
Chapter 2

FALSIFIABILITY AND PARSIMONY: VC
DIMENSION AND THE NUMBER OF ENTITIES

(1980–2000)

2.1 SIMPLIFICATION OF VC THEORY

For about ten years this book did not attract much attention either in Russia or in the
West. It attracted attention later.

In the meantime, in 1984 (five years after the publication of the original version
of this book and two years after its English translation) an important event happened.
Leslie Valiant published a paper where he described his vision of how learning theory
should be built [122].

Valiant proposed the model that later was called the Probably Approximately Cor-
rect (PAC) learning model. In this model, the goal of learning is to find a rule that
reasonably well approximates the best possible rule. One has to construct algorithms
which guarantee that such a rule will be found with some probability (not necessarily
one). In fact, the PAC model is one of the major statistical models of convergence,
called consistency. It has been widely used in statistics since at least Fisher’s time.

Nevertheless Valiant’s article was a big success. In the mid-1980s the general ma-
chine learning community was not very well connected to statistics. Valiant introduced
to this community the concept of consistency and demonstrated its usefulness. The
theory of consistency of learning processes as well as generalization bounds was the
subject of our 1968 and 1971 articles [143, 11], and was described in detail in our 1974
book [12, 173] devoted to pattern recognition, and in a more general setting in EDBED.
However, at that time these results were not well known in the West.1

1In 1989 I met Valiant in Santa Cruz, and he told me that he did not know of our results when he wrote
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426 2. Falsifiability and Parsimony

In the 20th century, and especially in the second half of it, mass culture began to
play an important role. For us it is important to discuss the “scientific component” of
mass culture.

With the increasing role of science in everyday life, the general public began to
discuss scientific discoveries in different areas: physical science, computer science
(cybernetics), cognitive science (pattern recognition), biology (genomics), and philos-
ophy. The discussions were held using very simplified scientific models that could be
understood by the masses. Also scientists tried to appeal to the general public by pro-
moting their philosophy using simplified models (for example, as has been done by
Wiener). There is nothing wrong with this.

However, when science becomes a mass profession, the elements of the scientific
mass culture in some cases start to substitute for the real scientific culture: It is much
easier to learn the slogans of the scientific mass culture than it is to learn many different
concepts from the original scientific sources. Science and “scientific mass culture,”
however, are built on very different principles. In Mathematical Discoveries, Polya
describes the principle of creating scientific mass culture observed by the remarkable
mathematician Zermello. Here is the principle:

Gloss over the essentials and attract attention to the obvious.
Something that could remind this principle happened when (after appearance Valiant’s
article) the adaptation of ideas described in EDBED started. In the PAC adaptation the
VC theory was significantly simplified by removing its essential parts.

In EDBED the main idea was the necessary and sufficient aspects of the theory
based on three capacity concepts: the VC entropy, the Growth function, and the VC
dimension. It stresses that the most accurate bounds can be obtained based on the VC
entropy concept. This, however, requires information about the probability measure.
One can construct less accurate bounds that are valid for all probability measures. To
do this one has to calculate the Growth function which can have a different form for
different sets of admissible functions. The Growth function can be upper bounded by
the standard function that depends on only one integer parameter (the VC dimension).
This also decreases accuracy, but makes the bounds simpler.

These three levels of the theory provide different possibilities for further develop-
ments in learning technology. For example, one can try to create theory for the case
when the probability measure belongs to some specific sets of measures (say smooth
ones), or one can try to find a better upper bound for the Growth function using a stan-
dard function that depends on say two (or more) parameters. This can lead to more
accurate estimates and therefore to more advanced algorithms. The important compo-
nent of the theory described in EDBED was the structural risk minimization principle.
It was considered to be the main driving force behind predictive learning technology.

PAC theory started just from the definition of the VC dimension based on the com-
binatorial lemma used to estimate the bound for the Growth function (see EDBED,
Chapter 6, Section A2). The main effort was placed on obtaining VC type bounds for

his article, and that he even visited a conference at Moscow University to explain this to me. Unfortunately
we never met in Moscow. After his article was published Valiant tried to find the computer science aspects
of machine learning research suggesting analyzing the computational complexity of learning problems. In
1990 he wrote [123]: “If the computational requirements is removed from the definition then we are left with
the notion of non-parametric inference in sense of statistics as discussed in particular by Vapnik [EDBED].”
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different classes of functions (say for neural networks), and on the generalizations of
the theory for the set of nonindicator functions. In most cases these generalizations
were based on extensions of the VC dimension concept for real-valued functions made
in the style described in EDBED. The exception was the fat-shattering concept [141]
related to VC entropy for real-valued functions described in Chapter 7.

In the early 1990s, some PAC researchers started to attack the VC theory. First, the
VC theory was declared a “worst-case theory” since it is based on the uniform conver-
gence concept. In contrast to this “worst-case-theory” the development of “real-case
theory” was announced. However, this is impossible (see Section 1.2 of this After-
word) since the (one-sided) uniform convergence forms the necessary and sufficient
conditions for consistency of learning (that is also true for PAC learning). Then in the
mid-1990s an attempt was made to rename the Vapnik–Chervonenkis lemma (EDBED,
Chapter 6, Sections 8 and A2) as the Sauer lemma. For the first time we published the
formulation of this lemma in 1968 in the Reports of the Academy of Sciences of USSR
[143]. In 1971, we published the corresponding proofs in the article devoted to the
uniform law of large numbers [11]. In 1972, two mathematicians N. Sauer [130] and
S. Shelah [131] independently proved this combinatorial lemma.

Researchers, who in the 1980s learned from EDBED (or from our articles) both the
lemma and its role in statistical learning theory, renamed it in the 1990s.2 Why? My
speculation is that renaming it was important for creating the following legend:

In 1984 the PAC model was introduced. Early in statistics a concept called the
VC dimension was developed. This concept plays an important role in the Sauer
lemma, which is a key instrument in PAC theory.

Now, due to new developments in the VC theory and the interest in the advanced
topics of statistical learning theory, this legend has died, and as a result interest in PAC
theory has significantly decreased.

This is, however, a shame because the computational complexity aspects of learning
stressed by Valiant remain relevant.

2.2 CAPACITY CONTROL

2.2.1 BELL LABS

In 1990 Larry Jackel, the head of the Adaptive Systems Research Department at AT&T
Bell Labs, invited me to spend half a year with his group. It was a time of wide dis-
cussions on the VC dimension concept and its relationship to generalization problems.
The obvious interpretation of the VC dimension was the number of free parameters that
led to the curse of dimensionality. John Denker, a member of this department, showed,

2N. Sauer did not have in mind statistics proving this lemma. This is the content of the abstract of
his article: “P. Erdös (oral communication) transmitted to me in Nice the following question: . . . (the
formulation of the lemma). . . .. In this paper we will answer this question in the affirmative by determining
the exact upper bounds.”
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however, that the VC dimension is not necessarily the number of free parameters. He
came up with the example

y = θ{sin ax}, x ∈ R1, a ∈ (0,∞)

a set of indicator functions that has only one free parameter yet possesses an infinite
VC dimension (see Section 2.7.5, footnote 7). In EDBED another situation was de-
scribed: when the VC dimension was smaller than the number of free parameters.
These intriguing facts could lead to new developments in learning theory.

Our department had twelve researchers. Six of them, L. Jackel, J. Denker, S. Solla,
C. Burges, G. Nohl, and H.P. Graf were physicists, and six, Y. LeCun, L. Bottou, P.
Simard, I. Guyon, B. Boser, and Y. Bengio were computer scientists. The main direc-
tion of research was to advance the understanding of pattern recognition phenomena.
To do this they relied on the principles of research common in physics.

The main principle of research in physics can be thought of as the complete oppo-
site of the Zermello principle for creating scientific mass culture. It can be formulated
as follows:

Find the essential in the nonobvious.
The entire story of creating modern technology can be seen as an illustration of this

principle. At the time when electricity, electromagnetic waves, annihilation, and other
physical fundamentals were discovered they seemed to be insignificant elements of
nature. It took a lot of joint efforts of theorists, experimental physicists and engineers
to prove that these negligible artifacts are very important parts of nature and make it
work.

The examples given by Denker and another one described in EDBED (see Chapter
10, Section 5) could be an indication that such a situation in machine learning is quite
possible.

The goal of our department was to understand and advance new general principles
of learning that are effective for solving real-life problems. As a model problem for on-
going experiments, the department focused on developing automatic systems that could
read handwritten digits. This task was chosen for a number of reasons. First, it was
known to be a difficult problem, with traditional machine vision approaches making
only slow progress. Second, lots of data were available for training and testing. And
third, accurate solutions to the problem would have significant commercial importance.

