SOME ISSUES IN MODEL-BASED DEVELOPMENT
FOR EMBEDDED CONTROL SYSTEMS

Paul Caspi
caspi@imag.fr
Verimag-CNRS
www-verimag.imag.fr

Abstract This presentation aims to discuss the needs for better and more solid
foundations of model-based development in embedded control systems.
Three particular points are discussed: a comparison between model-
based development in control and in computer sciences, the need for
a sampling theory of discrete event systems and the need for precise
implementation methods based on preemptive scheduling.

Keywords: model-based development, embedded control, approximation, sampling,
voting, distances

1. INTRODUCTION

Model-based development is widely recognised as a method of choice
for efficiently and safely designing computing systems. After all, isn’t it
the way other branches of engineering have followed for achieving such
a goal? Just think of how bridges and buildings are designed. Yet,
though the need for model-based development is widely recognised, it is
true that advances in this direction are quite slow and charges are put
on both the youth of computer science and the intrinsic complexity of
computing to account for this state of affairs.

There is however a particular subdomain, the embedded control do-
main, where things have progressed faster. For instance, automatic
code generation from high level model have been in use at Airbus in
the fly-by-wire department for more than twenty years [7]. Since the
beginning of the nineties, the Simulink/Stateflow tool-box also allows
automatic code generation (RealTime Workshop) and has achieved an
impressive diversity of possible implementation platforms ranging from
simple cyclic monoprocessor ones to multi-threaded ones, based on pre-
emptive scheduling and to distributed ones based on specialised CAN

Please use the following format when citing this chapter:

Caspi, P, 2006, in IFIP International Federation for Information Processing, Volume 225, From Model-Driven Design to
Resource Management for Distributed Embedded Systems, eds. B. Kleinjohann, Kleinjohann L., Machado R., Pereira C.,
Thiagarajan P.S., (Boston: Springer), pp. 9-13.



10 From Model-Driven Design to Resource Management for Distributed Embedded Systems

or TTA libraries. It is not unfair to say that embedded control is by
now one (if not the only one) computing subdomain that has reached
the highest possible level of model-based development.

However, as it is often the case, this fast progress has been achieved
rather empirically, without taking much care of foundations. Basically,
it is the accomplishment of practitioners rather than of theoreticians and
the latter have cast very little attention to it. The thesis we would like
to support in this presentation is that times have come to strengthen the
foundations of the method. Not only this effort can be expected to be
fruitful for intellectual purposes but it is also likely that practitioners
can benefit from it by getting better, with wider scope and simpler
development tools.

So the aim of this presentation is to discuss this issue: which are the
foundation needs? Three points will be more precisely considered:

1 What is the use of models in control and how this use differs from
what is currently considered in computer science?

2 Is there a well-admitted theory of computer implementation for
control models, in particular concerning the sampling of discrete
event systems?

3 How can we guarantee behaviour equivalence between models and
implementations in case of preemptive scheduling?

2. MODEL-BASED DESIGN IN COMPUTER
SCIENCE AND CONTROL

Model-based design is advocated in both theories as a method of
choice for efficiently and safely building systems. However these the-
ories differ in the way of achieving this goal:

In computer science, the proposed method (see for instance [1]) is
based on successive refinements: a large specification is designed first,
imprecise (non deterministic) in general, but sufficient for meeting the
desired system properties. Then implementation details are brought in
progressively, making the specification more and more precise, while
keeping the properties, up to a point when it can be implemented.
Clearly, this is an ideal scheme which is seldom fulfilled in practice,
but which has a paradigmatic value.

In control science, on the contrary, an exact model is built first, which
allows a control system to be designed. Then the various uncertainties
that may affect the system behaviour are progressively introduced and
it is checked that the designed controller is robust enough to cope with
these uncertainties.



From Model-Driven Design to Resource Management for Distributed Embedded Systems 11

Clearly, these two schemes are not, in practice, too far from each other.
But, as control systems are mostly implemented by now on computers,
some effort is needed if these two schemes have to match more closely.
This can be valuable in the perspective of achieving an easier communi-
cation between computer and control cultures. A way to reach this goal
would be to see the initially precise control model as representing a large
class of models, those models which fall within some given “distance”
from this model. This distance would then represent the maximally ad-
missible uncertainty around the model and further refinements would
make this uncertainty smaller. This goal requires thus some notion of
control system distance and approximation.

