriva-
tive (right).

A better method is the central difference scheme as defined with
the aid of Fig. 2.5 (right). That approximation (for the derivative at
X = Xo) is

dy y(xo+h)—y(xo—h)

dx 2h @15

The central difference formula is exact for a quadratic. To show that,
lety = f(x) = a+ bx + cx?. Then

sy o FOX+R) = flx—h)
y = h

[a+bx+h)+clx+h?2]—-[a+bx-h)+clx—-h)?]
2h

a+bx +bh+cx?+2cxh + ch?
2h
—a - bx + bh - cx? + 2cxh - ch?
2h

2bh + 4cxh
= = b+ 2cx.

But analytically®,

@Z — i(a+bx+cx2) =b+ 2cx. QED
dx dx

8QED, often found at the end of mathematics proofs, is an abbreviation for the
Latin phrase “quod erat demonstrandum”, meaning “which was to be demonstrated.”
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For an example use of central differences, suppose you can't re-
member whether the derivative of cosx is sinx or — sinx. We know
from its graph that the sine function is positive just above zero, so
what is d(cosx)/dx at x = 0.1? Using a hand calculator, our formula
for the numerical derivative, and h = 0.001, we find

d(cosx) flx+h)-flx-h)

~

dx 2h

c0s0.101 — c0s0.099
= 566 = —0.09983.
Thus, we can conclude that our required analytic derivative is —sinx.

Numerical derivatives suffer from and make good examples for
demonstrating round-off error, which affects most numerical calcu-
lations. Because the central difference formula is correct only for
quadratics, it is tempting to keep h very small when we apply the for-
mula to higher-order functions. But the smaller we make h, the more
alike will be the two terms in the numerator. When their difference is
computed to a finite number of digits (as is true in all calculators and
computers) a great deal of precision can be lost.

Let us demonstrate this by using our formula to estimate the
derivative of sinx at x = 1. We know the result analytically; i.e.,
at x = 1, dsinx/dx = cosl = 0.540302306, and we can compare
our estimates with that. If we choose h = 10~> on a machine with 12
digits, we obtain

dsin(x) _ 8in1.00001 - sin0.99999
dx ]x:l ) 0.00002

0.8414776387773 — 0.841465581743
0.0000200000000000

_0.000010806030

~0.0000200000000000
(The caret marks the point where the two terms begin to differ, and
digits in parentheses are nonsense digits lost to round-off error.)

If we carry out similar calculations for various values of h, we find
the results in Table 2.2, p. 36, which illustrate a compromise—as we
go to smaller values of h, the round-off error increases, and the so-
called truncation error (caused by truncating the Taylor series at the
quadratic term) decreases because we stay ever closer to the point of
expansion. One of the exercises at the end of the chapter will help
you to choose a reasonable h to use with your own calculator.

= 0.54030(1500).
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Table 2.2: Effects of varying h on truncation error and round-off error, with
the divided difference approximation to a derivative.

d(sinx)/dx truncation round-off
h (numerical) error error
1 0.4(54648713) larger smaller
1071 0.53(9402252)
1072 0.5402(93300)
103 0.540302(220)
1074 0.5403023(30)
107° 0.54030(1500)
1076 0.5402(93500)
1077 0.5403(1)
10-8 0.53(98)
107 0.5(34) smaller larger

2.5 Checking Analytic Derivatives

As we will see later {(e.g., p. 173), the function sinhx & (eX —e™¥) /2,
the hyperbolic sine of x, arises as a solution of second-order differ-
ential equations that describe processes like diffusion of substances
and transfer of heat in the environment. If we differentiate this func-
tion analytically, we obtain

dsinhx d (e" —e"‘) e te™™

Ix -~ dx 5 5 « coshx,

the hyperbolic cosine function’. To check our answer, we could
(a) calculate the numerical derivative at, say, x = 1, with h = 0.001,
(b) calculate the numerical value of the analytic derivative at x = 1,
and (c) compare the two. The numerical derivative of sinh x at 1 is:

sinh 1.001 — sinh 0.999
0.002

Our analytic derivative becomes

= 1.5430809.

el +e71
2
which checks pretty well!