Initial success in our research department led to the creation of a development group
supervised by Charlie Stenard. This group, which worked closely with us, had as a
goal the construction of a machine for banks that could read handwritten checks from
all over the world. Such a machine could not make too many errors (the number of
errors should be comparable to the number made by humans). However, the machine
could refuse to read some percentage of checks.

I spent ten years with this department. During this time check reading machines
became an important instrument in the banking industry. About 10% of checks in US
banks are read by technology developed at Bell Labs.

During these years the performance of digit recognition was significantly improved.
However, it never happened that significant improvements in quality of classification
were the results of smart engineering heuristics. All jumps in performance were results
of advances in understanding fundamentals of the pattern recognition problem.
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2.2.2 NEURAL NETWORKS

When I joined the department, the main instrument for pattern recognition was neural
networks constructed by Yann LeCun, one of the originators of neural networks. For
the digit recognition problem he designed a series of convolutional networks called
LeNet. In the early 1990s this was a revolutionary idea. The traditional scheme of ap-
plying pattern recognition techniques was the following: a researcher constructs sev-
eral very carefully crafted features and uses them as inputs for a statistical paramet-
ric model. To construct the desired rule they estimated the parameters of this model.
Therefore good rules in many respects reflected how smart the researcher was in con-
structing features.

LeNet uses as input a high-dimensional vector whose coordinates are the raw image
pixels. This vector is processed using a multilayer convolutional network with many
free parameters. Using the back propagation technique, LeNet tunes the parameters to
minimize the training loss.3

For the digit recognition problem, the rules obtained by LeNet were significantly
better than any rules obtained by the classical style algorithms. This taught a great
lesson: one does not need to go into the details of the decision rule; it is enough to
create an “appropriate architecture” and an “appropriate minimization method” to solve
the problem.

2.2.3 NEURAL NETWORKS: THE CHALLENGE

The success of neural nets in solving pattern recognition problems was a challenge for
theorists. Here is why. When one is trying to understand how the brain is working two
different questions arise:

(1) What happens? What are the principles of generalization that the brain executes?

(2) How does it happen? How does the brain execute these principles?

Neural networks attempt to answer the second question using an artificial brain model
motivated by neurophysiologists.

According to the VC theory, however, this is not very important. VC theory de-
clares that two and only two factors are responsible for generalization. They are the
value of empirical loss, and the capacity of the admissible set of functions (the VC
entropy, Growth function, or the VC dimension). The SRM principle states that any
method that controls these two factors well (minimizing the right-hand side of the VC
bounds) is strongly universally consistent.

It was clear that artificial neural networks executed the structural risk minimization
principle. However, they seemed to do this rather inefficiently. Indeed, the loss function
that artificial neural networks minimize has many local minima. One can guarantee
convergence to one of these minima but cannot guarantee good generalization. Neural
networks practitioners define some initial conditions that they believe will lead to a

3As computer power increased, LeCun constructed more powerful generations of LeNet.
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“good” minimum. Also, the back-propagation method based on the gradient procedure
of minimization in high-dimensional spaces requires a very subtle treatment of step
values. The choice of these values does not have a good recommendation.

In order to control capacity the designer chooses an appropriate number of elements
(neurons) for the networks. Therefore for different training data sizes one has to design
different neural networks. All these factors make neural networks more of an art than
a science.

Several ideas that tried to overcome the described shortcomings of neural networks
were checked during 1991 and 1992 including measuring the VC dimension (capacity)
of the learning machine [144, 142] and constructing local learning rules [145]. Now
these ideas are developing in a new situation. However, in 1992 they were overshad-
owed by a new learning concept called Support Vector Machines ( SVMs).

2.3 SUPPORT VECTOR MACHINES (SVMS)

The development of SVMs has a 30-year history, from 1965 until 1995. It was com-
pleted in three major steps.

2.3.1 STEP ONE: THE OPTIMAL SEPARATING HYPERPLANE

In 1964, Chervonenkis and I came up with an algorithm for constructing an optimal
separating hyperplane called the generalized portrait method. Three chapters of our
1974 book Theory of pattern recognition, contain the detailed theory of this algorithm
[12, 173]. In EDBED (Addendum I), a simplified version of this algorithm is given.
Here are more details. The problem was: given the training data

(y1, x1), . . . , (y�, x�), (2.1)

construct the hyperplane
(w0, x) + b0 = 0 (2.2)

that separates these data and has the largest margin. In our 1974 book and in EDBED
we assumed that the data were separable. The generalization of this algorithm for
constructing an optimal hyperplane in the nonseparable case was introduced in 1995
[132]. We will discuss it in a later section.

Thus, the goal was to maximize the functional

ρ0 = min
{i: yi=1}

[(
w

|w| , xi

)
+ b

]
− max

{j: yj=−1}

[(
w

|w| , xj

)
+ b

]

under the constraints

yi((w, xi) + b) ≥ 1, i = 1, . . . , �. (2.3)

It is easy to see that this problem is equivalent to finding the minimum of the quadratic
form

R1(w, b) = (w,w)
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subject to the linear constraints (2.3). Let this minimum be achieved when w = w0.
Then

ρ0 =
2√

(w0, w0)
.

To minimize the functional (w,w) subject to constraints (2.3) the standard La-
grange optimization technique was used. The Lagrangian

L(α) =
1
2
(w,w) −

�∑
i=1

αi([yi((w, xi) + b) − 1]) (2.4)

(where αi ≥ 0 are the Lagrange multipliers) was constructed and its minimax (mini-
mum over w and b and maximum over the multipliers αi ≥ 0) was found. The solution
of this quadratic optimization problem has the form

w0 =
�∑

i=1

yiα
0
i xi. (2.5)

To find these coefficients one has to maximize the functional:

W (α) =
�∑

i=1

αi − 1
2

�∑
i,j=1

αiαjyiyj(xi, xj) (2.6)

subject to the constraints

�∑
i=1

yiαi = 0, αi ≥ 0, i = 1, . . . , �.

Substituting (2.5) back into (2.2) we obtain the separating hyperplane expressed in
terms of the Lagrange multipliers

�∑
i=1

yiα
0
i (x, xi) + b0 = 0. (2.7)

2.3.2 THE VC DIMENSION OF THE SET OF ρ-MARGIN SEPARATING HYPER-
PLANES

The following fact plays an important role in SVM theory. Let the vectors x ∈ Rn be-
long to the sphere of radius R = 1. Then the VC dimension h of the set of hyperplanes
with margin ρ0 = (w0, w0)−1 has the bound

h ≤ min{(w0, w0), n} + 1.

That is, the VC dimension is defined by the smallest of the two values: the dimension-
ality n of the vectors x and the value (w0, w0). In Hilbert (infinite dimensional) space,



432 2. Falsifiability and Parsimony

the VC dimension of the set of separating hyperplanes with the margin ρ0 depends just
on the value (w0, w0).

In EDBED I gave a geometrical proof of the bound (See Chapter 10, Section 5).
In 1997, Gurvits found an algebraic proof [124]. Therefore, the optimal separating
hyperplane executes the SRM principle: it minimizes (to zero) the empirical loss, using
the separating hyperplane that belongs to the set with the smallest VC dimension.

One can therefore introduce the following learning machine that executes the SRM
principle:

Map input vectors x ∈ X into (a rich) Hilbert space z ∈ Z, and construct the
maximal margin hyperplane in this space.

According to the VC theory the generalization bounds depend on the VC dimension.
Therefore by controlling the margin of the separating hyperplane one controls the gen-
eralization ability.

2.3.3 STEP TWO: CAPACITY CONTROL IN HILBERT SPACE

The formal implementation of this idea requires one to specify the operator

z = Fx

which should be used for mapping. Then similar to (2.7) one constructs the separating
hyperplane in image space

�∑
i=1

yiα
0
i (z, zi) + b0 = 0,

where the coefficients αi ≥ 0 are the ones that maximize the quadratic form

W (α) =
�∑

i=1

αi − 1
2

�∑
i,j=1

αiαjyiyj(zi, zj) (2.8)

subject to the constraints

�∑
i=1

yiαi = 0, αi ≥ 0, i = 1, . . . , �. (2.9)

In 1992 Boser, Guyon and I found an effective way to construct the separating
hyperplane in Hilbert space without explicitly mapping the input vectors x into vectors
z of the Hilbert space [125].

