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A General Framework

A randomized clinical trial asks questions about the effect of an interven-
tion on an outcome defined by a continuous, dichotomous, or time-to-failure
variable. While the test statistics associated with these outcomes may appear
quite disparate, they share a common thread—all behave like standardized
sums of independent random variables. In fact, they all have the same asymp-
totic joint distribution over time, provided that we define the time parameter
appropriately. Understanding the distribution of the test statistic over time
is essential because typically we monitor data several times throughout the
course of a trial, with an eye toward stopping if data show convincing evi-
dence of benefit or harm. In clinical trials, the term “monitoring” often refers
to a procedure for visiting clinical sites and checking that the investigators
are carrying out the protocol faithfully and recording the data accurately. In
statistics, and in this book, “monitoring” refers to the statistical process of
assessing the strength of emerging data for making inferences or for estimating
the treatment effect.

This chapter distinguishes between hypothesis testing (Section 2.1) and
parameter estimation (Section 2.2). We begin with simple settings in which
the test statistic and treatment effect estimator are a sum and mean, respec-
tively, of independent and identically distributed (i.i.d.) random variables. We
show that in less simple settings, the test statistic and treatment effect esti-
mator behave as if they were a sum and mean, respectively, of i.i.d. random
variables. This leads naturally to the concept of a sum process (S-process)
behaving like a sum and an estimation process (E-process) behaving like a
sample mean. Following the approach of Lan and Zucker (1993) [LZ93] and
Lan and Wittes (1988) [LW88], we show the connection between S-processes,
E-processes, and Brownian motion. We use Brownian motion to approximate
the joint distribution of repeatedly computed test statistics over time for many
different trial settings, including comparisons of means, proportions, and sur-
vival times, with or without adjustment for covariates. Because of our exten-
sive use of Brownian motion, we were tempted to subtitle this chapter “Brown
v. the Board of Data Monitoring.”
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This chapter, which presents the general framework for the rest of the
book, is necessarily long. The reader may prefer to read the first three sec-
tions containing the essential ideas applied to tests of means, proportions, and
survival, and then proceed to the next chapter showing how to apply Brow-
nian motion to compute conditional power. The reader may then return to
this chapter to see how to use the same ideas in more complicated settings
such as maximum likelihood or minimum variance estimation, or even mixed
models. While digesting the next sections, the reader should keep in mind the
essential idea throughout this chapter—test statistics and estimators behave
like sums and sample means, respectively, of i.i.d. random variables.

Lest the reader get the wrong impression that Brownian motion, like grav-
ity, always works, we close the chapter with an example in which Brownian
motion fails to provide a good approximation to the joint distribution of a
test statistic over time.

2.1 Hypothesis Testing: The Null Distribution of Test
Statistics Over Time

This section focuses on the null distribution of test statistics over time, while
the next section deals with the distribution under an alternative hypothesis.
We begin with paired data assuming the paired differences are independent
and identically distributed normals with known variance. Because this ideal
setting rarely holds in clinical trials, we then back away from these assump-
tions, one by one, to see which are really necessary.

2.1.1 Continuous Outcomes

Imagine a trial with a continuous outcome, and suppose first that the data are
paired. For example, the data might come from a crossover trial studying the
effects of two diets on blood pressure, or from a trial comparing two different
treatments applied directly to the eyes, one to the left eye and the other to the
right. Let Xi and Yi be the control and treatment observations, respectively,
for patient i and letDi = Yi−Xi. Assume that theDi are normally distributed
with mean δ and known variance σ2. We wish to test whether δ = 0.

At the end of the trial the z-score is

ZN = vN
−1/2

N∑

i=1

Di, (2.1)

where SN =
∑N

i=1Di and vN = var(SN ) = Nvar(D1). Treatment is declared
beneficial if ZN > zα/2, where za, for 0 < a < 1, denotes the 100(1 − a)th
percentile of a standard normal distribution.

Now imagine an interim analysis after n of the planned N observations in
each arm have been evaluated. Note that
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ZN = {Sn + SN − Sn}/
√
vN

= Sn/
√
vN + (SN − Sn)/

√
vN (2.2)

is the sum of two independent components. We call the first term of (2.2) the
B-value because of its connection to Brownian motion established later in this
chapter. We term the ratio

t = vn/vN = var(Sn)/var(SN ) (2.3)

the trial fraction because it measures how far through the trial we are. In
this simple case, t simplifies to n/N , the fraction of participants evaluated
thus far; t = 0 and t = 1 correspond to the beginning and end of the trial,
respectively.

Denote the interim z-score Sn/v
1/2
n at trial fraction t by Z(t). Define the

B-value B(t) at trial fraction t by

B(t) =
Sn√
vN

(2.4)

=
√
tZ(t). (2.5)

We could monitor using either the z-score or the B-value; in this book we use
both. We use z-scores for setting boundaries (i.e., calculations assuming the
null hypothesis is true), whereas for deciding whether observed results follow
the expected trend (i.e., calculations assuming the alternative hypothesis is
true), we find it advantageous to think in terms of B-values.

At the end of the trial, B(1) = Z(1) = SN/v
1/2
N , so (2.2) becomes

B(1) = B(t) + {B(1) −B(t)}. (2.6)

The decomposition (2.2) leading to (2.6) clearly implies that B(t) and B(1)−
B(t) are independent (note, however, that the forthcoming derivation of the
covariance structure of B(t) is valid even when B(t) and B(1) − B(t) are
uncorrelated, but not independent). At trial fraction t, B(t) reflects the past
while B(1) −B(t) lies in the future.

More generally, let t0 = 0, t1 = n1/N, . . . , tk = nk/N and let B(t0) =
0, B(t1) = Sn1/v

1/2
N , . . . , B(tk) = Snk/v

1/2
N be interim B-values at trial frac-

tions t0 = 0, t1, . . . , tk. Then the successive increments B(t1) − B(t0) =
Sn1/v

1/2
N , B(t2) − B(t1) = (Sn2 − Sn1)/v

1/2
N , . . . , B(tk) − B(tk−1) = (Snk −

Snk−1)/v
1/2
N are independent because they involve nonoverlapping sums. Fur-

ther, (2.5) implies that

var{B(t)} = t var{Z(t)} = t.

For ti ≤ tj ,
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cov{B(ti), B(tj)} = cov{Sni/v
1/2
N , Snj/v

1/2
N }

= v−1
N cov{Sni , Sni + Snj − Sni}

= v−1
N {cov(Sni , Sni) + cov(Sni , Snj − Sni)}

= v−1
N {var(Sni) + 0} = vni/vN = ti. (2.7)

Thus, the distribution of B(t) has the following structure:

• B1: B(t1), B(t2), . . . , B(tk) have a multivariate normal distribution.
• B2: E{B(t)} = 0.
• B3: cov{B(ti), B(tj)} = ti for ti ≤ tj.

Properties B1-B3 and relationship (2.5) confer the following properties to
z-scores:

• Z1: Z(t1), Z(t2), . . . , Z(tk) have a multivariate normal distribution.
• Z2: E{Z(t)} = 0.
• Z3: cov{Z(ti), Z(tj)} = (ti/tj)1/2 for ti ≤ tj.

We have been somewhat loose in that we have defined B(t) only at trial
fraction values t = 0, 1/N, . . . , N/N = 1. That the set of points at which we
defined the B-value depends on N suggests that we really should use the no-
tation BN (t). The natural way to extend the definition of BN (t) to the entire
unit interval is by linear interpolation: if t = λ(i/N ) + (1 − λ){(i + 1)/N},
we define BN (t) to be λBN (i/N ) + (1 − λ)BN{(i + 1)/N}. This makes
BN (t) continuous on t ∈ (0, 1) but nondifferentiable at the “sharp” points
t = 0, 1/N, . . . , N/N = 1. As N → ∞, the set of t at which BN (t) is non-
differentiable becomes more and more dense. In the limit, we get standard
Brownian motion, a random, continuous, but nondifferentiable, function B(t)
satisfying B1-B3 (Figure 2.1).