= 1.5430806,

It happens that sinh’ x = + cosh x and cosh’ x = + sinh x, which is similar to the
parallel relationship with the circular sin and cos, but with no change of signs.
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2.6 Exercises
Problem Set on Derivatives

1. Determine the derivative of the following function analytically,
then find its numerical value when a = 2m/12, b = 7, ¢ = 0.01,
g=2,k=3and ! = 3.

_ e ‘tcos[a(t +b)]

Ao gt>+k

2. Check your result to Exercise 1 using numerical differentiation,
with the central difference of Eqn. 2.15, p. 34.

3. Calculate the actual (analytical) value of d(cosx)/dx at x = 2 and
then check the result using

af  flx+h) - f(x—h)
dx = 2h ’

with h = 1,1072,1074, 1075, and 10~8. Your goal is to determine
a good h to use in your own calculator for similar calculations.

When you locate the best value from those above, say 107V, try
10-N+D and 10-(N-D as well, so you don’t miss the best value.

4, Differentiate f(x) = x? — x°° analytically, and then check the
result numerically at the point x = 7. Be sure to show all steps of
your work.

5. Use the chain rule to find dz/dx when vy = sinbx and z = y2.

6. As manager of a large water quality research project, you have to
design some special sample bottles, of which several thousand will
be required. Each must:

e be cylindrical in shape
« have 1 liter capacity (1000 cm3)

¢ have the smallest internal surface area consistent with the other
two criteria. This results from the need to line the bottles with a
very costly non-reactive substance.

What should be the inside dimensions of the bottles, to satisfy
these criteria?
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7. You are setting up an experiment in a greenhouse. You need a
seed bed surrounded by a plant-free border of 10 cm at the top
and bottom, and 6 cm on each side. Space is limited, and you
have been allocated a total of 2000 cm? of area (seed bed plus
border) on one of the tables. What overall dimensions should you
choose to obtain the maximum area of seed bed? What will the
actual seed bed area then be? (Note: the border is not part of the
seed-bed area.)

As usual, try to solve this problem both symbolically and numeri-
cally. Be sure to define any symbols you use.

8. Suppose itis found that the average annual concentration [ppm] of
a pollutant at a “target point” at least 1 km away from a pollutant
source is proportional to the average annual pollutant concentra-
tion at the source, divided by the distance between the source and
the target point. The proportionality coefficient is some constant
k [km]. Now consider a small city with two major sources of SO».
The average SO, concentration at one is 110 ppm, and at the other
is 230 ppm. The two sources are 7 km apart. If their effects at a
target point are additive, and all other sources can be neglected,
where along the line between the two sources (but at least 1 km
from each) would the pollutant be a minimum?

9. Suppose the white oaks in a forest are a fraction f of the individual
trees there, and that there are a total of n; trees ha™! (all species)
in that stand. In other words, the stand contains f - n; white
oaks per hectare. Under that condition, the oaks produce m kg of
acorns per tree per year, on average. Suppose that if the density of
trees (stems per hectare) increased, the acorn production of each
tree would decrease by 6 kg per tree per year per added tree [kg
tree2 yr~! overall].

A. If only white oaks were added (and no stems of other species)
what number of white oaks per hectare would produce the largest
number of acorns per hectare per year? (The deer—weeds of the
mammal world—who eat acorns, would like to know this.) For this
part, provide that answer entirely in symbols.

B.If f = 40%, n = 120, m = 200, and § = 4, what number
of white oaks would lead to maximum production of acorns, and
what would that production be?
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10.

11.

Hint: For a given density x of white oaks per hectare, acorn pro-
duction p (you determine the units) is reduced from its original
value, m, by an amount 6 (x — fny).

The Ostrich Waste Disposal Corporation (OWDC) plans to build a
landfill. They are constrained by state regulations to lay it out
in trenches 10m wide, but they have some choice about trench
depth. The trenches have vertical sides, and a horizontal bottom.
They need a total trench volume of 30,000 m3.

The top covering for the trenches costs C dollars per square me-
ter, and to reduce that cost, they would like to make the trenches
deep. On the other hand, excavation costs increase quadratically
with depth, and can be estimated as E = a + bZ?, where F is the
excavation cost per unit length of 10-m wide trench [dollars/m], Z
is trench depth m], and a and b are constants.