This was done using Mercer’s theorem.

Let vectors x ∈ X be mapped into vectors z ∈ Z of some Hilbert space.

1. Then there exists in X space a symmetric positive definite function K(xi, xj)
that defines the corresponding inner product in Z space:

(zi, zj) = K(xi, xj).
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2. Also, for any symmetric positive definite function K(xi, xj) in X space there
exists a mapping from X to Z such that this function defines an inner product in
Z space.

Therefore, according to Mercer’s theorem, the separating hyperplane in image
space has the form

�∑
i=1

yiα
0
i K(x, xi) + b0 = 0,

where the coefficients α0
i are defined as the solution of the quadratic optimization prob-

lem: maximize the functional

W (α) =
�∑

i=1

αi − 1
2

�∑
i,j=1

αiαjyiyjK(xi, xj) (2.10)

subject to the constraints

�∑
i=1

yiαi = 0, αi ≥ 0, i = 1, . . . , �. (2.11)

Choosing specific kernel functions K(xi, xj) one makes specific mappings from input
vectors x into image vectors z.

The idea of using Mercer’s theorem to map into Hilbert space was used in the mid-
1960s by Aizerman, Braverman, and Rozonoer [2]. Thirty years later we used this idea
in a wider context.

2.3.4 STEP THREE: SUPPORT VECTOR MACHINES

In 1995 Cortes and I generalized the maximal margin idea for constructing (in image
space) the hyperplane

(w0, z) + b0 = 0

when the training data are nonseparable [132]. This technology became known as
Support Vector Machines (SVMs). To construct such a hyperplane we follow the rec-
ommendations of the SRM principle.

Problem 1. Choose among the set hyperplanes with the predefined margin

ρ2 =
4

(w0, w0)
≤ H =

1
h

the one that separates the images of the training data with the smallest number of errors.
That is, we minimize the functional

R =
�∑

i=1

θ(ξi) (2.12)
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subject to the constraints

yi((w, zi) + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , � (2.13)

and the constraint
(w,w) ≤ h, (2.14)

where θ(u) is the step function:

θ(u) =
{

1, if u ≥ 0
0, if u < 0.

For computational reasons, however, we approximate Problem 1 with the following
one.

Problem 2. Minimize the functional

R =
�∑

i=1

ξi (2.15)

(instead of the functional (2.12)) subject to the constraints (2.13) and (2.14).
Using the Lagrange multiplier technique, one can show that the corresponding hy-

perplane has an expansion

�∑
i=1

yiα
0
i (zi, z) + b0 = 0. (2.16)

To find the multipliers one has to maximize the functional

W (α) =
�∑

i=1

αi − h

√√√√ �∑
i,j=1

yiyjαiαj(zi, zj) (2.17)

subject to the constraint
�∑

i=1

yiαi = 0 (2.18)

and the constraints
0 ≤ αi ≤ 1, i = 1, . . . , �.

Problem 3. Problem 2 is equivalent to the following (reparametrized) one: Mini-
mize the functional

R =
1
2
(w,w) + C

�∑
i=1

ξi (2.19)

subject to constraints (2.13). This setting implies the following dual space solution:
Maximize the functional

W (α) =
�∑

i=1

αi − 1
2

�∑
i,j=1

yiyjαiαj(zi, zj) (2.20)
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subject to the constraint
�∑

i=1

yiαi = 0 (2.21)

and the constraints
0 ≤ αi ≤ C, i = 1, . . . , �.

One can show that for any h there exists a C such that the solutions of Problem 2
and Problem 3 coincide. From a computational point of view Problem 3 is simpler than
Problem 2. However, in Problem 2 the parameter h estimates the VC dimension. Since
the VC bound depends on the ratio h/� one can choose the VC dimension to be some
fraction of the training data, while in the reparametrized Problem 3 the corresponding
parameter C cannot be specified; it can be any value depending on the VC dimension
and the particular data.

Taking into account Mercer’s theorem,

(zi, zj) = K(xi, xj),

we can rewrite the nonlinear separating rule in input space X as

�∑
i=1

α0
i yiK(xi, x) + b0 = 0, (2.22)

where the coefficients are the solution of the following problems:

Problem 1a. Minimize the functional

R =
�∑

i=1

θ(ξi) (2.23)

subject to the constraints

yi

�∑
j=1

(yjαjK(xj , xi) + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , � (2.24)

and the constraint
�∑

i,j=1

yiyjαiαjK(xi, xj) ≤ h. (2.25)

Problem 2a. Maximize the functional

W (α) =
�∑

i=1

αi − h

√√√√ �∑
i,j=1

yiyjαiαjK(xi, xj) (2.26)



436 2. Falsifiability and Parsimony

subject to the constraint
�∑

i=1

yiαi = 0 (2.27)

and the constraints
0 ≤ αi ≤ 1, i = 1, . . . , �. (2.28)

Problem 3a. Maximize the functional

W (α) =
�∑

i=1

αi − 1
2

�∑
i,j=1

yiyjαiαjK(xi, xj) (2.29)

subject to the constraint
�∑

i=1

yiαi = 0

and the constraints
0 ≤ αi ≤ C, i = 1, ..., �.

The solution of Problem 3a became the standard SVM method. In this solution only
some of the coefficients α0

i are different from zero. The vectors xi for which α0
i �= 0

in (2.22) are called the support vectors. Therefore, the separating rule (2.22) is the
expansion on the support vectors.

To construct a support vector machine one can use any (conditionally) positive
definite function K(xi, xj) creating different types of SVMs. One can even use kernels
in the situation when input vectors belong to nonvectorial spaces. For example, the
inputs may be sequences of symbols of different size (as in problems of bioinformatics
or text classification). Therefore SVMs form a universal generalization engine that can
be used for different problems of interest.

Two examples of Mercer kernels are the polynomial kernel of degree d

K(xi, xj) = ((xi, xj) + c)d, c ≥ 0 (2.30)

and the exponential kernel

K(xi, xj) = exp

{
−

( |xi − xj |
σ

)d
}

, σ > 0, 0 ≤ d ≤ 2. (2.31)

2.3.5 SVMS AND NONPARAMETRIC STATISTICAL METHODS

SVMs execute the idea of the structural risk minimization principle, where the choice
of the appropriate element of the structure is defined by the constant C (and a kernel
parameters). Therefore, theoretically, for any appropriate kernel (say for (2.31) by
controlling parameters (which depends on the training data) one guarantees asymptotic
convergence of the SVM solutions to the best possible solution [167].
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In 1980 Devroye and Wagner proved that classical nonparametric methods of den-
sity estimation are also universally consistent [134]. That is, by controlling the pa-
rameter σ� = σ(�) > 0 depending on the size � of the training data, the following
approximation of the density function

p̄(x) =
1
�

�∑
i=1

1
(2π)n/2σn

�

exp

{
−

( |xi − x|
σ�

)2
}

(2.32)

converges (in the uniform metric) to the desired density with increasing �.
However, by choosing an appropriate parameter C of SVM, one controls the VC

bound for any finite number of observations. One can also control these bounds by
choosing the parameters of the kernels.

This section illustrates the practical advantage of this fact.

Let us use the nonparametric density estimation method to approximate the optimal
(generative) decision rule for binary classification

p1(x) − p2(x) = 0, (2.33)

where p1(x) is the density function of the vectors belonging to the first class and p2(x)
is the density function of the vectors belonging to the second class. Here for notational
simplicity we assume that the two classes are equally likely and that the number of
training samples from the first and second class is the same. Using (2.32) the approxi-
mation (2.33) can be rewritten as follows.

∑
{i: yi=1}

exp

{
−

( |x − xi|
σ

)2
}

−
∑

{j: yj=−1}
exp

{
−

( |x − xj |
σ

)2
}

= 0.

The SVM solution using the same kernel has the form

∑
{i: yi=1}

αi exp

{
−

( |x − xi|
σ

)2
}

−
∑

{j: yj=−1}
αj exp

{
−

( |x − xj |
σ

)2
}

= 0.

Since our kernel is a positive definite function there exists a space Z where it defines
an inner product (by the second part of Mercer’s theorem). In Z space both solutions
define separating hyperplanes∑

{i: yi=1}
(zi, z) −

∑
{j: yj=−1}

(zj , z) = 0

(the classical non-parametric solution) [152] and∑
{i: yi=1}

αi(zi, z) −
∑

{j: yj=−1}
αj(zj , z) = 0.