The approach we take throughout the book is first to transform a probabil-
ity involving z-scores ZN (t) to one involving B-values BN (t) = t1/2ZN (t), and
then to approximate that probability by one involving the limiting Brownian
motion process, B(t) = limN→∞BN (t). A major advantage to this approach
is that properties and formulas involving Brownian motion are well known,
having been studied extensively by mathematicians and physicists. The fol-
lowing example demonstrates in detail the process of using Brownian motion
to approximate probabilities of interest. In the future, we jump right to B(t),
eliminating the intermediate step of arguing that probabilities involvingBN (t)
can be approximated by those of B(t).

Example 2.1. Consider a trial comparing two different treatments for the
eye. Each volunteer receives treatment 1 in one randomly selected eye and
treatment 2 in the other. The outcome for each volunteer is the difference
between the results from the eye treated with treatment 1 and the eye
treated with treatment 2. Suppose we take an interim analysis after 50 of
the 100 planned patients are evaluated, and the paired t-statistic is 1.44.
The sample size is sufficiently large to regard the t-statistic as a z-score.
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Fig. 2.1. Top panel: The B-value BN (t) for a trial with N = 8 pairs; B8(t) is
defined by linear interpolation for t other than i/8, i = 0, . . . , 8. The resulting
random function is continuous everywhere but not differentiable at the “sharp”
points t = i/8, i = 0, . . . , 8. Bottom panel: As the sample size N increases, the set
of points at which BN (t) is not differentiable becomes denser. The limiting case of
BN(t) as N → ∞ is Brownian motion, a random function continuous everywhere
but differentiable nowhere, satisfying B1-B3. This nondifferentiability reflects the
zigzagging Brown noted when he looked at pollen through his microscope (see the
end of Chapter 1).

The trial fraction is t = 50/100 = 0.50, so Z(0.50) = 1.44. The B-value is
B(0.50) = (0.50)1/2(1.44) = 1.018. We can approximate the joint distribution
of the interim and final B-values, B100(0.50) and B100(1), by those of B(0.50)
and B(1), where B(t) is Brownian motion. For example, we could compute
boundaries a1 and a2 such that Pr(B(0.50) ≥ a1) = 0.01 and Pr(B(0.50) ≥
a1 ∪B(1) ≥ a2) = 0.05 (equivalently, z-score boundaries c1 and c2 such that
Pr(Z(0.50) ≥ c1) = 0.01 and Pr(Z(0.50) ≥ c1 ∪ Z(1) ≥ c2) = 0.05). We
can also use Brownian motion to compute more complicated probabilities
such as the effect on type 1 error rate of monitoring continuously from now
to the end of the trial without adjusting for multiple looks (i.e., using criti-
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cal value 1.96). The actual type 1 error rate, Pr(Z100(i/N ) ≥ 1.96 for some
i = 50, 51, . . ., 100), can be approximated by Pr(B(t)/t1/2 ≥ 1.96 for some
1/2 ≤ t ≤ 1).

Our next step is to show that Brownian motion approximates the null
distribution over t for many other testing scenarios. We reexamine the as-
sumptions in Section 2.1.1 to see which ones we can relax.

First, the differences need not be normally distributed. Even if D is not
normally distributed, the increments are independent and, by the central limit
theorem (CLT), each increment is approximately normally distributed. Con-
sequently, the joint distribution of partial sums is approximately multivariate
normal even if the individual observations are not normally distributed.

Second, the sample variance need not be known. As we argued in the ex-
ample above, Brownian motion holds approximately even if vn is a consistent
estimate of var(Sn) (that is, var(Sn)/vn tends to 1 in probability—see Section
2.9.1 for a formal proof).

Third, we do not need paired observations, as we illustrate in the next
section.

2.1.2 Dichotomous Outcomes

Consider a parallel arm trial with a dichotomous outcome such as 28-day
mortality. Denote by I(A) the indicator function taking the value 1 if the
event A occurs and 0 otherwise. Although the data are not paired differences,
we can view the difference in proportions after n patients per arm as Sn/n,
where Sn is the sum of n paired differences (we get the same difference in
proportions irrespective of how we pair treatment and control observations).
The observations Di = I(patient i of treatment arm has an event)− I(patient
i of control arm has an event), i = 1, . . . , N are i.i.d. with null mean 0 and
variance 2p(1 − p), where p is the null probability that a randomly selected
patient has an event. The z-statistic at the end of the trial is given by (2.1),
where vN = var(SN ) = 2Np(1 − p) is the null variance of SN . As the true p
is unknown, to compute the z-score one replaces p by the sample proportion
of all patients with events. The result is the usual (unpaired) z-statistic for a
test of proportions. Decomposition (2.2) still holds. Define t by (2.3), which
again simplifies to n/N . Brownian motion is again a good approximation for
B(t) defined by (2.4). Also, the joint distribution of z-scores is asymptotically
the same for a dichotomous outcome trial as for a continuous outcome trial.
We can use the same boundaries to monitor either type of trial.

Of course, we do not actually pair the data from a parallel arm trial. In
fact, it is unusual for the control and treatment sample sizes to be exactly the
same even at the end of a trial, let alone at all interim analyses. Later we will
see how to use Brownian motion even in the unequal sample size setting.

Example 2.2. Suppose we design a trial of 200 breast cancer patients randomly
assigned in a 1:1 ratio to the standard treatment plus a new treatment or to
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the standard treatment plus placebo. We want to compare the proportion of
patients whose tumor regresses by 3 months after randomization. Interim anal-
yses occur after 50, 75, and 100 patients per arm have been evaluated. The
corresponding trial fractions are t1 = 50/100 = 0.50, t2 = 75/100 = 0.75,
and t3 = 100/100 = 1. If the z-scores for the usual test of proportions
are Z(0.50) = 0.55, Z(0.75) = −0.20, and Z(1) = 0.23, the B-values are
B(0.50) = (0.50)1/2(0.55) = 0.389, B(0.75) = (0.75)1/2(−0.20) = −0.173,
and B(1) = (1)1/2(0.23) = 0.230. The joint distribution of B(0.50), B(0.75),
and B(1), and therefore the joint distribution of Z(0.50), Z(0.75), and Z(1),
is the same as for a trial with a continuous outcome monitored at those trial
fractions. Any boundary developed for continuous outcome trials would be
valid for this dichotomous outcome trial as well. For any z-score bound-
ary c1, c2, and c3 we could compute the probability of crossing at various
times. For example, suppose the upper boundary is c1 = 2.963, c2 = 2.359,
and c3 = 2.014. The probability of crossing the boundary at t = 0.50 is
Pr(Z(0.50) ≥ 2.963) = 1 − Φ(2.963) = 0.0015. The cumulative probability
of crossing by the second look depends on the joint distribution of Z(0.50)
and Z(0.75), which by properties Z1-Z3 is bivariate normal with zero means,
unit variances, and covariance (0.50/0.75)1/2 = 0.816. We can use numerical
integration (described in Section 4.7) to show that the cumulative crossing
probability by t = 0.75 is Pr[{Z(0.50) ≥ 2.963}∪{Z(0.75)≥ 2.359}] = 0.0097.
Similarly, for the cumulative crossing probability by t = 1, we use the fact
that

cov{Z(0.50), Z(0.75)} = 0.816
cov{Z(0.50), Z(1)} = (0.50/1)1/2 = 0.707
cov{Z(0.75), Z(1)} = (0.75/1)1/2 = 0.866.

The cumulative crossing probability by t = 1 is Pr[{Z(0.50) ≥ 2.963} ∪
{Z(0.75) ≥ 2.359} ∪ {Z(1) ≥ 2.014}] = 0.025.

We next relax the assumption of independent observations. Notice that the
steps leading to (2.7) remain valid even if the Dis are merely uncorrelated.
Thus, even when the observations are uncorrelated but not independent, the
B-values have the same correlation structure as Brownian motion. If we are
willing to accept that the joint distribution of the B-values is asymptotically
multivariate normal, then it must be that of Brownian motion. In the next
section, we apply this idea to comparison of survival curves using the logrank
statistic.

2.1.3 Survival Outcomes

In many clinical trials, the outcome is the time to some event. For simplicity,
assume the event is death so that each person can only have one event; the
same ideas apply for events that can recur, but in those cases we restrict
attention to the first event for each patient. We use the logrank statistic to
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compare the treatment and control arms. Assume for now that all patients
are randomized simultaneously. We show that the logrank statistic is also
of the form (2.1) for uncorrelated, mean 0 random variables Di. Brownian
motion can approximate its null joint distribution at different analysis times.
See Chapter 13 for further discussion of the logrank and related tests.

