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2.1 INTRODUCTION

Nuclear quadrupole resonance (NQR) uses radio-frequency (RF) magnetic
fields to induce and detect transitions between sublevels of a nuclear ground
state, a description that also applies to nuclear magnetic resonance (NMR).
NMR refers to the situation where the sublevel energy splitting is
predominantly due to a nuclear interaction with an applied static magnetic
field, while NQR refers to the case where the predominant splitting is due to
an interaction with electric field gradients within the material. So-called “pure
NQR?” refers to the common case when there is no static magnetic field at all.

The beginning of NQR in solids dates back to the beginnings of NMR in
the late 1940s and early 1950s [1]. The first NQR measurements reported for
a solid were by Dehmelt and Kruger using signals from *°Cl in trans-
dichloroethylene [2]. An excellent early summary of NQR theory and
technique can be found in the 1958 book by Das and Hahn [3]. Several more
recent summaries can be found listed at the end of this chapter. Due to
practical limitations, discussed below, NQR has not grown to be nearly as
common as NMR, and is usually considered a tool for the specialist.

As is the case for NMR spectroscopy, the primary goal for NQR
spectroscopy is to determine nuclear transition frequencies (i.e., energies)
and/or relaxation times and then to relate those to a property of a material
being studied. That property may simply be the sample temperature, for use as
an NQR thermometer [4, 5], or even whether or not a sample is present when
NQR is used for materials detection [6]. On the other hand, NQR is also used
to obtain detailed information on crystal symmetries and bonding, on changes
in lattice constants with pressure, about phase transitions in solids, and other
properties of materials of interest to solid state physicists and chemists.
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As will be seen in more detail below, in order to use NQR spectroscopy
one must have available an isotope with a nuclear spin 1 > %, which has a
reasonably high isotopic abundance, and which is at a site in a solid that has
symmetry lower than tetragonal. The most common NMR isotopes, 'H, °C,
and "N cannot be used since they have a nuclear spin %. Of course, 2C and
'O cannot be used either as they have nuclear spin 0. Table 2.1 shows a
selection of potential nuclei including those most commonly used for NQR, as
well as a few others of possible interest.

2.2 BASIC THEORY

2.2.1 The Nuclear Electric Quadrupole Interaction

Since a nuclear wavefunction has a definite state of parity, a multipole
expansion of the fields due to the nucleus yields electric 2"-poles, where 7 is
even (monopole, quadrupole, etc.) and magnetic 2"-poles, where n is odd
(dipoles, octupoles, etc.). In general these multipole moments become weaker
very rapidly with increasing #. In a molecule or in a solid, the nucleus will be
at an equilibrium position where the electric field is zero, and so in the
absence of a magnetic field the first non-zero interaction is with the electric
quadrupole moment of the nucleus. Higher moments, if they exist, are
generally much too weak to affect NQR measurements [7-9].

A non-zero electric quadrupole moment arises for nuclei that are
classically described as prolate (“stretched”) or oblate (“squashed”)
spheroids. The nuclear charge distribution has axial symmetry and the axis of
symmetry coincides with the direction of the nuclear angular momentum and
the nuclear magnetic dipole moment. In general, an electric quadrupole
moment is described by a 3 x 3 symmetric, traceless tensor Q. For a nucleus
such a tensor can be determined using a single value that describes how
prolate or oblate the nucleus is, plus a description of the orientation of the
nucleus. Since the charge distribution for a nucleus with spin 0 or % is
spherical, such nuclei will have no electric quadrupole moment.

If the charge distribution within the nucleus is known, the amount by
which the sphere is prolate or oblate is determined by the (scalar) nuclear
quadrupole moment Q, which can be calculated using

eQ = Ip (322 1) dr @.1)

where the z-axis is along the direction of axial symmetry, e is the magnitude
of the charge on an electron, and p is the nuclear charge density as a function
of position. While such computations may be done by a nuclear physicist to
check a new model for the nucleus, the NQR spectroscopist uses values
determined experimentally. Values of O are conveniently expressed in units
of 10 cm® = 1 barn.



Table 2.1 Selected quadrupolar nuclei.
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Natural
Isotopic Spin
Nucleus Abundance 1 Y/2m
% (kHz/G) (102" ecm?)

’H 0.015 1 0.654 +0.00286
°Li 7.4 1 0.626 —0.0008
Li 92.6 3/2 1.655 —0.040
8 19.6 3 0.458 +0.085
"B 80.4 3/2 1.366 +0.041
N 99.6 1 0.308 +0.019
0 0.048 5/2 —0.577 —0.26
“Na 100 3/2 1.126 +0.10
N 100 512 1.109 +0.14
(] 75.5 3/2 0.417 —0.082
7Cl 24.5 3/2 0.347 —0.064
Sy 0.25 6 0.425 +0.21
Sy 99.8 7/2 1.119 —0.05
>Mn 100 512 1.050 +0.33
*Co 100 7/2 1.005 +0.40
%Cu 69.1 3/2 1.128 —0.21
%Cu 30.9 3/2 1.209 —0.195
Ga 60.4 3/2 1.022 +0.17
"1Ga 39.6 3/2 1.298 +0.10
PAs 100 32 0.729 +0.31
PBr 50.5 3/2 1.067 +0.33
SIBr 49.5 3/2 1.150 +0.28
®Rb 72 512 0.411 +0.23
¥Rb 28 3/2 1.393 +0.13
Nb 100 9/2 1.041 —0.32
"B 43 9/2 0.931 +0.8
1 95.7 9/2 0.933 +0.8
2ISh 57.3 512 1.019 0.4
'53Sb 427 7/2 0.552 —0.5
1271 100 512 0.852 0.7
B8 9 0.1 5 0.564 +0.4
9 9 99.9 72 0.606 +0.2
18Iy 99.99 72 0.510 +3.3
Y7 Au 100 3/2 0.073 +0.55
20| 100 9/2 0.684 —0.4
35y 0.72 722 | -0.076 +5
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While the electric field at the nucleus is zero, the electric field gradients
(spatial derivatives of that field) may not be. Figure 2.1 is a schematic
showing two orientations of a prolate nucleus (Q > 0) at a point where the
electric field is zero in the vicinity of four fixed point charges. The
configuration shown on the left will have a lower energy than that shown on
the right since the positive charge of the nucleus is, on the whole, closer to the
negative charges. When quantum mechanics is applied, this orientation
dependence gives rise to a small splitting of the nuclear ground state.

a) @ b) @

non-spherical

P nucleus
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Figure 2.1 Two configurations of a non-spherical nucleus near charges external to the nucleus.
The configuration at (a) has a lower energy than that shown at (b).

