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Abstract. The importance of the spatial component of data items has been 
long recognized and gave rise to a successful line of research and development 
in Geographic Information Systems (GIS). In many application domains it is 
also essential to deal with the evolution of data along time and to integrate 
spatial, temporal and other aspects of the information domain in an expressive 
and operationally effective manner. Until recently, temporal solutions 
provided by spatial database systems were semi-temporal approaches lacking 
full temporal support. As a consequence, most spatial database systems 
manage snapshots of the present state of facts without fully exploiting 
historical temporal aspects. This paper provides preliminary results on a 
spatiotemporal database implementation. The proposed system builds on 
existing database technologies, TimeDB and Oracle Spatial, for temporal and 
spatial support, respectively. The justification for the choice of these 
technologies is given, based on the state of the art in spatial and temporal 
database research. The integration of the spatial and temporal components is 
achieved with the extension of the TimeDB implementation layer. A set of 
goals has been established in order to cover both the integration of the spatial 
support and the enforcement of the temporal requirements in the extended 
system. Issues and solutions are presented and illustrative examples show the 
use of the implemented functionalities. 

1 Introduction 

Traditional databases model and keep information about some part of a real or 
artificial domain. Regarding the temporal aspects of facts that occur in the real word, 
these databases allow capturing some essence of time, which generally consist in a 
snapshot view of the world limited to the last update. This limitation becomes critical 
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when there is the need to capture the evolution of facts over the time. To overcome 
this limitation, that is, to manage temporal aspects of facts in databases, Date [0] 
considers two distinct approaches: the semi-temporal approach, where the 
representation of historical data is done with timestamps, and the full-temporal 
approach, where the database must record the time when a fact is current in the 
reality - represented as an interval or a period - and in some application domains, 
must keep record of the time when a fact is current in the database. Such times are 
respectively called valid-time [0, 0] and transaction-time [3, 4]. If the first approach 
may lead to severe difficulties in handling some constraints and queries [0] the fact is 
that the fiill temporal approach has a higher level of complexity, requiring additional 
functionalities in the database system such as temporal data types, temporal 
operators (like begin, before, meets, contains, overlaps and coalesce) and temporal 
functions [0]. On the other hand, if most of the application domains are temporal by 
nature [0], it is also factual that some of these domains also contain spatial 
information [0]. In such situations it is of critical importance to manage seamlessly 
integrated temporal and spatial aspects. Examples of spatiotemporal domains are all 
the critical traffic management domains, where commercial navy, trains and airplane 
vessels must be permanently tracked. In the past few years spatiotemporal research 
has taken several important steps, but there are few implementations that address the 
problem of time and space in depth. Currently there are still many solutions 
following the so called semi-temporal approach, where much of the processing of the 
temporal aspects of temporal data is done at the application layer - increasing data 
and program complexity [0] - and not by the underlying DBMS layer, due to the lack 
of fiill temporal support. In an effort to overcome these limitations, the present work 
concerns the integration of two well known database technologies - TimeDB [0] and 
Oracle Spatial [0, 0] - in order to provide general spatial and temporal support 
without reducing the functionality provided by both technologies when working 
separately, through the ability to execute ATSQL2 [0] statements combined with 
spatial operators and fimctions. Our motivation to develop this integration is the 
creation of a full spatiotemporal relational database system (with bitemporal support) 
that constitutes the underlying layer of a larger system dedicated to manage present 
and past spatiotemporal urban data. In the next section we explain the selection of 
TimeDB for temporal support and Oracle Spatial for spatial support. In section 3 we 
present the reasons why the two technologies provide good integration for creating a 
spatiotemporal database prototype system and we point out the goals in joining the 
two database technologies as well as the issues that must be addressed in order to do 
so. Section 4 makes an overview of the system and its modules. Section 5 describes 
the main changes required in the translation algorithm in order that the translation 
process generates valid snapshot and spatial SQL. Section 5 concerns the results 
obtained, regarding the temporal and spatial goals. Finally, in section 7 we 
summarize the main conclusions of this paper and point out directions for current 
and future work. 
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2 Temporal and Spatial DBMS Implementations 

