Chapter 2

MATSUMOTO-IMAI CRYPTOSYSTEMS

In the previous chapter we discussed some early attempts to build
MPKCs. However, these attempts were not very successful and it be-
came very clear that new mathematical ideas were needed. The first
such new idea was proposed by Matsumoto and Imai {Matsumoto and
Imai, 1988]. Their key idea was to utilize both the vector space and the
hidden field structure of k", where k is a finite field. More specifically,
instead of searching for invertible maps over the vector space k" directly,
they looked for invertible maps on a field K, a degree n field extension
of k, which can also be identified as an n dimensional vector space over
k. This map could then be transformed into an invertible map over k™.

One such cryptosystem, known as C* or MI, attracted a lot of atten-
tion due to its high efficiency and potential use in practical applications.
In fact, the MI cryptosystem was submitted as a candidate for secu-
rity standards of the Japanese government. However, before the final
selection, MI was broken by Jacques Patarin using an algebraic attack
that utilizes linearization equations [Patarin, 1995]. This method takes
advantage of certain specific hidden algebraic structures in ML

Normally one would conclude that this is the end of MI, though in
fact the subsequent story goes into the opposite direction. One reason is
that the MI cryptosystem represents a fundamental breakthrough on the
conceptual level in that it brought a totally new mathematical idea into
the field and consequentially was widely explored and extended. Another
reason is that there are many new variants of the MI cryptosystems
that seem to have great potential, including the Sflash signature scheme
[Akkar et al., 2003; Patarin et al., 2001], which was accepted in 2004 as
one of the final selections for the New European Schemes for Signatures,
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Integrity, and Encryption project [NESSIE, 1999] for use in low cost
smart cards.

Indeed, the work of Matsumoto and Imai has played a critical role as
a catalyst in this new area and has stimulated the subsequent develop-
ment. In this chapter, we will present the MI cryptosystem in detail,
Patarin’s cryptanalysis of MI, the Plus-Minus variants, related attacks
and security analysis.

2.1 Construction of a Matsumoto-Imai System

Let k& be a finite field of characteristic two and cardinality ¢, and
take g(x) € k[z] to be any irreducible polynomial of degree n. Define
the field K = k[z]/g(x), a degree m extension of k. In general the
char(k) = 2 condition is not necessary for the following construction,
though we would need to modify the system slightly due to the loss of
bijectivity in the final map used for the construction of the corresponding
public key.

Let ¢ : K — k™ be the standard k-linear isomorphism between K
and k" given by

¢(a0 +ayx+ -+ an_la:n“l) = (a,(), Aly -y anwl).
The subfield & of K is embedded in £™ in the standard way:
¢(a) = (a,0,...,0), Ya € k.

Note that here ¢ is a k-linear map if we treat k as a subfield in K.
Choose 6 so that 0 < 8 < n and

ged (¢ +1,4"~1) =1,
and define the map F over K by
F(X) = x1+, (2.1)

The conditions on # insure that F is an invertible map; indeed, if t is an
integer such that

t(1+¢%) =1 mod (¢" — 1),

then F~1 is simply
FHXx)= X"

Now let F' be the map over k™ defined by

F(wla"'axn):¢OFO¢~1(Ila"')$n):(fla"'vfn)7
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where fi,..., fn € k[z1,...,2,). To finish the description of the con-
struction of Matsumoto-Imai, let us now choose L; and Lo to be two
invertible affine transformations over k™. Define the map over k™ by

F’(xl,...,xn) :Ll OFOLQ(CL‘],...,I‘n) = (fl;----,f_'n)y (22)

where fi,..., fn € k[21,...,2,]. See Figure 2.1 for a commutative dia-
gram that captures the essence of the MI construction.

PRI Y LN QRN R N N 7 S
id l id T
id Ln F L id
ke r i

Figure 2.1. Composition of maps in the construction of MI.
We can now fully describe the Matsumoto-Imai public key cryptosystem.

The Public Key
The public key of MI includes the following:

1.) The field k including its additive and multiplicative structure;
2.) The n polynomials fi, ..., fn e klz1,...,@p].

The Private Key

The private key includes the two invertible affine transformations Lq
and Lo. The parameter 6 can be kept private, though this is not critical.
Since there are fewer than n choices for ¢ and n is typically not very
large, hiding ¢ has no substantial effect on attack complexities (only a
factor of n).

Encryption

Given a plaintext message (z7,...,)), the associated ciphertext is
p g 1 n P

(Y1, .- 4,), where
yz/‘ = ﬁ(mllﬁ .- '7$;1)’

for ¢ = 1,...,n. This can be done by anyone, since the public key is
available to anyone.
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Encryption Decryption
Ty T Y1, Yn
Lt
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Y, - Yn Ti,. .., Ly

Figure 2.2. Single-branch MI encryption and decryption.

Decryption
We can decrypt the ciphertext (v}, ...,y,) by computing

F_l(yi,"ﬂyil) :L2_1 oF_l OLl_l(yiﬂ)y':z)
=Ly'ogoF tog o LTy, um).

In general the components of F'~! will be of very high degree, and there-
fore in practice we decrypt the ciphertext (y1,...,v,) by executing the
following steps:

1.) First compute (2}, ...,25) = LT (W), -, vh);

2.) Then compute (Zy,...,%,) = po F 1 ogp™1(2],...,2.);

n
3.) Finally compute (z},...,2,) = Ly (31, . . ., Zn).

If the corresponding cryptosystem is secure, then this decryption pro-
cess can be performed only by those who have access to the private
key. See Figure 2.2 for a graphical representation of the encryption and
decryption process.

Degree of the Public Key Components

The components of the map F are polynomials in k[z1,...,2,]. In
fact, since we are thinking of the variables x1,...,z, as the plaintext
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message “bits” in the field k, we will identify f1,..., f, with the corre-
sponding representative of minimal total degree in the ring of functions
from £™ to k

Fun(k™ k) = k[, ..., z,]/ (28 — 21, .., 2L — zp),

where total degree is defined as usual. For notational convenience, we

will abuse notation and use k{z1, ..., z,] instead of Fun(k™, k). We shall
never use the notation k[z1,...,z,] for the polynomial ring in the vari-
ables x1, ..., x, with coefficients in k£ unless explicitly announced before-

hand. Similarly, the notation K[X] will be used for the ring of functions
from K to K; that is, we identify K[X] with K[X]/(X? — X), unless
announced otherwise. As such, we shall use the terms “polynomial” and
“function” interchangeably. Let us now explore the relationship between
the degree of I' and the degrees of f1,..., fa-

The maps T3(X) = X? on K, fori =0,1,...,n—1, are the well-known
Frobenius maps. In fact, the set of these maps is exactly the Galois group
G = Gal(K/k), and the group ring KG = {32774 ;T | a; € K} is the
set of all k-linear maps on K (see Appendix A). But from this it is easy
to see that for any L(X) € KG we have that ¢ o Lo ¢! is a k-linear
map over k™, hence the components of ¢o Lo¢~! each have total degree
one in k[z1, ..., Zn).

In order to better see the relationship between the degree of H(X) €
K[X] and the degree of the components of o Hog™!, let us define the ¢-
Hamming weight degree of the monomial X¢ € K[X], where 0 < e < ¢",
to be the sum of the coeflicients in the base-q expansion of e, also known
as the ¢-Hamming weight of e. The g-Hamming weight degree of a
function H(X) € K[X] is then defined to be the largest ¢-Hamming
weight degree over all monomials of H(X).

Now suppose we have a function H(X) € K[X] of ¢-Hamming weight
degree d. Then the components of ¢ o H o ¢~! will be of total degree
d. In particular, since the g-Hamming weight degree of F is two, it
follows that the total degree of each of the fi1,..., f, is two. Since L,
and Ly are invertible affine transformations, the total degree of each of
the fi,..., fn is two as well.

A Toy Example

We now illustrate the MI cryptosystem using a toy example with small
parameters.

Let k = GF(22) be the finite field with ¢ = 22 = 4 elements. The mul-
tiplicative group for the nonzero elements of this field can be generated
by the field element o which satisfies &® + «+ 1 = 0. The field elements
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+]10 1 o o *1o 1 o &
0 0 1 a  of 010 0 0 0
1 1 0 o «a 1 0 1 a o
fo a of 0 1 a |0 o o 1
a?la® a 1 0 o & 1 o«

Table 2.1. Addition and multiplication table of GF(2?%).

of k can be presented as {0, 1, a, &*} and the addition and multiplication
tables are given in Table 2.1.

Next choose n = 3 and g(z) = 2% + x + 1, an irreducible polynomial
in klz]. Set K = k[z]/(2® + & + 1). There are only two possible choices
for #; namely 6 = 1 or 8 = 2. We will use § = 2. The map F' and its
inverse are given by

F(X)y=Xx"**  F(X)=X?%.
Let L1 and L2 be given by

o a Ty 0
Ly(zy,z,23) = a 1 0 |+ (1
1 0 1 z39 «a
and
1 0 « g 15"
Ly (za0,23) = [0 1 « zo | + [ o2
1 o« 0 T3 o2

To derive the public key polynomials in terms of the plaintext message
variables x1, x3, 23 we begin by computing ¢! o Ly (21, 29, 73), which we
find to be

(a+z1 + axs) + (&2 + zg + axs)z + (o + 1 + axg)z?.

If we denote this by X, then we next compute F(X) = X4 = x. X6,
The exponentiation is easily done since we only have to apply it to each
term of X. There are no degrees higher than two since we are working
in the finite field & of characteristic two. Thus F'(X) is

1+ a2w1 + «xo + 23+ 2120 + k13 + 042(1121113
4+ (a+ oz +x9 + a’zs + sz + a’zizo + x% + xox3)T + (a2 + &Pz

+ axy + axsy + x% + 129 + axix3 + azsc% + axoxs + a2x§)x2.



Matsumoto-Imai Cryptosystems 17
Finally we compute Ly o ¢(X) to get the public key polynomials

v 2.2 2 2
fi(z1, 0, 23) = 1 4+ 23+ azx1xs + o“z5 + @293 + 23

= 2 2 2 2
fg((EhZEQ,CCg,) =14ary+axy+23+ 27+ 2122 + " T173 + T35
3 2 2 2.2 2,2

f3(z1, 2, x3) = a“wg + o] + a5 + z2x3 + x5,

which will be used to encrypt plaintext messages. If, for example, we
wish to encrypt the plaintext (2, 25, 25) = (1, @, a?), then we compute

v =fi(l,a,a®)=0
ys = f3(L,0,0%) =1

to get the ciphertext (0,0, 1). )
The person in charge of decrypting this ciphertext knows Ll_l, F-1
and Ly*. With

a2 1 1 Yy — 0
L' (yhyzws) = 1 o a) [y2-1
> 1 0 Y3 — Q

and the given ciphertext we first find

L710,0,1) =

- Q Q

from which X = o + ax + 22 follows. In this toy example
F_I(X) = X2 = o422,

which can easily be computed by the binary method (also known as
the square-and-multiply method). In real applications this approach
would be too time consuming, since the exponent ¢ for X is typically
very large. Instead one selects a 6 where the binary representation of ¢
exhibits a pattern, which then can be exploited to speed up the process
of evaluating X*.