A. What are the units of a and b?

B. What length and depth should the company choose to minimize
its total construction costs for a landfill of the necessary size?
Work this part entirely in symbols. Express your final answer in
one (or a few) complete sentences.

The equation
L= a+bsin[27n(t+d)]

is an approximate description of the daylength L between sunrise
and sunset at 32 N latitude, as it varies with time of year t. (For
data, see List 1949.) We’ll work with 365-day years, and ignore
leap years. The variables are:

L = daylength [minutes]

a = annual average daylength [minutes]

b = amplitude [minutes]

¢ = period [days]

d = “phase shift” [days], to make the peak fall near June 21.

We will define t = 0 at midnight between Dec. 31 and Jan. 1.
Sketch a graph of L versus t and work out the following:

o Differentiate the equation analytically (symbolically) to yield
dL/dt.
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12.

13.

» Using that derivative, calculate the numerical value of dL/dt at
noon of January 1 (when t = 0.5 da) and at noon on September
21 (when t = 263.5 da). State the units and explain the physical
meaning of these numbers. For these calculations, use a = 731.5,
b =170.5,c = 365,and d = —-80.5.

¢ Check your derivative value for noon of January 1 by differenti-
ating the original equation for L numerically at t = 0.5.

A forest ecologist estimates that the density D of acorns dropped
near white oak trees decreases with distance x from the tree, with
the relationship being D(x) = a/(1 + x), where D is in acorns m 2
and x is in m. However, deer and squirrels are aware of this
distribution—they learn that relationship in school—and thus for-
age most intensely near the trees. As a result, the probability P
of any given acorn remaining on the ground and germinating in-
creases with distance from the tree as given by P(x) = bx/(c + x).
(That probability is also the fraction that germinates, on the aver-
age.)

Your tasks are to:

a) Determine the distance xmqx Where the density of germinating
acorns (in number m~?) is greatest. Your answer should be
given in terms of the symbolic constants, a, b, and c.

b) Explain how you know that you have found a maximum rather
than a minimum.

c) Ifa=3acornsm!, b =0.5m}, and ¢ = 40 m, then what is
the numerical value of X425 and of the maximum density of
germinated acorns?

You'll likely find it helpful to sketch the two functions, and per-
haps some combination of them as well.

Hint: Remember that a fraction can be zero either if the numer-
ator is zero or if the denominator goes to infinity. In max-min
problems, we are usually interested in solutions where the numer-
ator goes to zero.

One afternoon while searching for spotted-owl nests, you use a
topographic map and a GPS unit to keep careful track of where
you are. At quitting time, you find yourself one mile east of the
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north-south road on which you left your truck. Specifically, if you
walked due west you would strike the road at a point three miles
south of your truck.

You could walk the four miles along that right-angle path and you
could walk straight toward your truck, as two limiting cases. How-
ever, you think you would get to your truck fastest if you angled
through the woods to strike the road at a point that was less than
three miles from the truck. You estimate that your walking speed
through the woods would be two miles per hour, and your speed
on the road would be four miles per hour.

a) To minimize your walking time, what point on the road (at
what distance from your truck) should you aim for? For both
parts of this problem, work in symbols for as long as you can,
but then give numerical values.

b) What would your minimum walking time be, and how much
time would you save compared with that along the right-angle
path?

As always, you’ll likely a sketch helpful.
Exercises on Taylor & Maclaurin Series

Reminder—In the field of analysis, one learns that “nice” functions
(even transcendental ones?) can be expanded as Taylor series that are
valid for all x within certain intervals. If a function f(x) is “expanded
about” a point a, it takes the form described by Eqn. 2.10. Such a
form can always be simplified to an infinite polynomial of the form

f(x) =bo+ bix +brx? +bax® + ...

and this fact is useful for doing approximate calculations in numeri-
cal analysis.

14. Show that:

* cos(—a) = cos(a). (Because of this, cos x is called an “even”
function.)

8A transcendental function is one that can’t be expressed as a ratio of two poly-
nomials. Examples are ¢* and sin x.
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* sin(—a) = - sin(+a). (sin x is an odd function.)

* ¢iZ = cosz + isinz, where i = /1. To confirm this, it helps to
work out first the values of i2, i3, i%, etc. You will find that an
interesting pattern emerges.