(the SVM solution). Figure 2.1 shows these solutions in Z space. The separating hy-
perplane obtained by nonparametric statistics is defined by the hyperplane orthogonal
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Figure 2.1: Classifications given by the classical nonparametric method and the SVM
are very different.

to the line connecting the center of mass of two different classes. The SVM produces
the optimal separating hyperplane.

In spite of the fact that both solutions converge asymptotically to the best one4 they
are very different for a fixed number of training data since the SVM solution is optimal
(for any number of observations it guarantees the smallest predictive loss), while the
non-parametric technique is not.

This makes SVM a state-of-the-art technology in solving real-life problems.

2.4 AN EXTENSION OF SVMS: SVM+

In this section we consider a new algorithm called SVM+, which is an extension of
SVM. SVM+ takes into account a known structure of the given data.

2.4.1 BASIC EXTENSION OF SVMS

Suppose that our data are the union of t ≥ 1 groups:

(X, Y )r = (xr1 , yr1), . . . , (xrnr
, yrnr

), r = 1, . . . , t.

Let us denote indices from the group r by

Tr = {in1 , . . ., inr
}, r = 1, . . . , t.

4Note that nonparametric density estimate (2.32) requires dependence of σ from �. Therefore, it uses
different Z spaces for different �.
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Let inside one group the slacks be defined by some correcting function that belongs to
a given set of functions

ξi = ξr(xi) = φr(xi, wr), wr ∈ Wr, i ∈ Tr, r = 1, . . . , t. (2.34)

The goal is to define the decision function for a situation when sets of admissible cor-
recting functions are restricted (when sets of admissible correcting functions are not re-
stricted we are back to conventional SVM). By introducing groups of data and different
sets of correcting functions for different groups one introduces additional information
about the problem to be solved.

To define the correcting function ξ(x) = φr(x, wr) for group Tr we map the input
vectors xi, i ∈ Tr simultaneously into two different Hilbert spaces: into the space
zi ∈ Z which defines the decision function (as we did for the conventional SVM) and
into correcting function space zr

i ∈ Zr which defines the set of correcting functions
for a given group r. (Note that vectors of different groups are mapped into the same
decision space Z but different correcting spaces Zr.)

Let the inner products in the corresponding spaces be defined by the kernels

(zi, zj) = K(xi, xj), ∀i, j

and
(zr

i , zr
j ) = Kr(xi, xj), i, j ∈ Tr, r = 1, . . . , t. (2.35)

Let the set of admissible correcting functions ξr(x) = φr(x,wr), wr ∈ Wr, be linear
in each Zr space

ξ(xi) = φr(x, wr) = [(wr, z
r
i ) + dr] ≥ 0, i ∈ Tr, r = 1, . . . , t. (2.36)

As before our goal is to find the separating hyperplane in decision space Z,

(w0, z) + b0 = 0

whose parameters w0 and b0 minimize the functional

R(w,w1, . . . , wt) =
1
2
(w,w) + C

t∑
r=1

∑
i∈Tr

((wr, z
r
i ) + dr), (2.37)

subject to the constraints

yi[(zi, w) + b] ≥ 1 − ((zr
i , wr) + dr), i ∈ Tr, r = 1, . . . , t (2.38)

and the constraints

(wr, z
r
i ) + dr ≥ 0, i ∈ Tr, r = 1, . . . , t. (2.39)

Note that for set (2.36) the solution of this optimization problem does exist.
The corresponding Lagrangian is

L(w,w1, . . . , wt; α, μ) =
1
2
(w,w) + C

t∑
r=1

∑
i∈Tr

((wr, z
r
i ) + dr) (2.40)
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−
�∑

i=1

αi[yi((w, zi) + b) − 1 + dr + (wr, z
r
i )] −

�∑
i=1

μi((wr, z
r
i ) + dr).

Using the same dual optimization technique as above one can show that the optimal
separating hyperplane in Z space has the form

�∑
i=1

α0
i yi(zi, z) + b0 = 0,

where the coefficients α0
i ≥ 0 minimize the same quadratic form as before

W (α) =
�∑

i=1

αi − 1
2

�∑
i,j=1

yiyjαiαjK(xi, xj) (2.41)

subject to the conventional constraint

�∑
i=1

yiαi = 0 (2.42)

and the new constraints ∑
i∈Tr

(αi + μi) = |Tr|C, r = 1, . . . , t (2.43)

(|Tr| is the number of elements in Tr),∑
i∈Tr

(αi + μi)Kr(xi, xj) = C
∑
i∈Tr

Kr(xi, xj), j ∈ Tr, r = 1, . . . , t. (2.44)

and constraints
αi ≥ 0, μi ≥ 0, i = 1, . . . , �.

When either
(1) There is no structure in the data: any vector belongs to its own group,
or
(2) There is no correlation between slacks inside all groups: Kr(xi, xj) is an
identity matrix for all r

Kr(xi, xj) =
{

1, if i = j
0, if i �= j

(2.45)

then Equation (2.44) defines the box constraints as in conventional SVMs (in case (2)
Equations (2.43) are satisfied automatically). Therefore the SVM+ model contains the
classical SVM model as a particular case.

The advantage of the SVM+ is the ability to consider the global structure of the
training data that the conventional SVM ignores.

This, however, requires solving a more general quadratic optimization problem to
minimize in the space of 2� nonnegative variables the same objective function subject
to (� + t + 1) linear constraints (instead of one minimizing this objective function in
the space of � variable subjects of one linear constraint and � box constraints in the
conventional SVM).
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2.4.2 ANOTHER EXTENSION OF SVM: SVMγ+

Consider another extension of SVM, the so-called SVMγ+, which directly controls the
capacity of sets of correcting functions.

Let us instead of objective function (2.37) consider the function

R(w,w1, . . . , wt) =
1
2
(w,w) +

γ

2

t∑
r=1

(wr, wr) +C
t∑

r=1

∑
i∈Tr

((wr, z
r
i ) + dr), (2.46)

where γ > 0 is some value. When γ approaches zero (2.46) and (2.37) coincide.
The SVMγ+ solution minimizes functional (2.46) subject to the constraints (2.38)

and (2.39). To solve this problem we construct the Lagrangian. Comparing it to (2.40),
this Lagrangian has one extra term γ/2

∑
(wr, wr). Repeating almost the same algebra

as in the previous section we obtain that for the modified Lagrangian the dual space
solution that defines the coefficients α0

i must maximize the functional

W (α, μ) =
�∑

i=1

αi − 1
2

�∑
i,j=1

yiyjαiαjK(xi, xj)+

C

γ

t∑
r=1

∑
i,j∈Tr

(αi + μi)Kr(xi, xj) − 1
2γ

t∑
r=1

∑
i,j∈Tr

(αi + μi)(αj + μj)Kr(xi, xj)

subject to the constraints (2.42) and the constraints∑
i∈Tr

(αi + μi) = |Tr|C, r = 1, . . . , t,

αi ≥ 0, μi ≥ 0, i = 1, . . . , �.

Note that when either:
(1) There is no structure (every training vector belongs to its own group),
or
(2) There is no correlation inside groups ((2.45) holds for all r) and γ −→ 0

then the SVMγ+ solution coincides with the conventional SVM solution.
This solution requires maximizing the quadratic objective function in the space of

2� nonnegative variables subject to t + 1 equality constraints.

One can simplify the computation when using models of correcting functions (2.36)
with dr = 0, r = 1, ..., t. In this case one has to maximize the functional W (α, μ) over
non-negative variables αi μi, i = 1, ..., � subject to one equality constraint (2.42).

2.4.3 LEARNING USING HIDDEN INFORMATION

SVM+ is an instrument for a new inference technology which can be called learning
using hidden information. It allows one to extract additional information in situations
where conditional technologies cannot be used.
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WHAT INFORMATION CAN BE HIDDEN?

Consider the pattern recognition problem. Let one be given the training set

(x1, y1), . . . , (x�, y�).

Suppose that one can add to this set additional information from two sources:
(1) information that exists in hidden classifications of the training set and
(2) information that exists in hidden variables of the training set.

The next two examples describe such situations.

EXAMPLE 1 (Information given in hidden classifications).
Suppose that one’s goal is to find a rule that separates cancer patients from non cancer
patients. One collects training data and assigns class yi = 1, or yi = −1, to patient
xi depending on the result of analysis of tissue taken during surgery. Analyzing the
tissue, a doctor composes a report which not only concludes that the patient has a
cancer (+1) or benign diagnosis (-1) but also that the patient belongs to a particular
group (has a specific type of cancer or has a specific type of cell and so on). That
is, the doctor’s classification of the training data y∗

i is more detailed than the desired
classification yi. When constructing a classification rule y = f(x), one can take into
account information about y∗

i . This information can be used, for example, to create
appropriate groups.

