
Chapter 2 

MATSUMOTO-IMAI CRYPTOSYSTEMS 

In the previous chapter we discussed some early attempts to build 
MPKCs. However, these attempts were not very successful and it be­
came very clear that new mathematical ideas were needed. The first 
such new idea was proposed by Matsumoto and Imai [Matsumoto and 
Imai, 1988]. Their key idea was to utilize both the vector space and the 
hidden field structure of /c", where k is a, finite field. More specifically, 
instead of searching for invertible maps over the vector space /c" directly, 
they looked for invertible maps on a field K, a degree n field extension 
of A;, which can also be identified as an n dimensional vector space over 
k. This map could then be transformed into an invertible map over fc". 

One such cryptosystem, known as C* or MI, attracted a lot of atten­
tion due to its high efficiency and potential use in practical applications. 
In fact, the MI cryptosystem was submitted as a candidate for secu­
rity standards of the Japanese government. However, before the final 
selection, MI was broken by Jacques Patarin using an algebraic attack 
that utilizes linearization equations [Patarin, 1995]. This method takes 
advantage of certain specific hidden algebraic structures in MI. 

Normally one would conclude that this is the end of MI, though in 
fact the subsequent story goes into the opposite direction. One reason is 
that the MI cryptosystem represents a fundamental breakthrough on the 
conceptual level in that it brought a totally new mathematical idea into 
the field and consequentially was widely explored and extended. Another 
reason is that there are many new variants of the MI cryptosystems 
that seem to have great potential, including the Sflash signature scheme 
[Akkar et al., 2003; Patarin et al., 2001], which was accepted in 2004 as 
one of the final selections for the New European Schemes for Signatures, 
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Integrity, and Encryption project [NESSIE, 1999] for use in low cost 
smart cards. 

Indeed, the work of Matsumoto and Imai has played a critical role as 
a catalyst in this new area and has stimulated the subsequent develop­
ment. In this chapter, we will present the MI cryptosystem in detail, 
Patarin's cryptanalysis of MI, the Plus-Minus variants, related attacks 
and security analysis. 

2.1 Construction of a Matsumoto-Imai System 
Let k he a. finite field of characteristic two and cardinality q, and 

take g{x) G k[x] to be any irreducible polynomial of degree n. Define 
the field K = k[x]/g[x), a degree n extension of k. In general the 
char(A;) = 2 condition is not necessary for the following construction, 
though we would need to modify the system slightly due to the loss of 
bijectivity in the final map used for the construction of the corresponding 
public key. 

Let cj) : K —> /c" be the standard /c-linear isomorphism between K 
and k'" given by 

(/>(ao + aix-\ \-an-ix"'~^) = (HQ, «!, • • •, fln-i)-

The subfield k oi K is embedded in /c" in the standard way: 

(^(a) = (a,0, . . . , 0 ) , yaek. 

Note that here Q!) is a fc-linear map if we treat A; as a subfield in K. 
Choose 0 so that 0 < 0 < n and 

gcd(g^ + l , q " - l ) = l, 

and define the map F over K by 

F ( X ) = X^+9". (2.1) 

The conditions on 0 insure that F is an invertible map; indeed, if t is an 
integer such that 

t ( l + g'̂ ) = l m o d ( g " - l ) , 

then F~^ is simply 
F-\X) = X\ 

Now let F be the map over /;" defined by 

F{xi,...,Xn) = (j)0 Fo(j)-^{xi,...,Xn) = ih,---,fn), 
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where / i , •. •, /n £ k[xi,..., x„]. To finish the description of the con­
struction of Matsumoto-Imai, let us now choose Lj and L2 to be two 
invertible afiine transformations over /c". Define the map over fc" by 

F{xi,...,Xn) = Li oFoL2{xi,...,Xn) = {fl,...,fn), (2.2) 

where fi, • • •, fn G k[xi,..., x^]- See Figure 2.1 for a commutative dia­
gram that captures the essence of the MI construction. 

fc" - ^ — > fc" 

k"" 

'l^K-^K^^, n ^ ^ 

F 
T 

id 

¥• 

Figure 2.1. Composition of maps in the construction of MI. 

We can now fully describe the Matsumoto-Imai public key cryptosystem. 

The Publ ic Key 

The public key of MI includes the following: 

1.) The field k including its additive and multiplicative structure; 

2.) The n polynomials / i , . . . , / „ G fc[xi,..., x„]. 

The Private Key 

The private key includes the two invertible affine transformations L\ 
and L2. The parameter Q can be kept private, though this is not critical. 
Since there are fewer than n choices for Q and n is typically not very 
large, hiding Q has no substantial effect on attack complexities (only a 
factor of n). 

Encryption 

Given a plaintext message {x\,.. .,a:^), the associated ciphertext is 

(z/i, •••>?/«)> where 

Vi " Jii^l' • • • I ^nJ' 

for i = 1, . . . ,n . This can be done by anyone, since the public key is 
available to anyone. 
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Encryption Decryption 

Xi,...,Xr. 

F 

yi,---,yn 

?yi , - - - ,?yn 

LI' 

F - i 

L -

Xl, • ; Xf^ 

Figure 2.2. Single-branch MI encryption and decryption. 

Decrypt ion 

We can decrypt the ciphertext {y[,... ,y'^) by computing 

F-\y[,...,y'J=L^'oF-'oLl\y[,...,y'J 

= L^'ocPoF-'o^-'oL-\y[,...,y'^). 

In general the components of F"^ wiU be of very high degree, and there­
fore in practice we decrypt the ciphertext {y[,...,y'^ by executing the 
following steps: 

1.) First compute {z[,...,z'^) = Lj"^(yJ,.. . , y^); 

2.) Then compute {zi,..., z„) = (j)o F~~^ o <j)~^[z'i,..., z'^); 

3.) Finally compute {x[,.. . ,x^) = L^ (zi,..., z^). 

If the corresponding cryptosystem is secure, then this decryption pro­
cess can be performed only by those who have access to the private 
key. See Figure 2.2 for a graphical representation of the encryption and 
decryption process. 

Degree of the Publ ic K e y Components 

The com.ponents of the map F are polynomials in k\xi, . . .,a:„]. In 
fact, since we are thinking of the variables x i , . . . , Xn as the plaintext 
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message "bits" in the field fc, we will identify fi, • • •, fn with the corre­
sponding representative of minimal total degree in the ring of functions 
from A;" to k 

Fmi(fc",fc) = k[xi,...,Xn]/{xl -xi,...,xl- x„), 

where total degree is defined as usual. For notational convenience, we 
will abuse notation and ] instead of Fun(/c"', k). We shall 
never use the notation k[xi,..., a;„] for the polynomial ring in the vari­
ables xi,... ,Xn with coefScients in k unless explicitly announced before­
hand. Similarly, the notation K[X] will be used for the ring of functions 
from K to K; that is, we identify K[X] with K[X]/{X'i" - X), unless 
announced otherwise. As such, we shall use the terms "polynomial" and 
"function" interchangeably. Let us now explore the relationship between 
the degree of F and the degrees of / i , . , . , / „ . 

The maps Ti{X) = X^' on K,fori = 0,l,..., n—1, are the well-known 
Frobenius maps. In fact, the set of these maps is exactly the Galois group 
G = GdA{K/k), and the group ring KG = {Y17=a ^i^i I '^i ^ ^ } is the 
set of all /c-linear maps on K (see Appendix A). But from this it is easy 
to see that for any L{X) 6 KG we have that (p o L o cj)"^ is a fc-linear 
map over /c", hence the components of (j)o Lo (f)~~^ each have total degree 
one in k[xi,.. -jXn]-

In order to better see the relationship between the degree of H{X) G 
K[X] and the degree of the components of ^oiiro(^~^, let us define the q-
Hamming weight degree of the monomial X^ G -^l-''^]; where 0 < e < g", 
to be the sum of the coefficients in the base-g expansion of e, also known 
as the g-Hamming weight of e. The ^-Hamming weight degree of a 
function H{X) G K\X] is then defined to be the largest g-Hamming 
weight degree over all monomials oi H{X). 

Now suppose we have a function H{X) G K[X] of g-Hamming weight 
degree d. Then the components of 0 o i7 o ^"^ will be of total degree 
d. In particular, since the g-Hamming weight degree of F is two, it 
follows that the total degree of each of the / i , •. •, /« is two. Since Li 
and L2 are invertible affine transformations, the total degree of each of 
the / i , • • •, /n is two as well. 

A Toy Example 
We now illustrate the MI cryptosystem using a toy example with small 

parameters. 
Let k = GF(2^) be the finite field with q = 2^ = 4 elements. The mul­

tiplicative group for the nonzero elements of this field can be generated 
by the field element a which satisfies a"^ + a+1 = 0. The field elements 
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Table 2.1. Addition and multiplication table of GF{2^ 

of k can be presented as {0, \, a, o?} and the addition and multiplication 
tables are given in Table 2.1. 

Next choose n = 3 and g{x) = x^ + x + 1, an irreducible polynomial 
in k[x\. Set K = k[x\/{x'^ + x + 1). There are only two possible choices 
for 6] namely 6* = 1 or 6* = 2. We will use 9 = 2. The map F and its 
inverse are given by 

F{X) = Xi+4 ' 

Let Li and L2 be given by 

L\ {xi,X2,Xri) = 

F-\X) = X 26 

and 

L2 (2;,a;2,a;3) 

To derive the public key polynomials in terms of the plaintext message 
variables xi, X2, x-^ we begin by computing 4>~^ oL2{xi,X2, X3), which we 
find to be 

{a + xi + ax'i) + (a^ + X2 + ax-s)x + (a + xi + ax2)2; . 

If we denote this by X, then we next compute F{X) = X^'^'^ = X -X^^. 
The exponentiation is easily done since we only have to apply it to each 
term of X. There are no degrees higher than two since we are working 
in the finite field k of characteristic two. Thus F{X) is 

1 + a xi + tt2;2 + X3 + xia;2 + axjx^ + a X2X3 

+ (a + ax\ + X2 + a X3 + Xi+ a X1X2 + X2 + X2X-i)x + (a + a xi 
, 2 ^ 2 N + 0:0:2 + CiX^ + Xi + X1X2 + axix^ + a X2 + 0x2X3 + a x'^)x 
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Finally we compute Li o (/)(X) to get the public key polynomials 

/i(.Ti, X2, X's) = 1 + X3 + axix-s + 0:̂ X2 + 0^x2X3 + xj 

f2{xi, X2, X3) = I + a xi + ax2 + X3 + x^ + X1X2 + a xixs + X2 
— / \ 0 0 0 0 0 0 

f3[x\, X2, X3) = a X3 + x-^ + a X2 + X2X3 + a X3, 

which will be used to encrypt plaintext messages. If, for example, we 
wish to encrypt the plaintext {x[, X2, X3) = (1, a, a^), then we compute 

y'2 = f2{l,a,a^)^0 

y's = / 3 ( l , a , a^) = 1 

to get the ciphertext (0, 0,1). 
The person in charge of decrypting this ciphertext knows Lj~ , F~^ 

and L2^- With 

/ a 2 1 

L^^ (j/i,y2,2/3) = 1 «^ 

\a^ 1 

and the given ciphertext we first find 

from which X = a + ax + x"^ follows. In this toy example 

F-\X) = X^'^ = a + x\ 

which can easily be computed by the binary method (also known as 
the square-and-multiply method). In real applications this approach 
would be too time consuming, since the exponent t for X is typically 
very large. Instead one selects a 9 where the binary representation of t 
exhibits a pattern, which then can be exploited to speed up the process 
of evaluating X*. 