The purpose of this exercise is to show that the Taylor series for a
finite polynomial is that polynomial. E.g., consider

fx)=P3(x) = 7x3 - 3x, expanded about a = 4. (2.16)

We have: f(a) = 7(64) - 3(4) = 436, and from the rules for deriva-
tives of positive powers (i.e., that dx™/dx = nx™" 1)

f(x) =21x* -3, so f'(a) = 21(16) — 3 = 333,
S (x)=42x, so f"(a) = 42(4) = 168, and
£ (x) =42, so f""(a) = 42.
Also, f™ (x) = 0 for all n > 3 and for all x. Substituting these
into (1), we get the Taylor series:

F(x) =436 + 333(x — 4) + él_fi%(x TEIN
42

3:2-1

(x =423 +0+0+....

Your jobs are to simplify this expression by grouping like pow-
ers of x, and to show that it reduces to the original polynomial
(Eqn. 2.16).

Recalling that

7} cny L
dx(x ) = —nx

expand y = 1/x about the point a=2. Show the first 4 terms of the
expansion. Use this truncated series to estimate f(2.1), and com-
pare the estimate with the true value of f(2.1) = 1/(2.1) obtained
by division.

—(n+1)

Note that the function f(x) = 1/x is not a polynomial because it
is not a sum of terms of positive powers of x. Hence, to be exact
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18.

19.

20.

21.

the Taylor series for this function must have an infinite number of
terms. Do you think your series would yield a reasonable approxi-
mation for f(x) at x = 0? Why or why not?

Expand y = R + Sx + Tx? about x = a (symbolically), and show
that the Taylor series expansion reduces to the original polyno-
mial.

Given: The derivative of y = e?* is be?*, and (as you may remem-
ber) for any function y and any constant c,

dcy) _ 4y
dx dx’

Using these facts, expand y = ce?* as a Maclaurin series (which
means you set @ = 0). Then show that that series reduces to ¢
times e* when u = bx. For this, you can take as given that for any
u,

2 ud oyl

u
u _ —_— i ——
e —1+u+2!+3!+4!+

Expand f(x) = xe* about a = 1 through the [x — 1]3 (third-order)
term. What are the relative errors that result if you use this trun-
cated Taylor series to estimate f(1.1), f(1.2), f(1.4),

F(L.8), f(2.6), f(4.2) and f(7.4)?

Expand the function f(x) = log(x) as a Taylor series around the
point a = 1, keeping terms up to and including the term based on
the third derivative.

What approximate value does your series provide for log(1.1)?
Then, if you assume that your calculator yields the exact true value
for that quantity, what is the relative error of the approximate
value calculated from your series?

The net exchange R of long-wave (thermal) radiation between an
object (such as a leaf or an animal) and its surroundings is given by
R(T) = 0e(T* — T}), where ¢ is the Stefan-Boltzmann constant [J
cm~? s~ deg™4], € is the emissivity (or “blackness”) of the object
in far-infrared wavelengths [unitless], T is the object’s absolute
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22.

23.

surface temperature |deg K], and T is the absolute temperature
of surrounding objects. R is one term of the energy balance of
an object. Assuming that T; is a known constant, determine the
first five terms of the Taylor series for R(T), expanded about the
temperature T = a.

This problem makes use of the Maclaurin series for e¢*, which as
you have seen is
2

e"=1+x+§2—!+-§+---. (2.17)
In risk assessment for carcinogens, test animals like rats are often
fed high doses of a chemical. Then assessors use a mathemati-
cal model to estimate the mean number u of tumors per animal
expected to occur in rats fed some lower dose to which humans
might be exposed. From p, the assessors wish to estimate the car-
cinogenic potency ¢, which is defined as the probability that a rat
fed that lower dose would get cancer; i.e., one or more tumors.

At the low doses considered, cancers are rare, and so the Poisson
distribution from statistics can be used to show that the prob-
ability of a given rat’s not getting cancer is P(0) = e #. Thus
the probability that a rat will suffer from one or more tumors is
¢ =1-P(0) =1-e# and this is the quantity we seek. Suppose
for a particular dose of a particular chemical that y is quite small,
say 0.0001. Then use the series in Eqn. 2.17 to show that for all
practical purposes, ¢ = u. Describe your logic. (Ultimately the
potency for rats is converted to a potency for humans, but that's
another story.)