Continuing with the toy example, we now have (21, Z2, Z3) = (¢, 0, 1).
From

o? o «a Y1 —

—1 _ 9
Ly (y1,y2,y3) ={a a «w Yo — &
1 < 1 Yz — a2

we obtain Lz_l((x, 0,1) = (1,0, a®)T, the original plaintext.
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Multiple-Branch MI

A multiple-branch cryptosystem is one essentially composed of sev-
eral basic (single-branch) cryptosystems. The input is partitioned first,
with each part sent to its own single branch cipher. The outputs of each
branch are then combined into a single output. The input is first trans-
formed, usually in the form of an invertible affine transformation, before
being partitioned in order to hide the branches. Similarly, the combina-
tion of the outputs from the branches usually undergoes a transforma-
tion. See Figure 2.3 for a pictorial illustration of this general idea. Note
that if the single-branch ciphers Ci,Cs,...,C, and the input-output
transformations are invertible, then the multi-branch cipher will be in-
vertible as well.

In the case of multi-branch MI, each branch will be a basic single-
branch MI as described in the previous section. Let b be the number of
branches and pick positive integers n1, ..., 7 such that ny+- - -+np = n.
For each 7, pick an irreducible polynomial g;(z) € k[z] of degree n; and
define K; = k[z]/g:(z). Then K, is a degree n; field extension of k, with
k-linear isomorphism

¢i s Ky — k™
such that

di(ap + a1z + -+ an;_12™ 1) = (ag, a1, . . ., Any—1).

As in the case of a single branch, if we choose (independently) the
01, ...,0p such that 0 < 6; < n; and ged (qei +1,¢™ —1) =1 for each 4,
then we can construct the invertible maps

Fy(X) = x1+d"

and then ~

Fy=¢ioFod = (fi,---, fin)),
where each fi; is a polynomial in k[z1,...,%n,], for j = 1,...,n; each
fo; is a polynomial in [z, 41,..., T 4n,), for j = 1,...,n9; ...; and
each fp; is a polynomial in k[@p—p,+1,..., %) for j =1,...,n.

We then combine the branches together to define a new map F over
k™ by

F(J}],...,CL‘n) = (Fl,Fg,...,Fb)
= (flla"'aflﬂpf?la' "annza" "fbla' "7fbm,)7 (23)

and choose Ly and L2 to be invertible affine transformations on &".
Finally define the map F' over £™ as before:

F(x1,...,05) =LioFoLy(xy,. ..,zn) = (fi, ..., fn),
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input: zi,...,%,

|

mixing

l

partition

21y 0y Rn1 Zng+ly - oy Bngtng An—mytly - -5 2n

Cy Cy . Chy

217""azn1 2n1+1a~~~72n1+n2 Zn—nb+17"-7zn

concatenation

51,...,Zn

mixing

output: y1,...,4n

Figure 2.3. A multi-branch cipher composed of single-branch ciphers C1,Cs, ..., Cs.

where each f; is a degree two polynomial in k[z1, ..., z,)].

We can see that a multiple-branch implementation of MI is essentially
the image of several single-branch MI implementations under an invert-
ible affine transformation. Though it may seem that multiple branches
provide more security, we shall see later that this is not the case.

2.2  Key Size and Efficiency of MI

The public key of the Matsumoto-Imai cryptosystem is a set of degree
two polynomials f1,..., fn € k[z1, ..., 2s]. Each polynomial has 1-+n+
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n(n+1)/2 = (n+1)(n+2)/2 terms, hence the public key amounts to a
set of n(n + 1)(n + 2)/2 coefficients in k¥ when ¢ > 2. For ¢ = 2 the key
size will be smaller because there are no square terms due to the fact
that :cf = ;.

This is rather large compared with that of RSA, even if we choose
k to be GF(28) and n = 32, the parameters originally suggested by
Matsumoto-Imai in 1988. However, with systems like RSA there are
other considerations, in particular the implementation software, whereas
with MPKCs the implementation requires minimum work beyond the
public key.

Though the public key of MI may be large compared with other
schemes such as RSA, the great advantage of MI lies in its computa-
tional efficiency. If we choose ¢ = |k| to be small, then we can store the
multiplication table in memory using the fact that the nounzero elements
of k form a cyclic multiplicative group. This makes the encryption much
faster than schemes like RSA which must work with large integers. This
technical detail can also be used in the decryption process, including
the most expensive calculation in computing with F~1. In fact, MI
originally generated a lot of excitement precisely because the practical
implementations first suggested were far faster than RSA and promised
the same level of security.

The Matsumoto-Imai cryptosystem was proposed in 1988 [Matsumoto
and Imai, 1988], and was considered as one of the candidates for the
Japanese government security standard. However, MI was defeated in
1995 by Patarin’s algebraic attack via linearization equations [Patarin,
1995].

2.3 Linearization Equations Attack

We begin by defining the notion of a linearization equation (LE) in a
general way.

Definition 2.3.1. Let G = {g1,...,9m} be any set of m polynomials
in k[zy,...,x,). A linearization equation for G is any polynomial in
klzi,...,&n, Y1, .-, Ym] of the form

n m n m
Z Z a3 T3Yj + Z bix; + Z ciy; +d, (2.4)
i=1 Jj=1

i=1 j=1

such that we obtain the the zero function in k[x1, ..., Tn] upon substitut-
ing in g; for y;, for j =1,...,n. Equwalently, a linearization equation
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is any equation in k[zy,...,z,] of the form

n m n m
ZZaijxigj(xl, cey )t Zbﬂi + chgj(xl, v Tp)+d=0
i=1 j=1

i=1 j=1
which holds for all (2, ..., x,) € k™.

It is clear that for a given G, the set of all linearization equations of G
forms a k-vector space. This space will be referred to as the linearization
equation space of G.

Patarin keenly observed that the linearization equation space for the
components of F' can be used to attack the Matsumoto-Imai cryptosys-
tems. To see this, let {f1,..., fu} be the set of components of F', and
suppose we have a linearization equation of this set of the form of (2.4).
For a given ciphertext (yi,...,¥,), substituting in y. for fi produces a
linear (hopefully nontrivial) equation in the variables z1, ..., z, whose
solution set contains the plaintext.

With enough linearization equations, we can hope to produce enough
linear equations such that the resulting system has the desired plaintext
as its unique solution. Even if we cannot find directly the plaintext from
these linear equations for a given ciphertext, as long as the LEs can pro-
duce enough linearly independent linear equations for the corresponding
plaintext, these linear equations can then be plugged into the quadratic
public equations derived from the public key and the ciphertext to re-
duce the number of variables and make it much easier to solve it. To
decide the feasibility of this attack, we must first find the number of
linearly independent linear equations we can hope to derive from the
space of linearization equations of the components of F'. We begin the
analysis by considering the single-branch case of ML

Linearization Equations of Single-Branch MI

The following theorem gives a lower bound on the number of linearly

independent linear equations that we can generate from the components
of F.

Theorem 2.3.1. Let {f1,..., f,} be the public key for a single-branch
implementation of MI. Fiz a ciphertext Y' = (y,...,y.) € k™ and let £
be the space of linearization equations of {f1,- .., fu}. If Ly is the space
of equations that are derived by substituting in y, fory; (fori=1,...,n)
in each equation of L, then the number of linearly independent linear
equations in Ly is at least

2
n — ged (n, 8) > ——32
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The exceptional case is L~1(Y") = (0, ...,0) when there are only trivial
equations.

To prove this theorem we will need the following two lemmas.

Lemma 2.3.1. Let F = L o F o Ly be as in the construction of single-
branch MI. Let L be the space of linearization equations of {fl, ooy fn}
and let L be the space of linearization equations of {fl, .. ,jn} Then
these two k-vector spaces have the same dimension; i.e.,

dimy, £ = dimg L.
Proof. First suppose that L2 is the identity, so that

fj(xl, cey Tp) = Zaijfi(éﬂl, coey ) + ;-

Then
n n n n
= ZZai]’ajz‘fj + Zbiwi + chfj +d
i=1 j=1 i=1 j=1
n n
- Zzaulz (Z ajlfl + ﬁ]) + Z L+ Z Cj <Z a]lfl +/6]>
i=1 j=1 =1 7=1
+d
n n
=3 ajmif +be, +Zc i+ d,
i=1 j=1 g=1 7=1
a linearization equation for fy,..., fu.
Similarly, by looking at F' = Ly 1o F and starting with a lineariza-
tion equation for fi,..., fn, we can derive a linearization equation for
fi,-- -, fn. From this bijection we see that the dimension of the lineariza-

tion equations for F' and L, o F' are the same.
Now suppose that Ly is the identity, and let

n
;= Zaijxi + ﬁj,
i=1
so that
filzr, o zn) = fi(Z1, ..., B).
Then

n n n n
0= ZZaijxifj(:cl, .. .,In) -+ Zbiﬂfi -+ Zijj(xl, .. .,xn) =+ d
i=1 7=1

i=1 j=1
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which gives

n n n n
0= Zzaiji'ifj(fly .. .,.ffn) + Zbifi + chfj(flv .. .,:En) +d,

i=1 j=1 i=1 j=1
since the invertible change of variables amounts to a permutation on &™.
But then we have

n n n n
= ZZaija—:ifj(m, .. .,Elfn) =+ Zbiii +Zijj($1, .. .,LL’n) +d,
i=1 j=1

i=1 j=1

which, as above, can be rewritten as

O—ZZ(JZ]TZ/‘J%—Z()'T@-{-Z(‘ fi+d,

t=1 j=1

a linearization equation for fi,..., fn.

Similarly, by looking at F' = F o L and starting with a lineariza-
tion equation for fi,..., f,, we can derlve a linearization equation for
fi,..., fn. From this bijection we see that the dimension of the lineariza-
tion equations for F' and F o Lo are the same.

Finally, we conclude that dimy £ = dimy L. |

Lemma 2.3.2. Let £ and L be as in the previous lemma, fix a ciphertext
Y = (y},...,yh) €k and let Z = L7Y(Y") = (21,...,2,). Let Lz be
the space of linear equations that arise from substituting in z; for y;

(for i = 1,...,n) in each linearization equation in L, and let Ly' be
the space of linear equations that arise from substituting in yi for v
(for i = 1,...,n) in each linearization equation in L. Then these two

k-vector spaces have the same dimension; i.e.,
dimg £z = dimy, Ly.