Continuing with the toy example, we now have {zi, Z2, %) = (a, 0,1). 
From 

L2^ (yi, 2/2,2/3) = 

we obtain L2 {a, 0,1) = (1, a, oP')'^, the original plaintext. 

a 2 

a. 
1 

a2 

a. 
a 

a\ 

a] 
1 / 

1 yi 
2/2 -

\y-i -

— a 
- a 2 
- a 2 
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Multiple-Branch MI 
A multiple-branch cryptosystem is one essentially composed of sev­

eral basic (single-branch) cryptosystems. The input is partitioned first, 
with each part sent to its own single branch cipher. The outputs of each 
branch are then combined into a single output. The input is first trans­
formed, usually in the form of an invertible afFine transformation, before 
being partitioned in order to hide the branches. Similarly, the combina­
tion of the outputs from the branches usually undergoes a transforma­
tion. See Figure 2.3 for a pictorial illustration of this general idea. Note 
that if the single-branch ciphers Ci,C2, ••. ,Cb and the input-output 
transformations are invertible, then the multi-branch cipher will be in­
vertible as well. 

In the case of multi-branch MI, each branch will be a basic single-
branch MI as described in the previous section. Let h be the number of 
branches and pick positive integers n i , . . . , n^ such that ni + - • • -fn;, = n. 
For each i, pick an irreducible polynomial gi{x) G k[x] of degree rii and 
define Ki = k[x]/gi(x). Then Ki is a degree Ui field extension of k, with 
fc-linear isomorphism 

such that 

(lH{ao + aix-\ | -a„;_ix" '"^) = (ao, a i , . . . , a„._i) . 

As in the case of a single branch, if we choose (independently) the 
9i,.. .,01, such that 0 < 0j < nj and gcd {q^' -|- 1, </"' - 1) = 1 for each i, 
then we can construct the invertible maps 

Fi{X) = X^+'>''' 

and then 
Fi = (l)iO FiO 0 r i = ( / j j , . . . , /^„.), 

where each fij is a polynomial in k[xi,..., x^], for j = 1 , . . . , n i ; each 
f2j is a polynomial in k[xni+i,- • •, Xn^+nz], for j = 1 , . . . , n2; . . . ; and 
each fbj is a polynomial in k[xn-nh+i^ • • •,Xn] for j = 1,...,nf,. 

We then combine the branches together to define a new map F over 
fc" by 

F{Xi,...,Xn) = {F,,F2,...,Fb) 

= ( / l l , • • •, hm, / 2 I , • • • i / 2 n 2 ' • • •; / M > • • •> fbni,), (2-3) 

and choose Li and L2 to be invertible affine transformations on /c". 
Finally define the map F over /c" as before: 

F(xi,. ..,Xn) = Li oF o L2{xi, ...,Xn) = ( / l , • • . , / „ ) , 
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input: xi,.. . ,Xr, 

mixmg 

Zi,...,Z., 

partition 

•^Ij • • • , Zfii ^ni+l: • • • 1 ^111+112 ^n—ni, + l , . . . , ^ j j 

Ci Co a 
^11 • • • ; ^nx - ^ n i + 1 ; • • • ) ^711+712 ^ n — n ^ + l : • • • ? -̂ TJ 

concatenation 

•2-1) • • • ) -2n 

mixing 

output: yi,...,yn 

Figure 2.3. A multi-branch cipher composed of single-branch ciphers Ci, C2,..., Cb. 

where each /j is a degree two polynomial in k\xi,..., Xn]-
We can see that a multiple-branch implementation of MI is essentially 

the image of several single-branch MI implementations under an invert-
ible affine transformation. Though it may seem that multiple branches 
provide more security, we shall see later that this is not the case. 

2.2 Key Size and Efficiency of MI 
The public key of the Matsumoto-Imai cryptosystem is a set of degree 

two polynomials / i , . . . , / « S /c[a;i,..., a;„]. Each polynomial has H - n + 
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n{n + l ) / 2 = (n + l ) (n + 2)/2 terms, hence the pubUc key amounts to a 
set of n{n + l ) (n + 2)/2 coefficients in k when q > 2. For q = 2 the key 
size will be smaller because there are no square terms due to the fact 
that x'f = Xi. 

This is rather large compared with that of RSA, even if we choose 
k to be GF(2^) and n = 32, the parameters originally suggested by 
Matsumoto-Imai in 1988. However, with systems like RSA there are 
other considerations, in particular the implementation software, whereas 
with MPKCs the implementation requires minimum work beyond the 
public key. 

Though the public key of MI may be large compared with other 
schemes such as RSA, the great advantage of MI lies in its computa­
tional efficiency. If we choose q — \k\ to be small, then we can store the 
multiplication table in memory using the fact that the nonzero elements 
of k form a cyclic multiplicative group. This makes the encryption much 
faster than schemes like RSA which must work with large integers. This 
technical detail can also be used in the decryption process, including 
the most expensive calculation in computing with F"^. In fact, MI 
originally generated a lot of excitement precisely because the practical 
implementations first suggested were far faster than RSA and promised 
the same level of security. 

The Matsumoto-Imai cryptosystem was proposed in 1988 [Matsumoto 
and Imai, 1988], and was considered as one of the candidates for the 
Japanese government security standard. However, MI was defeated in 
1995 by Patarin's algebraic attack via linearization equations [Patarin, 
1995]. 

2.3 Linearization Equations Attack 
We begin by defining the notion of a linearization equation (LE) in a 

general way. 

Definition 2.3.1. Let Q = {gi, • • •, gm} be any set of ni polynomials 
in k[xi,.. .,Xn]. A linearization equation for Q is any polynomial in 
k[xi, ...,Xn,yi,---, ym] of the form 

^ ^ ttijXiyj + Y^ biXi + ^ C0j + d, (2.4) 

such that we obtain the the zero function in k[xi,. . ., x„] upon substitut­
ing in gj for yj, for j = 1,. . ., n. Equivalently, a linearization equation 
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is any equation in k[xi,. . ., x„] of the form 

n m 

which holds for all {x\,..., x'^ E /c". 

It is clear that for a given Q, the set of all linearization equations of Q 
forms a fc-vector space. This space will be referred to as the linearization 
equation space of Q. 

Patarin keenly observed that the linearization equation space for the 
components of F can be used to attack the Matsumoto-Imai cryptosys­
tems. To see this, let {/ i , . . . , /„} be the set of components of F, and 
suppose we have a linearization equation of this set of the form of (2.4). 
For a given ciphertext {y[,... ,y'n), substituting in y'^ for /j produces a 
linear (hopefully nontrivial) equation in the variables x i , . . . , x„ whose 
solution set contains the plaintext. 

With enough linearization equations, we can hope to produce enough 
linear equations such that the resulting system has the desired plaintext 
as its unique solution. Even if we cannot find directly the plaintext from 
these linear equations for a given ciphertext, as long as the LEs can pro­
duce enough linearly independent linear equations for the corresponding 
plaintext, these linear equations can then be plugged into the quadratic 
public equations derived from the public key and the ciphertext to re­
duce the number of variables and make it much easier to solve it. To 
decide the feasibility of this attack, we must first find the number of 
linearly independent linear equations we can hope to derive from the 
space of linearization equations of the components of F. We begin the 
analysis by considering the single-branch case of MI. 

Linearization Equations of Single-Branch MI 
The following theorem gives a lower bound on the number of linearly 

independent linear equations that we can generate from the components 
of F . 

Theorem 2.3.1 . Let {/i , . . . , / „} be the public key for a single-branch 
implementation of MI. Fix a ciphertext Y' = (y'^,..., y'^) G A:" and let C 
be the space of linearization equations o / { / i , . . . , / „ } . If Cy' is the space 
of equations that are derived by substituting in y[ for yi (for i = 1,.. .,n) 
in each equation of C, then the number of linearly independent linear 
equations in Lyi is at least 

2n 
n~ gcd{n,0) > -—. 
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The exceptional case is L^^ {Y') = ( 0 , . . . , 0) when there are only trivial 
equations. 

To prove this theorem we will need the following two lemmas. 

L e m m a 2 .3 .1 . Let F = Li o F o L2 be as in the construction of single-
branch MI. Let JC be the space of linearization equations of {/i , . . . , / „} 
and let £ be the space of linearization equations of {/i , . . . , / „ } . Then 
these two k-vector spaces have the same dimension; i.e., 

dimfc £ = dinifc £• 

Proof. First suppose that L2 is the identity, so that 

n 

i=\ 

Then 
n u n n 

0 = ^ ^ aijXifj + ^ biXi + ^ Cjfj + d 

n n / ^ \ ^ n / n \ 

i=\ 3=1 \l=l J i=l 3=1 \l=l J 

+ d 
n n n n 

j=l j = l 1=1 3=1 

a linearization equation for / j , . . . , / „ . 
Similarly, by looking at F = L^^ o F and starting with a lineariza­

tion equation for / i , . . . , /« , we can derive a linearization equation for 
fi,..., fn- From this bijection we see that the dimension of the lineariza­
tion equations for F and Li o F are the same. 

Now suppose that Li is the identity, and let 

n 

Xj ^ ^ OLij X-i - j - Pj, 

i=l 

SO that 

Then 
n n n n 

0 = X X aijXifj{xi, . . .,Xn) +'Y^ biXi + ^ Cjfj{xi, . . .,Xn) + d 
1=1 j=l i=l 3 = 1 
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which gives 
n n n n 

0 = ^ ^ aijXifjixi,..., x„) + ^ biXi + ^ Cjfj{xi, ...,Xn)+d, 
i=l j=l i—1 j=l 

since the invertible change of variables amounts to a permutation on /c". 
But then we have 

n n n n 

0 = ^Y^aijXifj{xi,. ..,Xn) + ^biXi + ^Cjfj{xi,...,Xn) +d, 

z—1 j=l i—1 j — 1 

which, as above, can be rewritten as 
n n n n 

0 = E E 4 -̂/j- + E ^i^'^ + E 4/i + d', 

a Unearization equation for / i , . . . , / „ . 
Similarly, by looking at F = F o L^ and starting with a lineariza­

tion equation for / i , . . . , / „ , we can derive a linearization equation for 
/ i , . . ., fn- From this bijection we see that the dimension of the lineariza­
tion equations for F and F o L2 are the same. 

Finally, we conclude that dim/c £ = dim^ C. d 

Lemma 2.3.2. Let C and C he as in the previous lemma, fix a ciphertext 
Y' = {y[, ...,y'^)G /c", and let Z = L^\Y') = ( z i , . . . , z„). Let £z be 
the space of linear equations that arise from substituting in Zi for yi 
(for i = 1 , . . . , n j in each linearization equation in L, and let Ly be 
the space of linear equations that arise from substituting in y[ for yi 
(for i = 1 , . . . , n j in each linearization equation in C Then these two 
k-vector spaces have the same dimension; i.e., 

dirufc £z = dim^; £Y' • 

Proof. In the proof of the previous lemma we constructed a bijection 
between £ and £. This induces a bijection between £z and £Y' from 
which the result follows. • 

To see how Patarin first constructed linearization equations, we let 
X,Y G K he such that 

Y =^ F{X) = X'l'+K 

We then have 
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If we multiply both sides by XY, we see that 

or equivalently, 

X F " ' 

X F " ' -

' = X " " 

- x '̂V 
Finally define R{X, Y) e K[X, Y] by 

and 

R{X, Y) = X F - ^ ' -

>̂ , 

= 0. 

