2

Ontologies

In this chapter, we introduce our formal ontology model. The model presented
will provide a basis for the formalization of ontology learning tasks in Chapter
3 as well as for the evaluation measures used throughout the remainder of the
book.

The term ontology comes from the Greek ontologia and means “talking” (-
logia) about “being” (6n / onto-). Ontology is a philosophical discipline which
can be described as the science of existence or the study of being. Platon
(427 - 347 BC) was one of the first philosophers to explicitly mention the
world of ideas or forms in contrast to the real or observed objects, which
according to his view are only imperfect realizations (or shadows) of the ideas
(compare [Annas, 1981]). In fact, Platon raised ideas, forms or abstractions
to entities which one can talk about, thus laying the foundations for ontology.
Later his student Aristotle (384 - 322 BC) shaped the logical background
of ontologies and introduced notions such as category, subsumption as well
as the superconcept/subconcept distinction which he actually referred to as
genus and subspecies. With differentiae he referred to characteristics which
distinguish different objects of one genus and allow to formally classify them
into different categories, thus leading to subspecies. This is the principle on
which the modern notions of ontological concept and inheritance are based
upon. In fact, Aristotle can be regarded as the founder of tazonomy, i.e. the
science of classifying things. Aristotle’s ideas represent the foundation for
object-oriented systems as used today. Furthermore, he introduced a number
of inference rules, called syllogisms, such as those used in modern logic-based
reasoning systems [Sowa, 2000a].

In modern computer science parlance, one does not talk anymore about
‘ontology’ as the science of existence, but of ‘ontologies’ as formal specifica-
tions of a conceptualization in the sense of Gruber [Gruber, 1993]. So, whereas
‘ontology’ was originally a science, ’ontologies’ have received the status of re-
sources representing the conceptual model underlying a certain domain, de-
scribing it in a declarative fashion and thus cleanly separating it from proce-
dural aspects.

10 Ontologies

Whereas the number of applications for ontologies in computer science is
steadily growing, the necessity for a clear and formal definition of an ontology
arises at the same time. In the past, there have been many proposals for an on-
tology language with a well-defined syntax and formal semantics, especially in
the context of the Semantic Web, such as OIL [Horrocks et al., 2000], RDFS
[Brickley and Guha, 2002] or OWL [Bechhofer et al., 2004]. In the context of
this book, we will however stick to a more mathematical definition of ontolo-
gies in line with Stumme et al. [Stumme et al., 2003]. Our definitions are to
a great extent borrowed from there. However, we take the freedom to modify
the definitions for our purposes. Furthermore, we illustrate the definition with
a running example.

Definition 1 (Ontology) An ontology is a structure
0:= (C$ <c,R,0R, <R, -Aa TA, T)

consisting of

e four disjoint sets C, R, A and T whose elements are called concept identi-
fiers, relation identifiers, attribute identifiers and data types, respectively,

o a semi-upper lattice <o on C with top element rootc, called concept hi-
erarchy or taxonomy,

o a function og: R — Ct called relation signature,

e a partial order <g on R, called relation hierarchy, where ri <g 7o implies
lor(r1)] = loa(r2)] end wi(or(r)) <c¢ wi(or(r2)), for each 1 < i <
lor(r1)l, and
a function ca: A — C x T, called attribute signature,

a set T of datatypes such as strings, integers, etc.

Hereby, m;(t) is the i-th component of tuple ¢. In some cases, when it is clear
from the context whether we are referring to a relation or an attribute, we
will simply use o.

Further, a semi-upper lattice < fulfills the following conditions:

Vo x < z (reflexive) (2.1)
VeVy (x <yAy<z—x=y) (anti-symmetric) (2.2)
VeVyVz (x <yAy <z -z < z) (transitive) (2.3)
Yz x < top (top element) (2.4)
VeVydz (z 2 zAz22yAVw (w2 zAw >y = w > 2)) (2.5)
(supremum,)

So every two elements have a unique most specific supremum. In the con-
text of ontologies, we will refer to this element as the least common subsumer.
It is obviously defined as follows:

11

height (m) flow_through

capital_of

mountain I [G

aver | [G
4

instance_of i located_|n

l Zugspitze | Neckar | Germany)-(.“'p"" of

height | m} - length (km),+"

.....
g

flow through i
located ln s _,."