Proof. In the proof of the previous lemma we constructed a bijection
between £ and £. This induces a bijection between £z and Ly from
which the result follows. O

To see how Patarin first constructed linearization equations, we let
X,Y € K be such that

= F(X)= X9+
We then have
ye' -1 = (x'+1ya"-1
— X(q9+1)(q0_1)
— x*°-
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If we multiply both sides by XY, we see that
xvy? = x™y,

or equivalently,
xve - xy =o.

Finally define R(X,Y) € K[X,Y] by
R(X,V)=XY?" - X,

and 3
R=¢oRo(¢ 1 xg¢™h (2.5)

From this R we can derive n linearization equations for the components
of F. Specifically, the n components of R(z1,...,Zn,¥1,...,Yn) are of
the form (2.4), and, by construction, substituting in f; for y; (for i =

1,...,n) yields the zero polynomial in k[z1, ..., Z,)].
It is natural to ask how many linearly independent linear equations
arise from R for a specific (y},...,y,,) € k™. Let (x9,...,7,) € k™ be

F"l(y’17 ooy yn), and let Y/ = q/)’l(y’l, ooy and X = (/ﬁ”l(m’l, ce ).
Then X’ must be a solution of

XY = x (v, (2.6)
or
X = (v, (27)

if Y’ # 0. But the second equation has at most ged (¢*” - 1, ¢" — 1) solu-
tions in K. Furthermore, because of the condition ged (¢ +1,¢" — 1) =
1, we have that

ged (¢% — 1,¢" — 1) = ged (¢ — 1,4" — 1),

hence (2.6) has at most ged (¢” — 1, ¢™ — 1) + 1 solutions, including the
trivial solution. To find this number explicitly we will need the following
lemma, which is easily proved.

Lemma 2.3.3. For any two positive integers a, b we have
ged (¢® — 1, = 1) = gged(@b) _ 1.

In particular, the lemma tells us that the total number of solutions for
(2.6) is at most ¢&°4 (%™ If A is the number of linearly independent linear
equations that arise from (2.6), then there will be ¢" > solutions to the
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corresponding system of linear equations. Therefore g < gred (9’“),
and so A > n —ged (6, n).

The three largest possible values of ged (0, n) are n, n/2 if n is even,
and n/3 if 3 divides n, and the rest are of all smaller values. Therefore,
if we show that the first two cases are impossible, then we can conclude
that

2
n —ged (6,n) > g

First we know that it is impossible that ged (6, n) is n, because of the
choice of 4 is larger than 0 and less than n. Second, if ged (6, n) = n/2,
this means that # must be n/2 itself. Then we know that

gcd(q"/2+ 1,"—1)= ¢v? 1> 1,
which contradicts the invertibility condition which requires that
ged(® +1,¢"— 1) =1.

Therefore ged (6, n) cannot be n/2 either and the largest possible value
for ged (0, n) is n/3.

This proves the following theorem, which combined with Lemma 2.3.2
gives us a proof of Theorem 2.3.1. The exceptional case in Theorem
2.3.1is L7H(Y") = (0,...,0) and all linear equations derived from the
linearization equation are again trivial ones, 0 = 0.

Theorem 2.3.2. Let L be the space of linearization equations for the
components of F' and fit Y' = (y{,...,y,) € k™. If Ly is the space of
linear equations resulting from substituting in y, for y; (fori=1,...,n)
in each element of L, then dimg Ly is at least

2
n —ged (0,n) > —32,

except when Y' = (0,...,0).

If ged (6,n) = 1 then it is clear that we can defeat the system eas-
ily using linearization equations alone. More generally, we see that the
single branch Matsumoto-Imai cryptosystem is not very secure since for
a given ciphertext we can always find at least 2n/3 linear equations
satisfied by the plaintext, which is analogous to leaking 2/3 of the in-
formation. More importantly, these equations can be used to eliminate
2/3 of the variables of the quadratic public equations derived from the
public key and the ciphertext, which should then be much easier to solve
than before.
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The next question we consider is how to actually generate linearization
equations. We explain two different approaches: one based on plaintext-
ciphertext pairs, and the other based on the structure of polynomial
functions.

Plaintext-Ciphertext Pairs

Using the public key we can generate several plaintext-ciphertext
pairs. For each pair given by F(z,...,2},) = (41,---,y,,), we can sub-
stitute in 2 for z; and y;- for y; into the generic linearization equation

> aimayy + Y biwi+ Y ey +d=0,

to get a linear equation in the (n+ 1)2 unknowns a;;, b;, ¢, d € k. There-
fore, if we choose roughly (n + 1)? plaintext-ciphertext pairs, then it is
very likely that we can solve the resulting system for the unknown coef-
ficients. The total cost of this process includes:

1.) Computation of (n + 1)? plaintext-ciphertext pairs, which has com-
plexity O(n%);

2.) Solving a set (n + 1)? linear equations in (n + 1)? variables, which
has complexity O(nf).

This can be done relatively easily.

Structure of Polynomial Functions

_ We begin with a generic linearization equation for the components of

F:
Zaij$ij?j+zbixi+zcjf7j+dzo'

As before, we treat the coeflicients a;;, bj, ¢;, d as variables taking values
in k. After rewriting the left-hand side of this equation as a sum of
monomials in the variables xq, ..., x,, we have an equation of the form:

Y omimizi+ Y Bymimi + Y viwi+6 =0, (2.8)

where the coefficients oy, 85, v, ¢ are linear functions in the unknown
coefficients a;j, b;, ¢, d.

Remark 2.3.1. If ¢ = 2, then we should make use of the fact that
23 = x? =z for any x € k. In particular, any power of x; occurring in
(2.8) will be replaced by x;, fori=1,...,n.

From the theory of polynomials over a finite field, we know that each of

the ayjk, Bij, 7i, § must be equal to zero, which produces wﬂ%ﬂﬂ
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linear equations in the unknown coefficients a;;, b;, ¢;, d, when ¢ > 2.
The solution set for this system of equations is then used to construct
linearization equations.

It is very likely that we will not need to use all (n+1)(n+2)(n+3)/6
linear equations, and that we probably only need roughly (n + 1)? of
them. We can also confirm easily if indeed we have the right solution
space, if we know the dimension of the space of linearization equations
(we will say more in the next subsection about how to calculate this
dimension). If the dimension of the space is too large, we can always
add more equations until the right solution space is found.

Here the main cost is to solve a set of (n + 1)? linear equations in
(n + 1)2 variables. As before, the complexity of this is O(n?).

Dimension of the Space of Linearization Equations
for Basic MI

Now we will present the results related to calculation of the dimension
of the space of linearization equations as presented in [Diene et al., 2006].

Theorem 2.3.3. Let L be the space of linearization equations associated
with the components of a given invertible Matsumoto-Imai map F (hence
we may assume that 8 #n/2). If ¢ > 2, then

i £ — {2n/3, if 0 =n/3, 2n/3;

n, otherwise.
Ifg=2 and 8 =n/3,2n/3, then
7, ifn=26,0=2,4;

dimy £ = < 8, fn=3,0=1,2;
2n/3, otherwise.

Ifg=2 and 8 #n/3,2n/3, then

10, ifn=4,0=1,3;

2n, if6=1,n—-1, (n+t1)/2;
3n/2, if0=(n+2)/2;

7, otherwise.

dimg £ =

The key idea used in the calculation of dimy, £ is to lift the problem to
an extension field. The approach is very similar to that used by Kipnis
and Shamir in [Kipnis and Shamir, 1999]. We present only a sketch
of the proof of the case where ¢ > 2; see [Diene et al., 2006] for the
complete proof of Theorem 2.3.3.
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The proof in [Diene et al., 2006] uses some very abstract mathematical
concepts and theorems, which look simple but may be difficult for people
who are not very familiar with the related mathematical theory. Our
proof here is more direct and more from the point of computation.

Recall R: K x K — K is defined by

R(X,Y)=XxY? - X7,
and R : k?® — k™ is defined by
R=¢oRo (¢t xo¢ ™Y =(r1,...,7n),

where r1,...,7, € klz1,...,Zn,¥1,.--,Yn). The first step is to show
that the n linearization equations derived from R are linearly indepen-
dent if ¢ > 2 and § # n/3,2n/3. We will show this by way of contra-
diction, so let us assume that these n linearization equations are not
linearly independent. In this case there must exist a nonzero vector
(o, ..., ) € kK™ such that ayry +- - -+ @,y = 0 in the polynomial ring

k[CL’l, ey Ty Y1, .- ayn]
Let L : k™ — k™ be the linear map defined by

L(xy,...,zp) = (121 + - - + 0y, 0, ..., 0),

hence Lo R is ~the zero function from k2" to k™. From this it follows that
¢~ o Logo R is the zero function from K x K to K since

proLopoR=(p"1oLog)o(pLoRo(dx¢))
:q&”lo(LoR)o((z)ng)
=¢ " o000 (¢ x ).

Now from Lemma A.0.1 and its corollary, there exists a nonzero vector
in K™, say (Ao, ..., An—1), such that

n—1
o o Log(X) =) AX%,
=0
hence
n—1 "
S axy? - xy) =o.
i=0
It is not hard to see that if ¢ > 2 and ¢ # 0 then

2041
3

XY? # (Yx7)e =y xa
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unless 360 = n, 2n. Since we have assumed otherwise, the monomials in
this polynomial are linearly independent, and hence all A; are zero. This
contradicts our assumption, and thus the n linearization equations are
linearly independent.

To prove that there are no other linearization equations is very similar.
Pick any linearization equation, say

n n n
Z i3T5 + Z b;x; + Z Y5 + d=20
i=1 =1 =1
so that

n n n
Zaijxif_j + Zbixi + Zijj +d=20
i=1 =1 =1

in k[z1,..., 2], and not all the a;j, b;, ¢, d € k are zero.
The map @ taking (x1,...,2n, Y1, -, Yn) tO

(Z Qi T3 Y5 +Zbi.’l;i +Zciyi +d,0,.. .,0) (2.9)

is a nonzero map from k*” to k™. Hence by Lemma A.0.3 in Appendix
A, there exists a corresponding unique map @ from K x K to K:

Q=¢oQo(p7" x¢7")

such that
n—1n-—1 ) ) n—1 ] n—1 )
QX,Y) = "> AyXTY? + ) BXT +> CY? 4D,
i=0 j=0 i=0 §=0

where not all the 4;;, B;,C;, D € K are zero, and X = ¢~ 1(z1,...,z,)
and Y = (]5__1 (Y1, > Un)-

Because @ is derived from a linearization equation, when we substitute
in Y for X¢+! in this expression, then we will have the zero function
from K x K to K. Via a direct computation we can show that it will
be in the form

n—1
S Aaxy? - x7'y)T =,
i=0
if g > 2 and 0 # n/3,2n/3. From this we conclude that all linearization

equations for F’ are linear combinations of the n components of R, and

that the dimension of the space of linearization equations is n in the case
of ¢ > 2 and € # n/3,2n/3.
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Linearization Equations Toy Example

We will illustrate the use of the linearization equations with a small
example. We will again use the field GF(2?) for k, whose field opera-
tions are given in Table 2.1. The plaintext is given by n = 5 variables
(%1, T2, T3, T4, T5) € k5. In order to represent the public key in a more
compact form we introduce the additional value zg = 1, so that the
public key can be written as a sum of quadratic terms. With the row
vector x = {xg, 71, T2, L3, T4, T5) the public key is given by

0 0 « 1 1 1
a a o2 a 0
1 o2 0 «
B = X 0(2 a o XT7 (210)
a o2
1
a 0 0 0 o 1
a 0 o? o2 1
1 a2 0 0 |
Y2 = X 0 o o xT (2.11)
1 o?
1
1 &2 a o? 1 o?
a2 0 0 1 o2
2
o 0o 1 1
Ys = X a2 o o XT7 (212)
0 o?
2
1 &> 1 &> 0 0
a2 a o? o o?
1 0 & «
Ya = X 1 o o xT, (2.13)
0 o?
1
a2 o2 a 1 1 o2
0 0 & o2 0
2 1 1
ys = x @ ‘1)‘ o o2 X (2.14)
a o
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The entries left blank in the matrices are zero, and they will not be
stored in a real life application. Assume that a plain text produced the
cipher text (1,0,0,0,1). We will show how to recover the plain text with
the help of the linearization equations.