-X''^' V, 

;?, = 0 o i ? o ( ( ^ - i x ^ - i ) (2.5) 

From this R we can derive n linearization equations for the components 
of F. Specifically, the n components of R{xi,..., Xn, y i , . . . , Vn) are of 
the form (2.4), and, by construction, substituting in /j for yi (for i = 
1 , . . . , n ) yields the zero polynomial in /c[xi, • • •, ^n]-

It is natural to ask how many linearly independent linear equations 
arise from R for a specific {y[,.. ., y'^) G fc". Let {x[,..., x'^) G fc" be 
F-i (2 / i , . . . , y ; ) , and let F ' = rM2/i> • • -,2/;) and X ' = r ' ( a ; i , . . . , < ) • 
Then X ' must be a solution of 

X'l^'Y'^XiYy', (2.6) 

or 

X""-' = {YY-\ (2.7) 

if F ' 7̂  0. But the second equation has at most gcd {q'^'^ — I, q" — I) solu­
tions in K. Furthermore, because of the condition gcd {q + 1, g'̂  -- I) = 
I, we have that 

gcd {q^' - I, g" - 1) = gcd {q" - I, g" - I), 

hence (2.6) has at most gcd {q" — 1, g" — I) + 1 solutions, including the 
trivial solution. To find this number explicitly we will need the following 
lemma, which is easily proved. 

Lemma 2.3.3. For any two positive integers a, b we have 

g c d ( g ' > - - I , g ^ - I ) = gg=^("'^^~I. 

In particular, the lemma tells us that the total number of solutions for 
(2.6) is at most q̂ '̂̂  '^'"'•'. If A is the number of linearly independent linear 
equations that arise from (2.6), then there will be q^^^ solutions to the 
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corresponding system of linear equations. Therefore q^~ < qsca(9,n)^ 
and so A > n — gcd {6, n). 

The three largest possible values of gcd {9, n) are n, n /2 if n is even, 
and n / 3 if 3 divides n, and the rest are of all smaller values. Therefore, 
if we show that the first two cases are impossible, then we can conclude 
that 

2n 
n - g c d ( 6 ' , n ) > y -

First we know that it is impossible that gcd [9, n) is n, because of the 
choice of 9 is larger than 0 and less than n. Second, if gcd {9, n) = n /2 , 
this means that 9 must be n /2 itself. Then we know that 

gcd (g"/2 + 1, ^n _ 1) = qn/2 + 1 > 1̂  

which contradicts the invertibility condition which requires that 

gcd{q'+l,q^-l) = l. 

Therefore gcd {9, n) cannot be n /2 either and the largest possible value 
for gcd {9, n) is n / 3 . 

This proves the following theorem, which combined with Lemma 2.3.2 
gives us a proof of Theorem 2-3.1. The exceptional case in Theorem 
2.3.1 is Lj~^(F') = (0 , . . . ,0) and all hnear equations derived from the 
linearization equation are again trivial ones, 0 = 0. 

Theorem 2.3.2. Let C he the space of linearization equations for the 
components of F and fix Y' = {y'^,..., y'^) G /c". If Ly is the space of 
linear equations resulting from substituting in y[ for yi (for i = 1,.. .,n) 
in each element of C, then dim^ £y/ is at least 

2n 
n-gcd{9,n) > y , 

except when Y' = ( 0 , . . . . 0). 

If gcd {9, n) — 1 then it is clear that we can defeat the system eas­
ily using linearization equations alone. More generally, we see that the 
single branch Matsumoto-Imai cryptosystem is not very secure since for 
a given ciphertext we can always find at least 2n/3 linear equations 
satisfied by the plaintext, which is analogous to leaking 2/3 of the in­
formation. More importantly, these equations can be used to eliminate 
2/3 of the variables of the quadratic public equations derived from the 
public key and the ciphertext, which should then be much easier to solve 
than before. 
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The next question we consider is how to actually generate linearization 
equations. We explain two different approaches: one based on plaintext-
ciphertext pairs, and the other based on the structure of polynomial 
functions. 

Plaintext -Ciphertext Pairs 

Using the public key we can generate several plaintext-ciphertext 
pairs. For each pair given by F{x'i,..., x'^) = {y[,...,y'^), we can sub­
stitute in x\ for Xj and y'- for yj into the generic linearization equation 

^ aijXiyj + ^biXi + ^ cfyj +d = 0, 

to get a linear equation in the (n+l)"^ unknowns aij, hi, Cj, d E k. There­
fore, if we choose roughly (n -f- l)'^ plaintext-ciphertext pairs, then it is 
very likely that we can solve the resulting system for the unknown coef­
ficients. The total cost of this process includes: 

1.) Comiputation of (n + 1)^ plaintext-ciphertext pairs, which has com­
plexity 0{n'^); 

2.) Solving a set {n+ 1)^ linear equations in (n + 1)^ variables, which 
has complexity 0{n^). 

This can be done relatively easily. 

Structure of Polynomial Functions 

We begin with a generic linearization equation for the components of 
F: 

^ aijXifj + ^ biXi + ^ Cjfj +d = 0. 

As before, we treat the coefficients aij, bi, Cj, d as variables taking values 
in k. After rewriting the left-hand side of this equation as a sum of 
monomials in the variables x ' l , . . . , x-„, we have an equation of the form: 

^ ttijiXiXjXi + ^ PijXiXj + ^ 7i.Tj + 5 = 0, (2.8) 

where the coefficients aiji,(3ij,"fi,5 are linear functions in the unknown 
coefficients aij, bi, Cj, d. 

Remark 2.3.1. If q = 2, then we should make use of the fact that 
^3 _ ^2 _ ^ j-Q^ ^^y X ^ k. In particular, any power of Xi occurring in 
(2.8) will he replaced hy Xi, for i = 1,... ,n. 

From the theory of polynomials over a finite field, we know that each of 
the aijk: Pij, 7,, 6 must be equal to zero, which produces ^—^^"g ^^"—-
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linear equations in the unknown coefficients aij,bi,Cj,d, when q > 2. 
The solution set for this system of equations is then used to construct 
linearization equations. 

It is very likely that we will not need to use all ( n + l ) ( n + 2 ) ( n + 3)/6 
linear equations, and that we probably only need roughly (n + 1)^ of 
them. We can also confirm easily if indeed we have the right solution 
space, if we know the dimension of the space of linearization equations 
(we will say more in the next subsection about how to calculate this 
dimension). If the dimension of the space is too large, we can always 
add more equations until the right solution space is found. 

Here the main cost is to solve a set of (n + 1)^ linear equations in 
(n + 1)^ variables. As before, the complexity of this is 0{n^). 

Dimension of the Space of Linearization Equations 
for Basic MI 

Now we will present the results related to calculation of the dimension 
of the space of linearization equations as presented in [Diene et al., 2006]. 

Theorem 2.3.3. Let C be the space of linearization equations associated 
with the components of a given invertible Matsumoto-Imai map F (hence 
we may assume that 9 ^ n/2). If q > 2, then 

dim^ £ 

If q = 2 and 9 = n / 3 , 2 n / 3 , then 

if 9 = n / 3 , 2n /3 ; 

otherwise. 

7, i / n = 6, 6' = 2, 4; 

dimfc£ = ^ 8, ifn = 3,9=l, 2; 

2n/3 , otherwise. 

Ifq = 2 and9 y^ n / 3 , 2n /3 , then 

dimfc£ 

10, if n = 4, 9=1,3; 

2n, if9=l,n-l, ( n ± l ) / 2 ; 

3n/2, « / 6 ' = ( n ± 2 ) / 2 ; 

n, otherwise. 

The key idea used in the calculation of dim^ £ is to lift the problem to 
an extension field. The approach is very similar to that used by Kipnis 
and Shamir in [Kipnis and Shamir, 1999]. We present only a sketch 
of the proof of the case where q > 2; see [Diene et al., 2006] for the 
complete proof of Theorem 2.3.3. 
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The proof in [Diene et al., 2006] uses some very abstract mathematical 
concepts and theorems, which look simple but may be difficult for people 
who are not very familiar with the related mathematical theory. Our 
proof here is more direct and more from the point of computation. 

Recall R : K X K —> K is defined by 

Rix,Y) = xy?" - x^'V, 

and R : /c^" —> k^ is defined by 

R = ct> o R o {ct>~^ X(^-i) = ( r i , . . . , r „ ) , 

where r i , . . . , r „ G k[xi,.. .,Xn,yi, • • -jyu]- The first step is to show 
that the n linearization equations derived from R are linearly indepen­
dent if g > 2 and 9 ^ n / 3 , 2n /3 . We will show this by way of contra­
diction, so let us assume that these n linearization equations are not 
linearly independent. In this case there must exist a nonzero vector 
( a i , . . ., On) G k"^ such that a i r i + • • • + anVn = 0 in the polynomial ring 
k[xi,. ..,Xn,yi,.-.,yn]-

Let L : k^ —> /c" be the linear map defined by 

L{xi,..., x„) = {aixi -\ 1- anXn, 0 , . . . , 0), 

hence LoRis the zero function from /c^" to /c". From this it follows that 
0"^ o L o (j)o R is the zero function from K x K to K since 

(j)-'^ O L O (f) O R = ( ( / )-! O L O ,/)) O {(j)-^ O i? O ( 0 X (/))) 

= (f)'^ o {L o R) o {(f) X (j)) 

= 0~^ oOo(,/) X (^). 

Now from Lemma A.0.1 and its corollary, there exists a nonzero vector 
in K"', say (AQ, . . . , An-i), such that 

n - l 

hence 
n - l . 

J2MXY'^'-X'^''Yf =0. 

It is not hard to see that if g > 2 and i y^ 0 then 



Matsumoto-Imai Cryptosystems 29 

unless 36* = n, 2n. Since we have assumed otherwise, the monomials in 
this polynomial are linearly independent, and hence all Ai are zero. This 
contradicts our assumption, and thus the n linearization equations are 
linearly independent. 

To prove that there are no other linearization equations is very similar. 
Pick any linearization equation, say 

n n n 

yZ aijXiVj + ^ biXi + ^ Cjyj + d = 0 
i=\ i = l j= l 

SO t h a t 

^ aijXifj + ^ hiXi + ^ Cjfj + d = Q 

in k\xi,..., x„], and not all the aij, bi, Cj, d E k are zero. 
The map Q taking ( x i , . . . , a;„, yi,.. .,yn) to 

^ aijXi'yj + ^ biXi + ^ ĉ ŷ  +d,0,...,Oj (2.9) 

is a nonzero map from fc^" to /c". Hence by Lemma A.0.3 in Appendix 
A, there exists a corresponding unique map Q from K x K to K: 

such that 

n—Xn—1 n—1 n—1 

where not all the Aij, Bi,Cj, D G K a,re zero, cind X — (p (^i? • • • i ^n) 
and y = 9i"_Hyi,... ,y„). 

Because Q is derived from a linearization equation, when we substitute 
in Y for X' ' +^ in this expression, then we will have the zero function 
from K X K to K. Via a direct computation we can show that it will 
be in the form 

n - l 

J2A{XY''' -X^'^Yf =0, 
i=0 

if g > 2 and 0 7̂  n / 3 , 2n/3 . From this we conclude that all linearization 
equations for F are linear combinations of the n components of R, and 
that the dimension of the space of linearization equations is n in the case 
of g- > 2 and 61 7̂  n / 3 , 2n /3 . 
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Linearization Equations Toy Example 
We will illustrate the use of the linearization equations with a small 

example. We will again use the field GF(2^) for k, whose field opera­
tions are given in Table 2.1. The plaintext is given by n = 5 variables 
(j;i, .•r2, .Ts, ,T4, X5) G k^. In order to represent the public key in a more 
compact form we introduce the additional value XQ = 1, so that the 
public key can be written as a sum of quadratic terms. With the row 
vector X = (XQ, XJ, X2,XS, X^, .1:5) the public key is given by 

yi 

?/2 = X 

y-i 

yi 

2/5 = X 

/o 

V 
fa 

V 
/ I 

V 
/ I 

V 
jo? 