The electric field gradient at the nucleus due to charges external to the
nucleus, VE, is conveniently described using spatial derivatives of the
corresponding electrostatic potential, V, evaluated at the nucleus. Taking the
nucleus to be at the origin of the coordinate system, the desired derivatives are

2
Vi = oy (2.2)
* oo
Vj Ty 0
where {r;} = {x, y, z}. Since V= V}; and, using Laplace’s equation,
>V, =0, (2.3)

i=x,y,z

the field gradient can be described by a real, symmetric, traceless 3 x 3 tensor.
Such a tensor can always be made diagonal by choosing an appropriate set of
coordinate axes known as principal axes. Once this is done, it is conventional
to define
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eq=V_ (2.4)
V., V. V.-V
n= Vyy xr T xx » (2.5)
» + Vxx VZZ

wheren is known as the asymmetry parameter. It is convenient to choose
the principal axes such that

Vol <Pl <l (2.6)
giving 0 <n<1. Since the pr1nc1pa1 axes are determined by the environment

surrounding the nucleus, those axes are sometimes also referred to as forming
a “molecular” or “crystal” coordinate system. For axial symmetry

Ve=V,=-V_./2 and n=0.

Classically, the interaction energy is given by the tensor scalar product

Ey= < D V0 s (2.7)
i _] X, Y,z
where the two tensors must be expressed in the same coordinate system.
Coordinate transformations can be accomplished using well-known relations
for 3 x 3 symmetric tensors.

Since the nuclear state can be described by specifying the nuclear angular
momentum, the entire interaction can be written, with appropriate scale
factors including the scalar quadrupole moment, in terms of the angular
momentum. When written using quantum mechanical operators, the
Hamiltonian #H;, for a nucleus of spin / expressed in the principal axis
coordinate system is

2
O T AT 1) i [ ([2 ]2)]
41(21-1)
where all I’s in the denominator are scalar values while all /’s in the square
brackets are operators. The interested reader can find a detailed derivation of
this result in Slichter’s book [10]. In terms of the usual angular momentum
raising and lowering operators, /- =/, * il,, the Hamiltonian can also be

written
€ CIQ 2 72 I +2 -1
Q= 3;-17 + n. . (2.8)
4121-1) 2

To represent the Hamiltonian in other coordinate systems, the appropriate
angular momentum rotation operators are applied. Other forms for the
operators, such as irreducible tensor operators, are also sometimes employed
(see [11] for example).

One of the goals of an NQR measurement will be to determine the
quadrupole coupling constant e’qQ and the asymmetry parameter 1, which
contain information about the environment surrounding the nucleus.
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2.2.2 Energy Levels and Transition Frequencies

In the case of axial symmetry, 1 = 0, the pure quadrupole Hamiltonian is
easily diagonalized using eigenfunctions of the operator /, with quantum

number m=—I,—[+ 1, ..., I —1, I. The resulting 2/ +1 energy levels are given
by
2
e’ qQ 2
=——7——— (3m"-I(I+]) . 2.9
" 41Q21-1) ( ( )) @9

In this case m is a good quantum number and the usual magnetic dipole
transition rules apply, Am =0, £ 1. Defining

2
vp=—2dQ (2.10)
4121 —=1)h
where / is Plank’s constant, the allowed transition frequencies are given by
Vms1 =Vo |[CmED|; [m||m+1|< 1. (2.11)

For the more general case of arbitrary n, closed form solutions are known
only for / =1 and / = 3/2. Due to the symmetry of the Hamiltonian, all the
energy levels are doubly degenerate for half-integer spin nuclei. For integer
spin nuclei, of which there are very few in practice, there are an odd number
of levels and the degeneracy is broken. Furthermore, since the eigenfunctions
of I, are not, in general, energy eigenfunctions, additional transitions are often
allowed.

2.2.2.1 Integer Spins

There are only four known stable nuclei with integer spin: H,°Li, and '* N,
all with /=1, and '°B with 7 = 3. In addition there are some very long-lived
radioactive isotopes, such as %V, with I = 6 and **La with 7 = 5. Most of the
NQR work done using integer spin nuclei is for ~100% naturally abundant
“N. Deuterium (*H) and °Li have very small electric quadrupole moments,
making direct observation with NQR difficult. There has been some work
using '°B but due to its lower natural abundance compared to ''B (I = 3/2) the
latter is preferred. The long-lived radioactive isotopes also have a very low
natural abundance making them quite difficult to use.
For spin 1, the three energy levels are

J’_
EO=—§th, E+=%th, 2.12)
and all three possible transition frequencies
2 n
Vo =—MVy , Vo = | 12— |v,, 2.13
0 371 0> V+ ( 3) 0 (2.13)

are allowed.
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For spin 3 an exact solution is not known. Butler and Brown [12] provide a
graphical representation showing 18 allowed transitions, arising from the 7
energy levels, as a function of . Five of those 18 are forbidden when 1 =0
and are somewhat inappropriately referred to as “multiple quantum
transitions.” They are allowed single quantum transitions, though some are
quite weak, and can be useful to help unravel the wonderfully complicated '°B
NQR spectra [13].

2.2.2.2 Spin 3/2

Much of the NQR work in the literature is for spin 3/2 nuclei, which have two
doubly degenerate energy levels,
1/2

( 1/]2\1/2 T]2

and hence only one (non-zero frequency) transition,

1/2

>
v =2v, £1+?J . (2.15)

The fact that there is only one frequency means that one cannot determine the
two values vy and n with a simple pure NQR measurement. The application
of a small magnetic field, discussed below, is often used to separately
determine the two values. For many compounds studied using spin 3/2 NQR,
1 has not been separately determined. Often such data are interpreted using
the assumption 1 = 0, which can yield a maximum error of about 16% in the
determination of vy.

2.2.2.3 Other Half-Integer Spins

Exact solutions are not known for /> 3/2. Tabulated results can be used [14],
or it is now quite easy to diagonalize the Hamiltonian numerically.
Expansions valid for smaller values of 1 are also available [15, 16]. Results of
numerical computations for half-integer spins 5/2, 7/2, and 9/2 are shown in
Figure 2.2. As is customary, the levels are labeled according to the largest
component of the wavefunction, though m is only a good quantum number
when 1 = 0. In addition, when n # 0 virtually all possible transitions are
allowed though many are extremely weak. This is similar to what occurs for
"B, mentioned above. The dotted lines in Figure 2.2 indicate some of these
weaker transitions, which are not allowed at all when 1 = 0 but which may be
usable for large 1. Those weaker transitions are rarely used in practice but can
be helpful when disentangling spectra observed for samples with multiple
sites having large 1 (for example, see [17]).
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When n =1 it is possible, with some effort, to obtain exact solutions for
half-integer spins up to / = 9/2. The resulting energy levels for these / are

in units of Avq.
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Figure 2.2 NQR transition frequencies for spins 5/2, 7/2, and 9/2. The dashed lines are weaker

transitions, which are forbidden when 1 = 0.