2962 | | 367 ﬂow_lhr:;;'h """ > Stutigart]{ Berlin |

Fig. 2.1. Example ontology

les(a,b) := z such that z > aAz > b and Vw (w > aAw > b — w > 2) (2.6)

Often we will call concept identifiers and relation identifiers just concepts
and relations, respectively, for the sake of simplicity. For binary relations, we
define their domain and their range as follows:

it

Definition 2 (Domain and Range) For o relation r € R with |o(r)|
2, we define its domain and range by dom(r) := m1(o(r)) and range(r) :

ma (o (r)).

Ife; <o e2,foreg, e € C, then ¢ is a subconcept of ¢z, and ¢; is a superconcept
of ;. If ry <p 7o, for r1,72 € R, then ry is a subrelation of ro, and 79 is a
superrelation of rq.

If ¢; <¢ ¢2 and there is no ¢z € C with ¢; <¢ ¢3 <¢ ¢, then ¢ is a direct
subconcept of cq, and ¢3 is a direct superconcept of ¢;. We note this by ¢; < cs.
Direct superrelations and direct subrelations are defined analogously.

Let us illustrate all the above definitions on the basis of a simple ex-
ample ontology graphically depicted in Figure 2.1. The set C of concepts
is C :={GE, Natural GE, Inhabited GE, mountain, river, country, city, cap-
ital}, where GE stands for geographical entity. The set R of relations is:
R :={located.in, flow_through, capital_of}. Further, we have two attributes,

12 Ontologies

i.e. A:= {length (km), height (m)}. According to the direct superconcept re-
lation we have, from left to right: mountain < Natural GE, river < Natural GE,
Natural GE < GE, country < Inhabited GE, city < Inhabited GE, capital < city
and Inhabited GE < GE. The partial order <¢ is then <¢:=< U {(mountain,
GE),(river, GE),(country,GE),(city, GE),(capital, Inhabited GE),(capital, GE)}.

In our example, the top element of the concept upper semi-lattice is
rootc :=GE. Further, lcs(country, city) is for example Inhabited GE, whereas
les(city,capital) is city and les(mountain,city) is GE.

For the relations and attributes in the example ontology we have the
following signatures:

ogr(flow_through) = (river, GE)

o g{capital_of) = (city, country)
or(located_in) = (city, country)
a.4(length (km)) = (river, integer)

o 4(height (m)) = (mountain, integer)

The relation hierarchy could further include capital.of <p located.in,
i.e. if z is capital of y, then z is also located in y.

Having defined the basic elements of a core ontology, we now define an
axiom system for it. Though we are not directly concerned with learning
axioms, we introduce an axiom system for the sake of completeness.

Definition 3 (£-Axiom System) Let £ be a logical language. A L-aziom
system for an ontology O := (C,<¢,R,0r, <r,A,04,T) is a triple

S := (4S,a, L)

where

e AS is a set whose elements are called axiom schemata and
o a:AS — AS. is a mapping from AS to aziom schemata defined over L.

An ontology with an L-axiom system is a pair
(0,5)
where O is an ontology and S is an L-aziom system for O.

We will formalize these axiom schemata using the untyped lambda calculus
(compare [Barendregt, 1984]) originally introduced by Church [Church, 1936].
The lambda calculus essentially provides a means to describe arbitrary un-
named functions. A lambda expression consists of a variable which we abstract
over - the argument of the function - and which is bound by the X operator.
A function f(z) = 2? can thus be written in the lambda calculus notation as
Az.z?, where the dot (.) separates the lambda operator from the actual body
of the function. In what follows, we will regard the standard lambda calculus
notation as equivalent to the wuncurried notation in which lists of A-bound

13

variables are used. Thus, Az. (Ay. (z +y)) will be written in the more handy
form: ‘Az,y. = + y, omitting the parenthesis by assuming that the A-operator
binds the variables in the list until the end of the whole expression.

For example, one axiom schema could be AP, Q. disjoint(P,Q) which is
mapped by a to a first-order logic schema as

AP, Q. ¥z (P(z) = ~Q(z)).
a(disjoint)(river) {mountain) would thus yield:

Vz (river(xz) — —mountain(z)).