(This problem is about integration, but does not require you to
perform any integration.) As noted on p. 44, the equation for the
“bell curve” of statistics; i.e., for the standard normal distribution,
is

1 z°
p(Z) = \/—ﬁexp (——é—> . (218)

Unfortunately that analytic expression is not directly useful much
of the time because it yields the probability density at any value
of z, and not the actual probabilities that we usually want to work
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24.

with. To calculate the probability P that a standard normal ran-
dom variable Z lies in some range of interest, we have to integrate
p(z) over that range. Sadly, p(z) can’t be integrated analytically.

Suppose we needed P (0 < z < 0.8) for some statistical application.
One way to obtain that value would be to write the Taylor series
for p(z) (expanded about a = 0.4, say), to truncate that series
after k terms, and to sum the integrals of those terms. If we kept
enough terms, that should work reasonably well, since the integral
of a sum is the sum of the integrals.

Although you need not perform any integration, your task here is
to check out how well a few terms of the Taylor series for p(z)
approximate that function. In particular,

A. Find the first three terms (i.e., through the quadratic term) of
the Taylor series for p(z), expanded about 0.4.

B. Calculate the true numerical value of p(0) and of p(0.8) from
Eqgn. 2.18, to as many digits as your calculator supplies.

C. Calculate the approximate value of p(0) that would be obtained
from the three terms of the Taylor series, and determine the rela-
tive error of that approximation.

D. Repeat the calculations from Part C at z = 0.8.

If those errors are relatively small, that would suggest (but not
prove) that the integral of the three-term series would approxi-
mate the integral of the true p(z) reasonably well over this range.
If not, you might want to add more terms, but as the higher deriva-
tives get messy, we’ll omit that here.

Hints: To simplify developing the Taylor series, you may find it
helpful to give the leading constant in the formula for p(z) a sym-
bolic name (like ¢); use a substitution like g(z) = —z2/2, and make
use of the chain rule.

At x = 3, a certain function has the value f(3) = 1, and its first
three derivatives there have the values f' = 1/2, f”" = 1/4, and
f® =1/8. The fourth and all higher derivatives are zero at x = 3.
Using this information and the properties of Taylor series, write a
formula that would allow an assistant to calculate values of f(x)
for any value of x.
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25. In energy-balance calculations similar to the one for the top of a
car on p. 8, a quantity like q(T) = (T* - A*%) frequently arises,
and analysts often "linearize" that with the help of Taylor series
to simplify solving for temperature. Find the first three terms of
the Taylor series for the function g(T) expanded around the point
T = A; i.e., the constant term and those involving (T — A) and
(T — A)2. Then, calculate the numerical values of each of those
three terms if T = 300° K and A = 295° K. Linearization involves
dropping the third (and higher) terms. How large is that third
term, relative to the sum of the first two, in this application? Can
it reasonably be dropped?

2.7 Questions and Answers

1. Please explain again why the derivative of v = f(x) = eP* is
f(x) = bebx,
» This is a good place to use the chain rule. Define u = bx. Then
v = g(u) = e%, and u = h(x) = bx. The chain rule says that
dyldx = (dy/du)(du/dx) = (e*)(b). Now replace the u with
bx, and you have dy/dx = (e’*)(b) = be?*. Alternatively, you
can work with the Maclaurin series for e%; i.e., with ‘
w2 wd uld
u _ —_— —_— —_
e*=1+u+ o + 3 + a0 +....
Now substitute # = bx, and then differentiate the result term by
term. Remember that the derivative of a sum is the sum of the
derivatives. You should be able to factor out a b from the result,
and what'’s left will be exp(bx)/b = exp(u).

2. Is there a table of derivatives and integrals we can use for refer-
ence?

o There are lots available. The firm that publishes the Handbook of
Chemistry and Physics extracts the math tables from that book as
a smaller book, and you can buy that. The Handbook of Mathemat-
ical Functions is a fine reference book by Abramowitz and Stegun,
originally published by the National Bureau of Standards (Now the
National Institute of Standards & Technology), and later, in paper-
back, by Dover—it’s a big tome, however. Some of the “outline



§2.7. Questions and Answers 47

series” of books (e.g., Schaum’s) have tables available, I think. I've
seen other books of tables in various bookstores, and any of them
ought to be helpful.