Griffiths [0] states that the considerable design and implementation effort required to 
develop complete fiill spatio-temporal database systems is the main reason why 
research on temporal databases has focused on specific subparts of the problem like 
indexing or join algorithms and, consequently, there are so few implementations. 
The survey in [0] on temporal database systems classifies several systems -
ARCADIA, Calanda, ChronoLog, HDBMS, TDBMS, TempCASE, TempIS, 
TimeDB, TimelT, TimeMultiCal, and others - according to carefully thought-out 
criteria grouped in families. This author points out important conclusions on the 
tested implementations, like the dominance of the relational model with timestamped 
tuples and the fact that valid-time dimension has been the focus of attention leaving 
transaction time to a second place. More recently TEMPOS [0] and Tripod [0] 
emerged as temporal extensions of the ODMG object model, trying to overcome 
important limitations of previous extensions (TAU, TOOBIS, TODMG). TimeDB 
[0] is a client-side system [0] implementation that uses ATSQL2, provides 
bitemporal statements, supports upward compatibility and temporal upward 
compatibility, allowing legacy data and code to maintain the usability [0]. Being a 
layered [0] system, TimeDB can manage information from distinct DBMS 
technologies, among which is Oracle DMBS. In our opinion, although a client-side 
temporal implementation, TimeDB is not penalized by limited temporal functionality 
thanks to the way TimeDB deals both with translation of temporal statements and 
with management of temporary results. Steiner [0] considers that the translation 
algorithm of TimeDB can be used to translate different temporal query and 
modification languages into standard SQL statements. The execution of the resuhing 
statements stores temporary results that are produced by a statement and consumed 
by the next one, avoiding collecting intermediate resuhs and corresponding 
performance problems. Concerning spatial DMBS implementations, Medeiros [0] 
presents a survey focused on databases for GIS discussing several design criteria, 
such as data models, spatial operators, relationships, query modalities and 
optimization, data storage and access methods. Over these design issues, Medeiros 
refers database technologies and relates them to each design criteria. According to 
[0] a spatial DBMS must comply with three requirements: (a) to be a DBMS; (b) to 
provide spatial data types both for the definition of the data model and the 
manipulation by the query language, (c) to provide efficient algorithms for spatial 
operations like spatialyo/>7 or multi-dimensional access methods (indexing). Having 
this in mind three Spatial DBMS implementations can be presented: ESRI ArcSDE, 
PostGIS and Oracle Spatial. The first constitutes a layered implementation that 
enhances non-spatial DBMS with the spatial support described. The other, PostGIS 
and Oracle Spatial [0][0] provide spatial support directly by the DBMS kernel 
through a spatial schema, a spatial indexing mechanism, a set of operators and 
functions for area-of-interest queries, spatial join queries and spatial analysis 
operations. Together, these functionalities allow the storage, retrieval, update and 
query of collections of spatial features. 
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3 Temporal and Spatial DBMS Implementations 

The selection of Oracle Spatial as the support for spatial data in the proposed spatio-
temporal system results from its support for multiple dimension geometry, the usage 
of spatial operators and spatial indexes, and a query language that is an extension to 
SQL and whose constructs can provide good integration with TimeDB ATSQL2, 
without harming temporal and spatial semantics. The integration of such 
technologies also permits the modified TimeDB layer to deal with just one DBMS 
for both temporal and spatial domains. The scenario of having two different DBMS 
managed by the modified TimeDB implementation would represent a critical 
performance, due to having to transfer temporary results between two DBMS. This 
approach would challenge one of TimeDB original major benefits concerning 
performance, namely the avoidance of mtermediate results storage by the layer. 
Having settled on the underlying technologies we proceed to address the goals we 
expect to achieve with such integration, namely spatial related goals, temporal 
related goals and usability goals. Spatial related goals consist in providing TimeDB 
with the ability to deal with Oracle Spatial schema, geometry data types, spatial (and 
aggregate) functions and spatial indexes during the parsing, translation to non-
temporal statements and evaluation processes, without impairing spatial 
functionality. Such ability provides that spatial functions and operators can be used 
within the modified ATSQL syntax, in order to provide spatial projections and 
selections. Such goals require fimctionalities that are not present in the original 
TimeDB implementation like being able to address the mdsys schema, in order to 
access and manipulate data and structures like geometry metadata tables 
{mdsysMser_sdo_index_metadatd) and index metadata {user_sdo_geomjnetadata). 
Also, the fact that TimeDB only addresses the tables and columns that are registered 
in its own metadata tables requires the proper insertion, on such tables, of the 
description of each colxmm of the previous geometry metadata tables. Another issue 
concerns the use of spatial data types, for example mdsys. sdo_jgeometry that is 
widely used in the spatial domain. Among the spatial data types the aggregate data 
types, for example, mdsys.sdoaggrtype provides support for spatial aggregate 
functions like sdo_aggr_union. Finally, special care must be also provided for data 
type object methods, for example, getjgtype, from mdsys.s do geometry data type. 
Solving such issues provide the support for statements like: 