EXAMPLE 2 (Information given in hidden variables).
Suppose that one’s goal is to construct a rule y = f(x). However, for the training data
along with the nonhidden variables xi, one can determine the hidden variables x∗

i . The
problem is using the data

(x1, x
∗
1, y1), . . . , (x�, x

∗
� , y�)

which contain both nonhidden and hidden variables and their classifications yi, to con-
struct a rule y = f(x) (rather than a rule y = f(x, x∗)) that makes a prediction based
on nonhidden variables. By using variables x for a decision space and variables x, x∗

for a correcting space one can solve this problem.

EXAMPLE 3 (Special rule for selected features).
A particular case of the problem described in Example 2 is constructing a decision
rule for selected features, using information about the whole set of features. In this
problem, the selected features are considered as non hidden variables while the rest of
the features are hidden variables.

THE GENERAL PROBLEM

How should one construct (a more accurate than conventional) rule y = f(x) using the
data

(x1, x
∗
1, y1, y

∗
1), . . . , (x�, x

∗
� , y�, y

∗
� )

instead of the data
(x1, y1), . . . , (x�, y�).
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To do this one can use the SVM+ method. Constructing the desired decision rule
in the solution space, SVM+ uses two new ideas:

(1) It uses structure on training data and
(2) It uses several different spaces: (a) the solution space of nonhidden variables

and (b) the correcting spaces of joint hidden and nonhidden variables.
SVM+ allows one to effectively use additional (hidden) information. The success of
SVM+ depends on the quality of recovered hidden information.

The corresponding SVM+ technology requires the following three steps:

1. Use the data (xi, x
∗
i , yi, y

∗
i ) for constructing a structure on the training set.

2. Use the kernel K(xi, xj) for constructing a rule in the decision space, and

3. Use the kernels Kr(xi, x
∗
i y

∗
i ; xj , x

∗
j , y

∗
j ) in the correcting spaces.

Note that in the SVM+ method the idea of creating a structure on the training set
differs from the classical idea of clustering of the training set.

2.5 GENERALIZATION FOR REGRESSION ESTIMATION

PROBLEM

In this section we use the ε-insensitive loss function introduced in [140],

uε =
{ |u| − ε, if |u| ≥ ε

0, if |u| < ε.

This function allows one to transfer some properties of the SVM for pattern recognition
(the accuracy and the sparsity) to the regression problem.

2.5.1 SVM REGRESSION

Consider the regression problem: given iid data

(x1, y1), . . . , (x�, y�),

where x ∈ X is a vector and y ∈ (−∞,∞) is a real value, estimate the function in a
given set of real-valued functions.

As before using kernel techniques we map input vectors x into the space of image
vectors z ∈ Z and approximate the regression by a linear function

y = (w, z) + b, (2.47)

where w and b have to be defined. Our goal is to minimize the following loss,

R =
1
2
(w,w) + C

�∑
i=1

|yi − (w, z) − b|ε. (2.48)
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To minimize the functional (2.48) we solve the following equivalent problem [140]:
Minimize the functional

R =
1
2
(w,w) + C

�∑
i=1

(ξi + ξ∗i ) (2.49)

subject to the constraints

yi − (w, zi) − b ≤ ε + ξ∗i , ξ∗i ≥ 0, i = 1, . . . , �, (2.50)

(w, zi) + b − yi ≤ ε + ξi, ξi ≥ 0, i = 1, . . . , �. (2.51)

To solve this problem one constructs the Lagrangian

L =
1
2
(w,w) + C

�∑
i=1

(ξi + ξ∗i ) −
�∑

i=1

αi[yi − (w, zi) − b + ε + ξi] (2.52)

−
�∑

i=1

α∗
i [(w, zi) + b − yi + ε + ξ∗i ] −

�∑
i=1

(βiξi + β∗
i ξ∗i )

whose minimum over w, b, and ξ, ξ∗i leads to the equations

w =
�∑

i=1

(α∗
i − αi)zi, (2.53)

�∑
i=1

(αi − α∗
i ) = 0, (2.54)

and
α∗

i + β∗
i = C, αi + βi = C, (2.55)

where α, α∗, β, β∗ ≥ 0 are the Lagrange multipliers. Putting (2.53) into (2.47) we
obtain that in X space the desired function has the kernel form

y =
�∑

i=1

(α∗
i − αi)K(xi, x) + b. (2.56)

To find the Lagrange multipliers one has to put the obtained equation back into the
Lagrangian and maximize the obtained expression.

Putting (2.53), (2.54), and (2.55) back into (2.52) we obtain

W = −
�∑

i=1

ε(α∗
i +αi)+

�∑
i=1

yi(α∗
i −αi)− 1

2

�∑
i,j

(α∗
i −αi)(α∗

j−αj)K(xi, xj). (2.57)

To find αi, α∗
i for the approximation (2.56) one has to maximize this functional subject

to the constraints
�∑

i=1

α∗
i =

�∑
i=1

αi,

0 ≤ αi ≤ C, 0 ≤ α∗
i ≤ C, i = 1, . . . , �.
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2.5.2 SVM+ REGRESSION

Now let us solve the same regression problem of minimizing the functional (2.49)
subject to the constraints (2.50) and (2.51) in the situation when the slacks ξi and ξ∗i
are defined by functions from the set described in Section 2.4:

ξi = φr(xi, wr) = (wr, zi) − dr ≥ 0, i ∈ Tr, r = 1, . . . , t (2.58)

ξ∗i = φ∗
r(xi, w

∗
r) = (w∗

r , zi) − d∗r ≥ 0, i ∈ Tr, r = 1, . . . , t. (2.59)

To find the regression we construct the Lagrangian similar to (2.52) where instead
of slacks ξi and ξ∗i we use their expressions (2.58) and (2.59).

Minimizing this Lagrangian over w, b (as before) and over wr, dr, w
∗
r , d∗r , r =

1, ..., t (instead of slacks ξi, and ξ∗i ) we obtain Equations (2.53) and (2.54) and the
equations∑

i∈Tr

(αi + βi)zr
i = C

∑
i∈Tr

zr
i ,

∑
i∈Tr

(α∗
i + β∗

i )zr
i = C

∑
i∈Tr

zr
i , r = 1, . . . , t, (2.60)

∑
i∈Tr

(α∗
i + β∗

i ) = C|Tr|,
∑
i∈Tr

(αi + βi) = C|Tr|, r = 1, . . . , t (2.61)

Putting these equations back into the Lagrangian we obtain

W = −
�∑

i=1

ε(α∗
i +αi)+

�∑
i=1

yi(α∗
i −αi)− 1

2

�∑
i,j

(α∗
i −αi)(α∗

j−αj)K(xi, xj). (2.62)

From (2.60) and (2.61) we obtain∑
i∈Tr

(αi + βi)Kr(xj , xj) = C
∑
i∈Tr

Kr(xi, xj), r = 1, . . . , t, j ∈ Tr, (2.63)

∑
i∈Tr

(α∗
i + β∗

i )Kr(xi, xj) = C
∑
i∈Tr

Kr(xi, xj), r = 1, ..., t j ∈ Tr, (2.64)

αi ≥ 0, βi ≥ 0, i = 1, . . . , �.

Therefore to estimate the SVM+ regression function (2.56) one has to maximize
the functional (2.62) subject to the constraints (2.54), (2.61), (2.63), (2.64).

2.5.3 SVMγ+ REGRESSION

Consider SVMγ+ extension of regression estimation problem: Minimize the functional

R =
1
2
(w,w) +

γ

2

(
t∑

r=1

(wr, wr) +
t∑

r=1

(w∗
r , w∗

r)

)
+ C

�∑
i=1

(ξi + ξ∗i ) (2.65)
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(instead of functional (2.49)) subject to constraints (2.50) and (2.51), where slacks ξi

and ξ∗i are defined by the correcting functions (2.58) and (2.59). The new objective
function approaches (2.49) when γ approaches zero.