Let N be the total number of deaths at the end of the trial instead of
the per-arm sample size. The numerator of the logrank statistic at the end
of the trial is

∑N
i=1Di, where Di = Oi − Ei, Oi is the indicator that the ith

death occurred in a treatment patient, and Ei = m1i/(m0i +m1i) is the null
expectation of Oi given the respective numbers, m0i and m1i, of control and
treatment patients at risk just prior to the ith death. Conditioned on m0i and
m1i, Oi has a Bernoulli distribution with parameter Ei. The null conditional
mean and variance of Di are 0 and Vi = Ei(1 −Ei), respectively.

We show in Section 2.9.3 that, unconditionally, the Di are uncorrelated,
mean 0 random variables with variance E(Vi) under the null hypothesis.
Thus, conditioned on N , vN = var(SN ) =

∑N
i=1 var(Di) =

∑N
i=1 E(Vi) =

E(
∑N

i=1 Vi). The logrank statistic is given by (2.1), where vN is replaced by
its estimate

∑N
i=1 Vi.

In the setting of survival, we should define the trial fraction in terms of
patients with events rather than patients evaluated. Suppose we examine the
data after n deaths. If we condition on N and n and define the trial fraction
by (2.3), the covariance structure of Brownian motion holds. For now, assume
that the joint distribution of B(t1), . . . , B(tk) is approximately multivariate
normal. Then Brownian motion is again a good approximation to the process
B(t). A practical problem is that at the interim analysis, we would not know
vN even if we knew with certainty the number, N , of patients with an event
by the end of the trial. We can, however, approximate vN as follows. Under
the null hypothesis, E(Vi) = E{Ei(1 − Ei)} ≈ (1/2)(1 − 1/2) = 1/4. We
find this result quite remarkable—without making any assumption about the
form of the survival curve, this simple argument shows that the variance of
Di is approximately 1/4. It follows that vN ≈ N/4. This calculation leads to
the familar estimate t = n/N . In other words, for the logrank test, the trial
fraction is the ratio of the number of patients with an event thus far to the
number expected by trial’s end.

Example 2.3. Consider a trial comparing mortality of lung cancer patients on
a new treatment plus the standard treatment compared to placebo plus the
standard treatment. Assume 200 deaths expected over the 2-year trial, and
monitoring every 6 months. The total numbers of deaths at the first three looks
were 20, 50, and 122, so the estimated trial fractions were t1 = 20/200 = 0.10,
t2 = 50/200 = 0.25, and t3 = 122/200 = 0.61. The values of the lo-
grank statistic at these looks were Z(0.10) = −0.162, Z(0.25) = 0.258,
and Z(0.61) = 1.384, so the B-values were (0.10)1/2(−0.162) = −0.051,
B(0.25) = (0.25)1/2(0.258) = 0.129, and B(0.61) = (0.61)1/2(1.384) = 1.081.
Under the null hypothesis, these B-values behave like Brownian motion. Sup-
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pose we constructed boundaries c1, c2, and c3 such that

Pr(Z(0.10) ≥ c1 ∪ Z(0.25) ≥ c2 ∪ Z(0.61) ≥ c3) = 0.01.

But imagine that when we reached the end of the trial, we had 190 in-
stead of the expected 200 deaths. Thus, the “right” trial fractions at ear-
lier looks should have been t1 = 20/190 = 0.105, t2 = 50/190 = 0.263, and
t3 = 122/190 = 0.642. The actual probability of crossing at least one earlier
boundary should have been

Pr(Z(0.105) ≥ c1 ∪ Z(0.263) ≥ c2 ∪ Z(0.642) ≥ c3). (2.8)

Fortunately, this discrepancy does not present a problem because the null
joint distribution of Z(t1), Z(t2), Z(t3) is multivariate normal with marginal
mean 0 and variance 1, and cov{Z(ti)/Z(tj)} = (ti/tj)1/2. This distribution
depends on the trial fractions only through their ratios. The ratio of trial
fractions is invariant to how many events we thought there would be at the
end; e.g., (20/200)/(50/200) = (20/190)/(50/190) = 20/50. Thus, the correct
probability of crossing an earlier boundary, (2.8), is also 0.01. We will see this
invariance property many more times.

We used some sleight of hand in concluding that (B(t1), . . . , B(tk)) is ap-
proximately multivariate normal in the survival setting. Because

∑N
i=1Di is a

sum of uncorrelated but not independent observations, we can no longer rely
on the central limit theorem to conclude that the asymptotic marginal dis-
tribution of

∑N
i=1Di is normal. Furthermore, asymptotic marginal normality

of
∑N

i=1Di does not necessarily imply asymptotic multivariate normality of
(
∑n1

i=1Di, . . . ,
∑nk

i=1Di), as it did in the clinical trial scenarios in which the
Dis were independent. Things get even more complicated if we account for
the fact that in most trials participants are recruited over time (staggered
entry) instead of all at once. A more rigorous treatment accounting for these
factors requires a stochastic process formulation. Using such a formulation,
one can show that the simple result obtained above holds under staggered
entry as well. That is, B(t) = t1/2Z(t) behaves asymptotically like Brownian
motion, where the trial fraction t is the ratio of the number of patients with an
event thus far to the number expected by trial’s end, and Z(t) is the logrank
statistic at trial fraction t.

2.1.4 Summary of Sums

In the clinical trial scenarios considered thus far, the test statistic was a sum
of either independent or uncorrelated observations. In either case, we adopted
the following approach to convert the statistic to a B-value:

Approach 1. We transform a sum of independent or uncorrelated random
variables to a B-value B(t) having the same correlation structure as Brownian
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motion by dividing the current sum Sn by the standard deviation of the sum
SN at the end of the trial. The time parameter t of B(t) is the trial fraction
t = var(Sn)/var(SN ).

If the random variables are i.i.d., the same force that causes the z-statistic to
be asymptotically standard normal—namely the central limit theorem—also
causes the asymptotic joint distribution of B-values to be that of Brownian
motion. In fact, the result holds even if the random variables are independent
but not identically distributed (proof in Section 2.9.2).

Result 2.1 Let SN be a sum of independent (not necessarily identically dis-
tributed) random variables with mean 0, and let ni → ∞ and N → ∞ such
that vni/vN → ti, i = 1, . . . , k. Then the joint distribution of the B-values
from Approach 1 is asymptotically that of Brownian motion if and only if the
marginal distribution of the z-statistic is asymptotically standard normal.

2.2 An Estimation Perspective

2.2.1 Information

In each scenario above, we were able to write the test statistic in terms of a
sum Sn =

∑n
i=1Di, but testing whether the treatment effect is 0 is only one

facet of inference; we are also interested in estimating the size of the treat-
ment effect. Thus, we must determine the joint distribution of the treatment
effect estimator δ̂ across different interim analyses. In the simplest setting,
which involves paired data D1, . . . , Dn, the treatment effect estimator δ̂ is a
sample mean D̄. The joint distribution of δ̂1, . . . , δ̂k with n1, . . . , nk pairs is
multivariate normal with marginal mean δ and covariance

cov(δ̂i, δ̂j) = (ninj)−1cov

(
ni∑

r=1

Dr,

nj∑

r=1

Dr

)

= (ninj)−1cov

(
ni∑

r=1

Dr,

ni∑

r=1

Dr +
nj∑

r=ni+1

Dr

)

= (ninj)−1

{
cov

(
ni∑

r=1

Dr ,

ni∑

r=1

Dr

)
+ cov

(
ni∑

r=1

Dr ,

nj∑

r=ni+1

Dr

)}

= (ninj)−1

{
var

(
ni∑

r=1

Dr

)
+ 0

}

= (ninj)−1niσ
2 = σ2/nj

= var(δ̂j). (2.9)

Equation (2.9) shows the covariance of δ̂ over time when δ̂ is a sample mean;
however, when the treatment and control sample sizes differ, the treatment
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effect estimator δ̂ = ȲT − X̄T is not a sample mean. Can we nonetheless view
δ̂ as being like a sample mean even when the numbers nT and nC of treatment
and control observations differ? If so, then a mean of how many observations?
Let us assume that δ̂ behaves like a sample mean of, say, I i.i.d. observations
with mean δ and variance 1. Then E(δ̂) = δ and var(δ̂) = 1/I. Solving for I
yields

I = 1/var(δ̂). (2.10)

Think of δ̂ as a sample mean and I as its sample size, even though I need not
be an integer. Note that δ̂ has the same expectation and variance as a sample
mean of I i.i.d. observations with mean δ and variance 1. We will show later
that δ̂ computed at different interim analyses also has the same covariance as
a sample mean computed at those analysis times. I defined by (2.10) is called
the information contained in δ̂, which can be interpreted as the number of
independent observations with expectation δ and variance 1 whose sample
mean has the same precision as δ̂.

