A Spatio-temporal Database System Based
on TimeDB and Oracle Spatial

Alexandre Carvalho, Cristina Ribeiro, and A. Augusto Sousa
FEUP / INESC Porto
Rua Dr. Roberto Frias, 378
4200-465 Porto, PORTUGAL
+35122 508 1827
{ave,mor,aas}@fe.up.pt,
WWW home page: http://www.fe.up.pt

Abstract. The importance of the spatial component of data items has been
long recognized and gave rise to a successful line of research and development
in Geographic Information Systems (GIS). In many application domains it is
also essential to deal with the evolution of data along time and to integrate
spatial, temporal and other aspects of the information domain in an expressive
and operationally effective manner. Until recently, temporal solutions
provided by spatial database systems were semi-temporal approaches lacking
full temporal support. As a consequence, most spatial database systems
manage snapshots of the present state of facts without fully exploiting
historical temporal aspects. This paper provides preliminary results on a
spatiotemporal database implementation. The proposed system builds on
existing database technologies, TimeDB and Oracle Spatial, for temporal and
spatial support, respectively. The justification for the choice of these
technologies is given, based on the state of the art in spatial and temporal
database research. The integration of the spatial and temporal components is
achieved with the extension of the TimeDB implementation layer. A set of
goals has been established in order to cover both the integration of the spatial
support and the enforcement of the temporal requirements in the extended
system. Issues and solutions are presented and illustrative examples show the
use of the implemented functionalities.

1 Introduction

Traditional databases model and keep information about some part of a real or
artificial domain. Regarding the temporal aspects of facts that occur in the real word,
these databases allow capturing some essence of time, which generally consist in a
snapshot view of the world limited to the last update. This limitation becomes critical
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when there is the need to capture the evolution of facts over the time. To overcome
this limitation, that is, to manage temporal aspects of facts in databases, Date [0]
considers two distinct approaches: the semi-temporal approach, where the
representation of historical data is done with timestamps, and the full-temporal
approach, where the database must record the time when a fact is current in the
reality - represented as an interval or a period - and in some application domains,
must keep record of the time when a fact is current in the database. Such times are
respectively called valid-time [0, 0] and transaction-time [3, 4]. If the first approach
may lead to severe difficulties in handling some constraints and queries [0] the fact is
that the full temporal approach has a higher level of complexity, requiring additional
functionalities in the database system such as temporal data types, temporal
operators (like begin, before, meets, contains, overlaps and coalesce) and temporal
functions [0]. On the other hand, if most of the application domains are temporal by
nature [0], it is also factual that some of these domains also contain spatial
information [0]. In such situations it is of critical importance to manage seamlessly
integrated temporal and spatial aspects. Examples of spatiotemporal domains are all
the critical traffic management domains, where commercial navy, trains and airplane
vessels must be permanently tracked. In the past few years spatiotemporal research
has taken several important steps, but there are few implementations that address the
problem of time and space in depth. Currently there are still many solutions
following the so called semi-temporal approach, where much of the processing of the
temporal aspects of temporal data is done at the application layer - increasing data
and program complexity [0] - and not by the underlying DBMS layer, due to the lack
of full temporal support. In an effort to overcome these limitations, the present work
concerns the integration of two well known database technologies — TimeDB {0] and
Oracle Spatial [0, 0] — in order to provide general spatial and temporal support
without reducing the functionality provided by both technologies when working
separately, through the ability to execute ATSQL2 [0] statements combined with
spatial operators and functions. Our motivation to develop this integration is the
creation of a full spatiotemporal relational database system (with bitemporal support)
that constitutes the underlying layer of a larger system dedicated to manage present
and past spatiotemporal urban data. In the next section we explain the selection of
TimeDB for temporal support and Oracle Spatial for spatial support. In section 3 we
present the reasons why the two technologies provide good integration for creating a
spatiotemporal database prototype system and we point out the goals in joining the
two database technologies as well as the issues that must be addressed in order to do
s0. Section 4 makes an overview of the system and its modules. Section 5 describes
the main changes required in the translation algorithm in order that the translation
process generates valid snapshot and spatial SQL. Section 5 concerns the results
obtained, regarding the temporal and spatial goals. Finally, in section 7 we
summarize the main conclusions of this paper and point out directions for current
and future work.
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2 Temporal and Spatial DBMS Implementations