0 
a 

0 
a 

c? 
0? 

c? 
0? 

a' 
0 

a 
a 
1 

0 
0 
1 

a 
0 

1 
a2 
a2 
a2 

0 
a2 

0 

a' 
0 

a^ 0 
a' 

1 
a 
1 

> 

a2 
Q 2 

0 
1 

a 

1 
a 
0 
a 
a 

a2 
a2 
0 
a 
1 

^ 1 
1 
1 

0 

0 
a2 
a2 

0 

1 
0 Q;2 

a^ a 
1 

1 \ 
0 
a 
a 
a^ 

T 

1 / 

1 \ 
1 
0 
0 

a2 

X^ 

1 / 

a 2 \ 
a2 

1 

a2 

X 

aV 
o\ 

Q 2 

a 
a 
a^ 

X 

1 / 

1 a 2 \ 
a2 0 

1 1 
0 a^ 
a a; 

.,T 

(2.10) 

(2.111 

(2.12) 

(2.13) 

(2.14) 
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The entries left blank in the matrices are zero, and they will not be 
stored in a real life application. Assume that a plain text produced the 
cipher text (1, 0, 0,0,1). We will show how to recover the plain text with 
the help of the linearization equations. 

Introduce the value yo = 1 so that the public key can be represented 
by the row vector y = {yo, yi,y2,2/3,2/4,2/5)- The linearization equations 
(2.4), which in our case use m — 5 and n = 5, can now be written in 
matrix form 

xAy^ = 0 (2.15) 

where A is a 6 x 6 matrix with unknown coefficients Aij, i,j = 0,..-,5. 
For setting up the system of linear equations it is easier if the (m + 
l ) ( n + 1) unknowns are represented by a one dimensional array. With 
a notation commonly used in programming we introduce the correspon­
dence 

Aij^^ A[{m+l)i + j] = 0 

so that we have the following correspondence for the unknowns appearing 
in (2.4) 

o-ij -^=^ Aii'm + T^)i + j] for i = 1,... ,n; j = 1,.. . ,m; 

k 

d 

Substituting the public key into (2.15) produces a homogeneous polyno­
mial, which is cubic in Xi for i = 0 , . . . , 5. Collecting the coefficients of 
the 56 different terms, we obtain a homogeneous system of linear equa­
tions in the 36 unknowns A[0] to ^[35]. The rank of the corresponding 
matrix is 31, so that the dimension of the linearization equations is 
36 — 31 = 5, which is the common case as predicted by Theorem 2.3.3. 

Reducing the matrix to row echelon form we obtain the following 

A[Q\ = aA[29] 4- o?A[?,2] + A[U] + >l[35] 

A\l\ = A[29] + a'^A[32] + Al33] + A[34:] + A[35] 

A[2] = aA[29] + A[32] + A[35] 

A[3] = A[29] + aA[32] + a'^A[33] + a^A{34] + aA[35] 

A [4] = a A [32] +a'^A [33] + a A [34] -̂  yl [35] 

A[5] = aA[32] 

A[6] = A[29]+A[32]+a'^A[33] + A[34] + A[35] 

A[7] = A[32] + A[33] + a^AlSA] 

A[8] = a^A[32] + aA[35] 

A[{m+l)i + j] 
A[{m+l)i] 
m 
m-

for i = 1,.. 
for i = 1,. . 
for J = 1,. 

•, n; j 

.,n; 
. .,m; 
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A{9] = A{29] + A[32] + ^^^[SS] + A[3A] + A[35] 

A[10] = A[29] + a^Al^A] 

A[n] = a^Apg] + Q:A[35] 

^[12] = a'^A[34] + a^A[35] 

A[13] = /1[29] + A[32] + ^[33] + a^yl[34] 

^[14] = aA[32] + a^A[35] 

A[15] = a'^A[29] + a'^A[32] + a'^A[33] + a^A[34] + a'^A[35] 

A[16] = a2^[29] + aA[32] + Q;2^[33] + yl[34]+yl[35] 

A[17] = aA[32] 

A[18] = a'^A[29] + a^A[32] + a'^A[33] 

A[19] = ^[32] + /l[35] 

A[20] = ^[29] + A[32] + a2A[33] + Q;2A[34] 

A[21] = A[29] + A[32] + aA[33] 

A[22] = a^A[32] + >1[33] + aA[34] + a^ A[3b] 

A[23] = a^A[29] + a'^A[32] + aA[34] 

A[24] = A[32] + ^[34] + A[35] 

A[25] = a^A[32\ + a^A\3h] 

A[2&] = aA[29] +/1[32] + A[35] 

A[27] = a^A[32] + aA[33\ + aA[3A] + a'^A[3^ 

A[2S\ = ^[29]+A[34] 

A[3Q] = OLA[33\ + aA[34] + otA[3b] 

A[3l\ = A[32] + a2A[33] + A[34] + a2A[35] 

where ^[29], A[32], A[33], A[34] and A[3h] are free parameters. These 
values and the given cipher text 

y = ( l , y U ^ , y ^ , 2/̂ ,2/̂ ) = (1,1, 0,0,0,1) 

are now substituted back into (2.15), and the coefficients of the free 
parameters A[29], >l[32],yl[33], vl[34], A[35] are set to zero to give the 
following set of equations for the plaintext: 

ax\ + X2 + X4 + a^ — 0, 

a^X2 + xs + Q;X4 + XQ + a = 0, 

axi + X2 + c?X'i + xs + 1 = 0, 

a.x\ + accs + 0:4 + a^xs = 0, 
2 2 

cc x'l + tt X2 + X3 + ax'4 = 0. 



Xi = 

â 2 = 

x-i = 

X4 = 

= ax^ + a , 

= X5 + a, 

= X5 + a^, 

= 0x5. 
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The system of equations has the following solution 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

Finally we can find the value of the plaintext in one of two ways. 
In the first method we try all possible values of X5 e fc in order to 

find out which of the possible plaintexts produced the given ciphertext. 
With the different values for X5 in the solutions (2.16) to (2.19) and the 
pubhc key in (2.10) to (2.14) we find the following possibilities: 

plaintext ciphertext 

( a ^ a , a ^ O , 0 ) = > (1,0,0,0,1) 

(1,0; , « , a, 1) =^ (0, a, 0, a , a) 

(0,0, l ,a^, a) = ^ (a, 1,0, a, a^) 

(a, 1,0, l ,a2) = ^ ( a ^ a ^ 0,1,0) 

Only the first case produces the given ciphertext and thus we know that 
the original plaintext was (a^, a, a^, 0,0). 

In the other method we substitute the linear equations (2.16) to (2.19) 
into the public key (2.10) to (2.14) and set it equal to the given cipher-
text, that is 

yi = 1, 

2/2 = 0, 

y3 = 0, 

Vi = 0, 

ys = 1-

This results in quadratic equations, which the free parameter has to 
satisfy. In our case the free parameter is X5. Some of the resulting 
equations are trivial, but others are Xj = 0. From this we conclude that 
X5 = 0 and find the remaining plaintext from (2.16) to (2.19). 

Linearization Equations for Multiple-Branch MI 
Using the notation of the multiple-branch case discussed above, it is 

evident we have the following theorem. 

T h e o r e m 2.3.4. Let C be the space of linearization equations for a 
given implementation of MI and fix a ciphertext {y[,.. ., y'^) € fc". Let 
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Y' — (j)~^{y[, • • • ,y'n) and define Cyi to he the space of linear equations 
(in the plaintext variables xi,.. .,Xn) obtained by substituting in y'- in 
for yj (for j = I,.. .,n) in every element of C. Then with probability 

dinifc CY' is at least 

Therefore the hnearization attack for the single-branch case can also 
be applied to the multiple-branch case. Additionally, there are refined 
methods suggested by Patarin [Patarin, 2000] that improve the efficiency 
of the algorithm where one separates the branches before attacking the 
system. 

From a mathematical point view one can see that it is possible to sep­
arate the different branches using the idea of finding a common invariant 
subspace. This idea was pursued in [Felke, 2005] for the more general 
case of multi-branch HFE. 

Remark 2.3.2. It is not difficult to see that the attack of Kipnis-Shamir 
[Kipnis and Shamir, 1999] on the HFE cryptosystem can also be used to 
attack the Matsumoto-Imai cryptosystem. In this case one can actually 
recover the private key, and it applies to both single- and multiple-branch 
cases. One can also see that the linearization attack can be viewed as 
the prototype and the origin of the XL algorithm for solving polynomial 
equations. 

2.4 Another Attack on Matsumoto-Imai 
In this section, we will present an attack that is an extension of the 

Kipnis-Shamir attack on HFE for use against the Matsumoto-Imai cryp­
tosystem. Unlike the linearization attack, this attack will allow us to re­
cover the private key. This attack has not been published before, though 
it is probably known to the experts in this area. The importance of this 
new approach is that it may lead to a new attack on Mi-Minus, which 
then can be used to attack Sflash^^. 

The key idea of the Kipnis-Shamir attack on HFE is to attack the 
problem from its origin. The constructions of MI and HFE are based on 
the idea that we can construct a map on a k-vectov space from a map 
on an extension field. Their idea was to use the structure of the map on 
the extension field to design the attack on the A;-vector space mapping. 
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With this point of view, if F : fc" —> A;" is a given Matsumoto-Imai 
public key mapping, then the first step of the attack is to hft F back 
to a map over K\ i.e., we must study (j)~^ o F o (j), in order to use the 
underlying algebraic structures from the extension field, not the vector 
space over the small field. 

To simplify the exposition we assume that q > 2 and that Li,L2 
are linear instead of affine, in effect ignoring the constant terms. In 
other words, we assume that the / i , . . . , /« are degree two homogeneous 
polynomials in k[xi,..., a;„]. Also, we assume that we know the field K 
and hence the map (p : K —> fc". If we do not have this information, 
then we will produce L\, L'2 and F' such that F = Lj o F ' o Lj . We now 
justify this claim. 

As before, the legitimate user picks an degree n irreducible polynomial 
g{x) e k[x\ in order to construct K = k[x\/g{x) and ^ : K —> /c". 
Suppose the attacker has chosen another degree n irreducible polynomial 
h{y) e k[y\ and constructs K' = k[y]/h{y) and ip '• K' —> k^. Of course, 
K and K' are isomorphic, and in fact, /c-linear field isomorphisms exist 
between K and K'. Let a{y) G K' be such that 

9{a{y)) = 0 mod h{y), 

and let i : K —> K' he defined by 

i{p{x)) = pia{y)) mod h{y), 

for 'p{x) E K. It is easy to check that t is a fc-linear field isomorphism 
between K and K'. 

Observe that 

F = Li o F o L2 

= Ll O [<p O F O (f)~ ) O L2 

= Li o <j) o (i"-*̂  o (,) o F o [i o i) o (j)~'- o L2 

= ( L l O (j) O L~ ) O (/, O F O h ) O (t O (()~ O L 2 ) . 

Define Mi : K' —^ k"", F' : K' —> K', and M2 : fc" —> K' by 

M l = L l o (/) o i " i 

F' = ioFoL-^ 

M2 = i O (f) O L 2 . 
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Observe that Mi and M2 are A;-linear vector space isomorphisms, and 
that 

F'{x)^c[{r\x)Y^' 
-1 {x'^'+iy^ = L \i 

= F{X). 

We consider whether or not there exists L'^ and L'2 such that 

F = L ; O ^ O F ' O V ^ - 1 O L ^ , 

or equivalently, for a given Mi and M2, whether or not there exists L\ 

L[oil; = Ml 

and Z/2 such that 

Solving for L[ and L'2 we 

V.-1 OL'2 

see that 

L;: 
L'2--

= Mi 

= xjj 0 

= M2. 

oijr^ 

M2. 