In the continuous outcome scenario with treatment and control sample
sizes nT and nC , the information contained in δ̂ = Ȳ − X̄ is

I = {σ2(1/nT + 1/nC)}−1 = nTnC/{(nT + nC)σ2}.

I decreases as σ2 increases, and for a fixed total sample size nT + nC , I
increases as the disparity between nT and nC decreases.

Although information is interesting in its own right, we return to our goal
of showing that δ̂ behaves like a sample mean of I i.i.d. random variables with
mean δ and variance 1. We showed that this holds marginally, but we now
show that the covariance over time of δ̂ is also that of a sample mean. The
covariance over time for a sample mean was given by (2.9), which in view of
(2.10) may be rewritten as

cov(δ̂i, δ̂j) = 1/Ij. (2.11)

That is, the covariance between sample means at two different times is the
inverse of the information at the later time.

Returning to the estimator δ̂ = Ȳ − X̄ , let (nTi, nCi) and Ii be the
(Treatment, Control) sample sizes and information, respectively, at the ith
interim analysis. Then for i ≤ j,

cov(δ̂i, δ̂j) = cov

{
1
nTi

nT i∑

r=1

Yr −
1
nCi

nCi∑

r=1

Xr ,
1
nTj

nT j∑

r=1

Yr −
1
nCj

nCj∑

r=1

Xr

}

=
1

nTinTj
cov

{
nTi∑

r=1

Yr ,

nTj∑

r=1

Yr

}
− 1
nTinCj

cov

{
nT i∑

r=1

Yr ,

nCj∑

r=1

Xr

}

− 1
nCinTj

cov

{
nCi∑

r=1

Xr ,

nTj∑

r=1

Yr

}
+

1
nCinCj

cov

{
nCi∑

r=1

Xr ,

nCj∑

r=1

Xr

}
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=
nTiσ

2

nTinTj
− 0 − 0 +

nCiσ
2

nCinCj

= σ2

(
1
nTj

+
1
nCj

)

= var(δ̂j)
= 1/Ij. (2.12)

Equation (2.12) shows that, just as with a sample mean, the covariance of δ̂
computed at different times is the inverse of the information at the later time.

The same thing happens with binary data (Section 2.1.2), where the
information in δ̂ = p̂T − p̂C is {pT (1 − pT )/nT + pC(1 − pC)/nC}−1 =
nTnC/{nCpT (1 − pT ) + nTpC(1 − pC)}. Again, (2.11) holds.

No estimator was immediately apparent for survival data (Section 2.1.3),
but one was actually lurking in the background. For each i, (Oi−Ei)/Vi is an
estimate of the log hazard ratio (see the Statistical Appendix of Yusuf et al.,
1985 [YPL85] for a heuristic justification of a closely related odds ratio esti-
mate) with estimated variance 1/Vi. We combine these uncorrelated estimates
by weighting inversely proportionally to their variance:

δ̂ =
∑n

r=1 Vr{(Or −Er)/Vr}∑n
r=1 Vr

= Sn/v̂n,

where Sn =
∑

r(Or − Er) and v̂n =
∑n

r=1 Vr is an estimate of vn =∑n
r=1 E(Vr). It can be shown that v̂n/n converges to a constant just as in

Sections 2.1.1 and 2.1.2. Thus, we can treat v̂n as if it were vn;

var(δ̂) ≈ v−2
n var(Sn) = v−2

n vn = 1/vn,

and information is approximately I = vn, estimated by v̂n. Again δ̂ behaves
like a mean of I i.i.d. observations with expectation δ and variance 1; δ̂ has
mean δ and variance 1/I. Furthermore, for Ii = vni ≤ Ij = vnj ,

cov(δ̂i, δ̂j) = cov

(
(1/Ii)

ni∑

r=1

Dr , (1/Ij)
nj∑

r=1

Dr

)

= (IiIj)−1cov

(
ni∑

r=1

Dr ,

ni∑

r=1

Dr +
nj∑

r=ni+1

Dr

)

= (IiIj)−1

{
var

(
ni∑

r=1

Dr

)
+ cov

(
ni∑

r=1

Dr ,

nj∑

r=ni+1

Dr

)}

≈ (IiIj)−1{vni + 0}
= (IiIj)−1Ii
= 1/Ij. (2.13)

Equation (2.13) shows that the covariance of log hazard ratio estimators com-
puted at two different times is the same as for a sample mean, namely the
inverse of the information at the later time.



2.3 Connection Between Estimators, Sums, Z-Scores, and Brownian Motion 21

The reason for the ≈ in the fourth line of the derivation of (2.13) is that
we are no longer assuming the null hypothesis, and the Dr are not uncorre-
lated under the alternative hypothesis. Still, under a local alternative (loosely
speaking, an alternative “near” the null hypothesis—see Section 2.9.4), the
Dr are approximately uncorrelated.

2.2.2 Summary of Treatment Effect Estimators

With the t-test, the test of proportions, or the logrank test, the treatment
effect estimator computed at k different interim analyses behaves just like
cumulative sample means. It is cumbersome and vague to repeat each time
we discuss estimation that the treatment effect estimator “behaves like” a
sample mean of i.i.d. observations with expectation δ and variance 1. Instead,
we follow the approach of Lan and Zucker (1993) [LZ93], spelling out precisely
what we mean by “behaves like” a sample mean, and attaching a name to
processes with these properties. Let τ be any measure of how far through the
trial we are, scaled such that τ = 0 and τ = 1 at the beginning and end of
the trial, respectively. For example, τ may be the calendar fraction (e.g., the
6-month point of a 5-year trial corresponds to τ = 1/10). Let the increasing
function I(τ ) denote the information at time τ . What we mean when we
say that δ̂(τ ) “behaves like” a sample mean of I(τ ) random variables with
expectation δand variance 1 is that δ̂(τ ) satisfies—at least asymptotically—
the following properties:

• E1: δ̂(τ1), . . . , δ̂(τk) have a multivariate normal distribution,
• E2: E{δ̂(τ )} = δ, and
• E3: cov{δ̂(τi), δ̂(τj)} = var{δ̂(τj)} = 1/I(τj) for i ≤ j.

Lan and Zucker called an estimator satisfying E1-E3 an E-process (E stand-
ing for estimator or estimation) with parameter δ and information function
I(τ ). An arguably better term might be sample mean process because prop-
erties E1-E3 are those of cumulative sample means of I(τ1), . . . , I(τk) obser-
vations. We will soon see that many other estimators are also E-processes.

2.3 Connection Between Estimators, Sums, Z-Scores,
and Brownian Motion

Because the treatment effect estimator for the comparison of means, pro-
portions, or log hazard ratios behaves like a sample mean of I i.i.d. random
variables with expectation δ and variance 1, it stands to reason that Iδ̂ should
behave like a sum of I i.i.d. observations with expectation δ and variance 1.
That is, if δ̂(τ ) is an E-process, then S(τ ) = I(τ )δ̂(τ ) “behaves like” a sum of
I(τ ) i.i.d. random variables with expectation δ and variance 1. By “behaves
like” a sum of I(τ ) i.i.d. random variables with expectation δ and variance 1,
we mean that S(τ ) satisfies—at least asymptotically—
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• S1: S(τ1), . . . , S(τk) have a multivariate normal distribution.
• S2: E{S(τ )} = I(τ )δ.
• S3: For τi ≤ τj, cov{S(τi), S(τj )} = var{S(τi)} = I(τi).

Lan and Zucker (1993) [LZ93] termed S(τ ) an S-Process because it behaves
like a sum. The following result formalizes the notion that the estimator δ̂(τ )
behaves like a sample mean if and only if I(τ )δ̂(τ ) behaves like a sum. We
omit the straightforward proof.