create table countries (name char(20), capital char(20), boundary 
mdsys.sdo_geomeiry) as validtime 

validtime period [1100-1350) 
select sdo_aggrjunion (mdsys.sdoaggrtype(c. boundary, 0.005)) from countries c; 

Modifications are also required in order to be able to create and delete spatial 
indexes, through proper SQL statements, since indexation provide accelerated access 
method that is required for using spatial functions like sdojilter or 
sdo_within_distance. Finally, concerning spatial related goals, it is common for a 
spatial data type, function or operator to have several spatial arguments, each one 
being another data type or spatial function with its own arguments. The support for 
parsing, translating and evaluating inner arguments must also be added in the 
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modified TimeDB layer. The following SQL insert statement provides an illustration 
of inner arguments situation: 

nonsequencedvalidtime period [1250-1590) insert into countries values 
CportugaV, 'lisboa', mdsys,sdo_geometry (2003, null, null, 
mdsys.sdo_elemJnfo__array (1,1003,1),...,80.0,607.0))); 

Special attention must be given to column references that are used as spatial 
arguments since the translation algorithm of TimeDB substitutes table and column 
aliases with temporary references during the translation process [0]. For example, in 
the following statement column references to boundary and name from table aliases 
a[ and b are replaced by internal representations of TimeDB: 

validtime select a.namefrom countries a, countries h where a.name = 'portugaV 
andb.name = 'poland' andsdo_jgeom.sdo_distance(a.boundaiy, b.boundary, 
0.005) <=0; 

On the other hand, the temporal related goals expected to achieve with the proposed 
spatio-temporal integration are the goals already pointed out by Steiner [0], briefly 
summarized as "upward compatibility, temporal upward compatibility and 
orthogonality on valid time and transaction time together with the requirements listed 
in the definition of temporal completeness (syntactical similarity, sequenced and 
non-sequenced semantics of statements, substitutability of a relation in a query by 
another query and the support of temporal comparison predicates for time intervals 
[0])". This means that we expect the temporal functionality provided in original 
TimeDB to remain unharmed, as presented in section 6. 

4 System Overview 

The integration of spatial data management presented in the previous section within 
the original TimeDB implementation carries modifications to all TimeDB core 
modules (Fig. 1). 

r—i .,.*•-, ^, Oracle Orvtth Spatial) 

Fig. 1: modified architecture of TimeDB 

In order to do so, the implementation of the proposed system relies both in changing 
and overriding original functionality. For example, the Scanner module has many 
changes, in order to recognize the spatial constructs. Also the Parser module, 
responsible for parsing and collecting metadata of SQL statements has several 
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changes in order to support - among other functionality - Oracle spatial tables, 
method calls in spatial attributes, spatial indexing, spatial functions and operators, 
spatial arguments, with the possibility of each argument being another function with 
arguments. Furthermore, in order to keep information about these new features, we 
has to reformulate several structures, since the parsing process results in a binary 
parse tree of scalar expression objects, each of them having the required metadata to 
create the equivalent spatial and non-temporal SQL statements. This metadata is 
used by the Translator module, responsible for mapping temporal algebra into 
snapshot equivalent algebra. This module has also several changes in order to 
accommodate the proper management of spatial columns (Section 5) by temporal 
operators and the correct translation of spatial projection and spatial selection 
operators. 