Introduce the value yy = 1 so that the public key can be represented
by the row vector y = (yo, Y1, Y2, 3, ¥4, ¥s). The linearization equations
(2.4), which in our case use m = 5 and n = 5, can now be written in
matrix form

xAyl =0 (2.15)

where A is a 6 X 6 matrix with unknown coefficients A; ;, 4,7 =0,...,5.
For setting up the system of linear equations it is easier if the (m -
1){(n + 1) unknowns are represented by a one dimensional array. With
a notation commonly used in programming we introduce the correspon-
dence

so that we have the following correspondence for the unknowns appearing
in (2.4)

a;; <= Al(m+1)i+j] for i=1,...,n5=1,...,m;
by <= Al(m+ 1)i] for i=1,...,m

c; <= Alj] for 7=1,...,m;

d < A0}

Substituting the public key into (2.15) produces a homogeneous polyno-
mial, which is cubic in z; for i = 0,...,5. Collecting the coefficients of
the 56 different terms, we obtain a homogeneous system of linear equa-~
tions in the 36 unknowns A[0] to A[35]. The rank of the corresponding
matrix is 31, so that the dimension of the linearization equations is
36 — 31 = 5, which is the common case as predicted by Theorem 2.3.3.
Reducing the matrix to row echelon form we obtain the following

A0] = «A[29] + o?A[32] + A[34] + A[35]

All] = A[29] + a®A[32] + A[33] + A[34] + A[35]

Al2] = aA[29] + A[32] + A[35]

Al3] = A[29] + aA[32] + a? A[33] + a? A[34] + cA[35]
A[4] = «A[32] + o? A[33] + aA[34] + A[35)

A5] = «A[32]

Al6] = A[29] + A[32] + o A[33] + A[34] + A[35]

A7) = A[32]+ A[33] + o?A[34]

Al8] o? A[32] + aA[35)
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Al9] = A[29]+ A[32] + o A[33] + A[34] + A[35]
A[10] = A[29] + o?A[34]
A11] = o2A[29] + A[35)]
A[12] = o*A[34] + a?A[35)
A[13] = A[29] + A[32] + A[33] + «* A[34]
All4] = aA[32] + o?A[35)
A[15] = oPA[29] + @®A[32] 4 o A[33] 4 o2 A[34] + o A[35]
A[16] = a?A[29] + aA[32] + o2 A[33] 4 A[34] + A[35]
Al17] = «A[32]
A18] = a*A[29] + o2 A[32] + o2 A[33]
A[19] = A[32] + A[35]
A[20] = A[29] + A[32] + o2 A[33] + o* A[34]
A[21] = A[29] + A[32] + aA[33]
A[22] = o?A[32] + A[33] + aA[34] + o2 A[35)]
A23] = o?A[29] + o? A[32] + A[34]
Al24] A[32] + A[34] + A[35]
A[25] = o2A[32] + o A[35]
A[26] = «A[29] + A[32] + A[35]
A27] = oPA[32] + aA[33] + aA[34] + a® A[35]
A[28] = A[29] + A[34]
A[30] = «A[33] 4+ aA[34] + aA[35]
A[31] A[32] + a? A[33] + A[34] + o? A[35]

where A[29], A[32], A[33], A[34] and A[35] are free parameters. These
values and the given cipher text

y = (1,91, v5, ¥3, ¥s, vs) = (1,1,0,0,0,1)

are now substituted back into (2.15), and the coefficients of the free
parameters A[29], A[32], A[33], A[34], A[35] are set to zero to give the
following set of equations for the plaintext:

2
ary+x2+x4+0” =

o2xg + a3+ g+ a5+ o =
ax1+x2+a2x3+x5+1 =
ary +oaxs + x4 + a2:v5 =

a2w1 -+ (12.'152 4+ x3 + axy

oo o o o
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The system of equations has the following solution

1 = axs+ o’ (2.16)
X2 = x5+ a, (2.17)
T3 = x5+, (2.18)
T4 = Os. (2.19)

Finally we can find the value of the plaintext in one of two ways.

In the first method we try all possible values of x5 € k in order to
find out which of the possible plaintexts produced the given ciphertext.
With the different values for x5 in the solutions (2.16) to (2.19) and the
public key in (2.10) to (2.14) we find the following possibilities:

plaintext ciphertext
(?, a,0%0,0) = (1,0,0,0,1)
(1,02 0, 0,1) =  (0,0,0,0% a)
0,0,1,6%a) = (a,1,0,0,0%)
(a,l,O,l,aQ) = (a?,02%,0,1,0)
Only the first case produces the given ciphertext and thus we know that
the original plaintext was (o, o, o2, 0,0).
In the other method we substitute the linear equations (2.16) to (2.19)

into the public key (2.10) to (2.14) and set it equal to the given cipher-
text, that is

=
Y2 =
Ys
Y4 =
Ys

= o oo =

This results in quadratic equations, which the free parameter has to
satisfy. In our case the free parameter is z5. Some of the resulting
equations are trivial, but others are zZ = 0. From this we conclude that
x5 = 0 and find the remaining plaintext from (2.16) to (2.19).

Linearization Equations for Multiple-Branch MI

Using the notation of the multiple-branch case discussed above, it is
evident we have the following theorem.

Theorem 2.3.4. Let L be the space of linearization equations for a
given implementation of MI and fix a ciphertext (yy,...,y,) € k™. Let
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Y' = o7 yl,...,y.) and define Ly to be the space of linear equations
yl yn

(in the plaintext variables x1, ..., x,) obtained by substituting in y; in

fory; (for j=1,...,n) in every element of L. Then with probability

(@™~ 1)(¢" ~1)---(¢g"™ — 1)
qn

dimy Ly is at least

b
2n
n— Zng (ng, 6;) > Ky
i=1

Therefore the linearization attack for the single-branch case can also
be applied to the multiple-branch case. Additionally, there are refined
methods suggested by Patarin [Patarin, 2000] that improve the efficiency
of the algorithm where one separates the branches before attacking the
system.

From a mathematical point view one can see that it is possible to sep-
arate the different branches using the idea of finding a common invariant
subspace. This idea was pursued in [Felke, 2005] for the more general
case of multi-branch HFE.

Remark 2.3.2. [t is not difficult to see that the attack of Kipnis-Shamir
[Kipnis and Shamir, 1999] on the HFE cryptosystem can also be used to
altack the Matsumoto-Imai cryptosystem. In this case one can actually
recover the private key, and it applies to both single- and multiple-branch
cases. One can also see that the linearization attack can be viewed as
the prototype and the origin of the XL algorithm for solving polynomial
equations.

2.4 Another Attack on Matsumoto-Imai

In this section, we will present an attack that is an extension of the
Kipnis-Shamir attack on HFE for use against the Matsumoto-Imai cryp-
tosystem. Unlike the linearization attack, this attack will allow us to re-
cover the private key. This attack has not been published before, though
it is probably known to the experts in this area. The importance of this
new approach is that it may lead to a new attack on MI-Minus, which
then can be used to attack Sflash?2.

The key idea of the Kipnis-Shamir attack on HFE is to attack the
problem from its origin. The constructions of MI and HFE are based on
the idea that we can construct a map on a k-vector space from a map
on an extension field. Their idea was to use the structure of the map on
the extension field to design the attack on the k-vector space mapping.
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With this point of view, if F' : k* — k™ is a given Matsumoto-Imai
public key mapping, then the first step of the attack is to lift /' back
to a map over K; i.e., we must study ¢~ o F o ¢, in order to use the
underlying algebraic structures from the extension field, not the vector
space over the small field.

To simplify the exposition we assume that g > 2 and that Ly, Lo
are linear instead of affine, in effect ignoring the constant terms. In
other words, we assume that the fi,..., f, are degree two homogeneous
polynomials in k[z1, ..., 2,]. Also, we agssume that we know the field K
and hence the map ¢ : K — k™. If we do not have this information,
then we will produce L}, L} and F”’ such that F' = L} o F' o L,. We now
justify this claim.

As before, the legitimate user picks an degree n irreducible polynomial
g(x) € k[z] in order to construct K = k[z]/g(z) and ¢ : K — k™.
Suppose the attacker has chosen another degree n irreducible polynomial
h(y) € k[y] and constructs K’ = k{y]/h(y) and ¢ : K’ — k™. Of course,
K and K’ are isomorphic, and in fact, k-linear field isomorphisms exist
between K and K’'. Let a(y) € K’ be such that

g(a(y)) = 0 mod h(y),

and let ¢ : K — K’ be defined by

(p(x)) = p(a(y)) mod h(y),

for p(x) € K. It is easy to check that ¢ is a k-linear field isomorphism
between K and K'.
Observe that

F=1ILi0FolLs
=Lio(¢oFog™")oLy
:Lloqbo(b_loL)oFo(L“loL)og[)_loLQ
=(Liogor™HNo(oFor™)o(tod™ o Ly).

Define My : K — k", F' : K’ — K’, and My : k" — K’ by

M1=L10¢OL—1
Fl=,0Fo;,™!
M22L0¢_10L2.



36 MULTIVARIATE PUBLIC KEY CRYPTOSYSTEMS

Observe that M; and My are k-linear vector space isomorphisms, and
that

FX) = ((L-l(X))qo“)

(e ()

— xa’+l
= F(X).
We consider whether or not there exists L] and L/ such that
F:L’loqj)oploip_loLé,

or equivalently, for a given My and My, whether or not there exists L}
and L} such that

Loy = M,
1/}_10L/2=M2.

Solving for L] and L), we see that

Ly = Myoyp™?
L,2 = 'l/} o} MQ.