Result 2.2 If δ̂ is an unbiased estimator with information 0 < I(τ ) <∞ for
τ > 0, then δ̂ is an E-process iff I(τ )δ̂ is an S-process.

To emphasize that Iδ̂(τ ) behaves like a sum of I(τ ) random variables, we
use the more suggestive notation SI(τ) for I(τ )δ̂(τ ). Because SI(τ) behaves
like a sum, we try to use Approach 1 to convert to Brownian motion, where
I(τ ) plays the role of the sample size. In Approach 1 we divide the current
“sum” SI(τ) = I(τ )δ̂(τ ) by the standard deviation of the “sum” SI(1) at the
end of the trial: {var(SI(1))}1/2 = {I(1)}1/2. The trial fraction and B-value
are

t = var{SI(τ)}/var{SI(1)}
= I(τ )/I(1) (2.14)

and
B(t) = I(τ )δ̂(τ )/{I(1)}1/2. (2.15)

We call expression (2.14) the information fraction or information time. It
is a generalization of the trial fraction, which was defined only for actual sums,
not S-processes. Henceforth, we dispense with the notion of trial fraction in
favor of the more general information fraction.

We next show that B(t) defined by (2.15) has the properties of Brownian
motion, except that its mean is not 0under the alternative hypothesis. To
see that B(t) has the covariance structure of Brownian motion, note that for
ti = I(τi)/I(1) ≤ tj = I(τj)/I(1),

cov{B(ti), B(tj)} = cov[SI(τi)/{I(1)}1/2, SI(τj )/{I(1)}1/2]
= {I(1)}−1cov(SI(τi), SI(τj ))
= {I(1)}−1I(τi)
= ti.

The mean of B(t) is different from the mean under the null hypothesis. Under
the alternative hypothesis,

E{B(t)} = E[I(τ )δ̂(τ )/{I(1)}1/2]
= I(τ )δ/{I(1)}1/2

= [{I(1)}1/2δ]{I(τ )/I(1)}
= θt,
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where θ = {I(1)}1/2δ is the expected value of the z-score δ̂(1)/[var{δ̂(1)}]1/2 =
{I(1)}1/2δ̂(1) at the end of the trial. B(t) is said to be a Brownian motion
with drift θ. The standard Brownian motion has drift 0.

Instead of beginning with the estimator δ̂(τ ), transforming to a sum,
then transforming to Brownian motion, we could have begun with the z-
score Z(t) = δ̂(τ )/[var{δ̂(τ )}]1/2 = {I(τ )}1/2δ̂(τ ) and multiplied by t1/2 =
{I(τ )/I(1)}1/2 to obtain (2.15). We have essentially proven the following re-
sult.

Result 2.3 (Summary) Let I(τ )/I(1) be the information fraction. We can
convert an E-process, S-process, or Z-process to Brownian motion with drift
θ, the expected value of the z-score at the end of the trial, as follows:

E to B : B(t) = I(τ )δ̂(τ )/{I(1)}1/2

S to B : B(t) = S(τ )/{I(1)}1/2

Z to B : B(t) = t1/2Z(t).

I(τ)δ̂(τ)

S(τ)/{I(1)}1/2 {I(τ)}1/2δ̂(τ)

t1/2Z(t)

Estimator δ̂(τ)

Z-score Z(t)B-value B(t)

Sum S(τ)

Fig. 2.2. Relationship between S-processes, E-processes, z-scores, and Brownian
motion with drift θ, where θ is the expected value of the z-score at the end of the
trial, I(τ) is the information function, and t is the information fraction I(τ)/I(1).

Figure 2.2 summarizes the relationships between S-processes, E-processes,
z-scores, and Brownian motion.

Now that we are not restricting ourselves to the null hypothesis, we see
the advantage of using the B-value instead of the z-score to monitor data.
Because E{B(t)} = θt, it follows that B(t)/t estimates the drift parameter, a
simple transformation of the treatment effect estimate. Geometrically, B(t)/t
is the slope of the line joining the origin to (t, B(t)) (Figure 2.3). We can
easily see whether the treatment effect estimate increases from one interim
look to the next by seeing whether the slope of the line increases. Chapter 3
on conditional power uses the B-value approach extensively.
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Fig. 2.3. Summarizing data with B(t) instead of Z(t) makes it easy to see whether
results are improving over time. The slope of the line segment connecting the origin
to (t,B(t)) is the drift parameter estimate, which is a simple transformation of the
treatment effect estimate; the treatment effect estimate is larger at ti+1 than at tiif
and only if the slope of the line connecting the origin to (ti+1, B(ti+1)) is larger than
the slope of the line connecting the origin to (ti, B(ti)). For the data shown in this
graph, the line segments joining the origin to the circle at (0.50, B(0.50)) and the
origin to the circle at (0.25, B(0.25)) have the same slope, so the treatment effect
estimate at t = 0.50 is the same as at t = 0.25. Deducing this information from the
z-scores (squares) is more difficult.

2.4 Maximum Likelihood Estimation

As discussed previously, many clinical trials use a difference in means or pro-
portions to compare treatments; in other trials, the treatment effect is esti-
mated by maximum likelihood in a model that adjusts for covariates. Analysis
of covariance and logistic regression are the covariate-adjusted analogs of dif-
ferences in means or proportions. To deal with these situations, assume that
we have independent observations X1, . . . , Xn from a distribution with den-
sity f(x, δ). We will show that that the maximum likelihood estimator (MLE)

t
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δ̂ of the treatment effect is asymptotically an E-process, and therefore can be
converted to Brownian motion. This allows us to apply the results of Sections
2.1 through 2.3. In fact, as we shall demonstrate below, for the same set of
information times, the monitoring boundaries for a trial that uses an MLE as
the outcome are the same as the boundaries of the t-test, a test of proportions,
or the logrank test.

First we review the arguments leading to asymptotic normality of an MLE
at a single time point. Let L(δ) be the log likelihood function:

L(δ) =
n∑

i=1

(∂/∂δ){ln f(Xi, δ)}.

Using a familiar technique, we expand the log likelihood in a Taylor series:

0 = L(δ̂) ≈ L(δ) + L′(δ)(δ̂ − δ)

= L(δ) +
n∑

i=1

(∂2/∂δ2){ln f(Xi, δ)}(δ̂ − δ),

and hence

δ̂ − δ ≈
−L(δ)∑n

i=1(∂2/∂δ2){ln f(Xi , δ)}

=
∑n

i=1(∂/∂δ){ln f(Xi , δ)}∑n
i=1 −(∂2/∂δ2){ln f(Xi, δ)}

≈
∑n

i=1(∂/∂δ){ln f(Xi, δ)}
In

. (2.16)

In the last step, we replaced the denominator by its expectation, In =
−nE[(∂2/∂δ2){ln f(X, δ)}], the Fisher information contained in X1, . . . , Xn.
Multiplying both sides of (2.16) by In results in

In(δ̂ − δ) = Sn +Rn, (2.17)

where Sn = L(δ) =
∑n

i=1(∂/∂δ){ln f(Xi, δ)} is a sum of i.i.d. mean 0 random
variables and Rn is a remainder term. It is not difficult to show that, under
mild conditions, var(Sn) = In. Thus, from (2.17),

In(δ̂ − δ)

I1/2
n

=
Sn

I1/2
n

+
Rn

I1/2
n

I1/2
n (δ̂ − δ) =

Sn√
var(Sn)

+ I−1/2
n Rn. (2.18)

The first term on the right side of (2.18) is asymptotically standard normal
by the central limit theorem, while the second term tends to 0 in probability
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under regularity conditions, so I1/2
n (δ̂ − δ) is asymptotically standard nor-

mal. In other words, δ̂ is asymptotically normal with mean δ and variance
1/In. Marginally at least, δ̂ and Inδ̂ behave like an E-process and S-process,
respectively, with mean δ and information In = In.