The same algebra of the Lagrange multiplier technique that was used above now
implies that to find the coefficients αi, α∗

i for approximation (2.56) one has to maxi-
mize the functional

W = −
�∑

i=1

ε(α∗
i + αi) +

�∑
i=1

yi(α∗
i − αi) − 1

2

�∑
i,j=1

(α∗
i − αi)(α∗

j − αj)K(xi, xj)+

C

γ

t∑
r=1

∑
i,j∈Tr

(αi + βi)Kr(xi, xj) − 1
2γ

t∑
r=1

∑
i,j∈Tr

(αi + βi)(αj + βj)Kr(xi, xj)+

C

γ

t∑
r=1

∑
i,j∈Tr

(α∗
i + β∗

i )Kr(xi, xj) − 1
2γ

t∑
r=1

∑
i,j∈Tr

(α∗
i + β∗

i )(α∗
j + β∗

j )Kr(xi, xj)

subject to the constraints
�∑

i=1

α∗
i =

�∑
i=1

αi,

∑
i∈Tr

(αi + βi) = |Tr|C, r = 1, . . . , t,

∑
i∈Tr

(α∗
i + β∗

i ) = |Tr|C, r = 1, . . . , t,

αi ≥ 0, α∗
i ≥ 0, βi ≥ 0, β∗

i ≥ 0, i = 1, ..., �.

When either (1) there is no structure (t = �) or (2) there are no correlations
(Kr(xi, xj) has the form (2.45)) and γ → 0 the solutions defined by SVM+ or SVMγ+
regression coincide with the conventional SVM solution for regression.

2.6 THE THIRD GENERATION

In the mid-1990s the third generation of statistical learning theory (SLT) researchers
appeared. They were well-educated, strongly motivated, and hard working PhD stu-
dents from Europe. Many European universities allow their PhD students to work on
their theses anywhere in the world, and several such students joined our department in
order to work on their thesis. First came Bernhard Schölkopf, Volker Blanz, and Alex
Smola from Germany, then Jason Weston from England, followed by Olivier Chapelle,
Olivier Bousquet, and Andre Eliseeff from France, Pascal Vincent from Canada, and
Corina Cortes (PhD student from Rochester university). At that time support vector
technology had just started to develop. Later many talented young people followed this
direction but these were the first from the third generation of researchers.
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I would like to add to this group two young AT&T researchers of that time: Yoav
Freund and Robert Schapire, who did not directly follow the line of statistical learning
theory and developed Boosting technology that is close to the one discussed here [135,
136].

The third generation transformed both the area of machine learning research and the
style of research. During a short period of time (less than ten years) they created a new
direction in statistical learning theory: SVM and kernel methods. The format of this
Afterword does not allow me to go into details of their work (there are hundreds of first-
class articles devoted to this subject and it is very difficult to choose from them). I will
just quote some of their textbooks [152–158], collective monographs and workshop
materials [159–164]. Also I would like to mention the tutorial by Burges [165] which
demonstrated the unity of theoretical and algorithmical parts of VC theory in a simple
and convincing way.

The important achievement of the third generation was creating a large international
SVM (kernel) community. They did it by accomplishing three things:

(1) Constructing and supporting a special Website called Kernel Machine (www.kernel-
machines.org).

(2) Organizing eight machine learning workshops and five Summer Schools, where
advanced topics relevant to empirical inference research were taught. These top-
ics included:
— Statistical learning theory,
— Theory of empirical processes,
— Functional analysis,
— Theory of approximation,
— Optimization theory, and
— Machine learning algorithms.
In fact they created the curriculum for a new discipline: empirical inference sci-
ence.

(3) Developing high-quality professional software for empirical inference problems
that can be downloaded and used by anyone in the world.5

This generation took advantage of computer technology to change forever the style
and atmosphere of data mining research: from the very hierarchical group structure
of the 1970–1980s lead by old statistical gurus (with their know-how and dominating
opinion) to an open new society (with widely available information, free technical
tools, and open professional discussions).

Many of the third generation researchers of SLT became university professors. This
Afterword is dedicated to their students.

5The three most popular software are:
(1) SVM-Light developed by Thorsten Joachims (Germany) http://svmlight.joachims.org/,
(2) Lib-SVM developed by Chin-Chang Chang and Chih-Jen Lin (Taiwan)

http://www.csie.ntu.edu.tw/∼cjlin/libsvm/, and
(3) SVM-Torch developed by Ronan Collobert (Switzerland) http://www.torch.ch/
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2.7 RELATION TO THE PHILOSOPHY OF SCIENCE

By the end of the 1990s it became clear that there were strong ties between machine
learning research and research conducted in the classical philosophy of induction. The
problem of generalization (induction) always was one of the central problems in philos-
ophy. Pattern recognition can be considered as the simplest problem of generalization
(its drosophila fly: any idea of generalization has its reflection in this model). It forms
a very good object for analysis and verification of a general inductive principle. Such
analysis includes not only speculations but also experiments on computers.

Two main principles of induction were introduced in classical philosophy: the prin-
ciple of simplicity (parsimony) formulated by the 14th century English monk Occam
(Ocham), and the principle of falsifiability, formulated by the Austrian philosopher
of the 20th century Karl Popper. Both of them have a direct reflection in statistical
learning theory.

2.7.1 OCCAM’S RAZOR PRINCIPLE

The Occam’s Razor (or parsimony) principle was formulated as follows:

Entities are not to be multiplied beyond necessity.

Such a formulation leaves two open questions:

(1) What are the entities?

(2) What does beyond necessity mean?

According to The Concise Oxford Dictionary of Current English [172] the word entity
means

A thing’s existence, as opposite to its qualities or relations; thing that has real
existence.

So the number of entities is commonly understood to be the number of different param-
eters related to different physical (that which can be measured) features. The predictive
rule is a function defined by these features.

The expression not to be multiplied beyond necessity has the following meaning:
not more than one needs to explain the observed facts.

In accordance with such an interpretations the Occam’s Razor principle can be
reformulated as follows:

Find the function from the set with the smallest number of free parameters that
explains the observed facts.6

6There exist wide interpretation of Occam’s Razor principle as a request to minimize some functional
(without specifying which). Such interpretation is too general to be useful since it depends on the definition
of the functional. The original Occam formulation (assuming that entities are free parameters) is unambigu-
ous and in many cases is a useful instrument of inference.
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2.7.2 PRINCIPLES OF FALSIFIABILITY

To introduce the principles of falsifiability we need some definitions.

Suppose we are given a set of indicator functions f(x, α), α ∈ Λ. We say that the
set of vectors

x1, . . . , x�, xi ∈ X (2.66)

cannot falsify the set of indicator functions f(x, α), α ∈ Λ if all 2� possible separation
of vectors (2.66) into two categories can be accomplished using functions from this set.

This means that on the data (2.66) one can obtain any classification (using functions
from the admissible set). In other words, from these vectors one can obtain any possible
law (given appropriate yi, i = 1, ...�): the vectors themselves do not forbid (do not
falsify) any possible law.

We say that the set of vectors (2.66) falsifies the set f(x, α), α ∈ Λ if there exists
such separation of the set (2.66) into two categories that cannot be obtained using an
indicator function from the set f(x, α), α ∈ Λ.

Using the concept of falsifiability of a given set of functions by the given set of
vectors, two different combinatorial definitions of the dimension of a given set of indi-
cator functions were suggested: the VC dimension and the Popper dimension. These
definitions lead to different concepts of falsifiability.

THE DEFINITION OF THE VC DIMENSION AND VC FALSIFIABILITY

The VC dimension is defined as follows (in EDBED it is called capacity. See Chapter
6, Sections 8 and A2:)

A set of functions f(x, α), α ∈ Λ has VC dimension h if:

(1) there exist h vectors that cannot falsify this set and

(2) any h + 1 vectors falsify it.

The set of functions f(x, α), α ∈ Λ is VC falsifiable if its VC dimension is finite
and VC nonfalsifiable if its VC dimension is infinite.

The VC dimension of the set of hyperplanes in Rn is n + 1 (the number of free
parameters of a hyperplane in Rn) since there exist n + 1 vectors that cannot falsify
this set but any n + 2 vectors falsify it.

THE DEFINITION OF THE POPPER DIMENSION AND POPPER FALSIFIABILITY

The Popper dimension is defined as follows [137] (Section 38:)

A set of functions f(x, α), α ∈ Λ has the Popper dimension h if:

(1) any h vectors cannot falsify it and

(2) there exist h + 1 vectors that can falsify this set.
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Figure 2.2: The VC dimension of the set of oriented lines in the plane is three since
there exist three vectors that cannot falsify this set and any four vectors falsify it.