Griffiths [0] states that the considerable design and implementation effort required to
develop complete full spatio-temporal database systems is the main reason why
research on temporal databases has focused on specific subparts of the problem like
indexing or join algorithms and, consequently, there are so few implementations.
The survey in [0] on temporal database systems classifies several systems -
ARCADIA, Calanda, ChronoLog, HDBMS, TDBMS, TempCASE, TemplS,
TimeDB, TimelT, TimeMultiCal, and others - according to carefully thought-out
criteria grouped in families. This author points out important conclusions on the
tested implementations, like the dominance of the relational model with timestamped
tuples and the fact that valid-time dimension has been the focus of attention leaving
transaction time to a second place. More recently TEMPOS [0] and Tripod [0]
emerged as temporal extensions of the ODMG object model, trying to overcome
important limitations of previous extensions (TAU, TOOBIS, T ODMG). TimeDB
[0] is a client-side system [0] implementation that uses ATSQL2, provides
bitemporal statements, supports upward compatibility and temporal upward
compatibility, allowing legacy data and code to maintain the usability [0]. Being a
layered [0] system, TimeDB can manage information from distinct DBMS
technologies, among which is Oracle DMBS. In our opinion, although a client-side
temporal implementation, TimeDB is not penalized by limited temporal functionality
thanks to the way TimeDB deals both with translation of temporal statements and
with management of temporary results. Steiner [0] considers that the translation
algorithm of TimeDB can be used to translate different temporal query and
modification languages into standard SQL statements. The execution of the resulting
statements stores temporary results that are produced by a statement and consumed
by the next one, avoiding collecting intermediate results and corresponding
performance problems. Concerning spatial DMBS implementations, Medeiros [0]
presents a survey focused on databases for GIS discussing several design criteria,
such as data models, spatial operators, relationships, query modalities and
optimization, data storage and access methods. Over these design issues, Medeiros
refers database technologies and relates them to each design criteria. According to
[0] a spatial DBMS must comply with three requirements: (a) to be a DBMS; (b) to
provide spatial data types both for the definition of the data model and the
manipulation by the query language, (c) to provide efficient algorithms for spatial
operations like spatial join or multi-dimensional access methods (indexing). Having
this in mind three Spatial DBMS implementations can be presented: ESRI ArcSDE,
PostGIS and Oracle Spatial. The first constitutes a layered implementation that
enhances non-spatial DBMS with the spatial support described. The other, PostGIS
and Oracle Spatial [0][0] provide spatial support directly by the DBMS kernel
through a spatial schema, a spatial indexing mechanism, a set of operators and
functions for area-of-interest queries, spatial join queries and spatial analysis
operations. Together, these functionalities allow the storage, retrieval, update and
query of collections of spatial features.
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3 Temporal and Spatial DBMS Implementations