Now consider the MLE monitored over time. Equation (2.17) shows that
In(δ̂ − δ) is essentially a sum, and Approach 1 suggests we can convert it to
Brownian motion by dividing by the standard deviation of the sum at the end
of the trial, I1/2

N = {var(SN )}1/2. Let δ̂i denote the MLE at look i, i = 1, . . . , k.
By (2.17),

Ini(δ̂i − δ)

I
1/2
N

=
Sni√

var(SN )
+ I

−1/2
N Rni. (2.19)

Now let ni → ∞ and N → ∞ such that ni/N → ti, i = 1, . . . , k. Each
remainder term I

−1/2
N Rni of (2.19) converges to 0 in probability because

I
−1/2
N Rni = (Ini/IN )1/2I−1/2

ni
Rn

= (ni/N )1/2I−1/2
ni

Rni

→ (t1/2
i )(0) = 0

in probability. Thus, In1(δ̂1−δ)/I
1/2
N , . . . , Ink(δ̂k−δ)/I

1/2
N behaves asymptot-

ically like Sn1/{var(SN )}1/2, . . . , Snk/{var(SN )}1/2, which, in turn, behaves
asymptotically like standard Brownian motion by Result 2.1 and the central
limit theorem. Note that we can rewrite Ini(δ̂i − δ)/I1/2

N as t1/2
i (δ̂i − δ)/σ̂δ̂i

.
In summary:

Result 2.4 (Brownian motion for MLEs with i.i.d. data) Let Xj be i.i.d.
with density f(xj ; δ), and let δ̂i and σ̂δ̂i

denote the MLE and its estimated
standard error, respectively, after ni patients are evaluated, i = 1, . . . , k.
Suppose that ni → ∞ and N → ∞ such that ni/N → ti. Under the
same regularity conditions that imply marginal asymptotic normality of the
MLE, t1/2

1 (δ̂1 − δ)/σ̂δ̂1
, . . . , t

1/2
k (δ̂k − δ)/σ̂δ̂k

have the asymptotic distribu-
tion of standard Brownian motion at t1, . . . , tk. Equivalently, the B-values
B(ti) = t

1/2
i δ̂i/σ̂δ̂i

behave approximately like Brownian motion with drift θ,

where θ = I
1/2
N δ is the expected z-score at the end of the trial.

Essentially the same arguments leading to Result 2.4 can be used even if
the underlying observationsXi are independent but not identically distributed
because Result 2.1 does not require identical distributions. A result analogous
to Result 2.4 holds when the parameter is a vector (Jennison and Turnbull,
1997 [JT97]or Jennison and Turnbull, 2000 [JT00]).

Example 2.4. Consider a trial in which the outcome was the presence of at
least one episode of cardiac ischemia on a Holter monitor—a device recording
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the electrical activity of the heart over a 24-hour period—12 weeks following
randomization. Patients were also monitored with the Holter at baseline, and
investigators wanted to use logistic regression to adjust the 12-week results
for differences in the baseline number of ischemic episodes. The model is

ln{p/(1 − p)} = α+ βu+ δx,

where p is the probability of having ischemia at 12 weeks, u is the baseline
number of epsiodes, and x is the treatment indicator. We parameterize such
that positive z-scores indicate that the treatment is beneficial, so we take x = 1
to mean the control condition. We are interested in testing whether δ = 0 (no
treatment effect). After 200 of the planned 600 patients are evaluated, the es-
timated information fraction is t = 200/600 = 1/3. For simplicity, rather than
using two different time scales τ and t for calendar fraction and information
fraction, we use only information fraction. Thus, we denote the current treat-
ment effect estimator and its estimated standard error by δ̂(1/3) and σ̂δ̂(1/3).

Suppose that δ̂(1/3) = 0.180 and σ̂δ̂(1/3) = 0.153. The z-score and B-value
are Z(1/3) = 0.180/0.153 = 1.176 and B(1/3) = (1/3)1/2(1.176) = 0.679. Be-
cause Z(1/3) has a standard normal distribution under the null hypothesis, we
can easily determine a critical value c1 such that P0{|Z(1/3)| ≥ c1)} = 0.01,
where P0 denotes a probability computed under the null hypothesis. We find
that c1 = 2.576. Suppose that at the end of the trial, the estimated slope
and standard error are δ̂(1) = 0.120 and σ̂δ̂(1) = 0.095. The approximate
joint distribution of the interim and final B-values under true log odds ra-
tio δ is that of B(1/3) and B(1), where B(t) is Brownian motion with drift
θ = E{Z(1)} = δ/σδ̂(1). We estimate θ by δ/0.095, where δ is the true log
odds ratio.

Having reached the end of the trial, we can obtain a more precise estimate
of the information fraction at the first look: t1 = {var(δ̂(1

3
)}−1/{var(δ̂(1)}−1 =

(0.153)−2/(0.095)−2 = 0.386 rather than 1/3. Thus, the approximate joint dis-
tribution of the interim and final B-values is that of B(0.386) and B(1), where
B(t) is Brownian motion with drift θ. As we have seen before, this correcting
of information fractions does not cause a problem for previous boundaries be-
cause the z-score at previous analyses has the same null distribution whether
or not we correct the information times. Thus, the correct null probability
of crossing the boundary at the first look, P0{|Z(0.386)| ≥ 2.576)} = 0.01,
is the same as P0{|Z(1/3)| ≥ 2.576)}. The advantage of using the slightly
more accurate estimate t1 = 0.386 lies in computation of the boundary at the
next look at the end of the trial. We determine c2 such that P0{(|Z(0.386)| ≥
2.576) ∪ (|Z(1)| ≥ c2)} = 0.05. Numerical integration can be used to obtain
c2 = 2.014.

Importantly, the boundaries c1 = 2.576 and c2 = 2.014 for the z-scores
associated with the MLE are the same as for a t-test, test of proportions, or
logrank test at information fractions t1 = 0.386 and t2 = 1.
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2.5 Other Settings Leading to E-Processes and Brownian
Motion

We have seen that many estimators frequently used in clinical trials are E-
processes when monitored over time. Other broad classes of estimators mon-
itored over time are also E-processes, and can therefore be transformed to
Brownian motion using Result 2.3. Sometimes it is possible to argue directly
that δ̂(τ ) satisfies E3, as we now show.

2.5.1 Minimum Variance Unbiased Estimators

Consider a minimum variance unbiased estimator δ̂ in a nonmonitoring setting
(i.e., δ̂ has the smallest variance among all unbiased estimators of δ). Let δ̂(τ )
denote the corresponding minimum variance unbiased estimator monitored
over time τ , 0 ≤ τ ≤ 1. Jennison and Turnbull (1997) [JT97] gave a simple
argument by contradiction that δ̂ must satisfy E3. Note first that condition
E3 can be written in the equivalent way

0 = 1/I(τj) − cov{δ̂(τj), δ̂(τi)}
= var{δ̂(τj)} − cov{δ̂(τj), δ̂(τi)}
= cov{δ̂(τj), δ̂(τj)} − cov{δ̂(τj), δ̂(τi)}
= cov{δ̂(τj), δ̂(τj) − δ̂(τi)}. (2.20)

Thus, E3 is equivalent to

E3′ : cov{δ̂(τj), δ̂(τj) − δ̂(τi)} = 0.

Suppose E3′ did not hold for a minimum variance unbiased estimator δ̂ mon-
itored over time. For example, suppose that cov{δ̂(τj), δ̂(τj) − δ̂(τi)} > 0.
Jennison and Turnbull argued that for small ε > 0, the estimator δ̃ε(τj) =
δ̂(τj)− ε{δ̂(τj)− δ̂(τi)} has smaller variance than δ̂(τj). To see this, note that
var{δ̃ε(τj)} = var{δ̂(τj)} + ε2var{δ̂(τj) − δ̂(τi)} − 2ε cov{δ̂(τj), δ̂(τj) − δ̂(τi)},
so

lim
ε→0

[var{δ̃ε(τj)} − var{δ̂(τj)}]/ε

= lim
ε→0

ε var{δ̂(τj) − δ̂(τi)} − 2 lim
ε→0

cov{δ̂(τj), δ̂(τj) − δ̂(τi)}

= 0 − 2 cov{δ̂(τj), δ̂(τj) − δ̂(τi)}
= −2 cov{δ̂(τj), δ̂(τj) − δ̂(τi)}
< 0.

But this implies that var{δ̃ε(τj)} < var{δ̂(τj)} for sufficiently small ε, which
contradicts the fact that δ̂(τj) is a minimum variance unbiased estimator. Sim-
ilarly, if we had begun with the assumption that cov{δ̂(τj), δ̂(τj)− δ̂(τi)} < 0,
we could show that the estimator δ̂(τj)+ ε{δ̂(τj)− δ̂(τi)} has smaller variance



2.5 Other Settings Leading to E-Processes and Brownian Motion 29

than the minimum variance unbiased estimator δ̂(τj) for sufficiently small ε.
This would again be a contradiction. In other words, we can find a contradic-
tion whenever cov{δ̂(τj), δ̂(τj)− δ̂(τi)} 6= 0. Thus, property E3′, and therefore
E3, must hold.