Popper called value h the degree of falsifiability or the dimension.
The set of functions f(x, α), α ∈ Λ is Popper falsifiable if its Popper dimension is

finite and Popper nonfalsifiable if its Popper dimension is infinite.
Popper’s dimension of the set of hyperplanes in Rn is at most two (independent

of the dimensionality of the space n) since only two vectors that belong to the one-
dimensional linear manifold can not falsify the set of hyperplanes in Rn and three
vectors from this manifold falsify this set.

2.7.3 POPPER’S MISTAKES

In contrast to the VC dimension, the Popper concept of dimensionality does not lead
to useful theoretical results for the pattern recognition model of generalization. The
requirements of nonfalsifiability for any h vectors include, for example, the nonfalsi-
fiability of vectors belonging to the line (one-dimensional manifold). Therefore, Pop-
per’s dimension will be defined by combinatorial properties restricted at most by the
one-dimensional situation.

Discussing the concept of simplicity, Popper made several incorrect mathematical
claims. This is the most crucial:

In an algebraic representation, the dimension of a set of curves depends upon the
number of parameters whose value we can freely choose. We can therefore say
that the number of freely determinable parameters of a set of curves by which a
theory is represented is characteristic of the degree of falsifiability. [137, Section
43]

This is wrong for the Popper dimension. The claim is correct only in a restricted
situation for the VC dimension, namely when the set of functions in Rn, n > 2 linearly
depends on the parameters.
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In other (more interesting) situations as in Denker’s example with a set of θ({sin ax})
functions (Section 2.2.1 and Section 2.7.5 below) and in the example of a separating
hyperplane with the margin given in EDBED (Chapter 10, Section 5) that led to SVM
technology, the considered set of functions depends nonlinearly upon the free parame-
ters.

Popper did not distinguish the type of dependency on the parameters. Therefore
he claimed that the set {sin ax} (with only one free parameter a) is a simple set of
functions [137, Section 44]. However, the VC dimension of this set is infinite7 and
therefore generalization using this set of functions is impossible.

It is surprising that the mathematical correctness of Popper’s claims has never been
discussed in the literature.8

2.7.4 PRINCIPLE OF VC FALSIFIABILITY

In terms of the philosophy of science, the structural risk minimization principle for the
structure organized by the nested set with increasing VC dimension can be reformu-
lated as follows:

Explain the facts using the function from the set that is easiest to falsify.

The mathematical consistency of SRM therefore can have the following philosoph-
ical interpretation:

Since one was able to find the function that separates the training data well, in the
set of functions that is easy to falsify, these data are very special and the function
which one chooses reflects the intrinsic properties of these data.9.

It is possible, however, to organize the structure of nested elements on which ca-
pacity is defined by a more advanced measure than VC dimension (say, the Growth

7Since for any � the set of values x1 = 2−1, . . . , x� = 2−� cannot falsify {θ(sin ax)}. The desired
classifications y1, . . . , y�, yi ∈ {1,−1} of this set provide the function y = θ(sin a∗x) where the
coefficient a∗ is

a∗ =

(
π

�∑
i=1

(1 − yi)

2
2i + 1

)
.

8Karl Popper’s books were forbidden in the Soviet Union because of his criticism of communism. There-
fore, I had no chance to learn about his philosophy until Gorbachev’s time. In 1987 I attended a lecture
on Popper’s philosophy of science and learned about the falsifiability concept. After this lecture I became
convinced that Popper described the VC dimension. (It was hard to imagine such a mistake.) Therefore in
my 1995 and 1998 books I wrongly referred to Popper falsifiability as VC falsifiability. Only in the Spring
of 2005 in the process of writing a philosophical article (see Corfield, Schölkopf, and Vapnik: “Popper, fal-
sification and the VC dimension.” Technical Report # 145, Max Planck Institute for Biological Cybernetics,
Tübingen, 2005) did we check Popper’s statements and realize my mistake.

9The Minimum Message Length (MML)–Minimum Description Length (MDL) principle [127, 128] that
takes Kolmogorov’s algorithmic complexity [129] into account can have the same interpretation. It is re-
markable that even though the concepts of VC dimension and algorithmic complexity are very different,
the MML-MDL principle leads to the same generalization bound for the pattern recognition problem that is
given in EDBED. (See [139], Chapter 4, Section 4.6.)
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function, or even better the VC entropy). This can lead to more advanced inference
techniques (see Section 2.8 of this chapter).

Therefore the falsifiability principle is closely related to the VC dimension concept
and can be improved by more refined capacity concepts.

2.7.5 PRINCIPLE OF PARSIMONY AND VC FALSIFIABILITY

The principle of simplicity was introduced as a principle of parsimony or a principle of
economy of thought.

The definition of simplicity, however, is crucial since it can be very different. Here
is an example. Which set of functions is simpler:

(1) One that has the parametric form

f(x, α), α ∈ Λ, or

(2) One that has the parametric form

f(x, α), α ∈ Λ

and satisfies the constraint
Ω(f) ≤ C,

where Ω(f) ≥ 0 is some functional?

From a computational point of view, finding the desired function in situation 1 can
be much simpler than in situation 2 (especially if the Ω(f) ≤ C is a nonconvex set).

From an information theory point of view, however, to find the solution in situation
2 is simpler, since one is looking for the solution in a more restricted set of functions.

Therefore the inductive principle based on the (intuitive) idea of simplicity can
lead to a contradiction. That is why Popper used the “degree of falsifiability” concept
(Popper dimension) to characterize the simplicity:

The epistemological question which arise in connection with the concept of sim-
plicity can all be answered if we equate this concept with degree of falsifiability.
([137], Section 43)

In the Occam’s Razor principle, the number of “entities” defines the simplicity. Popper
incorrectly claimed the equality of Popper dimension to be the number of free param-
eters (entities), and considered the falsifiability principle to be a justification of the
parsimony (Occam’s Razor) principle.

The principle of VC falsifiability does not coincide with the Occam’s Razor princi-
ple of induction, and this principle (but not Occam’s Razor) guarantee the generaliza-
tion. VC dimension describes diversity of the set of functions. It does not refer either to
the number of free parameters nor to our intuition of simplicity. Recall once again that
Popper (and many other philosophers) had the intuition that {θ(sin ax)} is the simple
set of functions,10 while the VC dimension of this set is infinite.

10In the beginning of Section 44 [137] Popper wrote: “According to common opinion the sine-function is
a simple one . . ..”
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The principle of VC falsifiability forms the necessary and sufficient conditions of
consistency for the pattern recognition problem while there are pattern recognition al-
gorithms that contradict the parsimony principle.11

2.8 INDUCTIVE INFERENCE BASED ON

CONTRADICTIONS

In my 1998 book, I discussed an idea of inference through contradictions [140, p.707].
In this Afterword, I introduce this idea as an algorithm for SVM. Sections 2.8.1 and
3.1.5 give the details of the algorithm. This section presents a simplified description
of the general concept (see remark in Section 3.1.3 for details) of inductive inference
through contradictions.

Suppose we are given a set of admissible indicator functions f(x, α), α ∈ Λ and the
training data. The vectors x from the training data split our admissible set of functions
into a finite number of equivalence classes F1, . . . , FN . The equivalence class contains
functions that have the same values on the training vectors x (separate them in the same
way).

Suppose we would like to make a structure on the set of equivalence classes to
perform SRM principle. That is, we would like to collect some equivalence classes
in the first element of the structure, then add to them some other equivalence classes,
constructing the second element, and so on. To do this we need to characterize every
equivalence class by some value that describes our preference for it. Using such a
measure, one can create the desired structure on the equivalence classes. When we
constructed SVMs, we characterized the equivalence class by the size of the largest
margin defined by the hyperplane belonging to this class.

Now let us consider a different characteristic. Suppose along with the training data
we possess a set of vectors called the Universum or the Virtual Universum

x∗
1, . . . , x∗

k, x∗ ∈ X. (2.67)

The Universum plays the role of prior information in Bayesian inference. It describes
our knowledge of the problem we are solving. However, there are important differences
between the prior information in Bayesian inference and the prior information given
by the Universum. In Bayesian inference, prior information is information about the
relationship of the functions in the set of admissible functions to the desired one. With
the Universum, prior information is information related to possible training and test
vectors. For example, in the digit recognition problem it can be some vectors whose

11The example of a machine learning algorithm that contradicts the parsimony principle is Boosting. This
algorithm constructs so-called weak features (entities) which it linearly combines in a decision rule. Often
this algorithm constructs some set of weak features and the corresponding decision rule that separates the
training data with no mistakes but continues to add new weak features (new entities) to construct a better
rule. With an increasing number of (unnecessary, i.e., those that have no effect on separating the training
data) weak features, the algorithm improves its performance on the test data. One can show that with an
increasing number of entities this algorithm increases the margin (as the SVM). The idea of this algorithm is
to increase the number of entities (number of free parameters) in order to decrease the VC dimension [136].
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images resemble a particular digit (say some artificial characters). It defines the style
of the digit recognition task, and geometrically belongs to the same part of input space
to which the training data belong.