The selection of Oracle Spatial as the support for spatial data in the proposed spatio-
temporal system results from its support for multiple dimension geometry, the usage
of spatial operators and spatial indexes, and a query language that is an extension to
SQL and whose constructs can provide good integration with TimeDB ATSQL2,
without harming temporal and spatial semantics. The integration of such
technologies also permits the modified TimeDB layer to deal with just one DBMS
for both temporal and spatial domains. The scenario of having two different DBMS
managed by the modified TimeDB implementation would represent a critical
performance, due to having to transfer temporary results between two DBMS. This
approach would challenge one of TimeDB original major benefits concerning
performance, namely the avoidance of intermediate results storage by the layer.
Having settled on the underlying technologies we proceed to address the goals we
expect to achieve with such integration, namely spatial related goals, temporal
related goals and usability goals. Spatial related goals consist in providing TimeDB
with the ability to deal with Oracle Spatial schema, geometry data types, spatial (and
aggregate) functions and spatial indexes during the parsing, translation to non-
temporal statements and evaluation processes, without impairing spatial
functionality. Such ability provides that spatial functions and operators can be used
within the modified ATSQL syntax, in order to provide spatial projections and
selections. Such goals require functionalities that are not present in the original
TimeDB implementation like being able to address the mdsys schema, in order to
access and manipulate data and structures like geometry metadata tables
(mdsys.user_sdo_index_metadata) and index metadata (user_sdo_geom_metadata).
Also, the fact that TimeDB only addresses the tables and columns that are registered
in its own metadata tables requires the proper insertion, on such tables, of the
description of each column of the previous geometry metadata tables. Another issue
concerns the use of spatial data types, for example mdsys.sdo geometry that is
widely used in the spatial domain. Among the spatial data types the aggregate data
types, for example, mdsys.sdoaggrtype provides support for spatial aggregate
functions like sdo_aggr union. Finally, special care must be also provided for data
type object methods, for example, get gtype, from mdsys.sdo_geometry data type.
Solving such issues provide the support for statements like:
create table countries (name char(20), capital char(20), boundary
mdsys.sdo_geometry) as validtime

validtime period [1100-1350)
select sdo_aggr_union (mdsys.sdoaggriype(c.boundary, 0.005)) from countries ¢,

Modifications are also required in order to be able to create and delete spatial
indexes, through proper SQL statements, since indexation provide accelerated access
method that is required for using spatial functions like sdo filter or
sdo_within_distance. Finally, concerning spatial related goals, it is common for a
spatial data type, function or operator to have several spatial arguments, each one
being another data type or spatial function with its own arguments. The support for
parsing, translating and evaluating inner arguments must also be added in the
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modified TimeDB layer. The following SQL insert statement provides an illustration
of inner arguments situation:
nonsequenced validtime period [1250-1590) insert into countries values
(‘portugal’, 'lisboa’, mdsys.sdo_geometry (2003, null, null,
mdsys.sdo_elem_info_array (1,1003,1),...,80.0,607.0)));

Special attention must be given to column references that are used as spatial
arguments since the translation algorithm of TimeDB substitutes table and column
aliases with temporary references during the translation process [0]. For example, in
the following statement column references to boundary and name from table aliases
a and b are replaced by internal representations of TimeDB:
validtime select a.name from countries a, countries b where a.name = 'portugal’
and b.name = 'poland’ and sdo_geom.sdo_distance(a.boundary, b.boundary,
0.005) <=0,

On the other hand, the temporal related goals expected to achieve with the proposed
spatio-temporal integration are the goals already pointed out by Steiner [0], briefly
summarized as “upward compatibility, temporal upward compatibility and
orthogonality on valid time and transaction time together with the requirements listed
in the definition of temporal completeness (syntactical similarity, sequenced and
non-sequenced semantics of statements, substitutability of a relation in a query by
another query and the support of temporal comparison predicates for time intervals
[0])’. This means that we expect the temporal functionality provided in original
TimeDB to remain unharmed, as presented in section 6.

4 System Overview

The integration of spatial data management presented in the previous section within
the original TimeDB implementation carries modifications to all TimeDB core
modules (Fig. 1).
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Fig. 1: modified architecture of TimeDB

In order to do so, the implementation of the proposed system relies both in changing
and overriding original functionality. For example, the Scanner module has many
changes, in order to recognize the spatial constructs. Also the Parser module,
responsible for parsing and collecting metadata of SQL statements has several
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changes in order to support - among other functionality - Oracle spatial tables,
method calls in spatial attributes, spatial indexing, spatial functions and operators,
spatial arguments, with the possibility of each argument being another function with
arguments. Furthermore, in order to keep information about these new features, we
has to reformulate several structures, since the parsing process results in a binary
parse tree of scalar expression objects, each of them having the required metadata to
create the equivalent spatial and non-temporal SQL statements. This metadata is
used by the Translator module, responsible for mapping temporal algebra into
snapshot equivalent algebra. This module has also several changes in order to
accommodate the proper management of spatial columns (Section S) by temporal
operators and the correct translation of spatial projection and spatial selection
operators.