The attacker cannot know ¢, and thus cannot know M; and M,.
Therefore the attacker cannot know which L] and Lf will be obtained.
However, if some L] and L} can be found, then these are just as useful
as the original L1 and Lg for the attack since we can then easily invert
the map F' anyway. Therefore it does not really matter if the attacker

knows the extension field K or not, and thus, there is no advantage in

hiding the field structure of K. From now on, we assume that we know
the field K.
Now, from Lemma A.0.2 in Appendix A, we know that

n—11-1

ploFop(X) =53 A XTIt (2.20)

i=0 j=0
for some A;; € K. We also know that
proFogp=¢pro(LioFolLy)og
=¢to(Lyo(poFogp oLy oo
=(¢ptoLiog)oFo(¢p oLrog), (2.21)
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where the parentheses are added to show the composition is of three
maps defined on K. In particular, we know F' and we can construct
¢~ o F o ¢ from the known F. Our attack will focus on using the
properties of these known maps to find both of the unknown linear maps
¢t oLiogand ¢! oLyo ¢ In particular, we will study

(¢”10L1‘10¢)o(¢“1o}7’o¢):Fo(qﬁ”loLQO(j)),

and the properties of the functions in this formula.
From Lemma A.0.1 in Appendix A we have the following equations:

n—1 )
¢pLoLiog(X)=> L, X (2.22)
j=0
n—1 ]
¢$r oLy o p(X) =D L X7 (2.23)
j=0
n—1 )
g7 o Lyo d(X) = Ly X7 (2.24)
=0

where L;; € K. Our attack comes down to finding the L;;, from which
we can then construct Lq and Lo.
Remark 2.4.1. We make special note that the notation Ll_j1 represents

the coefficient of X% in the polynomial representation of Lfl. This is to
be distinguished from (L1;) ™1, the multiplicative inverse of the coefficient
of XT in the polynomial representation of Li. In general these two
notations will not refer to the same value in K. All other exponent
notations will be written as usual without parentheses.

Now for any polynomial G(X) € K[X] of the form

~1 i
G(X)= "z: Z Ginqurqju

i=0 j=0

we can associate a unique n X n symmetric matrix G defined by

2G” ifi = j;
[G]U = Gi]' ifi> j;
Gy ifi<j.

Note that this matrix is such that

GX+Y)-G(X)-GY) =xGyT,
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where x = (X, Xq,...,Xq"Al) and y = (Y, Yq,...,anul). We make
a special note here that the index of the rows and column range in
0,...,m—1,and not 1,...,n. We also note that because the character-
istic of K is two, the entries on the diagonal of G are all zero.

Remark 2.4.2. The trouble with the case q = 2 is that in F the square
terms and the linear terms are now the same and therefore mized. But
because of the symmetrization process, we realize that these linear terms
are only related to the diagonal elements in the matriz, which are anni-
hilated here anyway. Therefore there is no problem with this attack for
the case q = 2.

With this correspondence between homogeneous quadratic functions
on K and n x n matrices with entries in K, we will shift from the
function point of view to that of matrices. In particular, let F be the
matrix associated with F. Then clearly F has only two nonzero entries:
[IE]OH =1and ['E]QO = 1. To see the basic idea of the attack, we must first
understand how the bilinear form behaves if we compose the function
by a k-linear function from the left or right. The results are presented
in the following two lemmas that deal with how these matrices behave
under function composition.

Lemma 2.4.1. Let G(X) be as defined above, let S(X) = Y 7=} §;X¢
and let G’ be the symmetric matriz associated with G(S(X)). Then

G =wiGw,
where W is an n X n maltriz defined by

[Wlij = SI-

Jj—i
and j — 1 is calculated modulo n.

Proof. We begin by expanding G(S(X)):

u

>—n22ujGw (Z&X‘l)

u=0 v=0

n-1 u " -1 q*
Sy 6, (Zslxq> (zslqu>

u=0 v=0 =0

n—1 u n—1
— ZZGW <Z Sq Xq ) ZS?vquH)

u=0 v=0 =0
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u=0v=0 =0 7=0
n—1 u n—1n-1
. q'u q’U ql+q]
=33 Cuw Se,Se X
u=0 v=0 =0 j=0
n—1ln—-1 /n—-1 u
_ @ @q” a+¢
=33 CunSE ST, | X
=0 j=0 \u=0v=0
n—1 14 n—1 u
_ q q q q q*+q’
_ Gun (SE,52, + 81,87, ) | X
=0 j=0 \u=0v=0
n—-1 /n—-1 u
Z q q 2¢"
- GuUSw—uSw—v X
w=0 \u=0v=0

Thus the coefficient of X7+ for i > j is

n—1 u

ZZGUU( i—-u j U+S;1 uqu v)

u=0 v=0
This is the same as [G'];; for 7 > j, since:

n—1

Gy = WT GW);; = Z (W 0 [G W1y
o)

n—1
quju( [G]U'U j—v>

v=0

n 1 n

il
3 g
[l
- o
|d
o

It
(]

u=0
n—1n-1
:ZZ[G]W i qu v
u=0 v=0
n-1 u n—1 . )
= ([G]w ST 4 [GlouST 52 u) ~ > [Glust,s,
u=0 v=0 =0
n—1 u
:uzov:oam,(sfu 4+ 8T8 )
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Lemma 2.4.2. Let G(X) and S(X) be defined as in Lemma 2.4.1. De-
fine G” to be the symmetric matriz associated with S(G(X)). Then

n—1
G’ =Y SG,
=0
where Gy is the n X n matriz defined by

(Giliy = G150
with both 1 — 1 and j — [ calculated modulo n.

Proof. As with Lemma 2.4.1, we expand G(S(X)):
n—1 n—1 u @
= Z Sl (Z Z G XtI"-HI )
=0 u=0 v=0
n—1 n—1 u
-3 s (zz cfxee)
= u=0 v=0
= Zgl ZZGT e X

=0 j=0

= Zi <§: SIGL, Z) X0+

i=0 j=0

Thus the coefficient of X7+ for ¢ > jis

n—1 ,

y
Z SIGL ;1
=0

This is the same as [G”];; for ¢ > j, since:

n—1 n—1
)
G = > SilGiliy = Y SIGL, ).
=0 {=0
]

Suppose that F’ is the matrix associated with Fo (¢ 1o Lyo¢). Then
from Lemma 2.4.1 we see that

F'=LTFLy, (2.25)
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where the n X n matrix Ly is defined by

Lol = L, (2.26)

Now suppose that F is the matrix associated with ¢ ™' o F ° ¢, and that
F” is the matrix associated with (¢~ o L7t 0 ¢) o (¢* o F o ¢). Then
from Lemma 2.4.2 we see that

n—-1
F'=>" Lj'Fi, (2.27)
1=0
where _ .,
[Fl]ij = [F]g_lj_l- (2.28)
However, we have seen that
(¢ toLitod)o(p P oFog)=Fo(p™oLyod), (2.29)
and hence _ -
FleM=F, (2.30)

where M denotes the common value of F’ and F”.

Clearly the matrix F has rank equal to two. Since L is invertible, we
see that M = LI F L, has rank equal to two as well. But this means that
the K-linear combination

n—1 _
M = ZL;} F,
=0

of the n known matrices Fy, ..., F,_1 has rank two, a condition we can
use to find the values of Ll‘ll. In fact, this is a so-called “MinRank”
problem.

Definition 2.4.1. (MinRank Problem) Given nxn matrices A1, ..., Ap,
over o finite field K and r < n, find a non-trivial linear combination of

A=A+ anAn
such that the rank of A is less than or equal to r.

The general MinRank problem has been studied by Shallit, Frandsen
and Buss [Shallit et al., 1996], among others. It generalizes the so-called
“Rank Distance Coding” problem posed by Gabidulin [Gabidulin, 1985],
which has been studied in [Stern and Chabaud, 1996; Chen, 1996]. This
problem is a generalization of the “Minimal Weight” problem of error
correcting codes [Berlekamp et al., 1978]. The general MinRank problem
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was proven to be NP-complete in [Shallit et al., 1996] for the case where
r = n — 1, which in this case corresponds to the problem of finding a
linear combination of Ay, ..., A,, which is singular.

Their proof uses the technique of writing a given set of multivariate
equations as an instance of MinRank. This result can be extended to
other cases like r = n — 2,n— 3, ..., however MinRank is not too hard
when 7 is very small, as is our case.

The approach of Kipnis and Shamir is to use a new relinearization
method to solve this problem. Later, Courtois [Courtois, 2001] proposed
a more standard and straightforward method to solve this problem that
originated from an idea of Coppersmith, Stern and Vaudenay [Copper-
smith et al., 1997].

In the most general case, we treat the Ay, ..., Ay as known, and the
a1, ..., Q0 as variables. If A = a1A1 + -+ + oAy 1s to have rank r,
then each (r+1) x (r +1) submatrix minor must be equal to zero. This
means that each (7 + 1) x (r 4+ 1) submatrix yields a total degree r + 1
polynomial equation in the m variables aq, ..., anm.

In the case under consideration we have » = 2. We also know that
the A; = F; are symmetric with diagonal entries equal to zero. This
means that the number of nonzero degree three polynomials in the vari-
ables Lyg,..., LT} is (3)((3) — 1)/2, where the equation obtained by
choosing indices i1, 9, ¢3 for the rows and jj, jo, j3 for the columns is the
same as the equation gotten by choosing indices 7, jo, j3 for the rows
and i1, 19, 13 for the columns, and we discard the trivial equations gotten
by taking 1 = j1, i2 = jo, and i3 = j3.

Since the equations are homogeneous, solutions should be thought of
in the projective space of K™. This means that if we find a solution vector
(L1gs-- - L7t )), then (aLyd,...,aLyl |) will also be a solution vector
for any nonzero o € K. We may as well then take Ll_ol = 1 and substitute
this into all the equations to arrive at a system of (3)((3) — 1)/2 degree
three equations in the n — 1 variables L', ..., L1_71L—17 which we expect
will be easy to solve [Courtois, 2001].

At this point we have ¢! o Ll_1 o ¢, and thus L1, so we still need to
to find Ly. Along the way we have found M = F/ = Lgf:Lg, which we
will now use to find Ly. We have two ways to proceed. First, if F is
easily inverted (i.e., if the ¢-Hamming weight degree of F(X) = X* is
relatively small), then we can directly compute ¢! o Ly o ¢, and hence,
Ly, from (2.29). Otherwise, we proceed as did Kipnis and Shamir.