2.2.3 Excitation and Detection

In a typical NQR measurement transitions are induced between energy
levels via the coupling between the nuclear magnetic dipole moment and a
resonant time-dependent magnetic field, as is done for NMR. One could also
imagine applying a time-dependent electric field gradient, however the
required field strengths are much too large to be practical in the laboratory.
The required time-dependent electric field gradients can be generated
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indirectly by applying acoustic energy, a method important for the
spectroscopic technique known as nuclear acoustic resonance (NAR) [18].
Due to practical considerations, NAR has proven to have limited utility.

To couple to the nuclear magnetic moment, the sample is placed within the
RF magnetic field produced by an inductor which is carrying an alternating
current (AC) of angular frequency, ®, = 2mv,. Most commonly this is done
by placing the sample within a solenoid that is part of a tuned circuit. If
the AC magnetic field produced is uniform with magnitude, B;, and is in the
xtdirection in a laboratory reference frame, the interaction Hamiltonian is

Hy = VB I, cos(®,1 + ¢)
where v is the gyromagnetic (or magnetogyric) ratio for the nucleus, /7, is the

angular momentum operator for the component along the x’-direction, and ¢
is a phase factor.

For convenience, the energy eigenfunctions in the absence of the AC field,
y,, with energy E, = hw,, can be expressed in terms of the eigenfunctions

of I, u,,, where z corresponds to the z-direction of the principal axes system.
That is,

)i
Y, = D byt (2.17)
=-1
Then in turn, the total time-dependent wavefunction can be written
()= a,()y, exp(-io,1), (2.18)
n

where the complex coefficients a,(¢) are to be determined. As written, those
coefficients will be time-independent when the AC magnetic field is off.
Since the AC magnetic field yields a relatively weak interaction #j, compared
to that of the static electric quadrupole field #p, the coefficients a, will vary
relatively slowly with time. Placing the total wavefunction into Schrédinger’s
time-dependent wave equation,
h oY

—75=(7{Q+7{1)‘P, (2.19)
and using the orthogonality of the eigenfunctions, the coupled equations for
the coefficients, a,(t), are obtained,

oa

i _IyB {—i -0 -0, )i+id —ilog —o; +o, —i¢}
SRSy e o st b

where <\v j|]xf|\y k> is a constant. Expressing /. in the principal axes system

as
Io=cd, + ¢, + c.l, (2.21)

X

where the ¢; are a shorthand notation for the directional cosines, then
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<\‘Uj |IX'|Wk> = Z{m ¢, bjmbkm

m
*

b, b
+ (cx —icy ) (](I+1)—m(m+1))1/2—j’erl kum
2 (2.22)
1/2 bj,mflbk,m

+ (cx +icy) (I(]+1)—m(m+1)) 5

Thus far there has been no approximation.

For simplicity, assume that just two states, labeled 1 and 2, with E, > E|,
are involved. The “slowly varying” part of the solution desired occurs when
the time dependence in one of the exponentials becomes small. That will
occur when the frequencies in one of the exponentials nearly cancel. The
other exponentials will produce rapidly oscillating terms which will tend to
average to zero. Keeping only the slowly varying terms, defining
Q=vB (\yl |lx'|\|12>e"¢ and Ao=0, — (0, —0,), the two coupled equations
that result are

% _ Q a, o iAot
or 2 (2.23)
a& :Ea e+iAo)t
ot 2
which have solution

i Q —A
a(t) = e™"? |:a1(O)COS[(D;ft) g a,(0)— Ao a,(0) Sin[m;ft)}

O,
a,(t) = o Awt/2 {az (0)cos ( (’Oefftj ny a,(0)+Aw a,(0) sin [ (Defft) j|
2 (’Oeff 2
(2.24)

where a,(0) and a,(0) are initial values at =0, and ® = /| Q |2 + (Aco)2 .

The detection of the signal is also done using a coupling to the nuclear
magnetic dipole moment. Knowing the wavefunction, we can compute the
expectation value of the nuclear magnetic moment, [i, at any time. The

component which is along the direction x" is given by
* —i(0, —o; )t
<Hx'>=yhZajak<\vj|1x'|\|lk>e T
j.k

The total nuclear magnetization from N such nuclei, M ., can be written in

(2.25)

terms of the ensemble average
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M. =vyhN z<aj~ak> <\Vj|]x'|\lfk> o @
J.k

The set of values <ajak> are, of course, the elements of the density matrix.

A time-dependent magnetization will generate an electromotive force
(EMF, a voltage) V(¢), in a nearby inductor by Faraday’s law of induction. If
this inductor is the same one used above for excitation, then by reciprocity,

V(t) o dZX’ . (2.26)

A signal measured this way must arise from terms above where j # k. In

thermal equilibrium <a;ak> will be zero for all j # k; after all, one cannot

expect to continually extract electrical power in equilibrium. The role of the
excitation is to disturb the thermal equilibrium so that a signal can be
observed.

A common method to measure NQR signals is the pulse method where
a relatively large AC magnetic field (B; = 1 to 100 G) is applied for a
short time (t, = 1 to 100 ps), after which the EMF induced in the coil is
detected. The other extreme is to continuously supply a low level AC
magnetic field (B; < 1 G). In that case the transitions produced are balanced
against those of thermal relaxation processes and a dynamic equilibrium is
obtained. Then the steady state EMF induced by the nuclei which is in phase
with the current in the inductor is equivalent to an electrical resistance, and
that which is out of phase a reactance. Instrumentation will be discussed in
more detail in the next section.

NQR is usually performed one transition at a time and hence any of these
problems can be treated using the “effective spin 1/2” formalism [19, 20].
However, it is useful to consider what happens explicitly for the two common
cases of / = 1 and / = 3/2 without using that formalism.

2.2.3.1 Example—Spin 1

For I = 1, the three energy levels and the corresponding wavefunctions are
illustrated in Figure 2.3. For the sake of example, assume the transition
labeled v. is to be excited exactly on resonance (A®w = 0), and take ¢ = 0.
Then Q =7y B, ¢, and

Q Q
at)=a/0)cos ?t +1iay(0)sin ?t
Q Q
ay(t) = ay(0)cos ?t +ia,(0)sin ?t 2.27)

a_(t)=a(0),
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which is exactly what one gets if one rotates the nucleus by an angle Q#/2
about the x-axis. Similar expressions are obtained for the other two transitions
involving the other two axes. Such rotations are often conveniently treated
using exponential operators. It is interesting that for spin 1 a simultaneous
excitation of two transitions can also be described as a simple rotation of the
spin [21].

(1+n)hVy/3 A~ A llj+: (u, l+ u-l)""’fi
V(}
(1-1) hVg/3 e | o V_=(u,-u,)z
\'A Vo

Figure 2.3 Energy levels and transitions for spin 1.

Starting from thermal equilibrium, the EMF after a time ¢ will be

V() c, o, (<ai(0)a+(0)> - <a3(0)a0 (0)>)sin Otcoso,r,  (2.28)

which reaches a maximum at Q¢ = /2 when the nucleus has been rotated by
n/4. The term in parentheses is the population difference between the two
levels determined by the Boltzmann distribution. For "N typical energy level
splittings correspond to a temperature equivalent of about 0.1 mK and hence
the thermal equilibrium population difference at room temperature is only
about 1 part in 10”.