Implicit in the above argument is the assumption that cov{δ̂(τi), δ̂(τj)}
does not depend on the parameter δ. If it did, then δ̃ε(τj) would depend on δ.
The fact that it has smaller variance than δ̂(τj) would not cause a contradic-
tion because δ̃ε(τj) would not be a bona-fide estimator. The arguments above
prove the following result.

Result 2.5 Let δ̂ be a minimum variance unbiased estimator of δ in a non-
monitoring setting, and let δ̂(τ ) denote δ̂ monitored at time τ , 0 ≤ τ ≤ 1. If
cov{δ̂(τi), δ̂(τj)} does not depend on δ for any τi < τj, then δ̂(τ ) satisfies E3.

While Result 2.5 does not establish condition E1 (multivariate normality) for a
minimum variance unbiased estimator δ̂(τ ) over time, it does show that δ̂(τ )
must have the same mean and covariance structure of an E-process. Thus,
if we can establish through other arguments that δ̂(τ ) has an approximate
multivariate normal distribution, we can convert to Brownian motion as we
did for other estimators.

2.5.2 Complete Sufficient Statistics

This subsection concerns complete sufficient statistics, so we we briefly review
the concepts of sufficiency and completeness. If a vector (X1, . . . , Xn) of obser-
vations has distribution function F (x1, . . . , xn; δ) depending on a parameter
δ, a statistic S(X1, . . . , Xn) (which could be a vector) is called sufficient if
the conditional distribution of the data X1, . . . , Xn given S = s does not de-
pend on δ. We could generate data X1, . . . , Xn from F (x1, . . . , xn; δ) by first
generating a value of S from its distribution—which depends on δ—and then
generating (X1, . . . , Xn) from its conditional distribution given S = s. The
latter generation is a random draw of n numbers from a distribution that has
nothing to do with δ. In that sense, once we condition on the value of the
sufficient statistic S, no further information about δ can be gleaned from the
data.

A statistic S is called complete if the condition E{f(S)} = 0 for all δ
implies that f(S) = 0 with probability 1 for all δ. Completeness is typically
used to show that there is at most one unbiased function of S, for if both
g1(S) and g2(S) were unbiased for δ, then E{g2(S)−g1(S)} = 0, which would
mean that g2(S) − g1(S) = 0; i.e., g2(S) = g1(S) with probability 1 for all δ.

We now consider condition E3 of an E-process and relate it to a complete
sufficient statistic. By (2.20), we can consider the equivalent condition E3′.
Note that condition E3′ would be satisfied if δ̂(τj) and δ̂(τj) − δ̂(τi) were
independent. Moreover, under E1, E3′ is equivalent to δ̂(τj) being independent
of δ̂(τj) − δ̂(τi). Independence of δ̂(τj) and δ̂(τj) − δ̂(τi) is in some sense
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natural. Think of the comparison of means: δ̂(τj) is complete and sufficient
for δ, whereas δ̂(τj)− δ̂(τi) is ancillary, meaning that its distribution does not
depend on δ. In a sense, δ̂j and δ̂j − δ̂i contain all of the information and none
of the information, respectively, about δ. Not surprisingly, δ̂(τj) is independent
of δ̂(τj) − δ̂(τi). In fact, this is a special case of a beautiful theorem due to
Basu (1955) [B55]. Basu’s theorem states that if δ̂ is sufficient and complete
and A is ancillary, then δ̂ and A are independent (see Section 2.9.5 for proof).
Thus, condition E3 will hold for any complete sufficient statistic such that
δ̂(τj) − δ̂(τi) is ancillary.

Result 2.6 Let δ̂ be a complete sufficient statistic in a nonmonitoring setting,
and let δ̂(τ ) denote δ̂ monitored over time, 0 ≤ τ ≤ 1. If δ̂(τj) − δ̂(τi) is
ancillary for every τi ≤ τj , then

1. E3 holds.
2. E1 holds iff δ̂ is marginally normal.
3. E1 holds asymptotically iff δ̂ is asymptotically marginally normal.

2.6 The Normal Linear and Mixed Models

2.6.1 The Linear Model

Some clinical trials analyze results using a normal linear model. For example,
in the nonmonitoring setting, the analysis of covariance model that adjusts the
end of study blood pressure Y for baseline blood pressure x may be written
as

Y =




1 0 x1
...

...
...

1 0 xn

1 1 xn+1

...
...

...
1 1 x2n






αC

δ
λ


 + ε,

where αC is the intercept in the control arm, δ = αT − αC is the difference
between treatment and control intercepts (i.e., δ is the treatment effect), and
λ is the slope—assumed the same in the treatment and control arms—of the
relationship between baseline and end of study blood pressure. (Y1, . . . , Yn

and Yn+1, . . . , Y2n are end-of-study blood pressures for control and treatment
patients, respectively.) More generally, the normal linear model may be writ-
ten as Y = Xβ + ε, where X is a design matrix of dimension n × p, β is
a p-dimensional parameter vector, and ε is an n-dimensional vector of i.i.d.
N(0, σ2) errors.

Now consider monitoring. At the first interim analysis with n1 observations
per arm, the dimension of Y and the number of rows of the design matrix is
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2n1. At future interim analyses, Y will be appended by additional observations
and the design matrix will be appended by additional rows; each new patient
contributes a new Y and a new row to the design matrix.

We now argue that the treatment effect estimator is an E-process. To see
this, assume for the moment that σ2 is known. The least squares estimators
at different interim analyses are linear combinations of the Y s, and therefore
have a multivariate normal distribution. Furthermore, in a nonmonitoring
setting, the least squares estimator β̂ is complete and sufficient (Arnold, 1981
[A81] contains a similar result when σ2 is unknown). Moreover, if β̂(τi) and
β̂(τj) denote the least squares estimators at interim analyses at times τi and τj ,
then β̂(τj)−β̂(τi) is ancillary because it has a multivariate normal distribution
with zero mean vector (because both estimators are unbiased) and covariance
matrix not depending on β. It follows from Basu’s theorem that β̂(τj) and
β̂(τj) − β̂(τi) are independent.

Now consider the case when σ2 is unknown. The least squares estimator
β̂ is exactly the same as in the case of known σ2. It follows that β̂(τj) and
β̂(τj)− β̂(τi) are independent in the case of unknown σ2 as well. In summary:

Result 2.7 In the normal linear model, β̂(τ1), . . . , β̂(τk) are multivariate nor-
mal and β̂(τj) is independent of β̂(τj)− β̂(τi), i = 2, . . . , k. Consequently, the
treatment effect estimator, its associated z-score, and its associated B-value
behave like E-, Z-, and B-processes, respectively.

A consequence of Result 2.7 is that we may use the same boundaries for the
z-scores (treatment effect estimators divided by their standard errors) from a
linear model that we used for the t-test.

2.6.2 The Mixed Model

Thus far we have dealt with either independent or uncorrelated observations
Y , but sometimes data from clinical trials are correlated. Common examples
are trials with continuous, longitudinal data reflecting each patient’s progres-
sion of disease over time. For example, the model for an observation Yij at
time xj for patient i might be

Yij = αC + βCxj + (γ + δxj)ui + ai + bixj + εij, (2.21)

where αC and βC are the mean intercept and slope in the control arm, ui = 0, 1
is the treatment indicator, γ = αT − αC and δ = βT − βC are differences
between treatment and control mean intercepts and slopes, respectively, and ai

and bi are random, patient-specific intercepts and slopes. The patient-specific
intercepts reflect the fact that patients have different baseline values, whereas
the patient-specific slopes measure the patients’ improvement or deterioration
over time. The quantity γ = αT − αC reflects the between-arm difference in
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baseline values. The parameter on which we gauge the success of the treatment
is the between-arm difference in slopes, δ = βT − βC .

More generally, for an arbitrary mixed model, the observation vector Y is
normally distributed with mean vector Xβ , where β = (β1, . . . , βp)T is the
vector of fixed effects and X its design matrix. The design matrix is similar to
that of the linear model of the preceding subsection except that each patient
contributes multiple rows. Each additional time point for a patient contributes
a new row to the design matrix.