We use the Universum to characterize the equivalence class. We say that a vector
x∗ is contradictive for the equivalence class Fs if there exists a function f1(x∗) ∈ Fs

such that
f1(x∗) > 0

and there also exists a function f2(x∗) ∈ Fs such that

f2(x∗) < 0.

We will characterize our preference for an equivalence class by the number of contra-
dictions that occur on the Universum: the more contradictions, the more preferable the
equivalence class.12 We construct structure on equivalence classes using these num-
bers.

When using the Universum to solve a classification problem based on SRM princi-
ple, we choose the function (say one that has the maximal margin) from the equivalence
class that makes no (or a small number of) training mistakes and has the maximal num-
ber of contradictions on the Universum. In other words, for inductive inference, when
constructing the structure for SRM, we replace the maximal margin score with the
maximal contradiction on Universum (MCU) score and select maximal margin func-
tion from the choosen equivalence class.

The main problem with MCU inference is, how does one create the appropriate
Universum? Note that since one uses Universum only for evaluation of sizes of equiv-
alence classes, its elements do not need to have the same distribution as the training
vectors.

2.8.1 SVMS IN THE UNIVERSUM ENVIRONMENT

The inference through contradictions can be implemented using SVM techniques as
follows. Let us map both the training data and the Universum into Hilbert space

(y1, z1), . . . , (y�, z�) (2.68)

z∗1 , . . . , z∗u. (2.69)

QUADRATIC OPTIMIZATION FRAMEWORK

In the quadratic optimization framework for an SVM, to conduct inference through
contradictions means finding the hyperplane

(w0, z) + b0 = 0 (2.70)

12A more interesting characteristic of an equivalence class would be the value of the VC entropy of the set
of functions belonging to this equivalence class calculated on the Universum. This, however, leads to difficult
computational problems. The number of contradictions can be seen as a characteristic of the entropy.
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that minimizes the functional

R =
1
2
(w,w) + C1

�∑
i=1

θ(ξi) + C2

u∑
j=1

θ(ξ∗j ), C1, C2 > 0 (2.71)

subject to the constraints

yi((w, zi) + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , � (2.72)

(related to the training data) and the constraints

|(w, z∗j ) + b| ≤ a + ξ∗j , ξ∗j ≥ 0, j = 1, . . . , u (2.73)

(related to the Universum) where a ≥ 0.
As before, for computational reasons we approximate the target function (2.71) by

the function13

R =
1
2
(w,w) + C1

�∑
i=1

ξi + C2

u∑
s=1

ξ∗s , C1, C2 > 0. (2.74)

Using the Lagrange multipliers technique we determine that our hyperplane in fea-
ture space has the form

�∑
i=1

α0
i yi(zi, z) +

u∑
s=1

(μ0
s − ν0

s )(z∗s , z) + b = 0, (2.75)

where the coefficients α0
i ≥ 0, μ0

s ≥ 0, and ν0
s ≥ 0 are the solution of the following

optimization problem: Maximize the functional

W (α, μ, ν) =
�∑

i=1

αi − a
u∑

s=1

(μs + νs) − 1
2

�∑
i,j=1

αiαjyiyj(zi, zj) (2.76)

−
�∑

i=1

u∑
s=1

αiyi(μs − νs)(zi, z
∗
s ) − 1

2

u∑
s,t=1

(μs − νs)(μt − νt)(z∗s , z∗t )

subject to the constraint

�∑
i=1

yiαi +
u∑

s=1

(μs − νs) = 0 (2.77)

and the constraints
0 ≤ αi ≤ C1 (2.78)

0 ≤ μs, νs ≤ C2. (2.79)

13One also can use a least squares technique by choosing ξ2
i and (ξ∗i )2 instead of ξi and ξ∗i in objective

function (2.74).
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Taking into account Mercer’s theorem, one can rewrite our separating function in
input space as

�∑
i=1

α0
i yiK(xi, x) +

u∑
s=1

(μ0
s − ν0

s )K(x∗
s, x) + b0 = 0, (2.80)

where the coefficients α0
i ≥ 0, μ0

s ≥ 0, and ν0
s ≥ 0 are the solution of the following

optimization problem: Maximize the functional

W (α, μ, ν) =
�∑

i=1

αi − a
u∑

s=1

(μs + νs) − 1
2

�∑
i,j=1

αiαjyiyjK(xi, xj) (2.81)

−
�∑

i=1

u∑
s=1

αiyi(μs − νs)K(xi, x
∗
s) −

1
2

u∑
s,t=1

(μs − νs)(μt − νt)K(x∗
s, x

∗
t )

subject to the constraints (2.77), (2.78), (2.79).

LINEAR OPTIMIZATION FRAMEWORK

To conduct inference based only on contradictions arguments (taking some function
from the choosen equivalence class, not necessarily one with the largest margin) one
has to find the coefficients α0, μ0, ν0 in (2.80) using the following linear programming
technique: Minimize the functional

W (α, μ, ν) = γ
�∑

i=1

αi + γ
u∑

s=1

(μs + νs) + C1

�∑
i=1

ξi + C2

u∑
t=1

ξ∗t , γ ≥ 0 (2.82)

subject to the constraints

yi

⎡
⎣ �∑

j=1

αjyjK(xi, xj) +
u∑

s=1

(μs − νs)K(xi, x
∗
s) + b

⎤
⎦ ≥ 1 − ξi, i = 1, . . . , �

(2.83)
and the constraints

�∑
j=1

αjyjK(x∗
t , xj) +

u∑
s=1

(μs − νs)K(x∗
t , x

∗
s) + b ≤ a + ξ∗t , t = 1, . . . , k, (2.84)

�∑
j=1

αjyjK(x∗
t , xj) +

u∑
s=1

(μs − νs)K(x∗
t , x

∗
s) + b ≥ −a− ξ∗t , t = 1, . . . , u, (2.85)

where a ≥ 0. In the functional (2.82) the parameter γ ≥ 0 controls the sparsity of the
solution.
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2.8.2 THE FIRST EXPERIMENTS AND GENERAL SPECULATIONS

In the summer of 2005, Ronan Collobert and Jason Weston conducted the first experi-
ments on training SVM with Universum using the algorithm described in Section 2.8.1.
They discriminated digit 8 from digit 5 from the MNIST database, using a conventional
SVM and an SVM trained in three different Universum environments.

The following table shows for different sizes of training sets the performance of
a conventional SVM and the SVMs trained using Universums U1, U2, U3 (each con-
taining 5000 examples). In all cases the parameter a = .01, the parameters C1, C2,
and the parameter of the Gaussian kernel were tuned using the tenfold cross-validation
technique.

The Universums were constructed as follows:

U1: Selects random digits from the other classes (0,1,2,3,4,6,7,9).

U2: Creates an artificial image by first selecting a random 5 and a random 8,
and then for each pixel of the artificial image choosing with probability 1/2 the
corresponding pixel from the image 5 or from the image 8.

U3: Creates an artificial image by first selecting a random 5 and a random 8, and
then constructing the mean of these two digits.

No. of train. examples 250 500 1000 2000 3000
Test Err. SVM (%) 2.83 1.92 1.37 0.99 0.83
Test Err. SVM+U1 (%) 2.43 1.58 1.11 0.75 0.63
Test Err. SVM+U2 (%) 1.51 1.12 0.89 0.68 0.60
Test Err. SVM+U3 (%) 1.33 0.89 0.72 0.60 0.58

The table shows that:
(a) The Universum can significantly improve the performance of SVMs.
(b) The role of knowledge provided by the Universum becomes more impor-
tant with decreasing training size. However, even when the training
size is large, the Universum still has a significant effect on performance.

We expect that advancing the understanding of the concept of a good Universum
for the problem of interest will further boost the performance. This fact opens a new
dimension in machine learning technology: How does one create a Virtual Universum
for the problem of interest?

In trying to find an interpretation of the role of the Universum in machine learning,
it is natural to compare it to the role of culture in the learning of humans, where knowl-
edge about real life is concentrated not only in examples of reality but also in images
that reflect this reality. To classify well, one uses inspiration from both sources.
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