5 Changes to the Translation Algorithm 

According to Steiner [0], the algorithm for the translation of temporal queries into 
non-temporal standard SQL queries translates temporal statements into temporal 
algebra expressions using temporal set operators (union, intersection, difference), 
where each argument to one of these algebra expressions is a simple temporal 
algebra expression or the result of another temporal set operator. The integration of 
Oracle Spatial functions and operations within the translation algorithm does not 
amount to a major problem since spatial projection and spatial selection operations 
are, from the perspective of temporal algebra, regarded as simple non-temporal 
projection and selection and operation. Spatial data types are treated by the 
translation algorithm, concerning temporal algebra, as other non-temporal data types 
like nimiber or character strings. Nevertheless column references used as spatial 
arguments require proper dealing. Also, changes must be performed over the 
translation algorithm in order to allow temporal set operations and the valid-time 
coalescing to perform correctly. In both situations, the issue is raised when 
evaluating SQL code (generated by the translation algorithm) that contains selection 
operators which compare values of distinct tupples, concerning the same spatial 
column. Since Oracle Spatial cannot compare two spatial values through the equal 
operator the SQL code becomes invalid. To overcome this limitation our proposal is 
to go through the snapshot equivalent mappings for temporal set operators and 
temporal coalescing, and use: 

sdo_geom.relate(tablei,columna, 'equal', table2.columna, <a spatial tolerance>) 
= 'equal' 

when comparing values in a geometry colimm, instead of 
table J. columria = table2. columria 

Providing these changes in the temporal intersection set operator, the temporal 
difference set operator and the unitemporal coalescing operator overcomes the 
problems identified in the snapshot equivalent SQL code (since through 
sdo_geom.relate, Oracle Spatial provides a spatial comparison between the spatial 
values). 
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6 Known Results 

Snodgrass [0] and Steiner [0] consider that upward compatibility and temporal 
upward compatibility are ATSQL2 requirements related with database migration. In 
our prototype system, upward compatibility is maintained through TimeDB original 
functionality, but regarded from the spatio-temporal perspective: any legal ATSQL2 
statement has the same semantics and validity as in the merged ATSQL2 and Oracle 
Spatial syntax. An important requirement states that each legal SQL query and 
modification statement, executed on a temporal database, leads to the same resuh as 
if it were executed on the corresponding non-temporal database [0][0]. This 
requirement is also maintained valid with Oracle Spatial legal SQL query and 
modification statements. Also, the two classes of temporal statements in ATSQL2 
(sequenced and non-sequenced) have their semantics unmodified, after the inclusion 
of Oracle Spatial components. To test that TimeDB functionality has been left 
unharmed we tested and compared the results of the demos included with original 
TimeDB with the resuhs obtained in a TimeDB unmodified implementation, leading 
to the conclusion that, in the subset of temporal valid-time domain, now integrated 
with spatial support, we have not introduced any limitations or made any 
simplifications. Concerning spatio-temporal domain, the following sub-sections 
address the results of temporal compatibility and semantics, from the perspective of 
temporal and spatial seamless integration. 

6.1 Upward Compatible queries and Temporal Upward Compatible queries 

Upward compatible queries [0, 0] protect investments of legacy code and provides a 
gradual process of migration to a temporal DMBS of legacy code and data [0], the 
proposed system provides that legacy Oracle Spatial code and data can still be used 
providing results equivalent to those obtained m plain Oracle Spatial DBMS, that is, 
without awareness of the temporal support provided. Regarding temporal upward 
compatible queries, they allow the upgrade of legacy applications to temporal 
database systems and the invariance of the semantics and functionality of legacy 
statements [0]. This means that snapshot spatial queries issued over valid-time 
spatial tables will retrieve snapshot spatial results concerning the current valid-time 
state. For example, providing a valid-time table countries4, the following statement: 

select "^ from countries4 
where sdo_jgeom.sdo_area(countries4.boundary, 0.005) > 5000; 

retrieves a snapshot resuh (polygonal geometry). The tupples used by this query are 
the subset that is considered valid at the time of execution: the non-temporal SQL 
issued by the evaluator module contains two selection operations that make possible 
to ignore other tupples (64416774529 is the chronon when the statement was created 
in the Translator module): 

select alias JdbO. name as name, alias JdbO. capital as capital, 
alias JdbO, boundary as boundary from countries4 alias JdbO where 
sdo_geom.sdo_area(alias_tdbO.boundary, 0.005) > 5000 and 
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aliasjdbO.vtsJimedb <= 64416774529 and aliasjdbO.vteJimedb > 
64416774529 