The motion of the spin in the absence of the AC field is not easy to
visualize. The simple “counter rotating” picture obtained below for / = 3/2
does not apply even though one can use it to some extent to form a mental
picture. The classical motion of a quadrupole system is discussed by Raich
and Good [22].

Note that Q depends on sample orientation and so for powder (or
polycrystalline) samples one will have a broad distribution of values. This
inherently large inhomogeneity in the “effective B,” (here B¢t = Bjc,) occurs
for NQR of powder samples, but does not occur for NMR.

2.2.3.2 Example—Spin 3/2

The energy levels of the spin 3/2 system are doubly degenerate. The energy
levels were given above and the corresponding wavefunctions can be written
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Wi3/p = COSO Uyy/y + SING )y (2.29)
Wip/g = €088 tyyyy — SING uzy))

e V2 . _ 2 4|12
where sind = [(p—l)/ 2p] with p={l+n"/3 and the only non-zero
transition frequency is v=pv, . In general all four transitions are allowed.

However, it is always possible to create a new set of wavefunctions from
linear combinations of states with the same energy. In particular,

Wiz = AWz + By 5,0 Wisy = Ay_3, — By, (2.30)

and similarly for ,;,,. Furthermore, a combination where only two of the

four transitions are allowed can always be found. Once this has been done, the
transformed spin 3/2 problem can be solved as two independent problems
involving just two energy levels each [23]. The resulting classical picture for
spin 3/2 NQR is that of an NMR experiment in an effective magnetic field
involving the simultaneous measurement of two sets of (spin %2) nuclei, which
are identical except for the sign of their gyromagnetic ratio. In the absence of
the excitation one visualizes two sets of otherwise identical nuclei, precessing
in opposite directions. Such a picture is a result of the degeneracy and
generalizes to other half-integer spins.

The similarity between the classical picture used for NMR and that for spin
3/2 NQR leads to the use of “rotating reference frame” terminology for NQR
even though it is perhaps not entirely appropriate.

2.2.4 The Effect of a Small Static Magnetic Field

The application of a small static magnetic field is sometimes advantageous
and at other times it may simply be unavoidable. By “small” it is meant that
the nuclear Zeeman interaction can be treated as a perturbation. In what
follows, calculations will be carried out in the principal axes reference system.
The Hamiltonian representing the Zeeman interaction can then be written

H.=—yhByle I, +cyl, +c.1.), (2.31)

where the directional cosines ¢; may not be the same as those used previously.
Any case can be treated numerically without difficulty, however it is worth
taking a detailed look at spin 1 and spin 3/2 as representatives of what
happens for integer and half-integer spins.

2.2.4.1 Spin 1

For the case of spin 1 with asymmetry parameter 1 # 0, there is no first-order
shift in the energy levels. Using standard second-order perturbation theory the
changes in the three transition frequencies are:
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B 2 o2 2
Av, = YBo_ g & + —2 42 S Vo (2.32)
2nv, 2 1 (1-nm/3) 1+n/3)

B, ’ 3 ¢ c? c?
Av = |20 | |22 Y4 x|y, (2.33)
2mv,, 2 Q

2
(1-n/3)  (1+n/3)
2 ) 5
YBy c; c c?
Avy = | —— 32z _ " v, .
’ ZTWQ] [ n (d-n/3) (1+n/3)] 0 (2.34)

where vy is as defined above. These are valid provided Av, <<v,,.

3|NN
+

5§}

When n = 0, degenerate perturbation theory must be used and to lowest
order one finds

Av, =F— ¢, (2.35)

—c., (2.36)

a result which can also be used when n # 0 if the first calculation yields
Avgy >>v, . The intermediate case where Av, = v, is more complicated and
will not be treated here.

For larger magnetic fields or when a more precise result is needed, the
exact but more cumbersome solutions given by Muha can be used [24].

2.2.4.2 Spin 3/2

NQR in the presence of a small magnetic field is a principal method used to
determine the asymmetry parameter ) for spin 3/2.

The energy levels for spin 3/2, and for half-integer spins in general, will be
degenerate regardless of the value of n and hence degenerate perturbation
theory must be used. The four energy levels which result for spin 3/2, in the
form presented by Brooker and Creel [25], become

hv p hv 1/2
Ei3/p= 2Q 0[(p 1+r|)2c +(p—1—n)2c)2,+(2+p)2c22] 2.37)
hv h 1/2
Esyjy=- ZQpi "o fpr1-m? e+ pe14mPel + 2-p) 2] 238)

where v, =vB,/2n. In general all the transitions between these four levels

are allowed. The four transitions shown in Figure 2.4 are of most interest. The
highest and lowest frequency transitions, vg and v, will be somewhat
“weaker” than the middle two. A computation of the transition probabilities is
straightforward, though complicated enough that it will not be reproduced
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here. The strength of each transition is a function of the relative orientations
of the static magnetic field, the RF magnetic field, and the principal axes.

For multiple pulse measurements (described below) using a spin 3/2
nucleus in a small magnetic field one can observe an additional effect called
“slow beats” [26] due to the fact that all four of these transitions are excited
and they are not independent of each other.

To separately determine vy and m the transition frequencies can be
measured as a function of sample orientation for single crystals or, less
accurately, the spectral line shape (i.e., the frequency distribution) can be
measured for powdered or polycrystalline samples [27, 28].

A A =3/2
- - +3/2
V VB' v
p v,
¥ v -1/2
et +1/2

Figure 2.4 Energy levels and transitions for spin 3/2 in a magnetic field aligned along the z-
principle axis. The energy level splitting due to the magnetic field is greatly exaggerated.

2.2.5 Line Widths and Relaxation Times

In many cases the spectral line width in an NQR measurement is due to an
inhomogeneous environment. That is, there is a distribution of frequencies
due to small variations in the electric field gradients within the sample. The
common causes for the inhomogeneity include impurities, crystal lattice
defects, and even small thermal gradients within a sample. Inhomogeneous
effects can be reduced through the use of carefully prepared samples and/or
can be handled with pulsed methods and the spin echo techniques.

Two other important contributors to the spectral line width are dynamic
effects due to motion at the atomic scale and nuclear magnetic dipole-dipole
interactions These are generally referred to as “homogeneous effects” since
they apply equally to all the nuclei.

As is the case for NMR, there are several different relaxation times that
can be measured. The so-called spin-spin relaxation time, T, , which may or
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may not actually involve spin-spin interactions, characterizes the return of the
ensemble to thermal equilibrium at some “spin temperature.” The spin-lattice
relaxation time, T, which is the inverse of the relaxation rate, characterizes the
return of the ensemble of nuclei to thermal equilibrium with the surrounding
crystal, usually called the “lattice.” The processes which determine 7; involve
exchange of energy between the nuclei and their surroundings—that is
nuclear transitions are induced by the (random) fluctuations of the
surroundings. In contrast, the interactions that are usually most effective for
T, relaxation are those where there is no (net) gain or loss of energy from the
nuclear ensemble. In general several mechanisms will contribute to the
relaxation.