3. 'm unsure of when you use [f(a + h) - f(a)]/h and when you
just differentiate analytically.

» You should differentiate analytically most of the time—it’s more
exact. But you can use the finite difference form (A) to check an-
alytic derivatives, (B) when you have only a list of values of the
function, not the function itself, and (C)—yet to come-—as the ba-
sis for approximate solutions to differential equations. Remember
that the central difference form [ f(a + h) — f(a — h)]/(2h) is al-
most always preferable to the forward difference you asked about.

4. Please give another example of the chain rule.

o That would also be a good thing to look up in a calculus text
for a good general description. For an example, though, suppose
the water temperature in some lake varied with time on summer
days as T = a + b sin(ct), and suppose evaporation rate from the
water depended on temperature according to E = o - exp(kT).
Then ultimately E would vary with time through this “chain” of
dependencies. Thus, to see how rapidly E would change with time
at some particular time, you could use dE/dt = (dE/dT)(dT/dt),
which is the chain rule. Here dE/dT = akexp(kT), and dT/dt =
bc cos(ct).

5. Why again is the derivative of log(bx) equal to 1/x?

e loghx = logb + log x (log of a product is the sum of the logs).
log b is a constant, so its derivative is zero. Thus, d(logbx)/dx =
0 +d(ogx)/dx = 1/x. That one seems counterintuitive at first,
doesn’t it?

6. When you gave the rule that d(u+w)/dx = du/dx+dw/dx, why
did you specify that u = f(x) and w = g(x)?

o It only makes sense to differentiate u with respect to x if u is a
function of x. The ‘u = f(x)’ was just meant to tell you that it is.

7. What are the applications of Taylor series?

¢ They are often used as the basis for approximations.
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They form the basis for much of numerical analysis. (This is re-
lated to the first point.) We will use them at various times in
the semester either to derive numerical methods (e.g., Newton's
method for finding roots of non-linear equations) or to justify and
help understand the behavior of other methods.

They are used a great deal by mathematical modellers, engineers,
and other applied mathematicians. For those of you whose goal in
the course is to be able to work with such people, a basic under-
standing of Taylor series (and that’s our level—very basic) should
help you communicate with them.

A side benefit in working with Taylor series is that you get some
useful practice differentiating.

. How can you get so much information from a Taylor series, when
all you know about is one point?

» Well, you have to know a lot about that one point! You'll see
as we get further into it (the short distance farther that we will
go) that the first N terms of a Taylor series are equivalent to a
polynomial of order N — 1. That means that knowing the function
and N derivatives at a single point tells you quite a lot about how
the function curves and varies, at least in the near neighborhood
of that point.

If you know the 7y value at a given x, and you know the slope, you
can move left or right a short distance on the tangent line, and be
close to the value of the function there. If you know both the first
and second derivatives there, that gives you an estimate of how
much you should correct for curvature. Each additional derivative
helps you to correct more and more.

. In a Taylor series, what are a and x, and especially, what is the
difference?

¢ x is the general variable (on the x axis), while a is the specific
value of x about which we “expand the function.” That is, a is the
x value for which we must know the value of the function and its
derivatives. If we truncate the series at a finite number of terms,
then the resulting approximation will generally be better when x
is near a than when x is far from a.
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10. If we can obtain square roots from our calculators, or if we already

11.

know some other f{x), why do we need Taylor series?

o The square root example illustrated what a Taylor series is, the
steps you have to go through to get one, and the fact that these
series yield better approximations near a (i.e., in a narrow range
around the point of expansion), and better approximations with
more terms (at least near a).

If you go on a long research trip some time, and drop your calcu-
lator in a lake, you now know one way to get the square root of
5 <grin>. That’s not too far fetched, I guess. You might have to
triangulate with x2 + y?2 = z2 (from which z = [x2 + y? ) to find
locations on a lake, or some such thing.

More realistically, If your calculator doesn’t give hyperbolic sines
and cosines, you now have a way to get those. That is, Taylor
series are used for many other kinds of functions in addition to
square roots.

Most important, we now have a justification for using polynomials
to approximate general (non-polynomial) functions, and we know
that these approximations work better in narrow ranges and with
more terms. This is the major reason we deal here with Taylor
series—they form the basis for most numerical methods.