Let uy,...,u,_p be a basis of the left kernel of M, where D is the rank
of M which we expect to be two. This means that for<=1,...,n— D
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we have
0=u;M=u; LTFL,.
The invertibility of Ly implies that
0=u;L]F,
and so, because of the special form of IN:, we know that
(0,a1,a9,...,a9-1,0, @941, - - -, an_1) = u; LL

for some ay,...,a9.-1,Q9+1,-..,an—1 € K. Since the u; are known, we
evidently have 2(n — D) linear equations in the n? entries of L (or
equivalently Ly) by taking the dot product of u; with the 15¢ and gth
columns of Lg, for: =1,...,n— D. In fact, the equations are of the
form

n—1
Z uingj =0
J=0

n

-1
qﬁ
zuijLQj—O =0.
7=0

The first equation is linear in the variables Ly;. The second equation
can be transformed into a linear equation by raising both sides to the
q"~? power, yielding

n—g
n—1 q
2]
0= UZ]LQJ—()
Jj=0
n—1 n—6
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Thus we have 2(n — D) equations

n-1
Z uingj =90
Z uzj+0L2J

in the n unknowns Lgg, L21, ...y Lon_1. Assuming these equations are
linearly independent, and that 2(n — D) > n, or equivalently D < n/2,
we will be able to solve this system and finally obtain ¢! o Ly o ¢, and
thus Lo.

For more details of this attack, including time and memory complexi-
ties, the interested reader should check the related HFE case in [Courtois,
2001].

2.5 Matsumoto-Imai Variants

Two methods have been proposed to improve the security of the
Matsumoto-Imai cryptosystem. One is called the “Minus” method, and
is designed to resist the linearization attacks proposed by Patarin. The
other is called the “Plus” method, and is used to make a cipher injective,
thus enabling us to decrypt the ciphertext. Among all the Matsumoto-
Imai variants proposed for practical use, the most successful is the Minus
variant Sflashv?

The Minus Method

The Minus method was first suggested in [Shamir, 1993] and dis-
covered independently by Patarin and Matsumoto. This method was
utilized by Patarin and his collaborators in [Patarin et al., 1998] and
elsewhere. As we will see in the case of Matsumoto-Imai, the applica-
tion of this method clearly eliminates the possibility of the linearization
equation attack, if the Minus number r is not too small.

The Minus method consists of deleting a few, say r, polynomial com-
ponents from a given multivariate public key. For example, suppose
F : k™ — k! is a public key cryptosystem with polynomial components
fi,-- fi € klz1,..., 7). In most cases we have | = n, but the Mi-
nus method can also be used in other cases. Once we apply the Minus
method to F, for example by deleting the last » components, we will
have a new map F~ : k® — k'™ defined by

F—(xl,...,xn) =(f1, - fror)- (2.31)

The cryptosystem for signatures is, in general, set as follows.
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The Public Key
The public key includes:

1.) The field structure of k;
2.) The set of polynomials: (fi,..., fi_r) € klz1, ..., 2y

The Private Key

The private key is the same as in the original cryptosystem.

The Signing Process

The document (or its hash value) is Y~ = (y},...,4,_,), a vector in
k™7, A legitimate user first chooses (or produces in some way) n — r
random elements y,,_,.,...,4, in k, which are appended to ¥Y'~ to

produce Y' = (y{,...,y,) in k™. Then
X' =(z},...,20) = F7Y(Y"),

is calculated using the same decryption process as in the original cryp-
. - . 1
tosystem. Finally, X’ is the signature of the document Y ~.

The Verifying Process

Anyone who receives the document Y'~ and its signature X’ first
obtains the public key and checks if indeed

(AX), o fen(X) =Y

If equality holds, then the signature is accepted as legitimate, otherwise
it is rejected.

In the signing process it is very important that the appended values
Yp—ri1s -+ > Yp are kept secret, otherwise they could be used to recover
the missing polynomials to attack the systems as was shown in [Okeya
et al., 2005].

The Minus method is particularly useful for converting an encryption
scheme (which must be one-to-one) into a signature scheme since we no
longer need injectivity. The security of this family of signature schemes
is based on the assumption that to solve such a set of [ — r nonlinear
equations in n variables is very difficult.

In order to illustrate a signature scheme we continue with the toy
example, which we used to show how the linearization equation attack
works. This time only the polynomials (2.10) to (2.13) are made publie,
that is (2.14) is hidden and not part of the public key.
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The person signing a document has the secret key and with it the
linear transformations or their inverses:

&2 a o 1 1 Y1 — o
0 0 a® o 1| |y—a?
LT, v2,u8,90ys) = | a 1 a® 1| | y-0 |, (232
a o2 0 a 1 yg — 1
0 0 o o 1 ys — 0
o> 1 o 0 1 y —1
a 1 o 1 « y2 — 0
Lyt (yi g, yssyasys) = | 0 o® o a 0| [ys—a®|.(2:33)
a 1 1 a o Yy — o
0 1 0 a o ys — a?
Also available for the signing process is 8 = 3 of the Matsumoto-

Imai map, which gives F~1(X) = X362 and the irreducible polynomial
g(z) =25+ 23+ z + 2.
Assume that the document (plaintext) to be signed is
(?, a, a?,0).

As mentioned above, the additional value should be chosen at random.
In our toy example there are only four possibilities for y5, and we will
display them all

Y’ (Document) X' (Signature)
(0?,0,0%,0,00 = (0,0,0,0,0?),
(@, 0,0%0,1) = (1,1, 0),
(@® a,0%0,0) = (1,0,1,1,a)
(@, 0,020,068 = (c?,1,1,0,07)
Any of these signatures, say the first one with 1 = 0, 9 = @, z3 = a,

z4 = 0, and z5 = o2, together with the public key (2.10) to (2.13) will
verify that the signature is valid, since we find

(yla Y2, Y3, 3/4) = (aga «, aza 0)

If the four polynomials of the public key are used for an attack via
the linearization equation, the attacker would see that dimy Ly = 1 and
would only find the equation

T1 = a2x2 + axs + a2;v4 + axs + a2,
a relationship satisfied by any of the four signatures. This is not enough
to forge a signature. In general, when r becomes larger the linearization
equations for the Minus cryptosystem disappear completely.
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TFlash and Sflash

The New European Schemes for Signatures, Integrity, and Encryp-
tion project (NESSIE) within the Information Society Technologies Pro-
gramme of the European Commission made its final selections for cryp-
tographic primitives at the beginning of 2004 after an evaluation process
of more than two years [NESSIE, 1999]. Sflash¥?, a fast multivariate sig-
nature scheme, was selected by NESSIE as a security standard for use
in low-cost smart cards. Sflash¥? is called Flash by NESSIE. The initial
submission Sflash¥! was flawed, as a way was found to break it [Gilbert
and Minier, 2002]. The flaw was due to the choice of GF(2) for the field
elements. It had been deliberately chosen to minimize the size of the
public key. In any case it was not a fatal flaw and it could be corrected
easily by choosing GF(27) as the field elements in Sflash”? [Patarin et al.,
2001; Akkar et al., 2003). The new version has a signature length of 259
bits and a public key of 15 KBytes.

The authors of the submission claimed that Sflash”? is the fastest
signature scheme in the world, and is the only digital signature scheme
that can be used in practice for smart cards. Later, due to additional
security concerns, the designers of Sflash recommended a new version
called Sflash¥® [Courtois et al., 2003b], which is essentially Sflash¥? with
a longer signaturc. Sflash*® has a signature length of 469 bits and a
public key of 112 KBytes. Later, the designers discovered that their
security concerns are unfounded and so Sfalsh? is again recommended
[Courtois, 2004]. At this point it seems that SHash??, and with it Flash,
should be considered secure.

For ease of exposition we give the basic implementation of Sflashv?.
The reader is referred to [Akkar ct al., 2003] for technical details. Sflash
is a Matsumoto-Imai Minus variant and it uses the single-branch map
F as given in (2.1) with 6 = 11.

Furthermore, Sflash uses n = 37 and r = 11 so that F'~ : k37 — £26
is defined by

F_(Z'l,.‘ .,(Ifn) = (fl?"'7f—n—7‘)’

where fi,..., fag € k[z1,...,237]. The Sflash scheme has the following
structure.

Public Key
The following information can be made public, and is needed in order

to verify a given Sflash signature:

1.) The field k = GF(27), including its additive and multiplicative struc-
ture. In particular, k = GF(2)[z]/(z” + z + 1).
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2.} The 26 quadratic polynomials fi, ..., fos € k[z1,. . ., 237).

Private Key

The following information should be kept private, and is needed in
order to generate Sflash signatures:

1.) A, arandomly chosen 80-bit long secret key;

2.) The two invertible affine transformations Ly and Lg associated with
the Matsumoto-Imai map F'.

Signature Generation

Let ¢ : k — GF(2)7 be the usual vector space isomorphism. The
subscripts below refer to the position in the bit string, and “||” denotes
the concatenation of bit strings. In order to sign a message M, we
execute the following steps:

1.) Compute M1 = SHA-1(M) and M2 = SHA-1(M1), two 160-bit
strings, using the SHA-1 hash function.

2.) Let

<
|

M1||(M21, ..., M292) = (V1, . .., Vig)
W = SHA-L(V||A) = (W,..., Wn).

3.) Let

M =y (Vi,..., Vr)
My =y "N Vs,..., Via)

Mjg =" (Viz, ..., Visg2)

My, =~ (Wh, ..., Wy)
Mg =1 (Ws,. .., W)

My = (Wa, ..., Wir).

Finally let M’ = (M1, ..., M};).
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4.) Calculate the signature S of M by:
S =F"1(M
=Lyto Flo LY (M)
=Ly opo Flogp o LTH(M). (2.34)
The pair (M,S) represents the message M with signature S.

Signature Verification

Given the message-signature pair (M, .S), we can verify the signature
by executing the following steps:

1.) Signature verification begins in the same way as the generation.

Compute
M1 = SHA-1(M),
M2 = SHA-1(M1)
V = MI|(M2,...,M22) = (V1,...,Viga).
2.) Let

N{ =41 (Vi,..., V%)
Ny =9~ Ve, ..., Vig)

Njs =9 (Vizs, . .., Vis2)
and N' = (N7,..., Nag).
3.) If N' = F~(S), then accept the signature S as valid; otherwise reject

It is clear that in order to forge a signature for the message M, we
need to be able to find a single pre-image of N’ under F~; i.e., find one
solution (not necessarily all solutions) to a system of 26 equations in
37 variables. Here the secret key A is also very important in terms of
security [Okeya et al., 2005]. Even if only this secret key A is leaked,
one can defeat the system easily by using it to find the missing (Minus)
polynomials. Finally, it is not hard to see that in the case of Matsumoto-
Imai, the Minus method eliminates the possibility of the linearization
equations attack.

As was previously mentioned, the Minus method is only suitable for
signature schemes, where we need to find only a single element in the



50 MULTIVARIATE PUBLIC KEY CRYPTOSYSTEMS

pre-image (as opposed to a unique pre-image required for encryption).
The “Plus” method is one way in which we can modify a Minus scheme
for use in encryption.