The attacker cannot know c, and thus cannot know Mi and M2. 
Therefore the attacker cannot know which L'^ and L2 wiU be obtained. 
However, if some L'^ and I/2 can be found, then these are just as useful 
as the original Li and L2 for the attack since we can then easily invert 
the map F anyway. Therefore it does not really matter if the attacker 
knows the extension field K or not, and thus, there is no advantage in 
hiding the field structure of K. From now on, we assume that we know 
the field K. 

Now, from Lemma A.0.2 in Appendix A, we know that 

n—1i—1 

</)-ioFo</,(X) = ^ ^ A j X 9 ' + 9 ' , (2.20) 

for some Aij G K. We also know that 

(p~ O F O (f) = (p O (Ll O F O L2) O (j) 

— 4>~^ O ( L i O ((/) O F O (t)~^) O L2) O (p 

= {(p-'^ oLio(f))oFo{(f>-'^ oL2 0(j)), (2.21) 
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where the parentheses are added to show the composition is of three 
maps defined on K. In particular, we know F and we can construct 
(̂ ^^ o F o (f) from the known F. Our attack will focus on using the 
properties of these known maps to find both of the unknown linear maps 
(p~^ o Li o (/) and (/)~^ o L20 (f). In particular, we will study 

(</)"̂ i o Lj^i 0 ^ ) 0 {(f)--^ oFo(t>) = Fo (0~^ 0L20 cf)), 

and the properties of the functions in this formula. 
From Lemma A.0.1 in Appendix A we have the following equations: 

(/.-I o Li o (f){X) = Y^ LijX"' (2.22) 
i=o 
n - l 

</)-! o L-1 o cj){X) = Y^ L^jX'i' (2.23) 

<^-i o L2 o 0(X) = Y L2jX''\ (2.24) 
i=o 

where Lij G K. Our attack comes down to finding the L^-, from which 
we can then construct Li and L2. 

Remark 2.4.1. We make special note that the notation Lj~- represents 

the coefficient of X'^ in the polynomial representation of L^ . This is to 
be distinguished from {Lij)~^, the multiplicative inverse of the coefficient 
of X'^ in the polynomial representation of Li. In general these two 
notations will not refer to the same value in K. All other exponent 
notations will he written as usual without parentheses. 

Now for any polynomial G{X) G K[X] of the form 

n—1 i 

we can associate a unique n x n symmetric matrix G defined by 

1 2Gii 

[^]»i ~ S ^ij 
[Gji 

Note that this matrix is such that 

G{X + Y)-G{X)-

if i =j; 

if i > j ; 

if? < j . 

• G ( y ) = x G y ^ , 
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where x = (X, X ? , . . . , X?"^') and y = (F, F " , . . . , F " " " ' ) . We make 
a special note here that the index of the rows and column range in 
0 , . . . , n — 1, and not 1 , . . . , n. We also note that because the character­
istic of K is two, the entries on the diagonal of G are all zero. 

Remark 2.4.2. The trouble with the case q — 2 is that in F the square 
terms and the linear terms are now the same and therefore mixed. But 
because of the symmetrization process, we realize that these linear terms 
are only related to the diagonal elements in the matrix, which are anni­
hilated here anyway. Therefore there is no problem with this attack for 
the case q = 2. 

With this correspondence between homogeneous quadratic functions 
on K and n x n matrices with entries in K, we will shift from the 
function point of view to that of matrices. In particular, let F be the 
matrix associated with F. Then clearly F has only two nonzero entries: 
[F]o6i = 1 and [FĴ o ~ 1- To see the basic idea of the attack, we must first 
understand how the bilinear form behaves if we compose the function 
by a A:-linear function from the left or right. The results are presented 
in the following two lemmas that deal with how these matrices behave 
under function composition. 

Lemma 2.4.1. Let G{X) be as defined above, let S{X) = YJ^ZQ SiX'i' 
and let G be the symmetric matrix associated with G{S{X)). Then 

G' = W^GW, 

where \N is an n x n matrix defined by 

and j — i is calculated modulo n. 

Proof. We begin by expanding G{S{X)): 

n-1 u / n - 1 \ 9 +9 

G{S{X)) = Y.YlGuv[Y.SiX'^'\ 
«=0-(;=0 \l=0 J 
n-1 u /n-1 \ «" /n-1 

u=Ov^O \l=0 / \l^0 
n~l u /n—1 \ /n—1 ^ 

=EE^̂ 4E r̂̂ "̂" Ê r̂ "̂" 
u=Ov=0 \l=0 / \l=0 , 
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n—1 u /n—l \ I n—l 

u=Qv=0 \i=0 J \ i = 0 

n—l u In—\ n~\ 

n—ln—l /n—l K \ 

i=0 j = 0 \ « = 0 v=Q J 

n—l i /n—l « \ 

= E E E E ™̂ (C.<. + <.^f:.) ^̂ '"̂ ^ 
i=0 j = 0 \ i t=0 •u=0 / 

n—l /n—l M \ 

u,=0 \u=Qv=Q J 

Thus the coefficient of X^'^'^^ for i > j is 

n—l u 

u=0 i;=0 

This is the same as [G']ij for i > j , since: 

n - l 
r\A/^i. \r.\i\i, -[G']ij = [W^ G yj]ij = Y^ [W^U [G W], 

u=0 
n—l /n—l 

Ei^k Eî wt̂ K 
«=0 Vt;=0 
n - l / n - l N 

E '̂ i'-w ( E [G]«t,5'j'_„ 
u=0 \ i ;=0 / 
n—ln—l 

E E [^]uvSi^u^j_^^ 
u=0 v=0 

= E E ([G]«.̂ f . C . + [G]-5f .^ i : J - E [G]« î̂ .<^ 
u=0v=0 • ' 
n—l u 

u=0 v=0 

a 
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L e m m a 2.4.2. Let G{X) and S{X) be defined as in Lemma 2.4-1- De­
fine G" to be the symmetric matrix associated with S{G{X)). Then 

n-\ 

G" = ^ 5 , Q , 

where G; is the n x n matrix defined by 

[Gi]ij = Gl__ij^i, 

with both i — I and j — I calculated modulo n. 

Proof. As with Lemma 2.4.1, we expand G{S{X)): 

n - l / n - l u \ 9' 

n~l /n—\ u ^ 

n—1 I n—1 i 

n—\ i /n—1 \ 

= EE Ê '̂ u-Ô '̂-"̂ -̂
Thus the coefficient of X'''+''^ for i > j is 

n - l 
Q.ni 

-Ij-l-
1=0 

This is the same as [G"]ij for i > j , since: 

n—1 n—1 

[G% = E^'N.. = E^'<i . -r 
/=o ;=o 

D 

Suppose that F' is the matrix associated with Fo(^(j) ^ oZ,2 °^)- Then 
from Lemma 2.4.1 we see that 

F' = Li^FL2, (2.25) 
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where the nx n matrix L2 is defined by 

N i , = < • - . . (2.26) 

Now suppose that F is the matrix associated with ^"^ o F o cf), and that 
F" is the matrix associated with ((f)'^ o L^ o (j)) o (cj)^^ o F o </>). Then 
from Lemma 2.4.2 we see that 

n - l 

F" = 2 ] L - / F , , (2.27) 
;=o 

where 
[F/]., - \ftij-r (2-28) 

However, we have seen that 

((/."I o LjT^ o<l>)o (0-1 oFo(P)=.Fo {(j)-^ 0L20 ,/)), (2.29) 

and hence 
F' = M = F", (2.30) 

where M denotes the common value of F' and F". 
Clearly the matrix F has rank equal to two. Since L2 is invertible, we 

see that M = L2 F L2 has rank equal to two as well. But this means that 
the X-linear combination 

n - l 

M = J2Lu'fi 
1=0 

of the n known matrices FQ, . . . , F„_i has rank two, a condition we can 
use to find the values of L^j^. In fact, this is a so-called "MinRank" 
problem. 

Defini t ion 2 .4 .1 . (MinRankProblem) Givennxn matrices Ai,..., A^ 
over a finite field K and r < n, find a non-trivial linear combination of 

A = aiAi H h aml^rn 

such that the rank of A is less than or equal to r. 

The general MinRank problem has been studied by Shallit, Frandsen 
and Buss [Shallit et al., 1996], among others. It generalizes the so-called 
"Rank Distance Coding" problem posed by Gabidulin [Gabidulin, 1985], 
which has been studied in [Stern and Chabaud, 1996; Chen, 1996]. This 
problem is a generalization of the "Minimal Weight" problem of error 
correcting codes [Berlekamp et al., 1978]. The general MinRank problem 
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was proven to be NP-complete in [Shallit et al., 1996] for the case where 
r = n — 1, which in this case corresponds to the problem of finding a 
hnear combination of A i , . . . , A^ which is singular. 

Their proof uses the technique of writing a given set of multivariate 
equations as an instance of MinRank. This result can be extended to 
other cases like r = n — 2 , n — 3 , . . . , however MinRank is not too hard 
when r is very small, as is our case. 

The approach of Kipnis and Shamir is to use a new relinearization 
method to solve this problem. Later, Courtois [Courtois, 2001] proposed 
a more standard and straightforward method to solve this problem that 
originated from an idea of Coppersmith, Stern and Vaudenay [Copper­
smith et al., 1997]. 

In the most general case, we treat the A i , . . . , A^, as known, and the 
« ! , . . . , am as variables. If A = a iAi + • • • + Cmf^m is to have rank r, 
then each (r + 1) x (r -f-1) submatrix minor must be equal to zero. This 
means that each (r + 1) x (r + l) submatrix yields a total degree r + 1 
polynomial equation in the vn variables a j , . . . , a^ . 

In the case under consideration we have r = 2. We also know that 
the A; = F( are symmetric with diagonal entries equal to zero. This 
means that the number of nonzero degree three polynomials in the vari­
ables IJ'^Q-, . . •, L^n-i ^̂  (3) ((3) ~ l ) / 2 ' where the equation obtained by 
choosing indices i i , 12, ̂ 3 for the rows and ji,J2,J3 for the columns is the 
same as the equation gotten by choosing indices Ji,J2,J3 for the rows 
and ii,i2,i:i for the columns, and we discard the trivial equations gotten 
by taking h = j i , 22 = J2, and is = J3. 

Since the equations are homogeneous, solutions should be thought of 
in the projective space of K^. This means that if we find a solution vector 
(Lj"g , . . . , Li^_i), then {CXL^Q , • • •, <^L'^n-i) ^^^^ ^̂ *̂-' ^^ ^ solution vector 
for any nonzero a G K. We may as well then take LJ~Q — 1 and substitute 
this into all the equations to arrive at a system of (3) ((3) — l ) / 2 degree 
three equations in the n — 1 variables L^^ , • • •, L^n-i' which we expect 
will be easy to solve [Courtois, 2001]. 

At this point we have (j)~^ o Lj"^ o ^, and thus Li, so we still need to 
to find L2. Along the way we have found M = F' = L̂ " FL2, which we 
will now use to find L2. We have two ways to proceed. First, if F is 
easily inverted (i.e., if the g-Hamming weight degree of F{X) = X* is 
relatively small), then we can directly compute (f)~^ o Z/2 o ^, and hence, 
L2, from (2.29). Otherwise, we proceed as did Kipnis and Shamir. 

Let ui, . . . , u„_£) be a basis of the left kernel of M, where D is the rank 
of M which we expect to be two. This means that for -i = 1 , . . . , n — D 



Matsumoto-Imai Cryptosystems 43 

we have 

0 = UiM = U iL^FL2 . 