Does the second derivative show how the slope is changing? For
example, does a negative second derivative tell you that the slope
is getting less steep as x increases?

e Yes, and yes. The second derivative is just the slope of the slope
(It tells you how fast the slope changes with increasing x). A nega-
tive f" tells you that f” gets smaller as x increases.

When you do a max-min problem, you find a point where the first
derivative is zero. To determine whether that is a maximum or
a minimum point, you can calculate the second derivative at that
point. If f’ is positive there, it means that the slope keeps getting
bigger as you move to the right. Therefore, the function is cupped
upward, and you have a minimum. If f”’ is negative at your ex-
treme point, then the slope keeps getting smaller as you move to
the right. That means that the function is cupped downward at
the extremum, so the point is a maximum. See any calculus book
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if vou want more on this. Also, try some sketches to see it better.

Conceptually, this indicates why including a second-derivative
term (f”' (x — a)?/2!) improves a Taylor series. The information
about how the slope changes as you move away from x = a helps
to predict f(x), relative to what you would get from using just
f(a) and f’(a) (the starting value and the starting slope).

How is a Taylor series different from linear approximation, where
f(x) =~ f(a)y+ f'(a)Ax? Is the Taylor series more exact?

s One way to look at this is that a linear approximation is the
simplest form of approximation based on the Taylor series—it is
equivalent to using the first two terms of a Taylor series. The Tay-
lor series is more exact if you keep more terms, but if you drop
all but the first two terms, the two are identical. Linear approx-
imations are very common, but during the semester we will use
some quadratic ones (like the central difference derivative) and
one quartic (fourth-order) one. Stay tuned.

What does your example on p. 35 have to do with Taylor series?
What do those calcuiations illustrate?

» Those calculations are in the “numerical differentiation” section.
They are indirectly related to Taylor series in the sense that Tay-
lor series tell us it is better to use central differences than to use
forward differences. But these calculations illustrate a completely
different point, namely that if you use too small an “h” value (that
would be good from the point of view of Taylor series, which tell
us to work in a very small range), then the new problem of round-
off error rears its ugly head. There are tradeoffs like this in a lot
of numerical work. Keeping ranges small helps from one point of
view, but often increases round-off error. Applied math (like life)
is full of compromises.

Shouldn’t there be a ‘remainder term’ at the end of a Taylor series?

o If you truncate a Taylor series (i.e., cut it off after a finite number
of terms) then it would often have a remainder term added to it,
as you have evidently seen elsewhere. However, so far I think the
series I've written have all had a “+...” at the end, indicating a
(theoretically) infinite series of terms. The full series does not have
a remainder. Also, Taylor series for polynomials can be exact with
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15.

16.

17.

a finite number of terms, and they don’t need remainder terms
either.

What is the meaning of second and higher derivatives, like f"' (x),
f""(x), and so on?

¢ That would be a good thing to review in an introductory calcu-
lus text, but let me explain it too. Take the function vy = f(x) =
x> + 3x, say. Wherever you go on the x axis, the slope of the curve
above that point (the “rise” over the “run”) can be calculated using
the first derivative, which is f'(x) = 5x* + 3. You can treat that
derivative as a function too. If you do, and take its derivative ev-
erywhere, you would get “derivative of 5x*+3" = 20x3+0 = 20x3.
That new function is just the second derivative of the original func-
tion. It tells you how fast the slope of the original function changes
as you move from one value of x to another. A 20th derivative is
just the derivative with respect to x of the 19th derivative (etc.).
(For f(x) = x> + 3x, every derivative above the fifth would be
zero, however.)

What is the point of working with a Taylor series if you just get
the original function back?

o That happens only if your original function is a polynomial. It
didn’t happen with the square-root example we've started to work
with, as you saw. Finding the Taylor series for a polynomial is
instructional, though, because it shows the close relationship be-
tween those two mathematical forms.

With a Taylor series, do you always need an infinite number of
terms, or can you stop once the terms become zero?

o (Infinity) x (zero) is still zero, so if you know that all remaining
possible terms are zero, then you can stop because you know that
adding them won’t make any difference. Generally that happens
only with polynomials, however.
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