The Plus Method

The Plus method amounts to adding a few, say s, randomly chosen
polynomial components to a given multivariate scheme, and then mixing
them into the public key through an invertible affine transformation.
Clearly the degree of the Plus polynomials should be chosen to be the
same as the underlying scheme. For example, let us suppose that F .
k™ — k! is a mapping associated with some multivariate scheme. We
append the s randomly chosen polynomials p1,...,ps € k[z1,...,x,] to
create a new map F't : k" — ks defined by

F+:LSO(fla"'aflapla"'aps)a (235)

where Lg : ki*s — kP in an invertible affine transformation that
mixes the Plus polynomials into the system.

We would like to point out that originally the main purpose of the
Plus method was not to improve the security of the original scheme
associated with F, but rather to make the map F, which is not injec-
tive, into an injective map, so that it can be used for encryption. In
other words, if F~!(y], .. .,¥;) has multiple elements (¢", in the case of
Matsumoto-Imai-Minus), then the Plus polynomials can be used to re-
duce the number of pre-images to a single element if s is big enough.
Equivalently, the Plus polynomials can help to differentiate which is the
real plaintext from a set of possible candidates. From a mathematical
point view, the Plus is a simple method to make a map M, which is
not injective, into an injective map M by adding more components (an
embedding map). Roughly speaking, each additional Plus polynomial
will reduce the probability of having multiple pre-images by a factor of
q.

The Plus method does not improve the security of the Matsumoto-
Imai public key cryptosystems when it is applied directly. It does nothing
substantial to help in resisting the linearization equation attacks. The
linearization equations are still there unlike in the case of the Minus
method when there are not enough of them.

As an example of combining both the Plus and Minus methods, we
now present the Matsumoto-Imai-Plus-Minus public key cryptosystem.
Let £ : k™ — k™ be a polynomial mapping whose components

f’l,...,fnek[wl,...,xn]
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form the public key of a Matsumoto-Imai public key cryptosystem.
Delete the last 7 polynomials, add s randomly chosen degree two poly-
nomials p1,...,ps € k[z1,...,zp|, and define the map FE . g — k™
by

Fj: = L3 o (.fl) .- "fn—’r"pla .. '>pS) = (f1i7 - '7f7’l:i;)’ (236)
where r < s, m =n — 7+ s and Ly : £ — k™ is an invertible
affine transformation. The Matsumoto-Imai-Plus-Minus scheme has the
following structure.

Public Key
1.) The field & including its additive and multiplicative structure;

2.) The m = n—r+s degree two polynomials f=, ..., ff € klz1,...,2,].
Private Key

1.) The degree two polynomials py, ..., ps € k[x1, ..., Zn];

2.) The three invertible affine transformations L1, Lo, and Ls.

Encryption

Given a plaintext (2}, ..., 2}) € k™, calculate (y1,...,y,,) € k" with
the public polynomials:

Wh, .. yh) = FE(l, ..., 2h).
Decryption
To decrypt a message we execute the following steps:
1.) Calculate (z1,. .., Zn—rts) = Lgl(y’l, e Ynrts)-
2.) For each w = (wy,...,w,) € k", compute
tw = (t1,. .., tn) = Fﬁl(zl, ey Zpery Wy e, W),
and define T = {(w, t,,) | w € k" }.

3.) For each (w,ty) € T, check if

pitw) = Zn—rti

holds for all ¢ = 1,...,s. Keep each t,, that satisfy this criteria
and discard the rest. If s is large enough, we should have only one
element left, the plaintext (z},..., ).

Here the Plus method also serves the purpose of improving the security
once the map L3 is applied, since after the random polynomials are
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mixed into the system we cannot tell which are the original polynomials
from the Matsumoto-Imai cryptosystem. This at least will make it too
difficult to use any method that can be applied to the Matsumoto-Imai-
Minus cryptosystems directly.

2.6 The Security of the Matsumoto-Imai Variants

Before using either the Plus or Minus method, we must decide how
large (or small) the Plus and Minus should be. For security reasons we
should not delete too few polynomials (r should not be too small), and for
efficiency reasons we should not add too many polynomials (s should not
be too big). The resulting problem of how to choose r and s optimally
is not completely settled, though there are some results [Patarin et al.,
1998], etc. In this section we will concentrate on the security analysis of
the Minus variant of Matsumoto-Imai.

Cryptanalysis of Sflash*!

Recall that for Sflash! the field k is chosen to be GF(2), and in
particular k = GF(2)[z]/(z” + x + 1). The extension field K is chosen
to be k[z]/r(z), where r(z) = 237 + 2'? 4+ 20 + 22 + 1 is irreducible in
k[z], and we know that n = 37, # = 11 and r = 11. The two secret
maps L1, Lo : k™ — k™ are specially chosen in that they are taken from
a small subset of invertible affine transformations on £™ whose matrix
representations have entries only from the subfield GF(2).

Although we can use Sflash to sign documents from k26, it is not
hard to see that due to the special choice of r(x), Ly and Lg, the
public signature verification polynomials all lie in the polynomial ring
GF(2)[x1,...,z37]. This reduces the required memory by a factor of
seven from what it otherwise would be. On the other hand, it is straight-
forward to check that the public polynomial components obtained by
taking ¢ =2, n' =n =37 and ¢ = 3 (so that the fields are k' = GF(2)
and K’ = GF(237)) will yield exactly those of F'. This is because

3=7x11mod 37.

Furthermore, if we delete ' = r = 11 polynomials, we have a version of
Sflash that is much easier to attack. The strategy of Gilbert and Minier
[Gilbert and Minier, 2002] is to find the G F'(2)-linear span of the deleted
polynomials of this “smaller” version of Sflash. Any subset of eleven
linearly independent polynomials from this span can be used with the
original public polynomials to calculate signatures in the original Sflash
signature scheme.

We may now think of '~ as a Matsumoto-Imai map from GF(2%7)
to GF(2%%). Since GF(2%7) is a relatively small finite field, we can use
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brute force to the invert the map F~ over GF(2%7). In other words, for
every Y~ € GF(2%%) we can efficiently compute the set

Uy- ={X eGF(2*) | F(X)=Y"},

which can be stored for later use during the attack.
The strategy of the attack is to find r additional quadratic polynomials
G, ..., q of the form

n i—1

(H(xla c Z Z Q1T T5 + Z Buzy, (237)

i=1 j=1

where 1, By € GF(2), which together with the n — r public quadratic
polynomials from £~ will span the same linear space as all of the com-
ponents of F' except for some constant shift. This gives us an equivalent
Matsumoto-Imai polynomial mapping F’ that can then be subjected to
the linearization attack by Patarin. For a given message we cannot use
F’ to produce the exact same signature as we would obtain by using F.
However, since the span of the components of £ is the same as the span
of the components of F, we can nevertheless produce valid signatures.
In other words, if the legitimate user computes S as the signature of
M, then at the end of this attack we will be able to compute S’ such
that F~(S) = F~(S5"), and therefore can make a successful forgery of
the legitimate signature.

The key step in the attack is the characterization of the coefficients
of the q(x1,...,2,) by using the fact that F is an invertible map and
therefore one-to-one. This allows us to reduce the possible candidates for
qi(x1, ..., xy,) from the space of all quadratic functions with coefficients
in GF(2) (a space with dimension n(n — 1)/2 4+ n = 703) to a much
smaller space of dimension 4 x 37 = 148. Though this space is still
much too large, once we get to this point we will be able to reduce the
dimension further to solve our problem.

The First Step of the Attack

We begin by noting that F' is one-to-one, and therefore for each Y~ =
(Y1, -.,926) € GF(22%), the set Uy~ will have exactly 2!! elements.
Moreover, for each ¢; of the form in (2.37) we must have

> a(X)=o, (2.38)

XeUy—

for I = 1,...,11. This also follows from the injectivity of F, which im-
plies that exactly half of the elements X € Uy - are such that ¢(X) =0,
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while the other half are such that ¢;{X) = 1. Therefore, each Uy - pro-
vides one linear equation in the 703 coefficients of the quadratic func-
tion ¢q;. Generating Uy for each Y~ can be done by simply calculating
F~(X) for each of the 237 elements X € K.

According to Gilbert and Minier, it is often only necessary to compute
Uy - for N = 1000 (a little more than 703) different Y ~. In any case, the
N sets Uy - can be used to obtain an NV x 703 matrix with coefficients
in GF(2), whose kernel can be computed. This kernel, which we denote
Q, has dimension 37 x 4 = 148, and contains the GF'(2)-vector space
spanned by the 26 public polynomials and the 11 deleted polynomials
(without constant terms). We now explain the appearance of spurious
polynomials, polynomials not in the span of the components of . Before
we do this, we first need to say a few words about discrete derivatives.

Discrete Derivatives
We consider only the case of a finite field of characteristic two. Let V'

be a vector space and let g be any function from V' to V. The derivative
of g with respect to the vector v € V is then defined to be:

I(g(x)) = g(z) + g(z +v).

More generally, if W = {v1,..., vy} is a subset of vectors in V/, then
the derivative of g with respect to the set of vectors W is defined to be:

Ow (9(2)) = Oy (Ou, (- (Oun (9(2))) - +))
= > gl@+w),

weWw!’

where W’ is the set of all linear combinations ojv1 + - - - + vy, with
A1y ...y O € {0,1}

Now suppose W is an m-dimensional subspace of V', and that W has
basis B = {v1,...,Um}. Then we define the derivative of g with respect
to the vector space W as just dp(g(x)), though we will abuse notation
and write Ow (g(z)). We note that if V' is a GF(2)-vector space, then

ow (g(z)) = > glz+w).
wew
Finally, let A be an affine set of dimension m, so that A = v + W for
some vector v € V and m-dimensional subspace W. Then the derivative
of g with respect to the affine set A is defined to be dp(g(z + v)), where
B is any basis of the subspace W. As before, we will abuse notation and
write d4(g(x)). If V is a GF(2)-vector space, then

dalg(@) = Y glz+v+w).

weWw
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The following two results about the discrete derivative will be partic-
ularly useful when the vector space has an additional ring structure.

Lemma 2.6.1. Suppose K 1s a degree n field extension of GF(2), let
g(x) be a nonzero polynomial in K|z], and pick any a € K. Then the
Hamming weight degree of 0,(g(x)) is strictly less than the Hamming
weight degree of g(x).

Proof. Since the discrete derivative is clearly additive, it suffices to con-
sider the case of g(x) = 2! for [ > 0. Suppose that there are m nonzero
terms in the binary expansion of {:

[ =2 2% ... 2m,
Then
Ba(9(z)) = g(x) + g(x +a)
=& + (z +a)
=zt + (z + a)2i1+2i2+~~-+2im
=z! (x+a)2i1(m+a)2i2--~(x+a)

=z + (inl +a*" )(avzi2 + agiz) . -(:UQim + a2im)

2149212 4.4 2tm

2im

=zl 4z + lower weight terms

= 22! + lower weight terms

= (0 + lower weight terms,

where the last equality holds since the characteristic of K is two. O

Corollary 2.6.1. Suppose K is a degree n field extension of GF(2),
and let ¢ : K — GF(2)" be the usual identification. Pick g(z) € K|z
of Hamming weight degree d. If A is any m-dimensional affine set in
GF(2)" with d < m, then

845;1(14) (g) = 0.