The invertibility of L2 implies that 

0 = Uill F, 

and so, because of the special form of F, we know that 

(0, ai , a 2 , . . . , ae-i,0, ag+i,..., a„_i) = û  L2 , 

for some a i , . . . , a«_i, a$^i,..., a„_i £ ii". Since the Uj are known, we 
evidently have 2(n — D) linear equations in the n^ entries of LJ (or 
equivalently L2) by taking the dot product of Uj with the l'̂ * and 0^^ 
columns of 12 ,̂ for i = 1 , . . . , n — D. In fact, the equations are of the 
form 

i=o 
1 

2^UijLlj_g = 0. 

i=o 
n - l 

i=o 

The first equation is linear in the variables L2j- The second equation 
can be transformed into a linear equation by raising both sides to the 
qU-e power, yielding 

li—i 

n-l 

i=o 
n-l 

j=o 
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Thus we have 2{n— D) equations 

Y^ UijL2j = 0 
j = 0 

n~-l 

E Q'n — 9 

ulj+gL2j = 0, 
i=0 

in the n unknowns L20, L21, • • •, Z/2n-i- Assuming these equations are 
hnearly independent, and that 2(n — D) > n, or equivalently D < n /2 , 
we will be able to solve this system and finally obtain 0^^ o L20 cp, and 
thus L2. 

For more details of this attack, including time and memory complexi­
ties, the interested reader should check the related HFE case in [Courtois, 
2001]. 

2.5 Matsumoto-Imai Variants 
Two methods have been proposed to improve the security of the 

Matsumoto-Imai cryptosystem. One is called the "Minus" method, and 
is designed to resist the linearization attacks proposed by Patarin. The 
other is called the "Plus" method, and is used to make a cipher injective, 
thus enabhng us to decrypt the ciphertext. Among all the Matsumoto-
Imai variants proposed for practical use, the most successful is the Minus 
variant Sflash''^. 

The Minus Method 
The Minus method was first suggested in [Shamir, 1993] and dis­

covered independently by Patarin and Matsumoto. This method was 
utilized by Patarin and his collaborators in [Patarin et al., 1998] and 
elsewhere. As we will see in the case of Matsumoto-Imai, the applica­
tion of this method clearly eliminates the possibility of the linearization 
equation attack, if the Minus number r is not too small. 

The Minus method consists of deleting a few, say /•, polynomial com­
ponents from a given multivariate public key. For example, suppose 
F : fc" —> /c' is a public key cryptosystem with polynomial components 
fi,..., fl e k[xi,..., Xn]. In most cases we have / = n, but the Mi­
nus method can also be used in other cases. Once we apply the Minus 
method to F, for example by deleting the last r components, we will 
have a new map F~ : fc" —> k^~'^ defined by 

F~{x,,...,Xn) = {h,...Jl^r)- (2.31) 

The cryptosystem for signatures is, in general, set as follows. 
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The Public K e y 

The public key includes: 

1.) The field structure of k] 

2.) The set of polynomials: ( / i , . . . , fi-r) £ k[xi,..., x^]. 

The Private Key 

The private key is the same as in the original cryptosystem. 

The Signing Process 

The document (or its hash value) is 1"" = {y'l,...,y'n-r), a vector in 
A;""''. A legitimate user first chooses (or produces in some way) n — r 
random elements y'n-r+i ^ • • • ^ Vn i^ ^' which are appended to Y'~ to 
produce Y' = {y[,..., y'^) in /c". Then 

X ' = ( x ' i , . . . , 4 ) = F - i ( F 0 . 

is calculated using the same decryption process as in the original cryp­
tosystem. Finally, X' is the signature of the document Y ~. 

The Verifying Process 

Anyone who receives the document Y ~ and its signature X' first 
obtains the public key and checks if indeed 

{UX'),...Ji^r{X')) = Y'. 

If equality holds, then the signature is accepted as legitimate, otherwise 
it is rejected. 

In the signing process it is very important that the appended values 
y'n-r+iy • • • i J/n ^re kept secret, otherwise they could be used to recover 
the missing polynomials to attack the systems as was shown in [Okeya 
et al., 2005]. 

The Minus method is particularly useful for converting an encryption 
scheme (which must be one-to-one) into a signature scheme since we no 
longer need injectivity. The security of this family of signature schemes 
is based on the assumption that to solve such a set of / — r nonlinear 
equations in n variables is very difficult. 

In order to illustrate a signature scheme we continue with the toy 
example, which we used to show how the linearization equation attack 
works. This time only the polynomials (2.10) to (2.13) are made public, 
that is (2.14) is hidden and not part of the public key. 
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T h e person signing a document has the secret key and wi th it t h e 

hnear t r ans format ions or their inverses: 
„2 

-^/(?yi,?y2,y3,?y4,y5) = 

L2^{yi,y2,y3,y4,y5) 

0 
a 
a 

Vo 
(c? 

a 
0 
a 

a 

0 
a 

o? 

0 

1 
1 

o? 
1 
1 

a 
a" 

1 
0 
a 

a 

a 

1 
0 

1 
a2 

a2 

a 

a 

0 
1 
a 
a 
a 

1 \ 
1 
1 
1 

1 / 

1 \ 
a 
0 

a 

hi - »'\ 
yi - a' 
J / 3 - 0 

J/4 - 1 

V1/5 - 0 / 

y 2 - o 

a2 

(2.32) 

y4 

VJ/5 

3 of t h e M a t s u m o t o -

a 

a' 7 

(2.33) 

Also available for t h e signing process is d 

Imai m a p , which gives F~^{X) = X^^^, and the irreducible polynomial 
g(x) = x^ + .x'̂  + X + a^. 

Assume t h a t t h e document (plaintext) t o be signed is 

[a ,a,a , 0 ) . 

As ment ioned above, t h e addi t ional value should be chosen at r andom. 
In our toy example there are only four possibili t ies for j/g, and we will 
display t h e m all 

Y' (Document ) 

[c?, (x, o?, 0 ,0) 

[a , a , o?, 0 ,1) 

{a. , a , a , 0 , a) 

{a ,a,a ,0,a ) 

X' (Signature) 

(0, a, Of, 0, a ) , 

( 1 , 1 , a, a, a ) , 

( 1 , 0 , 1 , 1 , a ) 

( a 2 , l , l , 0 , a 2 ) 

Any of these s ignatures , say the first one wi th xi = 0, X2 = a , x^ = a , 
x^ = 0, and x^ — c?, toge ther wi th the public key (2.10) t o (2.13) will 
verify t h a t the s igna ture is valid, since we find 

(?/i, 1/2,2/3,2/4) = ( a ^ « , c?, 0) . 

If t he four polynomials of the public key are used for an a t t ack via 
t h e l inearizat ion equat ion , the a t tacker would see t h a t dim,t Lyi = 1 and 
would only find t h e equat ion 

Xl 
2 2 2 a X2 + ctxs + a X4 + ax5 + a , 

a re la t ionship satisfied by any of the four s ignatures . This is not enough 
to forge a s igna ture . In general , when r becomes larger t h e l inearizat ion 
equat ions for t h e Minus c ryp tosys tem disappear completely. 
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Flash and Sflash 
The New European Schemes for Signatures, Integrity, and Encryp­

tion project (NESSIE) within the Information Society Technologies Pro­
gramme of the European Commission made its final selections for cryp­
tographic primitives at the beginning of 2004 after an evaluation process 
of more than two years [NESSIE, 1999]. Sfiash^^, a fast multivariate sig­
nature scheme, was selected by NESSIE as a security standard for use 
in low-cost smart cards. Sflash^^ is called Flash by NESSIE. The initial 
submission Sflash'"-̂  was flawed, as a way was found to break it [Gilbert 
and Minier, 2002]. The flaw was due to the choice of GF{2) for the field 
elements. It had been deliberately chosen to minimize the size of the 
public key. In any case it was not a fatal flaw and it could be corrected 
easily by choosing GF{2^) as the field elements in Sflash^^ [Patarin et al., 
2001; Akkar et al., 2003]. The new version has a signature length of 259 
bits and a public key of 15 KBytes. 

The authors of the submission claimed that Sflash"^ is the fastest 
signature scheme in the world, and is the only digital signature scheme 
that can be used in practice for smart cards. Later, due to additional 
security concerns, the designers of Sflash recommended a new version 
called Sflash^^ [Courtois et al., 2003b], which is essentially Sflash"^ with 
a longer signature. Sflash'̂ ^ has a signature length of 469 bits and a 
public key of 112 KBytes. Later, the designers discovered that their 
security concerns are unfounded and so Sfalsh"-^ is again recommended 
[Courtois, 2004]. At this point it seems that Sflash"^, and with it Flash, 
should be considered secure. 

For ease of exposition we give the basic implementation of Sflash^'^. 
The reader is referred to [Akkar et al., 2003] for technical details. Sflash 
is a Matsumoto-Imai Minus variant and it uses the single-branch map 
F as given in (2.1) with 9 = 11. 

Furthermore, Sflash uses n = 37 and r = 11 so that F ^ : k^"^ —> fc^^ 
is defined by 

F~{xi,.. .,Xn) = {.h,---,fn-r), 

where / i , . . . , /26 G k[xi,..., X37]. The Sflash scheme has the following 
structure. 

Publ ic K e y 

The following information can be made public, and is needed in order 
to verify a given Sflash signature: 

1.) The field k = GF(2^), including its additive and multiplicative struc­
ture. In particular, k = GF{2)[x]/{x'^ + x + 1). 
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2.) The 26 quadratic polynomials / i , . . . , /26 £ k[xi,..., 0:37]. 

Private K e y 

The following information should be kept private, and is needed in 
order to generate Sfiash signatures: 

1.) A, a randomly chosen 80-bit long secret key; 

2.) The two invertible affine transformations Li and L2 associated with 
the Matsumoto-Imai map F. 

Signature Generation 

Let ip : k —> GF(2)^ be the usual vector space isomorphism. The 
subscripts below refer to the position in the bit string, and "||" denotes 
the concatenation of bit strings. In order to sign a message M, we 
execute the following steps: 

1.) Compute M l = SHA-l(M) and M2 = SHA-l(Ml) , two 160-bit 
strings, using the SHA-1 hash function. 

2.) Let 

3.) Let 

V = M l | | ( M 2 i , . . . , M 2 2 2 ) = (V^i,...,Vi82) 

W = SEA-l{V\\A) = {Wi,...,Wj7). 

M[=i^-\Vu...,Vr) 

M^^ilj"\Vs,...,Vi^) 

M^, = i;-\V^7e,...,Vis2) 

M!,T = ^-\W,,...,W-r) 

M[,T = i,-\Wj^,...,W, 77 j • 

Finally let M' = (M{,. . ., Mi^^) 
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4.) Calculate the signature 5 of M by: 

S = F'\M') 

== L^^o(PoF~^ O^-'^OL^\M'). (2.34) 

The pair {M,S) represents the message M with signature S. 

Signature Verification 

Given the message-signature pair (M, S), we can verify the signature 
by executing the following steps: 

1.) Signature verification begins in the same way as the generation. 
Compute 

Ml = SHA-l(M), 

M2 = SHA-l(Ml) 

V = M l | | ( M 2 i , . . . , M 2 2 2 ) = ( V i , . . . , y i 8 2 ) . 

2.) Let 

Ni=^r\Vu...,Vr) 
N^ = i^-\Vs,...,Vi^) 

N^6 = ^~\Vn6,---,V,s2) 

andN' = {N{,...,N^^). 

3.) If N' = F~ {S), then accept the signature S as valid; otherwise reject 
S. 

It is clear that in order to forge a signature for the message M, we 
need to be able to find a single pre-image of N' under F"; i.e., find one 
solution (not necessarily all solutions) to a system of 26 equations in 
37 variables. Here the secret key A is also very important in terms of 
security [Okeya et al., 2005]. Even if only this secret key A is leaked, 
one can defeat the system easily by using it to find the missing (Minus) 
polynomials. Finally, it is not hard to see that in the case of Matsumoto-
Imai, the Minus method eliminates the possibility of the linearization 
equations attack. 