Typically only one of several possible transitions is excited and detected
for NQR and so the phrase “the return to thermal equilibrium” is usually
applied in the effective spin-%4 sense. That is, the thermal ensemble includes
just the two nuclear energy levels used, with the remaining levels now
belonging to the lattice. This can give rise to relaxation characterized by
multiple exponentials. A nice derivation of the effect for Nb (I = 9/2) is given
by Chen and Slichter [29].

2.2.5.1 Spin-Lattice Relaxation and Temperature-Dependent Frequency Shifts

The coupling between the nuclei and the surrounding crystal will be due to
time-dependent magnetic and/or electric quadrupole interactions. Magnetic
interactions include those due to paramagnetic impurities and, in metals, the
conduction electrons. A much weaker magnetic interaction can occur via a
time-dependent spin-spin interaction. For materials with two readily available
isotopes (e.g., Cl, Cu, Ga, Br, Rb, Sb, etc.), whether the relaxation is
dominated by magnetic or electric quadrupole interactions can usually be
determined by comparing the ratio of the relaxation times to the ratios of the
magnetic dipole and electric quadrupole moments, respectively, for the two
isotopes.

The contribution to the relaxation by the conduction electrons in metals is
due to the so-called Korringa result, just as in NMR [30]. Hence, this
contribution is very sensitive to changes in the electron density of states at the
Fermi level, such as what one expects near superconducting phase transitions
[31]. Korringa relaxation is also evident in some semiconductors [32].
Paramagnetic impurities generally contribute a constant to the rate, as they do
for NMR.

In many NQR measurements of non-metals, the spin-lattice relaxation time
and the temperature coefficient of the NQR frequency are both a result of
lattice dynamics. This can be understood using the simple model proposed by
Bayer [33]. Consider an electric quadrupole Hamiltonian that has been rotated
about the y-axis by a small angle . The new Hamiltonian (in the old principal
axis coordinates) is given by
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and if 3 represents a small, rapid oscillation about an equilibrium at B = 0,
then one can expand and take a time average to determine the average
coupling. Keeping the lowest non-zero terms one gets an average of
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and one can expect that <Bz> increases with temperature. The time-dependent
1/2
terms, with RMS amplitude <B2> , can give rise to nuclear transitions and

hence contribute to increase the relaxation rate 1/7].

The theory of the dependence of the NQR frequency on temperature has
been further developed by a number of authors [34-36]. While there are
exceptions, near room temperature one can expect a temperature coefficient of
order 1 kHz/K for most materials. Since NQR lines are often narrower than
1 kHz, even a small temperature change can be significant, and a small
temperature gradient across the sample can significantly broaden the NQR
line.

2.2.5.2 Spin-Spin Interactions

Nuclear magnetic dipole interactions between nuclei in a solid can produce
some broadening of an NQR line, as happens for NMR. In an NMR
experiment, the broadening due to the spin-spin interaction can be
substantially reduced using a magic angle spinning (MAS) measurement.
Spinning the sample is not effective for NQR and can make matters worse.

One way to estimate the size of the spin-spin interaction is to consider the
size of the magnetic field due to a neighboring nucleus, typically of order 1
Gauss in solids, and then to treat the problem as in Section 2.2.4. It is easy to
predict, quite correctly, that the effects for integer spin and half-integer spin
will be very different. Except in a few isolated cases, the indirect dipole-
dipole coupling (e.g., J-coupling), one of the cornerstones of analysis for high
resolution NMR spectroscopy, is not important for pure NQR work.

The method of moments developed by van Vleck for NMR [37], adapted
to the NQR case, is often used to estimate the broadening due to the spin-spin
interaction. As is the case for NMR, there are separate calculations for unlike
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spins and like spins. For NQR there is an additional case for spins that are
otherwise alike, but for which the directions of the principal axes are
different. This latter case is sometimes referred to as “semi-like.” In the semi-
like case the nuclear energy levels are degenerate, as is the case for like spins,
however the geometry is more complicated.

One common way to compare the different situations is to compute the
second moment for the somewhat artificial case of a cubic lattice of one type
of nucleus. Such a comparison for several different cases is shown in Table
2.1. The characteristic decay time will be proportional to the inverse of the
square root of the second moment.

Table 2.2 Results of some second moment calculations for NQR for the case of like nuclei in a

cubic lattice of edge d. Results are in units of y4h4 /d°.

Second
Spin Condition Moment Ref.
1 n=0 28.2 40
1 n# 0 22.1 40
3/2 n=0 60.0 38
5/2 n=0 108.1 39

For spin 1 with n # 0 the first-order dipole coupling to unlike nuclei is zero
and second-order calculations are necessary. For "N NQR when there are
nearby hydrogen nuclei, the second-order coupling to the hydrogen nuclei can
actually be larger than the coupling between (like) '“N nuclei. A detailed
derivation for this case is given by Vega [40].

In many cases, the addition of a small magnetic field can change “semi-
like nuclei” into “unlike nuclei,” resulting in a significant increase in the spin-
spin relaxation time.

2.3 INSTRUMENTATION

The basic physics for NQR signal detection is the same as for NMR signal
detection. Hence, NQR spectrometers are similar to NMR spectrometers in
design [41]. Of course NQR does not require a large external magnetic field
and associated field control circuitry. High speed sample spinning, often used
for NMR, is also not appropriate for NQR and will not be present. Since
magnetic field homogeneity and spinning are not at issue, sample size is
limited only by the available RF power and convenience.

Early NQR and NMR instruments were largely based on relatively simple
oscillator designs including the super-regenerative oscillator [42], the
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marginal oscillator [43], and the self-limiting “Robinson” oscillator circuit
[44]. All of these are generally referred to as continuous wave (CW)
techniques. For all of these oscillators the frequency is determined by an LC
resonant circuit with the sample placed within (or near) the inductor L. The
frequency is scanned by changing the capacitance C, either mechanically or
electrically. Modern versions of these simple and inexpensive designs are still
useful, particularly when searching for a signal over a broad range of
frequencies and/or where small size is important [45]. Increasingly, however,
computer-controlled pulsed spectrometers, similar to those now used for
NMR, are employed for NQR. The sample is also within (or near) an inductor
which is part of a tuned circuit, though the frequency is now determined by a
separate reference oscillator.

For well-built NQR spectrometers, the principal source of electrical noise
is the thermal noise from the LC tuned circuit. For best signal-to-noise ratios,
care should be taken to minimize the resistive losses (i.e., maximize the
quality factor) for that circuit. The signal-to-noise expected from an NQR
measurement can be roughly estimated using expressions for an NMR
measurement using the same nucleus at the same frequency [46—48].