Proof. The proof follows directly from the previous lemma. O

Spurious Polynomials
Fix Y™ = (yi,-..,yhg) and let

VY“ = {(yl"' -,Zl37) € GF(2)37 ’ (y17" ‘ay26) = Y_}a

an affine subset of GF(2)37_. Let Y be any element in V3-- and suppose
X =(21,...,2,) satisfies F(X) =Y = (y1,...,yn). If ¢ is in the span
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of the components of F' (i.e., ¢ = Y0, a; f;), then we must have that

n
@@, wn) = a(F 2y, un) = Y aiys, (2-39)
=1

where the second equality comes from the fact that

Yi = ﬁ(F‘l(yla .. '7yn))a

for i = 1,...,n. In this way we can associate with q;(z1,...,z,) a new
function

@) =@ o F7 N y1, o).
With this shift in perspective we have

D alwn oz = D @y yn)- (2.40)

XUy - Yevy.
Since V4 is an affine subset in G F(2)37, the sum ZXeU}M gz, ..., z,)
is now realized as a (discrete) derivative of the function g {y1, ..., yn),
which is itself a linear function in the y1,...,yn, provided that ¢ =

1 0 fi-

%I’}llerefore, an equation of the form of (2.38) will be satisfied by any
total degree two polynomial ¢(z1, ..., z,) such that §(y1,...,¥s) = qo
F~Y(y1,...,yn) can be expressed as a polynomial of total degree at most
10 in the y1, ..., yn. Let us now explore how such functions occur.

Let F; : K’ — K’ be defined by

Fy(X) = x**,
fori=0,...,36, and let F} : K — k™ be defined by
Fy=¢oF,0¢ oLy = (fir, .., fin),

deviating slightly from the usual notation. Clearly Fis Fj.

Take Y = F(X) = Lj o F3(X). Then F3(X) = L7Y(Y). Also,
FyY(X) = Xt where t = (22 + 1)~ mod (237 — 1). Therefore, if any
quadratic polynomial ¢(X) (with total degree two in the components
Z1,...,Zy of X) is equal to a linear combination of the components of
some F;(X) = (fi1,. .., fin), then ¢ can be expressed as a linear combi-
nation of the quadratic terms of the 37 GF(2)-components of F; o F~1,
'To see why this is true, consider the following. Assume

n
Q(-rh .- ~7xn) = Za’jfija
j=1
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and take .
L($1, .. .,:En) = Zajxj.
j=1

We then clearly have

and thus,
Yooan= > a)
XeUy— YeV, _
- Z qo F71(Y)
Yevy -
= Z Lo F;o F7Y(Y)
Yev,_
= Z LOEOL210¢0F 1o¢_1oL1‘1(Y)
Yev,
= Z LogoF,oF tog™ o LTH(Y),
Yev,_
the degree of the last expression in the components of Y = (y1,...,¥n)

being bounded above by the Hamming weight of the degree of F; o 1,
which is £(2% + 1) mod (237 - 1).

One can easily compute d; = £(2¢ + 1) mod (237 — 1) fori = 0,...,36
and find that there are exactly four values of 4 such that the Hamming
weight w; of d; is at most 10. In particular, we find that:

d3:1:(1)2 = wy =1
dg = 57 = (111001)y == wg = 4
dys = 3641 = (111000111001)y == w5 =7
doy = 233017 = (111000111000111001)5 = wa; = 10

and thus the components of Fg, Fg, }7’15, and Fgl can all be expressed
as functions of degree at most 10 in the components of Y. Therefore
any linear combination of these 4 x 37 = 148 polynomials will satisfy an
equations of the form in (2.38).

The Second Step of the Attack

We must now further characterize the coefficients of the desired ¢ ().
We will use the public knowledge we know about F' to express additional
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conditions we can use to determine the g;(z) completely. Computer ex-
periments confirm that these additional conditions do indeed determine
the g;(x).

Choose a basis for Q using Gaussian elimination, say {q1, ..., 148}
We need a condition on the 7; such that ¢ = > v;¢;(x) must belong to
the space spanned by fi,..., fa.

Let q(z1,...,2,) € Q. From the condition imposed by (2.38) on ¢, we
see that the total degree of §(y1,...,yn) cannot be more than 10, and
that if g(x1, ..., z,) belongs to the space spanned by fi, .., frn then the
total degree of G(y1,...,yn) is 1, as we have seen from (2.39). Thus,
if q(x1,...,x,) is indeed in the space spanned by fi,. -+, fn, then for
i =1,...,148, the derivative with respect to any 12-dimensional affine
set A of §;G (whose degree is at most 10 +1 = 11) will be zero. On
the other hand, if g(x1, ..., x,) does not belong to the space spanned by
fi,- -, fn, then the degree of §q is expected to be at least 10 + 4 = 14,
due to the fact that the Hamming weight of ¢(2¢ + 1) mod (257 — 1) for
i = 9,15,21 are of weight 4,7,10, respectively. Therefore we do not
expect that the derivative of §;q¢ will be zero. We are now ready to
formulate the desired conditions on the ;.

Let Y™ = (y1,...,¥25) € GF(2)?, and let us denote by Vy -~ the
affine subset of GF(2)37

Vv ={(y1,-- - y31) € GF(2)*" | (y1, ..., y28) =Y}

With this notation we have

> aMay) =o.

YeVy

For each Y™~ = (y1,...,¥25), define Y5~ = (y1,...,925,0) and ¥ =
(y1,.--,¥25,1), and let U(Y ™) = UYO— U UYI" The above equation

gives rise to a linear equation in the 148 unknown GF(2)-coefficients +;
of ¢ in the form:

148

> D wa(X)e(X)=o0. (2.41)

XeU(y--) i=1

In their computer experiments, Gilbert and Minier actually needed to
use only two arbitrary quadratic polynomials, ¢; and ¢z, which allowed
them to collect N’ = 200 (a little more than 148 equations) to obtain a
solution space of dimension exactly 37. This completes step two of the
attack.

Once this is done we have the space spanned by f;. After picking
a basis for this much smaller space, we use the linearization attack to
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invert the Sflash public polynomials for any given image. This allows us
to forge signatures.

Complexity

The most complex calculation required by the attack above is the
exhaustive computation of the 2%7 values of the public function F~,
which is needed to obtain the (at most) N + 2N’ sets of 2!! pre-images
required for the computations of the attack. The computations of Step
1 are the derivation of the N = 1000 linear equations in 703 variables
and the Gaussian elimination of the resulting N x 703 system, so the
complexity of Step 1 is bounded above by N x 703 x 21 + N3/3 < 232,
Similarly, the complexity of the derivation of the N’ linear equations
in 148 variables and the Gaussian elimination of the resulting N’ x 148
system in Step 2 is bounded above by 227. These are far lower than
237 computations of the Sflash’’ public functions. We also note that
the complexity of the linearization attack is about 227 computations.
Therefore the complexity of the entire attack is bounded above by 237

The attack presented above is based on the fact that the Sflash”?
public function over k37 induces a restricted function over the much
smaller vector space GF(2)37. This attack does not seem to be applicable
to more conservative instances of the Matsumoto-Imai-Minus scheme,
such as Sflash?, since a much more efficient method would then have
to be found to determine each set of ¢" preimages under F~. In this
case ¢" = (27)!1! = 277, which makes the brute force search for the set of
pre-images by Gilbert and Minier above impossible.

Other Attacks on MI-Minus

In [Patarin et al., 1998], a general attack on the Matsumoto-Imai-
Minus family was presented. This attack is essentially a differential type

of attack where one uses the fact that F' is an invertible map. The
starting point is to use the so-called polar form of F' given by

QX,T)=F(X+T) - F(X)- F(T),

which in this case is related to bilinear forms of the polynomials com-
ponents of . If we fix X to be a constant, then the equation above
becomes linear in 7". This method utilizes the fact that the public key
polynomials come from a set of permutation polynomials, which allows
us to use the general theory about permutation polynomials and the idea
of orthogonal systems of equations [Lidl and Niederreiter, 1997]. Then
we may look for a a value X such that solution space is of maximum
dimension. The basic idea is to use this solution space to find a way to
recover the lost (Minus) polynomials and then use again the linearization
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equations to break the system. From this we can see that this attack
in essence is closely related to the attack by Gilbert and Minier above.
We will omit the details of the attack here and refer the readers to the
original paper [Patarin et al., 1998].

It is shown that such an attack should have complexity of O(q"),
and therefore it is suggested that ¢” should be at least 264 in order to
guarantee security against this attack. This attack is also very closely
related to the differential attack [Fouque et al., 2005] on PMI [Ding,
2004a], which will be discussed later.

We believe that the new attack on MI in Section 2.4 can also be
directly extended to attack the MI-Minus cryptosystem, especially when
the Minus number r is small.

Security of MI-Plus-Minus

We believe that the security of MI-Plus-Minus is also still open, since
it. should be a much harder problem to attack MI-Plus-Minus than MI-
Minus in general. Moreover, there is also a problem of how big the
Plus can be before additional security concerns arise. In [Patarin et al.,
1998], some attacks were suggested for MI-Plus-Minus that are actually
prototypes of the XL-family of algorithms. We will leave the details of
this discussion for the chapter on general methods for solving systems
of polynomial equations.

Related work

First we like to point out that the Matsumoto-Imai cryptosystems
we talk about in this chapter should not be confused with some of their
other cryptosystems from 1983 [Matsumoto and Imai, 1983]. These were
broken in 1984 [Delsarte et al., 1985] and are very different systems from
what we study here.

The original idecas of the Matsumoto-Imai cryptosystems were first
presented in [Imai and Matsumoto, 1985]. In the 1988 paper, two fam-
ilies of systems are discussed. The other one is the so-called Hidden
Matrix (HM) scheme, where the key map uses matrix multiplications,
and in particular the square of a matrix. These schemes were defeated by
using the same method of linearization equations [Patarin et al., 1998].
In the 1985 paper [Imai and Matsumoto, 1985], there is also another
scheme called the “B” scheme, and it was broken in 2001 [Youssef and
Gong, 2001] using statistical methods.

In the process of developing a new differential method to attack PMI
[Ding, 2004a], Fouque, Granboulan, and Stern also found a new differ-
ential attack to break the MI [Fouque et al., 2005].
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From [Felke, 2005}, we also see that the linearization attack was inde-
pendently discovered by Dobbertin at the German Information Security
Agency in 1993.



2 Springer
http://www.springer.com/978-0-387-32229-2

Multivariate Public Key Cryptosystems
Ding, |.; Gower, |.E.; Schmidt, D.5.
2008, XV, 260 p., Hardcover

ISBN: @78-0-387-32229-2