6.2 Sequenced and Non-sequenced Queries 

In what concerns sequenced queries, good for providing historical results [0, 0], 
temporal logic is applied and operations interpret the timestamps of tuples and use 
this interpretation for the calculation of the resulting tuples timestamps. TimeDB 
uses temporal logic to calculate the resulting relation for a query which has, for each 
tuple, a valid-time timestamp value associated. In such queries, spatial projection and 
selection operations are regarded as non-temporal operations, like the ones acting on 
numerical and alphanumerical columns. For example, considering a relation instance 
that contains historical spatio-temporal information (name, capital and boundary) 
illustrated in Fig. 2, the following sequenced query retrieves the valid-time periods 
and respective spatial union for all the countries boundaries. The spatial results of 
executing the statement are displayed in Fig. 3. 

validtime period [1100-1350) 
select sdo_aggr_umon(mdsys.sdoaggrtype(c. boundary, 0.005)) from countries c; 

EQkod 
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Fig. 2: Schema of database facts regarding Poland, Portugal, and Czech Kingdom, 
from 1100 A.D. to 1350 A.D. 

{1100.1(4^1 

(1I98*1200{ 

I 

^ î j 
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Fig. 3: Spatiotemporal results from the sequenced valid time spatial union query. 

Concerning non-sequenced queries, which use non-temporal logic, attributes of 
temporal data type, like valid time start and end, are managed as other numerical 
attributes. Eventually, all database states can be used to calculate the resulting 
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relation, as opposed to what happens in sequenced queries. For example, the 
following query retrieves the union of all country's boundaries disregarding the 
valid-time of tupples: 

nonsequenced validtime 
select sdo_aggr_umon(mdsys.sdoaggrtype(c. boundary, 0.005)) from countries c; 

7 Conclusions and Ongoing Work 

Spatiotemporal database technology is required for properly addressing the subset of 
temporal applications that also manage spatial data and, currently, has many domains 
of application, from traffic management to urban data management to enterprise 
information management. As there are only a few systems satisfying both temporal 
and spatial aspects the presented work intends to contribute to this area by proposing 
a spatiotemporal database system based on two database technologies: TimeDB and 
Oracle Spatial. The selection of TimeDB is due to the amount of temporal support 
provided, as compared to other implementations. Oracle Spatial choice is a 
consequence of selecting TimeDB, since we want the spatiotemporal layer to deal 
with only one underlying DBMS. This also maintains the layer free from retrieving 
temporary results, which would harm overall performance. Regarding the integration 
issues, the proposed spatiotemporal database system has taken into consideration 
several groups of fiinctionalities. At the parsing and interpretation level, we have 
identified the enhancement required on TimeDB scanner and parser modules in order 
to allow parsing and interpretation of Oracle spatial data types, spatial indexing, 
spatial functions (and aggregate functions) and spatial operators. At the level of 
translating temporal SQL to equivalent snapshot SQL statements, we have modified 
the translation algorithm in what concerns the inclusion of spatial algebra 
expressions that are integrated in the translated non-temporal, spatial, SQL. In this 
translation module we have also dealt with the issue of translating column references 
to the correct table and column aliases. These changes made possible for temporal 
operations to perform correctly (like unitemporal coalescing). Finally, at the level of 
retrieval of results, we have created new functionality that goes beyond textual 
results, being aware of spatial results and, consequently, displays them according to 
their spatial data type. Concerning the temporal goals, we have concluded that the 
integration of Oracle Spatial constructs with TimeDB ATSQL does not compromise 
the original temporal support of TimeDB. Upward compatibility, temporal upward 
compatibility, sequenced and non-sequenced semantics on valid time are maintained 
unharmed. Also this integration of both technologies has no impact on spatial 
functions: although issued in a spatiotemporal context the spatial support maintains 
the original functionality. Thanks to this fact and to the ability to process the most 
common spatial data types, all spatial operators and the great majority of spatial 
functions we can state that spatial goals proposed have been accomplished. The 
correctness of the implemented functionalities has been tested on a small data set, 
built to illustrate the main spatial and temporal features and dependencies. Current 
work includes the use of the prototype system in the domain of urban planning, 
where extensive geo-referenced data sets exist and querying the temporal 
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components of information is still a challenge. Ongoing work includes providing and 
testing transaction time support and bi-temporal support integrated with spatial 
support. 
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