In addition to the more common designs, several alternative techniques for
NQR detection have been recently proposed, a few of which are also
discussed below in Section 2.3.4.

2.3.1 CW Spectrometers

The use of a marginal oscillator for nuclear magnetic resonance originated
with Pound and Knight [49, 50]. A number of transistorized versions of that
circuit have appeared [51-54]. The marginal oscillator, as its name implies,
uses just enough feedback to sustain low-level oscillations. That is, just
enough energy is supplied by an active device (e.g., a transistor) as is lost and
the behavior of the active device is still relatively linear. When additional
energy is absorbed by the nuclei the level of oscillation can change
significantly. The Robinson circuit, also now developed as a transistorized
version for NQR [55], uses an additional bit of circuitry to maintain the level
of feedback at a fixed value. The Robinson design is particularly useful for
scans over a large frequency range.

The super-regenerative spectrometer is essentially a super-regenerative
radio receiver but designed to detect the induced EMF from the nuclei rather
than distant radio stations. An excellent explanation of how a super-
regenerative receiver functions is presented by Insam [56]. In the super-
regenerative circuit, the feedback condition is alternated between two states,
one which maintains oscillations and one which does not. When switched
from the non-oscillating or “quenched” state to the oscillating state, the time
for the oscillations to build up to a predetermined level will depend on the
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initial signal. That is, if one assumes an exponential growth in voltage starting
at a value 7(0) and with a time constant 1, the time ¢ to grow to a level V, >
7(0) is given by ¢ =tIn(/, /7 (0)).

Hence, in the presence of an induced EMF plus noise the oscillations will
build up to the predetermined level sooner than with noise alone. The
quenching signal may be generated by separate circuitry or one can design
circuits which self quench. Due to the nonlinearity of the detection process
(e.g., the logarithm above), one should not expect to obtain accurate line
shapes with this type of spectrometer.

For the continuous wave (CW) techniques, and particularly for powder
samples, additional sensitivity is often achieved using a set of external
magnetic field coils which are switched on and off, combined with phase
sensitive (“lock-in”) detection. Typically 10-100 G fields are used at 10-100
Hz. When the magnetic field is on (with any polarity), the NQR signal is
broadened sufficiently so that it is unobservable. Effectively, the magnetic
field alternately turns the NQR signal on and off and only the change in the
signal are recorded. Thus, all baseline errors are removed. Note that a similar
technique is used for CW-NMR (usually with a sinusoidal magnetic field)
resulting in a derivative signal. For NMR the magnetic field shifts the signal
in frequency a bit rather than destroying it.

As an alternative to an on/off magnetic field, the frequency of an NQR
oscillator circuit can be modulated electronically using a varicap diode or
similar device as part of the LC tuned circuit. With phase sensitive detection,
one obtains a derivative signal (in the limit of small modulation) though often
with significant baseline problems.

2.3.2 Pulsed Spectrometers

The electronics of pulsed NQR spectrometers is virtually identical to that of
broad-band NMR spectrometers except without a large magnet. In fact, many
pulsed NQR spectrometers are also used (with a magnet) as broad-band NMR
spectrometers and vice versa. Since the pulsed method is much more versatile
than the CW techniques, the vast majority of modern NQR measurements are
made using pulse methods. Many of the pulse techniques began as NMR
techniques and have been adapted to the NQR environment. Since significant
inhomogeneous broadening is common in NQR (See section 2.2.5), one of the
most important techniques is the use of spin-echoes, and related multiple-
pulse techniques, for the study of these broadened lines.

A basic computer-controlled single channel pulsed NQR spectrometer is
shown schematically in Figure 2.5. As is the case for NMR, the signals are
often recorded in quadrature. That is, signals, which are in phase (cosine-like)
and 90° out of phase (sine-like) with a stable reference source, are
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Figure 2.5 Schematic of a simple computer-controlled pulsed NQR spectrometer.

simultaneously recorded in two channels. Due to their treatment under Fourier
transform, and some carryover from CW-NMR terminology, these two signals
are also sometimes referred to as the “real” and “imaginary” signals and/or
“absorption” and “dispersion” signals, respectively. After heterodyning and
filtering, the recorded signals have a frequency which is the difference
between that of the RF reference and that of the nuclear magnetization. In
many modern spectrometers, the analog to digital conversion is done before
heterodyning, with the mixing and filtering performed digitally.

The transmit/receive (T/R) switch shown is usually implemented using
passive circuitry. One common circuit is based on the scheme developed by
Low and Tarr [57], which uses semiconductor diodes and quarter wavelength
transmission lines. At frequencies below about 10 MHz, common in NQR, the
quarter wavelength transmission lines are replaced with lumped circuit
equivalents. Other tuned circuits using diodes can also be employed [58].

While the low noise amplifiers (LNAs) are protected from damage by such
a passive T/R circuit, the receiver will be overdriven and there will be some
“dead time” following the pulse while the receiving circuitry recovers. At
lower frequencies this is exacerbated by the ringing of the LC tuned circuit
containing the sample. When this ringing is a bad enough, additional circuitry
can be added to damp the oscillations, such as a “Q-switch,” and/or one can
switch the phase of the applied RF pulse by 180° for a short time just before
the RF is turned off. The latter approach can be quite demanding on the high
power amplifier.

The simplest pulsed experiment is the application of a single pulse with a
duration T, set to maximize the signal (1 to 100 ps typically). This is referred
to as a 90° or m/2 pulse in analogy to the NMR case, though the simple
classical picture, that this corresponds to a rotation of the nucleus by 90°, is
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not valid. For powders, slightly longer pulses (approximately 30% longer) are
used, compared to oriented single crystals, since many of the crystallites have
a less than optimal orientation [59, 60]. The time-dependent signal after the
pulse is referred to as the fiee induction decay (FID). If the spectral line shape
is of interest, or in the rare case that there is more than one spectral line within
the excitation band width (~10 kHz) then the signal will be Fourier trans-
formed.

Simple spin-echoes are often very useful. The simplest is a two pulse
measurement sometimes referred to as the Hahn echo with a 90° pulse, a time
delay t, a 180° pulse (twice the duration of a 90° pulse), followed by acqui-
sition. The echo signal appears a time 1 after the second pulse. All time-
independent inhomogeneous interactions will be “refocused” by such a pulse
sequence. Figure 2.6 illustrates FID (one pulse) and simple echo (two pulse)
signals using one of the Br NQR transitions of ZnBr,.

T T T T T 5 T T T T T y T

Signal (arb. units)
=]

00 04 02 03 04 00 02 04 06 08 10
Time after pulse (ms) Time after second pulse (ms)

Figure 2.6 Room temperature pulse NQR signals from the 79.75 MHz *'Br transition in a
powder sample of ZnBr, showing (a) a free induction decay (FID) after a single pulse and (b)
echoes obtained using a two-pulse sequence for four different delay times (t = 0.2, 0.4, 0.6, and
0.8 ms).