The obvious benefit of such an £-axiom system is that by being indepen-
dent of some concrete knowledge representation formalism, the axioms formu-
lated can be translated into a variety of different languages. This is important
for ontology learning as the statements learned from textual data have in fact
an intuitive interpretation independent of any knowledge representation for-
malism. The learned statements can then get assigned a specific interpretation
with respect to a concrete KR formalism via the o mapping. Axiom schemata
capture frequently occurring patterns used in ontology engineering (compare
[Staab et al., 2001]). In addition to instantiations of these axiom schemata,
other general axioms have to be added to the logical theory. The difference
between axiom schemata and general axioms is thus only a pragmatic one, i.e.
it depends on the fact whether a type of general axiom occurs often enough
to deserve the status of an axiom schema. For example, we will assume the
following two axioms as being part of our logical theory:

Vz (country(z) — Jy capital of (y,x) AVz(capital of (z,z) — z = y))
Vz (capital(z) & Ty capital of (z,y) A country(y))

The first axiom states that every country has a unique capital, while the
second defines the concept capital as equivalent to saying that there is a coun-
try which stands in a capital_of relation with the corresponding city. Depending
on the view adopted and if axioms as the above occur frequently, one could
introduce the following axiom schema:

/\Cl,Cg,R. Cl = 3R02

which would be mapped to the following first-order axiom schema:

AC1, Ca, R. Yz (C1(z) & Ty A R(z,y) A Ca(y))

The instantiation AC1,Cs, R. C; = 3R.Ca(capital)(country)(capital_of)
would then be mapped to the following first-order formula:

14 Ontologies

Vz (capital(z) & Jy A capital_of (x,y) A country(y))

The crucial question here certainly is whether the corresponding axiom
occurs frequently enough to be lifted to the status of an axiom schema.
In what follows, we also define what a lexicon for an ontology is:

Definition 4 (Lexicon) A lexicon for an ontology
0:= (Ca <c¢,R,oR, SR)Aa OA, T)

is a structure
Lew := (Sc, Sk, Sa, Ref o, Ref p, Ref 4)

consisting of

o three sets So, Sgp and S, whose elements are called signs for concepts,
relations and attributes, respectively,

e a relation Ref » C So x C called lexical reference for concepts,

o a relation Ref C Sk X R called lexical reference for relations, and

o a relation Ref 4 C Sa x A called lexical reference for attributes.

Based on Ref -, we define, for s € Sc,
Refo(s) :=={ce€ C|(s,c) € Refc}
and, for ce€ C,
Ref5(c) :={s € Sc | (5,¢) € Refc).

Ref p and Ref,}1 as well as Ref 4 and Ref:‘l are defined analogously.

An ontology with lexicon is a pair
(0, Lez),
where O is an ontology and Lex is a lexicon for O.

For our example ontology, we could for instance specify that both
nation and country refer to the concept country, i.e. Refal(country) =
{nation, country}.

It is important to mention that the above definition accommodates a great
variety of lexical structures to which concepts and relations can refer, depend-
ing how the sets S¢, Sg and S 4 are defined. In fact, they could merely contain
labels, i.e. plain strings for the concepts and relations as typically assumed,
but also highly structured objects (compare [Buitelaar et al., 2006]).

Whereas ontologies formally specify the conceptualization of a domain, the
extensional part is provided by a knowledge base which contains assertions
about instances of the concepts and relations.

15

Definition 5 (Knowledge Base (KB)) A knowledge base for an ontology
0 :=(C,<¢,R,0R,<R,A,04,T) is a structure

KB := (Ia LCy LR, I'A)

consisting of

e a set I whose elements are called instance identifiers (or instances or
objects for short),
a function 1c: C — 2! called concept instantiation,
a function tg: R = 21" with tr(r) C H1<i<|o(r)| te(mi(o(r))), for all
r € R. The function vg is called relation insfantiation, and

o a function t4: A — I x U, r[t] with va(a) C wo(m(o(a))) x [m2(a(a))],
where [t] are the values of datatype t € T. The function t4 is called
attribute instantiation. '

In our example ontology, we have for instance: [=
{Zugspitze, Neckar, Germany, Stuttgart, Berlin}. Further, we have the fol-
lowing instantiation relations:

tc(mountain) := {Zugspitze}

vc (river) := {Neckar}

tc (country) := {Germany}

te(city) := {Stuttgart, Berlin}

¢t (flow_through) := {(Neckar, Germany),(Neckar, Stuttgart)}
tr(located_in) := {(Stuttgart, Germany)}

vr(capital_of) := {(Berlin, Germany)}

t4(length (km)) := {(Neckar, 367)}

va(height (m)) := {(Zugspitze, 2962)}

As for concepts and relations, we also provide names for instances.