As was previously mentioned, the Minus method is only suitable for 
signature schemes, where we need to find only a single element in the 
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pre-image (as opposed to a unique pre-image required for encryption). 
The "Plus" method is one way in which we can modify a Minus scheme 
for use in encryption. 

The Plus Method 
The Plus method amounts to adding a few, say .s, randomly chosen 

polynomial components to a given multivariate scheme, and then mixing 
them into the public key through an invertible affine transformation. 
Clearly the degree of the Plus polynomials should be chosen to be the 
same as the underlying scheme. For example, let us suppose that F : 
k" —> fc' is a mapping associated with some multivariate scheme. We 
append the s randomly chosen polynomials Pi, • • •,Ps G k[xi,..., Xn] to 
create a new map F~^ : fc" —> k^~^^ defined by 

F+ = L-io{J^,...Ji,Pi,...,Ps), (2.35) 

where L3 : kf-^^ —> k}'^^ in an invertible affine transformation that 
mixes the Plus polynomials into the system. 

We would like to point out that originally the main purpose of the 
Plus method was not to improve the security of the original scheme 
associated with F, but rather to make the map F, which is not injec-
tive, into an injective map, so that it can be used for encryption. In 
other words, if F''^{y'i,.. -^y'l) has multiple elements {q^, in the case of 
Matsumoto-Imai-Minus), then the Plus polynomials can be used to re­
duce the number of pre-images to a single element if s is big enough. 
Equivalently, the Plus polynomials can help to differentiate which is the 
real plaintext from a set of possible candidates. From a mathematical 
point view, the Plus is a simple method to make a map M, which is 
not injective, into an injective map M"*" by adding more components (an 
embedding map). Roughly speaking, each additional Plus polynomial 
will reduce the probability of having multiple pre-images by a factor of 

q-
The Plus method does not improve the security of the Matsumoto-

Imai public key cryptosystems when it is applied directly. It does nothing 
substantial to help in resisting the linearization equation attacks. The 
linearization equations are still there unlike in the case of the Minus 
method when there are not enough of them. 

As an example of combining both the Plus and Minus methods, we 
now present the Matsumoto-Imai-Plus-Minus public key cryptosystem. 
Let F : A;" —> k"' be a polynomial mapping whose components 

i l l • • • ! /n. G k\xi, . . . , Xn\ 
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form the public key of a Matsumoto-Imai public key cryptosystem. 
Delete the last r polynomials, add s randomly chosen degree two poly­
nomials pi,... ,ps G k[xi,... ,Xn], and define the map F"^ : /c" —> A;"* 

by 
F ± = L3 o ( / i , . . . , / „ _ , , P i , . . . ,p ,) = ( / ± , . . . , / ± ) , (2.36) 

where r < s, m — n — r + s and L3 : k^ —> k™" is an invertible 
afhne transformation. The Matsumoto-Imai-Plus-Minus scheme has the 
following structure. 

Publ ic K e y 

1.) The field k including its additive and multiplicative structure; 

2.) The m = n—r-|-s degree two polynomials/j ,..., f^ G k[xi,.. .,Xn]-

Private K e y 

1.) The degree two polynomials pi,... ,Ps e k[x 

2.) The three invertible afRne transformations Li , L2, and L3. 

Encryption 

Given a plaintext ( x j , . . . , x^) G /;", calculate ( y j , . . . , j /^ ) G /c*" with 
the public polynomials: 

{y[,...,y'J=F^{x[,...,x'J. 

Decrypt ion 

To decrypt a message we execute the following steps: 

1.) Calcula te {zi, . . . , Zn-r+s) = L^^{y'i, • • .,y'n-.r+s)-

2.) For each w = {wi,..., Wr) G k'^, compute 

tw = (^1, • • •,tn) = F''^{zi,. ..,Zn-r,Wi, . ..,Wr), 

and define T = {{w, tyj) \ w € k^}. 

3.) For each [w, t^) G T, check if 

holds for all i = 1 , . . . , s. Keep each tw that satisfy this criteria 
and discard the rest. If s is large enough, we should have only one 
element left, the plaintext {x[,..., x'^). 

Here the Plus method also serves the purpose of improving the security 
once the map L3 is applied, since after the random polynomials are 



52 MULTIVARIATE PUBLIC KEY CRYPTOSYSTEMS 

mixed into the system we cannot tell which are the original polynomials 
from the Matsumoto-Imai cryptosystem. This at least will make it too 
difficult to use any method that can be applied to the Matsumoto-Imai-
Minus cryptosystems directly. 

2.6 The Security of the Matsumoto-Imai Variants 
Before using either the Plus or Minus method, we must decide how 

large (or small) the Plus and Minus should be. For security reasons we 
should not delete too few polynomials (r should not be too small), and for 
efficiency reasons we should not add too many polynomials (s should not 
be too big). The resulting problem of how to choose r and s optimally 
is not completely settled, though there are some results [Patarin et al., 
1998], etc. In this section we will concentrate on the security analysis of 
the Minus variant of Matsumoto-Imai. 

Cryptanalysis of Sfiash^^ 
Recall that for Sflash'"^ the field k is chosen to be GF(2), and in 

particular k = GF{2)[x]/{x'^ + x + 1). The extension field K is chosen 
to be k[x]/r(x), wliere r{x) = x^"^ + x^"^ + x^^ + x? + 1 is irreducible in 
fc[x], and we know that n = 37, 9 = 11 and r = 11. The two secret 
maps Li, L2 : fc" —> /c" are specially chosen in that they are taken from 
a small subset of invertible affine transformations on fc" whose matrix 
representations have entries only from the subfield GF{2). 

Although we can use Sflash to sign documents from k"^^, it is not 
hard to see that due to the special choice of r (x) , L\ and ^2; the 
public signature verification polynomials all lie in the polynomial ring 
GF{2)[xi,.. .,X37]. This reduces the required memory by a factor of 
seven from what it otherwise would be. On the other hand, it is straight­
forward to check that the public polynomial components obtained by 
taking q' = 2,n' = n = 37 and 9' = 3 (so that the fields are k' = GF{2) 
and K' = GF(2^^)) will yield exactly those of F. This is because 

3 = 7 X 11 mod 37. 

Furthermore, if we delete r' = r = 11 polynomials, we have a version of 
Sflash that is much easier to attack. The strategy of Gilbert and Minier 
[Gilbert and Minier, 2002] is to find the GF(2)-linear span of the deleted 
polynomials of this "smaller" version of Sflash. Any subset of eleven 
linearly independent polynomials from this span can be used with the 
original public polynomials to calculate signatures in the original Sflash 
signature scheme. 

We may now think of F" as a Matsumoto-Imai map from GF{2^'^) 
to GF{2'^^). Since GF(2^^) is a relatively small finite field, we can use 



Matsumoto-Imai Crypto systems 53 

brute force to the invert the map F~ over GF(237). In other words, for 
every Y~ G GF{2'^^) we can efficiently compute the set 

Uy^ ={Xe GF{2^^) I F'iX) = Y-}, 

whicli can be stored for later use during the attack. 
The strategy of the attack is to find r additional quadratic polynomials 

qi,. . .jQj. oi the form 

n i — 1 n 

^ A i X „ (2.37) 
i—1 J—1 i=^l 

where aiji, /3ii € GF{2), which together with the n~ r public quadratic 
polynomials from F" will span the same linear space as all of the com­
ponents of F except for some constant shift. This gives us an equivalent 
Matsumoto-Imai polynomial mapping F' that can then be subjected to 
the linearization attack by Patarin. For a given message we cannot use 
F' to produce the exact same signature as we would obtain by using F. 
However, since the span of the components of F' is the same as the span 
of the components of F, we can nevertheless produce valid signatures. 
In other words, if the legitimate user computes S as the signature of 
M, then at the end of this attack we will be able to compute S' such 
that F~(S) = F'~{S'), and therefore can make a successful forgery of 
the legitimate signature. 

The key step in the attack is the characterization of the coefRcients 
of the qi{xi,..., x„) by using the fact that F is an invertible map and 
therefore one-to-one. This allows us to reduce the possible candidates for 
qi{xi,..., Xn) from the space of all quadratic functions with coefficients 
in GF(2) (a space with dimension n{n — l ) / 2 -|- n = 703) to a much 
smaller space of dimension 4 x 37 = 148. Though this space is still 
much too large, once we get to this point we will be able to reduce the 
dimension further to solve our problem. 

The First Step of the Attack 

We begin by noting that F is one-to-one, and therefore for each Y~ = 
(yii--•52/26) G GF{2'^^), the set Uy- will have exactly 2^^ elements. 
Moreover, for each qi of the form in (2.37) we must have 

J2 « W = 0, (2.38) 

for I = 1 , . . . , 11. This also follows from the injectivity of F, which im­
plies that exactly half of the elements X G Uy- are such that qi{X) = 0, 
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while the other half are such that qi{X) — 1. Therefore, each Uy- pro­
vides one linear equation in the 703 coefficients of the quadratic func­
tion qi- Generating Uy for each Y~ can be done by simply calculating 
F~{X) for each of the 2^^ elements X G K'. 

According to Gilbert and Minier, it is often only necessary to compute 
Uy for A'' = 1000 (a little more than 703) different Y~. In any case, the 
N sets Uy~ can be used to obtain an N x 703 matrix with coefficients 
in GF{2), whose kernel can be computed. This kernel, which we denote 
Q, has dimension 37 x 4 = 148, and contains the GF(2)-vector space 
spanned by the 26 public polynomials and the 11 deleted polynomials 
(without constant terms). We now explain the appearance of spurious 
polynomials, polynomials not in the span of the components of F. Before 
we do this, we first need to say a few words about discrete derivatives. 

Discrete Derivatives 

We consider only the case of a finite field of characteristic two. Let V 
be a vector space and let g be any function from V to V. The derivative 
of g with respect to the vector D G F is then defined to be: 

dv{9{x)) = g{x) + g{x + v). 

More generally, \iW = {vi,..., Vm} is a subset of vectors in V, then 
the derivative of g with respect to the set of vectors W is defined to be: 

dwigix)) = dy, {dy^ (• • • {dy^{g{x))) •••)) 

= Yl 9{x + w), 
wew 

where W is the set of all linear combinations aiVi + • • • + amV-m with 
« ! , . . . ,am, e {0,1}. 

Now suppose W is an m-dimensional subspace of V, and that W has 
basis B = {vi,..., I'm}. Then we define the derivative of g with respect 
to the vector space W as just dB{g{x)), though we will abuse notation 
and write dw{g{x)). We note that if F is a Gi^(2)-vector space, then 

dw{g{x))= ^ g{x + w). 
wew 

Finally, let A be an affine set of dimension m, so that A = v + W for 
some vector v GV and m-dimensional subspace W. Then the derivative 
off? with respect to the affine set A is defined to be dB{g{x + v)), where 
B is any basis of the subspace W. As before, we will abuse notation and 
write dAigix)). If I^ is a GF(2)-vector space, then 

dA{9{x))= ' ^ g{x + v + w). 
wew 
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The following two results about the discrete derivative will be partic­
ularly useful when the vector space has an additional ring structure. 

Lemma 2.6.1. Suppose K is a degree n field extension of GF{2), let 
g{x) be a nonzero polynomial in K[x\, and pick any a G K. Then the 
Hamming weight degree of da{g{x)) is strictly less than the Hamming 
weight degree of g{x). 

Proof. Since the discrete derivative is clearly additive, it suffices to con­
sider the case of g{x) = x^ for I > 0. Suppose that there are m nonzero 
terms in the binary expansion of /: 

; = 2'i -|-2'2 + . . . + 2*'". 