As is the case for NMR, phase shifts are often applied to the RF pulses and
they are often labeled as they are in NMR. That is, a “n/2,” pulse and a “n/2,”
pulse are 90° out of phase with each other. Phase cycling during signal
averaging, in order to remove the effects of some spectrometer imperfections,
is also common [61].

In the case of weaker signals, spin-echoes may be reformed many times
using steady state free precession (SSFP) [62, 63] or spin-lock spin-echo
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Figure 2.7 Multiple "N spin-echo signals from a spin-lock spin-echo (SLSE) pulse train. Data
courtesy of J.B. Miller.

(SLSE) pulse trains [64, 65]. An example of such a measurement is shown in
Figure 2.7.

Some more advanced work on pulse techniques includes the simultaneous
excitation of two (or more) NQR transitions on the same nucleus [66—68] and
various techniques to improve on the inherently inhomogeneous effective B,
field for powder samples [69—71].

2.3.3 Field Cycling NQR Spectrometers

Field cycling spectrometers are often used to improve the sensitivity,
particularly for low frequency NQR measurements and also in cases of low
natural abundance. There are several different types of field cycling
measurements referred to as NQR measurements — the most common are
pulsed double resonance techniques where the actual measurement is an NMR
measurement.

In a field cycling spectrometer the sample is alternatively subjected to a
large magnetic field and a small (or zero) magnetic field. Since large magnetic
fields are difficult to turn on and off rapidly, this is commonly achieved by
physically moving the sample. Using pneumatics, this can be routinely
accomplished over a distance of about 1 m in about 100 ms or less.

In its simplest form, the sample is placed in a very high magnetic field to
obtain a large nuclear splitting and hence a large population difference. After
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equilibrium is reached, the magnetic field is reduced and RF is applied at the
NQR frequency, the magnetic field is reintroduced, and an NMR
measurement is performed. This method can be applied to half-integer spins
directly [72] or for any spin using double resonance [73]. For the latter, 'H is
most often used as the second nucleus since it is easily observed using NMR.

For double resonance one relies on “contact” between the two nuclei some
time during the measurement. Contact here refers to the case where the
nuclear energy level splittings for the two nuclei match and the nuclei are
physically close enough so that they can interact (e.g., via the nuclear
magnetic dipole interaction). That match can occur either in the presence or
absence of RF irradiation(s). When there is a match, there is efficient transfer
of energy between the two types of nuclei in the same way there is transfer of
energy between two weakly coupled, identical pendulums.

In an alternative form useful for compounds that contain hydrogen, the
large polarizations that can be achieved for 'H in a high magnetic field can be
transferred, in part, to the nucleus to be measured and then a traditional NQR
measurement is made. While not as sensitive, this technique has the advantage
that a highly uniform magnetic field is not required for the NMR
measurement. For example, initial exposure to the nonuniform magnetic field
of permanent magnets can be used to obtain a large, though non-uniform,
initial 'H polarization, which can then be transferred to "*N prior to an NQR
measurement [74].

2.3.4 Some Less Common NQR Detection Schemes

The direct NQR techniques mentioned above all rely on Faraday’s law of
induction. Since the signal is generated by the time rate of change of the
magnetic flux, these techniques lose sensitivity at low frequencies. In contrast,
in a growing number of cases it is possible to detect the magnetic flux
directly, rather than its time derivative. At present, these alternative detection
schemes are difficult to implement on a routine basis.

A superconducting quantum interference device, or SQUID, is sensitive to
magnetic flux and can have a very low noise level. For use as a pure NQR
detector, the time-dependent nuclear magnetization is detected after a
perturbation. Unlike the NMR case, however, there is no static nuclear
magnetization. NQR signals have been detected using a SQUID at frequencies
as low as few tens of kHz up to about 1 MHz [75-78].

A second flux detection technique recently proposed for NQR utilizes an
optical transition in an alkali metal vapor in a way that is very sensitive to
magnetic fields [79]. It is, in essence, a form of optically detected electron
paramagnetic resonance (EPR) in a very weak static magnetic field. For NQR
detection the time-dependent resonant magnetic field is supplied by the
precession of the nearby nuclear magnetic moments to be detected.
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A disadvantage for many pulsed NQR measurements at lower frequencies
is the “dead time” after an applied pulse. Eles and Michal [80] have recently
developed a method for spin 3/2 using a strong excitation at half the resonant
frequency yielding a two-photon excitation, followed by traditional detection.
The advantage is that the excitation frequency is well-separated from the
receiver frequency, thus allowing the dead time to be virtually eliminated.

Another interesting NQR technique, which does not rely on magnetic flux
at all was recently reported [81]. A close relative of perturbed angular
correlation (PAC) techniques, the B-decay is measured from radioactive *Li
nuclei after they are implanted in a material using a polarized beam. The 3
particles are then emitted in a direction determined by the nuclear polarization.
A resonant sinusoidal magnetic field alters the nuclear polarization and thus
affects the B count rate. While the number of isotopes available for such
studies may be limited, it is noted that only about 10" nuclei are required for
this technique, far fewer than are required for other NQR techniques.

2.4 INTERPRETATION OF COUPLING CONSTANTS

The contribution of the electric quadrupole field (eg in €’qQ) can be computed
for a known charge distribution surrounding a nucleus. From that the coupling
constant can be estimated and compared to experiment. With modern
computational techniques for materials, the largest uncertainty is often that
due to the uncertainty in nuclear electric quadrupole moment, Q. For many
measurements, however, of most importance are the relative changes from
one situation to another, and not the absolute values. For example, one might
be concerned with the differences in bonding between two similar
compounds, one may be studying structural changes in the lattice during a
phase transition, or one might be concerned with general correlations between
NQR and other properties [82].

There are three broad situations encountered for electric quadrupole field
calculations. The easiest to handle are molecular crystals where the charge
distribution near the nucleus is predominantly determined by covalent bonds.
For those compounds, relatively straightforward molecular computations can
be made and one can expect only a small “solid effect” due to the stacking of
molecules within the crystal structure. The two other cases are for ionic and
metallic materials, respectively.

The electric quadrupole field at the origin due to a point charge of
magnitude 1 (in cgs units) at a position (x;, xp, x3) = (x, y, z) relative to a
nucleus at the origin is found by taking the second derivatives of the usual
Coulomb potential. That computation gives

1(3xx;
V,=— L&,
i r3( 2 l/j
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where r is the distance to the origin. Since superposition applies, the field
from a charge distribution is computed as the sum of the contributions from
all the charges involved. Due to the 1/ dependence and charge neutrality
within a unit cell, the most important contributions are those due to charges
near the nucleus.

2.4.1 Molecular Crystals and Covalently Bonded Groups

Electron wavefunctions, and hence quadrupole coupling constants, can be
easily computed using ab initio computation techniques. To understand and
describe trends, however, it is often convenient to describe the electron
wavefunctions in covalently bonded systems using a /inear combination of
atomic orbitals (LCAQO) approach. Since filled electron (atomic) shells have a
spherical charge distribution, only the outer electrons need be considered.
There is also a response of the inner core electrons to the presence of an
electric field gradient, which is quite important but which is ignored for the
moment.