5 Changes to the Translation Algorithm

According to Steiner [0], the algorithm for the translation of temporal queries into
non-temporal standard SQL queries translates temporal statements into temporal
algebra expressions using temporal set operators (union, intersection, difference),
where each argument to one of these algebra expressions is a simple temporal
algebra expression or the result of another temporal set operator, The integration of
Oracle Spatial functions and operations within the translation algorithm does not
amount to a major problem since spatial projection and spatial selection operations
are, from the perspective of temporal algebra, regarded as simple non-temporal
projection and selection and operation. Spatial data types are treated by the
translation algorithm, concerning temporal algebra, as other non-temporal data types
like number or character strings. Nevertheless column references used as spatial
arguments require proper dealing. Also, changes must be performed over the
translation algorithm in order to allow temporal set operations and the valid-time
coalescing to perform correctly. In both situations, the issue is raised when
evaluating SQL code (generated by the translation algorithm) that contains selection
operators which compare values of distinct tupples, concerning the same spatial
column. Since Oracle Spatial cannot compare two spatial values through the equal
operator the SQL code becomes invalid. To overcome this limitation our proposal is
to go through the snapshot equivalent mappings for temporal set operators and
temporal coalescing, and use:

sdo_geom.relate(table,.column, ‘equal’, table, column, <a spatial tolerance>)

= ‘equal’

when comparing values in a geometry column, instead of
table;.column, = table, column,

Providing these changes in the temporal intersection set operator, the temporal
difference set operator and the unitemporal coalescing operator overcomes the
problems identified in the snapshot equivalent SQL code (since through
sdo_geom.relate, Oracle Spatial provides a spatial comparison between the spatial
values).
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6 Known Results

Snodgrass [0] and Steiner [0] consider that upward compatibility and temporal
upward compatibility are ATSQL2 requirements related with database migration. In
our prototype system, upward compatibility is maintained through TimeDB original
functionality, but regarded from the spatio-temporal perspective: any legal ATSQL2
statement has the same semantics and validity as in the merged ATSQL?2 and Oracle
Spatial syntax, An important requirement states that each legal SQL query and
modification statement, executed on a temporal database, leads to the same result as
if it were executed on the corresponding non-temporal database [0][0]. This
requirement is also maintained valid with Oracle Spatial legal SQL query and
modification statements. Also, the two classes of temporal statements in ATSQL2
(sequenced and non-sequenced) have their semantics unmodified, after the inclusion
of Oracle Spatial components. To test that TimeDB functionality has been left
unharmed we tested and compared the results of the demos included with original
TimeDB with the results obtained in a TimeDB unmodified implementation, leading
to the conclusion that, in the subset of temporal valid-time domain, now integrated
with spatial support, we have not introduced any limitations or made any
simplifications. Concerning spatio-temporal domain, the following sub-sections
address the results of temporal compatibility and semantics, from the perspective of
temporal and spatial seamless integration.

6.1 Upward Compatible queries and Temporal Upward Compatible queries

Upward compatible queries [0, 0] protect investments of legacy code and provides a
gradual process of migration to a temporal DMBS of legacy code and data [0], the
proposed system provides that legacy Oracle Spatial code and data can still be used
providing results equivalent to those obtained in plain Oracle Spatial DBMS, that is,
without awareness of the temporal support provided. Regarding temporal upward
compatible queries, they allow the upgrade of legacy applications to temporal
database systems and the invariance of the semantics and functionality of legacy
statements [0]. This means that snapshot spatial queries issued over valid-time
spatial tables will retrieve snapshot spatial results concerning the current valid-time
state. For example, providing a valid-time table countries4, the following statement:

select * from countries4

where sdo_geom.sdo_area(countries4.boundary, 0.005) > 50600,

retrieves a snapshot result (polygonal geometry). The tupples used by this query are
the subset that is considered valid at the time of execution: the non-temporal SQL
issued by the evaluator module contains two selection operations that make possible
to ignore other tupples (64416774529 is the chronon when the statement was created
in the Translator module):
select alias_tdb0.name as name, alias_tdb0.capital as capital,
alias_tdb0.boundary as boundary from countries4 alias_tdb0 where
sdo_geom.sdo_area(alias_tdb0.boundary, 0.005) > 5000 and
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alias_tdb0.vts_timedb <= 64416774529 and alias_tdb0.vte_timedb >
64416774529

6.2 Sequenced and Non-sequenced Queries

In what concerns sequenced queries, good for providing historical results [0, 0],
temporal logic is applied and operations interpret the timestamps of tuples and use
this interpretation for the calculation of the resulting tuples timestamps. TimeDB
uses temporal logic to calculate the resulting relation for a query which has, for each
tuple, a valid-time timestamp value associated. In such queries, spatial projection and
selection operations are regarded as non-temporal operations, like the ones acting on
numerical and alphanumerical columns. For example, considering a relation instance
that contains historical spatio-temporal information (name, capital and boundary)
illustrated in Fig. 2, the following sequenced query retrieves the valid-time periods
and respective spatial union for all the countries boundaries. The spatial results of
executing the statement are displayed in Fig. 3.

validtime period [1100-1350)

select sdo_aggr union(mdsys.sdoaggrtype(c.boundary, 0.005)) from countries ¢,
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Fig. 3: Spatiotemporal results from the sequenced valid time spatial union query.

Concerning non-sequenced queries, which use non-temporal logic, attributes of
temporal data type, like valid time start and end, are managed as other numerical
attributes. Eventually, all database states can be used to calculate the resulting
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relation, as opposed to what happens in sequenced queries. For example, the
following query retrieves the union of all country’s boundaries disregarding the
valid-time of tupples:

nonsequenced validtime

select sdo_aggr _union(mdsys.sdoaggrtype(c.boundary, 0.005)) from countries ¢;

7 Conclusions and Ongoing Work

Spatiotemporal database technology is required for properly addressing the subset of
temporal applications that also manage spatial data and, currently, has many domains
of application, from traffic management to urban data management to enterprise
information management. As there are only a few systems satisfying both temporal
and spatial aspects the presented work intends to contribute to this area by proposing
a spatiotemporal database system based on two database technologies: TimeDB and
Oracle Spatial. The selection of TimeDB is due to the amount of temporal support
provided, as compared to other implementations. Oracle Spatial choice is a
consequence of selecting TimeDB, since we want the spatiotemporal layer to deal
with only one underlying DBMS. This also maintains the layer free from retrieving
temporary results, which would harm overall performance. Regarding the integration
issues, the proposed spatiotemporal database system has taken into consideration
several groups of functionalities. At the parsing and interpretation level, we have
identified the enhancement required on TimeDB scanner and parser modules in order
to allow parsing and interpretation of Oracle spatial data types, spatial indexing,
spatial functions (and aggregate functions) and spatial operators. At the level of
translating temporal SQL to equivalent snapshot SQL statements, we have modified
the translation algorithm in what concerns the inclusion of spatial algebra
expressions that are integrated in the translated non-temporal, spatial, SQL. In this
translation module we have also dealt with the issue of translating column references
to the correct table and column aliases. These changes made possible for temporal
operations to perform correctly (like unitemporal coalescing). Finally, at the level of
retrieval of results, we have created new functionality that goes beyond textual
results, being aware of spatial results and, consequently, displays them according to
their spatial data type. Concerning the temporal goals, we have concluded that the
integration of Oracle Spatial constructs with TimeDB ATSQL does not compromise
the original temporal support of TimeDB. Upward compatibility, temporal upward
compatibility, sequenced and non-sequenced semantics on valid time are maintained
unharmed. Also this integration of both technologies has no impact on spatial
functions: although issued in a spatiotemporal context the spatial support maintains
the original functionality. Thanks to this fact and to the ability to process the most
common spatial data types, all spatial operators and the great majority of spatial
functions we can state that spatial goals proposed have been accomplished. The
correctness of the implemented functionalities has been tested on a small data set,
built to illustrate the main spatial and temporal features and dependencies. Current
work includes the use of the prototype system in the domain of urban planning,
where extensive geo-referenced data sets exist and querying the temporal
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components of information is still a challenge. Ongoing work includes providing and
testing transaction time support and bi-temporal support integrated with spatial
support.