3. SAMPLING DISCRETE EVENT AND
HYBRID SYSTEMS

Large modern control systems mix very closely continuous and dis-
crete event systems. This is due for instance, to mode changes, alarms,
fault tolerance and supervisory control. From a theoretical point of
view, computer implementation techniques for these two kinds of activ-
ity are quite different. Continuous control is dealt with through periodic
sampling (time-triggered computations as defined by [5]) while discrete
event systems use event-triggered implementations. However, in prac-
tice, many mixed continuous control and discrete event control systems
are implemented through periodic sampling. This is the case, for in-
stance, in Airbus fly-by-wire systems [7] and many other safety-critical
control systems. The problem is that there are no solid foundations
to periodically sampling discrete event systems and practitioners rely
on in-house “ad-hoc” methods. Building a consistent sampling theory
for mixed continuous control and discrete event systems would help in
strengthening these practices.

A situation where such lack of theory is particularly critical concerns
fault-tolerance: though the theory of distributed fault-tolerant systems
[8; 5] advocates the use of clock synchronisation, still many critical real-
time systems are based on the GALS (globally asynchronous, locally syn-
chronous) and, more precisely, the “Quasi-Synchronous” [3] paradigm:
in this framework, each computer is time-triggered but the clocks asso-
ciated with each computer are not synchronised and communication is
based on periodic sampling: each computer has its own clock and pe-
riodically samples its environment, i.e., the physical environment but,
also, the activities of the other computers with which it communicates.
When such an architecture is used in critical systems, there is a need for
a thorough formalisation of fault tolerance in this framework.



12 From Model-Driven Design to Resource Management for Distributed Embedded Systems

4. FAITHFUL IMPLEMENTATIONS BASED
ON PREEMPTIVE SCHEDULING

A key question in model based development is the possible discrep-
ancy between models and their computer implementations. As a matter
of fact, if this discrepancy is too large, the benefits gained from the use
of models can be spoiled. This is the general question investigated in
section 2 where this question is considered in terms of distances and
topologies. Yet there are particular situations where other approaches
can be used. A typical example is found when implementations are based
on multiple theads and preemptive scheduling. This kind of implemen-
tation is mandatory in several cases, for instance:

® in multi-periodic models for efficiency reasons;

m in event-triggered systems when urgent events have to be handled.

In such systems, inter-task communication is likely to be strongly non
deterministic [2]. In some cases, for instance when discrete events are
considered, critical races can take place and the “distance” between mod-
els and implementations may become too large. There is thus a need for
more precise implementation techniques, which do not spoil the benefits
of model-based development such as those described in [4; 6].

REFERENCES

(1] Abrial, J.-R. (1995). The B-Book. Cambridge University Press.

[2] Caspi, P. and Maler, O. (2005). From control loops to real-time programs.
In Hristu, D. and Levine, W., editors, Handbook of Networked and Embedded
Computing Systems. Birkhduser.

[3] Caspi, P., Mazuet, C., Salem, R., and Weber, D. (1999). Formal design of
distributed control systems with Lustre. In Proc. Safecomp’99, volume 1698 of
Lecture Notes in Computer Science. Springer Verlag.

[4] Henzinger, T. A., Horowitz, B., and Kirsch, Ch. M. (2003). Giotto: A time-
triggered language for embedded programming. Proceedings of the IEEE, 91:84—
99.

[5] Kopetz, H. (1997). Real-Time Systems Design Principles for Distributed Em-
bedded Applications. Kluwer.

[6] Scaife, N. and Caspi, P. (2004). Integrating model-based design and preemptive
scheduling in mixed time- and event-triggered systems. In Pushner, P., editor,
Euromicro Conference on Real-Time Systems, ECRTS04.

[7] Traverse, P., Lacaze, 1., and Souyris, J. (2004). Airbus fly-by-wire: A total
approach to dependability. In IFIP World Congress, Toulouse. IFIP.

[8] Wensley, J.H., Lamport, L., Goldberg, J., Green, M.W., Lewitt, K.N., Melliar-
Smith, P.M., Shostak, R.E, and Weinstock, Ch.B. (1978). SIFT: Design and



From Model-Driven Design to Resource Management for Distributed Embedded Systems 13

analysis of a fault-tolerant computer for aircraft control. Proceedings of the
IEEE, 66(10):1240-1255.



2 Springer
http://www.springer.com/978-0-387-39361-2

From Model-Driven Design to Resource Management for
Distributed Embedded Systems

IFIF TC 10 Working Conference on Distributed and
Parallel Embedded Systems (DIPES 2006) October
11-13, 2006, Braga, Portugal

Kleinjohann, B.; Kleinjohann, L.; Machado, R.).; Pereira,
C.; Thiagarajan, P.5. (Eds.)

2008, X, 274 p. 98 illus., Hardcover

ISBM: 978-0-387-3936]1-2