Consider an occupied electronic p,-orbit which is (quite generally)
described by a wavefunction v, as

Y= [l\/g cos OJf(r) (2.40)
2\n

where f(r) is the (separately normalized) radial part of the wavefunction and,
of course, cos® =z/r . Then, for example,
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and similarly for other terms and other orbitals. Note that <1/r3 >z1/a8 ,

where aj is the Bohr radius, so V,, ~ 10" V/cm/cm . Values of <1/ » > from

nonrelativistic [83] and relativistic [84] atomic calculations are available.

For a more general combination of atomic orbitals the following should be
noted [85, 86]. First, s-orbitals are spherical and do not contribute.
Furthermore, cross-terms involving s-orbitals and p-orbits, and p-orbitals and
d-orbitals are zero due to symmetry within the integral. Cross-terms between
s- and d-orbitals are usually neglected. For molecular wavefunctions using the
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LCAO-MO picture, the contributions from orbitals on other atoms will be
small.

Hence, with a,%, ayz, and a,” the respective weights for p,, p,, and p, contri-
butions to the wavefunction from orbitals on the atom in question, one gets

V. =eq, [3a’ (0} +a* +a?) |12
Vo=eq,[3a-(@ +ai+a2) |12 (2.42)
v, =eq, 36 (@ +a*+a?) |12

and note that ai +aJ2, +az2 <1 though the entire wavefunction must be

normalized. If there is a small s or d contribution to the wavefunction, the
largest impact on the electric field gradient is likely via the reduction in the
weights for the p-orbitals. The total electric field gradient is computed using
the sum of the contributions from all the occupied valence wavefunctions.

2.4.2 Ionic Crystals

In principle, the computation of the electric field gradient in an ionic material
is straightforward. The ions are replaced by point charges and the appropriate
lattice sums are performed [87]. To achieve accurate values and reasonably
fast convergence, it is necessary to take some care in the way the sum is
computed.

To understand why care must be exercised, consider the following
inaccurate method. First the contribution from all the negative charges is
added out to a large distance R. Then, the contributions from the positive
charges are added, again out to the distance R. The two sums are then
subtracted from one another. Such a technique fails since the quadrupole field
falls as 1/ but the number of neighboring ions in a spherical shell a distance
r away grows as r~. Hence, the total contribution falls as 1/r, and the
individual sums tend to diverge. The net result is the relatively small
difference between two very large values. Furthermore, the use of an arbitrary
cut-off R does not guarantee that the total calculation is charge neutral, which
can lead to a significant systematic error.

To obtain accurate values and rapid convergence, terms in these lattice
sums should be grouped appropriately. A simple method which has rapid
convergence is to use a sum over conventional unit cells where the nucleus in
question has been centered. In addition, ions of charge ¢ which are on the
boundary of » conventional unit cells are included in all of the unit cells, but
with a charge g/n for each [88]. The use of a conventional unit cell ensures
that charge neutrality and the symmetry of the crystal are included at every
step. The field produced from each neighboring unit cell will be that of an
electric dipole, or more often a higher order multipole, which will fall off
much faster with distance than that of a point charge.
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For numerical computations terms of comparable magnitude should be
grouped together. Symbolically, the appropriate lattice sum would then be

3x.x.
L=l Y | Y %(—"'ff aj 0.4

all R | unit cells at | ions in conven- 7" r
distance R | tional unit cell

where 7 is the total distance from the origin to the ion and ¢ is the appropriate,
possibly fractional, charge for that ion. Alternative approaches include the
explicit use of multipole expansions and/or the Fourier transformation of the
lattice.

Field gradients computed using this type of point charge model for the ions
will certainly need to be corrected as discussed below in Section 2.4.4.

2.4.3 Metals

A very simple model for a metal is the “uniform background lattice,” where
the conduction electrons are considered to be uniformly distributed and the
remaining positive ions are treated as point charges [89]. To achieve
convergence for the electric quadrupole field, charges near the origin need to
be avoided, however. Metals with narrow conduction bands can often be
treated using the tight binding model, which is treated as in Section 2.4.1. To
go much beyond these simple models the problem becomes very complicated
very quickly and will depend on the specific metal being considered. The
interested reader is referred to the review articles by Kaufmann and Vianden
[90] and by Das and Schmidt [91].

For simple metals the temperature dependence of the quadrupole coupling
often varies as the 3/2 power of the (absolute) temperature. That is

vo(T) =vQ(0)(1—aT3/2), (2.44)

where o is a constant. This temperature dependence is associated with the
changes in the electronic structure in the presence of thermal vibrations [92].

2.4.4 Sternheimer Shielding/Antishielding

The slight rearrangement of the core electrons in the presence of an electric
field gradient has so far been neglected. A series of works by Sternheimer
[93] has shown, however, that the effects on the observed quadrupole
coupling constant can be far from negligible. There are two Sternheimer
shielding factors which are usually considered, one associated with charges
which are on the atom (or ion) in question, R, and one associated with more
distant charges, y... These factors are often negative and are then referred to as
“antishielding” factors. If equomic is the magnitude of the computed electric
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field gradient associated with electrons on the atom (e.g., the valence
electrons) and eq.y, is that due to charges on other atoms, then the observed
value eqos 1s predicted to be

€qobs = €qatomic (1 - R) + eqext(l_’Yoo) . (245)
More rigorously the atomic and external terms should be combined as tensor,
rather than scalar, quantities. Table 2.3 shows a selection of typical shielding
values for Y.

Table 2.3 Typical Sternheimer factors for several ions.

Atom/Ion Yoo
Na -3.7
Na™* -3.7
Al -1.8
Cl™ —60
Br~ -110
Rb" -50
I ~160

Agreement between 7y, values computed using different methods is no
better than +10% and in many cases much worse. It is clear, however, that the
correction can be quite large. Computed values for R can be so dependent on
the specific electronic configuration used that one is prone to wonder about
the utility of having such values. In the majority of cases, R is of order 0.1.

Of course, a rigorous ab initio computation of the electronic structure of a
material (including the core electrons, band structure effects, etc.) will not
require these additional corrections. Computer codes available for electronic
structure calculations are often optimized for computations of energies, rather
than electron densities, and hence any quadrupole coupling constants
produced from such programs should be used with caution.

2.5 SUMMARY

NQR is a radio frequency spectroscopy akin to wide line NMR but without a
large magnet. NQR uses nuclei with spin I > % to probe the environment in a
material. The NQR frequency will be determined by the (time-averaged)
distribution of electric charge in the vicinity of a nucleus, and that distribution
depends on the material being investigated. The quadrupole coupling
constant, the relaxation times after an excitation, and the effects of small
magnetic fields, along with modeling and comparison to other similar
materials, are used to extract information about the material.
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