References

1. C. Date, An Introduction to Database Systems, 7th edition (Addison-Wesley Chapter 22,
2000), pp. 730-768.

2. R. Snodgrass, M. Bohlen, C. Jensen, A. Steiner, Adding Valid Time to SQL/Temporal,
SQL/Temporal Change Proposal, ANSI X3H2-96-501r2, ISO/IEC JTC1/SC21/WG3 DBL
MAD-146r2, 1996.

3. C. Jensen, Temporal Database Management, PhD, 2000.

4. R. Snodgrass, M. Bohlen, C. Jensen, A. Steiner, Adding Transaction time to
SQL/Temporal, SQL/Temporal Change Proposal, ANSI X3H2-96-502r2, ISO/IEC
JTC1/SC21/WG3 DBL MAD-14712, 1996.

5. A. Steiner, A Generalization Approach to temporal Data Models and Their
Implementations, PhD, Zurich, 1998.

6. R. Bastos, Autonomic Computing Approach for Resource Allocation, Expert Systems with
Applications 28, 9-19 (2005).

7. M. Dumas, C. Fauvet, P. Scholl, TEMPOS: A Temporal Database Model Seamless
Extending ODMG, LSR-IMAG, University of Grenoble, PhD, 2000.

8. Oracle Corporation, Oracle Spatial 9.0.1 - User’s Guide and Reference, June 2001.

Oracle Corporation, Oracle 9i, Application Developer's Guide - Object-Relational Features,
March 2002.

9. M. Bohlen, C. Jensen, R. Snodgrass, Evaluating the completeness of TSQL2, Recent
Advances in Temporal Databases, J. Clifford and A. Tuzhilin, 1995.

10. T. Griffiths, A. Fernandes, N. Paton , S. Jeong, N. Djafri, Tripod: A Spatio-Historical
Object Database System, Mining Spatio-Temporal Information Systems, The Kluwer
International Series in Engineering and Computer Science: Volume 699, 2002, pp. 127-146.
11. M. Bohlen, Temporal Database System Implementations, SIGMOD Record 24(4), (1995).
12. C. Medeiros, F. Pires, Databases for GIS, SIGMOD 23(1), (1994).

13. C. Vassilakis, P. Georgiadis, A. Sotiropoulou, A Comparative Study of Temporal DBMS
Architectures, DEXA, 1996, pp. 153-164.

14. K. Torp, C. Jensen, M. Béhlen, Layered Implementation of Temporal DMBSs — Concepts
and Techniques, Time Center Technical Report, 1997.

15. . Allen, Maintaining Knowledge about Temporal Intervals, Communications of the ACM
16(11), 832-843 (1983).



2 Springer
http://www.springer.com/978-0-387-34345-7

Research and Practical Issues of Enterprise Information
Systems

IFIP TC & International Conference on Research and
Practical Issues of Enterprise Information Systems
(CONFENIS 2006) April 24-26, 2006, Vienna, Austria
Tjoa, A.M.; Xu, L.; Chaudhry, 5. (Eds.)

2008, Xx¥, 782 p., Hardcover

ISBM: 978-0-387-34345-7