Definition 6 (Instance Lexicon) An instance lexicon for a knowledge base
KB := (I,1c,tR,tA4) is a pair

IL = (S[, R[)

consisting of

e ¢ set Sy whose elements are called signs for instances,
o q relation Ry C St x I called lexical reference for instances.

A knowledge base with lexicon is a pair
(KB, IL)
where KB is a knowledge base and IL is an instance lexicon for KB.

When a knowledge base is given, we can derive the extensions of the con-
cepts and relations of the ontology based on the concept instantiation and the
relation instantiation.

16 Ontologies

Definition 7 (Extension) Let KB := (I,ic,tR,t4) be a knowledge base for
an ontology O := (C,<¢,R,0r,<r,A,04,T). The extension [c]xp C I of a
concept ¢ € C is recursively defined by the following rules:

[lxB ic(c)

[[C]]KB — I[C]]KB U |[Cl]IKB; for d<ce.

instantiations of axiom schemata in S (if O is an ontology with L-axioms),
other general azioms contained in the logical theory.

The extension [rjxks C I of a relation r € R is recursively defined by the
following rules:

[rlxp « tr(r)

[rlks < [r]lks U [r']kB, for v’ <grr.

instantiations of axiom schemata in S (if O is an ontology with L-axzioms),
other general axzioms contained in the logical theory.

The extension [a]xp C I x [T] of an attribute a € A is defined as:

e [alkp < ta(a)
e general axioms contained in the logical theory.

If the reference to the knowledge base is clear from the context, we also write
[e], [r] and [a] instead of [c] ks, [r]xs and [a]xr. Given our example, we
get in particular (taking into account the relation hierarchy and our general
axioms defining capitals and their relation to countries):

[mountain] := {Zugspitze}

[river] := {Neckar}

[country] := {Germany}

[city] := {Stuttgart, Berlin}

[capital] := {Berlin}

[Natural GE] := {Zugspitze, Neckar}

[Inhabited GE] := {Germany, Berlin, Stuttgart}

[GE] := {Germany, Berlin, Stuttgart, Zugspitze, Neckar}
[flow_through] := {(Neckar, Germany), (Neckar, Stuttgart)}
[located_in] := {(Stuttgart, Germany), (Berlin, Germany)}
[capital_of] := {(Berlin, Germany)}

Finally, what is missing is a definition of the intension of a certain concept or
relation. We extend the definitions of Stumme et al. [Stumme et al., 2003] to
also accommodate the intension of concepts and relations as follows:

Definition 8 (Intension) A structure
J:= ('CIa 1o, iR, Z-A)

is called the intension of an ontology O := (C,<¢,R,0r,<pr,A,04,7T) and
consists of:

17

e a language L; capturing intensions of concepts, relations and attributes,
respectively,

o three mappings ic, ir and ig withic : C = Ly, i : R — Ly and iy :
A — L;, mapping concepts, relations and attributes to their corresponding
intensions.

We interpret the intension as a non-extensional definition of a certain con-
cept or relation. The above definition also accommodates different languages
for expressing the intension of concepts and relations. The intension, for
example, could be represented through differentiae in the sense of Aristotle
explaining why a certain concept is different from others and thus merits a
status on its own. In this line, the language could consist of sets of attributes
describing a concept in line with the theory of Formal Concept Analysis (see
Section 4.2). However, the language could consist of strings describing the in-
tuitive meaning of a concept in natural language such as done with the glosses
of the WordNet lexical resource [Fellbaum, 1998] (compare Section 4.1.8).
In this line, in our example the intension for capital could be ic{capital) :=
‘town or city that is the center of government of a country, state or province’.
Having outlined our formal ontology model, the next chapter introduces the
core topic of the book, i.e. ontology learning from text.

2 Springer
http://www.springer.com/978-0-387-30632-2

Ontology Learning and Population from Text
Algorithms, Evaluation and Applications
Cimianao, P,

20086, X0, 347 p., Hardcowver

ISBEN: @78-0-387-30632-2