Then 

daigix)) = 9{x) + g{x + a) 

= X 

= X 

= X 

= X 

= X 

+ {x+ay 

+ {x + af'+^''+-+^'"'-

+ ix + af {x + af •••{x + af"-

+ {x''''+a'''){x^''+a^'')---{x''"'+a^ 

+ x -H lower weight terms 

= 2x' + lower weight terms 

= 0 -F lower weight terms, 

where the last equality holds since the characteristic of K is two. • 

Corollary 2.6.1. Suppose K is a degree n field extension of GF{2), 
and let (f) : K —> GF(2)^ be the usual identification. Pick g{x) G K[x] 
of Hamming weight degree d. If A is any m-dimensional affine set in 
GF(2)" with d<m, then 

9<p~i(A){9) = 0. 

Proof. The proof follows directly from the previous lemma. • 

Spurious Polynomials 

Fix y - = (y^ , . . . , y^g) and let 

VY~ = {(2/1,.. .,2/37) e GFi2f' I (2/1,.. .,2/26) = y-}, 

an affine subset of GF{2)^'^. Let Y be any element in Vy- and suppose 
X = (x' l , . . ., Xn) satisfies F{X) =Y= {yi,. . ., y„). If qi is in the span 
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of the components of F (i.e., qi = YL7=i '^ifi)' then we must have that 

n 

qi{xi,.. . ,x„) = qi{F~^{yi,. ..,yn)) == ̂ a ^ J / i , (2.39) 

where the second equahty comes from the fact that 

Vi = fi{F^\yi,...,y„)), 

for i = 1 , . . . , n. In this way we can associate with (?;(xi , . . . , Xn) a new 
function 

Qiivi,---, Vn) = m° F"^ {yi,---,yn)-
With this shift in perspective we have 

^ qi{xi,...,Xn)= ^ qi{yi,---,yn)- (2.40) 
xe[/y._ YeVy-

Since Vy- is an affine subset in GFiij^"^, the sum Ylx<^u „ ^K^-'ii • • • j ^'n) 
is now realized as a (discrete) derivative of the function qi{yii • . -jyn), 
which is itself a linear function in the yi,. . .,yn, provided that qi — 

Therefore, an equation of the form of (2.38) will be satisfied by any 
total degree two polynomial q{xi,..., Xn) such that q{yi,..., y^) = q o 
F"^ {yi,..., y-n) can be expressed as a polynomial of total degree at most 
10 in the yi,..., y^- Let us now explore how such functions occur. 

Let Fi-.K' —> K' be defined by 

Fi{X) = X^'+\ 

for i = 0 , . . . , 36, and let Fj : A;" —> k"" be defined by 

Fi ^ (j) o Fi o (f)-^ o L2 = Uil, •••Jin), 

deviating slightly from the usual notation. Clearly F is F3. 
Take Y = F{X) = Li o F^{X). Then F?,{X) = L~^{Y). Also, 

F^^{X) = X\ where t = {2^ + l)'^ mod (2^7 - 1). Therefore, if any 
quadratic polynomial q{X) (with total degree two in the components 
xi,.. .,Xn of X) is equal to a linear combination of the components of 
some Fi{X) — {fn,..., fin), then q can be expressed as a linear combi­
nation of the quadratic terms of the 37 GF(2)-components of F, o F~^. 
To see why this is true, consider the following. Assume 

n 

QyXi, . . . , Xn) = / ^ ^jjij 1 
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and take 
n 

L{xi, . . . , Xn) = 2_^ ^j-^j-

i=i 

We then clearly have 
q{xi,. ..,Xn) = Lo Fi, 

and thus, 

?(X)= Y. 'Kn E 

Z^ 
qoF-\Y) 

= J2 LoF,oF-\Y) 
YdVy-

= J ] L o < / , o F i o F - i o 0 - i o L - i ( y ) , 

the degree of the last expression in the components oiY = [yi,..., y„) 
being bounded above by the Hamming weight of the degree of Fi o F"^, 
which is t(2* + 1) mod [2^'^ - 1). 

One can easily compute di = t{T + 1) mod (2 '̂̂  — 1) for i = 0 , . . . , 36 
and find that there are exactly four values of i such that the Hamming 
weight Wi of di is at most 10. In particular, we find that; 

4 = 1 = (1)2 = » '̂ -3 = 1 

dg = 57 = (111001)2 = ^ -wg = 4 

dis = 3641 = (111000111001)2 = ^ 1̂ 15 = 7 

d2i = 233017= (111000111000111001)2 = » W21 = 10 

and thus the components of ^3,^9,^15, and F21 can all be expressed 
as functions of degree at most 10 in the components of Y. Therefore 
any linear combination of these 4 x 37 = 148 polynomials will satisfy an 
equations of the form in (2.38). 

T h e Second S t e p of t h e A t t a c k 

We must now further characterize the coefficients of the desired qi{x). 
We will use the public knowledge we know about F to express additional 
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conditions we can use to determine the qi{x) completely. Computer ex­
periments confirm that these additional conditions do indeed determine 
the qi{x). 

Choose a basis for Q using Gaussian elimination, say {^i,..., qus}-
We need a condition on the 7̂  such that q = Yllilii^) must belong to 
the space spanned by / i , . . . , / „ . 

Let q{xi,..., Xn) G Q. From the condition imposed by (2.38) on q, we 
see that the total degree of q{yi, • • •, Vn) cannot be more than 10, and 
that if q{xi,..., .x„) belongs to the space spanned by f\,..., / „ then the 
total degree of q{yi,... ,yn) is 1, as we have seen from (2.39). Thus, 
if q{xi,.. . ,x„) is indeed in the space spanned by / i , . . . , / „ , then for 
i = 1 , . . . , 148, the derivative with respect to any 12-dimensional afhne 
set A of Qiq (whose degree is at most 10 + 1 = 11) will be zero. On 
the other hand, if (?(xi , . . . , x„) does not belong to the space spanned by 
/ i , . . . , / „ , then the degree of qiq is expected to be at least 10 + 4 = 14, 
due to the fact that the Hamming weig ht of t(2' + 1) mod (2^7 - 1) for 
i = 9,15, 21 are of weight 4, 7,10, respectively. Therefore we do not 
expect that the derivative of qiq will be zero. We are now ready to 
formulate the desired conditions on the 7^. 

Let Y = (y i , . . .,2/25) G GF(2)^^, and let us denote by Vy— the 
afhne subset of GF{2f'^ 

VY-~ = {(2/1, . . . , 2/37) e GF(2)37 I (2/1 , . . . , ^25) = y~-]-

With this notation we have 

E uy)q{y) = Q-

For each Y— = (m, • • • ,2/25), define Y^ = (2/1, . . . ,^25,0) and Yf = 
(j/ii ••-12/2511), and let U{Y ) = Uy-- UUy-- The above equation 
gives rise to a linear equation in the 148 unknown GF(2)-coefRcients 7, 
of q in the form: 

148 

X; Y.^MX)qiX) = 0. (2.41) 
xeu{Y—) i=i 

In their computer experiments, Gilbert and Minier actually needed to 
use only two arbitrary quadratic polynomials, qi and ^2, which allowed 
them to collect A*" = 200 (a little more than 148 equations) to obtain a 
solution space of dimension exactly 37. This completes step two of the 
attack. 

Once this is done we have the space spanned by / j . After picking 
a basis for this much smaller space, we use the linearization attack to 
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invert the Sflash public polynomials for any given image. This allows us 
to forge signatures. 

Complexi ty 

The most complex calculation required by the attack above is the 
exhaustive computation of the 2^^ values of the public function F~, 
which is needed to obtain the (at most) N + 2N' sets of 2^^ pre-images 
required for the computations of the attack. The computations of Step 
1 are the derivation of the N = 1000 linear equations in 703 variables 
and the Gaussian elimination of the resulting A'' x 703 system, so the 
complexity of Step 1 is bounded above by N x 703 x 2^^ + N^/3 < 2^2. 
Similarly, the complexity of the derivation of the N' linear equations 
in 148 variables and the Gaussian elimination of the resulting N' x 148 
system in Step 2 is bounded above by 2"^"^. These are far lower than 
2^^ computations of the Sflash"^ public functions. We also note that 
the complexity of the linearization attack is about 2^^ computations. 
Therefore the complexity of the entire attack is bounded above by 2^^. 

The attack presented above is based on the fact that the Sflash'"^ 
public function over k'^'^ induces a restricted function over the much 
smaller vector space GF(2)'^^. This attack does not seem to be applicable 
to more conservative instances of the Matsumoto-Imai-Minus scheme, 
such as Sflash''^, since a much more efficient method would then have 
to be found to determine each set of q'^ preimages under F~. In this 
case q'^ — (2 )̂̂ "^ = 2^^, which makes the brute force search for the set of 
pre-images by Gilbert and Minier above impossible. 

Other Attacks on Mi-Minus 
In [Patarin et al., 1998], a general attack on the Matsumoto-Imai-

Minus family was presented. This attack is essentially a differential type 
of attack where one uses the fact that F is an invertible map. The 
starting point is to use the so-called polar form of F given by 

Q{X, T) = F{X + r ) - F{X) - F{T), 

which in this case is related to bilinear forms of the polynomials com­
ponents oi F. If we fix X to be a constant, then the equation above 
becomes linear in T. This method utilizes the fact that the public key 
polynomials come from a set of permutation polynomials, which allows 
us to use the general theory about permutation polynomials and the idea 
of orthogonal systems of equations [Lidl and Niederreiter, 1997]. Then 
we may look for a a value X such that solution space is of maximum 
dimension. The basic idea is to use this solution space to find a way to 
recover the lost (Minus) polynomials and then use again the linearization 
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equations to break the system. From this we can see that this attack 
in essence is closely related to the attack by Gilbert and Minier above. 
We will omit the details of the attack here and refer the readers to the 
original paper [Patarin et al., 1998]. 

It is shown that such an attack should have complexity of 0{q^), 
and therefore it is suggested that q^ should be at least 2^^ in order to 
guarantee security against this attack. This attack is also very closely 
related to the differential attack [Fouque et al., 2005] on PMI [Ding, 
2004a], which will be discussed later. 

We beheve that the new attack on MI in Section 2.4 can also be 
directly extended to attack the Mi-Minus cryptosystem, especially when 
the Minus number r is small. 

Security of MI-Plus-Minus 
We believe that the security of MI-Plus-Minus is also still open, since 

it should be a much harder problem to attack MI-Plus-Minus than Mi-
Minus in general. Moreover, there is also a problem of how big the 
Plus can be before additional security concerns arise. In [Patarin et al., 
1998], some attacks were suggested for MI-Plus-Minus that are actually 
prototypes of the XL-family of algorithms. We will leave the details of 
this discussion for the chapter on general methods for solving systems 
of polynomial equations. 

Related work 
First we like to point out that the Matsumoto-Imai cryptosystems 

we talk about in this chapter should not be confused with some of their 
other cryptosystems from 1983 [Matsumoto and Imai, 1983]. These were 
broken in 1984 [Delsarte et al., 1985] and are very different systems from 
what we study here. 

The original ideas of the Matsumoto-Imai cryptosystems were first 
presented in [Imai and Matsumoto, 1985]. In the 1988 paper, two fam­
ilies of systems are discussed. The other one is the so-called Hidden 
Matrix (HM) scheme, where the key map uses matrix multiplications, 
and in particular the square of a matrix. These schemes were defeated by 
using the same method of linearization equations [Patarin et al., 1998]. 
In the 1985 paper [Imai and Matsumoto, 1985], there is also another 
scheme called the "B" scheme, and it was broken in 2001 [Youssef and 
Gong, 2001] using statistical methods. 

In the process of developing a new differential method to attack PMI 
[Ding, 2004a], Fouque, Granboulan, and Stern also found a new differ­
ential attack to break the MI [Fouque et al., 2005]. 
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Prom [Felke, 2005], we also see that the Hnearization attack was inde­
pendently discovered by Dobbertin at the German Information Security 
Agency in 1993. 
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