Now consider monitoring. Both the number of patients and the number
of time points per patient may differ from one interim analysis to the next.
The effect of incorporating data between successive analyses is to append
observations to the Y vector and rows to the design matrix. Observations
from one patient to the next are independent, but observations on the same
patient over time are correlated. Nonetheless, we shall see that the Brownian
motion paradigm still holds if the covariance matrix of Y is known.

In the known Σ case, we can transform to the model of the preceding
subsection:

Σ−1/2Y = Σ−1/2β +Σ−1/2ε

Y ′ = X ′β + ε′,

where ε′ = Σ−1/2ε has covariance matrix Σ−1/2ΣΣ−1/2 = I (Arnold, 1981
[A81]). As noted earlier, the least squares estimator in this transformed model
is complete and sufficient. The arguments of the preceding subsection imply
that β̂(τj) and β̂(τj) − β̂(τi) are independent.

Result 2.8 Result 2.7 holds for the mixed model if the covariance between
every pair of Y observations is known.

A similar result holds in the unknown covariance case provided that the
number of distinct covariances to be estimated is small compared to the num-
ber of participants.

Result 2.8 means that the null joint distribution of z-statistics (treatment
effect estimates divided by their estimated standard errors) at different infor-
mation fractions ti = [var{δ̂(τi)}]−1/[var{δ̂(1)}]−1 in a trial analyzed with a
mixed model is the same as for a simple t-test. Therefore, any z-score bound-
aries developed for continuous outcome trials can be applied to trials employ-
ing a mixed model. We have not yet addressed how to estimate var{δ̂(1)}, but
as we saw for other clinical trial scenarios, accurate estimation of var{δ̂(1)} is
not important for calculating probabilities under the null hypothesis. Accurate
estimation of var{δ̂(1)} does become important for probability calculations as-
suming the alternative hypothesis.

Because tests of treatment effects from mixed models are more complicated
than t-tests and tests of proportions, we give a more detailed explanation of
probability calculations assuming the alternative hypothesis is true. To use
Brownian motion we must know the drift parameter θ = E{Z(1)}, which
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means we must have a representation for the z-statistic at the end of the trial,
Z(1). Suppose participant i has observations at Mi time points xi1, . . . , xiMi

by the time the trial ends, and let x̄i(1) = (1/Mi)
∑Mi

j=1 xij. Assuming the
Mi are similar across participants (which they typically are in trials that use
longitudinal models), the z-statistic using the mixed model is approximately
the same as the z-statistic for a test of means applied to participants’ end of
study least squares slope estimates bi(1),

b̂i(1) = SSXYi(1)/SSXi(1),

where SSXYi(1) =
∑Mi

j=1(xij − x̄i(1))(Yij − Ȳi(1)) and SSXi(1) =
∑

(xij −
x̄i(1))2. The expected z-score at the end of the trial is roughly E{Z(1)} =
δ/[2var{b̂i(1)}/N ]1/2, where δ is the difference between treatment and control
population mean slopes. We can determine the variance of b̂i(1) by first con-
ditioning on the patient’s true intercept and slope, ai and bi, and then using
the formula var(U |V ) = E{var(U |V )}+var{E(U |V )}, valid for any random
variable U (with finite variance) and random vector V . The conditional vari-
ance of b̂i(1) given the patient-specific intercept and slope is σ2

e/SSXi(1). The
unconditional variance of b̂i(1) is E{var(b̂i(1) | ai, bi)}+var{E(b̂i(1) | ai, bi)} =
σ2

e/SSXi+σ2
b , where σ2

e is the within-patient residual variability about his/her
regression line and σ2

b is the variability of the patient-specific true slopes bi.
We can estimate σ2

e and σ2
b from the data at an interim analysis. For example,

suppose at an interim analysis at information fraction t (we will show how
to estimate the information fraction shortly) there are n patients, patient i
having measurements at times xi1, . . . , xim, and let x̄i(t) = (1/mi)

∑mi

j=1 xij.
Then var{b̂i(t)} = σ2

e/SSXi(t) + σ2
b . Averaging over the number of patients

gives us an estimate of var{b̂(t)} for a randomly selected patient:

var{b̂(t)} = σ2
e(1/n)

n∑

i=1

1/SSXi(t) + σ2
b . (2.22)

We can estimate σ2
e as follows. For patient i, we perform least squares regres-

sion and compute the residual sum of squares RSSi(t) =
∑mi

j=1{Yij − (âi +
b̂ixij)}2. We estimate σ2

e by pooling over patients:

σ̂2
e =

∑n
i=1RSSi(t)∑n
i=1(mi − 2)

. (2.23)

We can substitute this σ̂2
e into the right side of (2.22) and the sample variance

of the b̂ipooled across arms into the left side. We estimate σ2
b by subtraction:

pooled var(b̂i)−σ̂2
e (1/n)

∑n
i=1 1/SSXi. Because this estimate can be negative,

we take the maximum of this estimate and 0:

σ̂2
b = max

(
0, pooled var(b̂i) − σ̂2

e(1/n)
n∑

i=1

1/SSXi(t)

)
, (2.24)
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where σ̂2
e is given by (2.23). We use σ̂2

e and σ̂2
b to estimate var{b̂(1)}. Once we

have var{b̂(1)}, we estimate var{δ̂(1)} and I(1) by

v̂ar{δ̂(1)} = 2var{b̂(1)}/N, I(1) = 1/v̂ar{δ̂(1)}

The current information is much easier. It is simply the inverse of the
variance of the treatment effect estimator at the interim analysis, which we
can compute from the standard output of a mixed model program. Specific
details of these calculations are given in the following example:

Example 2.5. Consider a trial randomizing overweight patients to an advice-
only control arm versus a treatment arm with advice plus an exercise program.
Each patient is followed for 7 weeks. Weights are recorded at baseline and
weekly thereafter (eight weights total). Data are analyzed according to the
mixed model (2.21), where Yij is the weight of participant i at week xij (week
0 denotes the baseline period). The planned sample size is 80 patients, 40 in
each treatment group.

The interim analysis is to include data from the first 4 weeks of follow-up
for the first 20 patients randomized. Table 2.1 shows the data for this cohort.
The weights y

i
for participant i are regressed on the participant’s times xi, and

a least squares line is fit. The table shows, for each participant’s data xi, yi
,

the slope estimate b̂i, the residual sum of squares RSSi, 1/SSXi = [
∑

j{xij−
(1/mi)

∑mi

r=1 xir}2]−1, and the degrees of freedom mi − 2. We estimate σ2
e

by
∑20

i=1RSSi/
∑20

i=1(mi − 2). From Table 2.1,
∑20

i=1RSSi = 45.6373 and∑20
i=1(mi − 2) = 42, so

σ̂2
e = 45.6373/42 = 1.0866.

The sample variances of the slopes in column 5 for control and treat-
ment patients are 1.1628 and 1.4957, for a pooled variance of {9(1.1628) +
9(1.4957)}/18 = 1.3293. From (2.24), we estimate σ2

b by

σ̂2
b = 1.3293− 1.0866(1/20)(2.2666) = 1.2062.

At the end of the trial, participants will have data for a maximum of 8
weeks, though some data may be missing. At the interim analysis, everyone
had a baseline value, but 18 of the 80 possible follow-up weights for the 20
participants were missing (22.5 percent). If we assume the same percentage
missing for the seven follow-up weights by the end of the trial as for the
follow-up weights thus far, participants will have an average of 0.225(7) =
1.575 missing observations among the 7 follow-up weeks. Thus, the average
participant will have one baseline measurement and 7− 1.575 = 5.425 follow-
up measurements, for a total of 6.425 measurements. The variance of x values
(using M instead of M − 1 in the denominator) for a participant with no
missing data will be (1/8)

∑7
j=0{j − (0 + 1 + . . .+ 7)/8}2 = 5.25. We expect
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Table 2.1. Interim data from a trial using a mixed model. Twenty patients have
been randomized, and up to five measurements (the baseline and first four follow-up
measurements) are available. For participant i, vector xi is the number of weeks
since randomization and y

i
contains the weights at weeks xi. Ordinary least squares

regression is used for each participant’s data, and the intercept âi and slope b̂i are
computed. Shown are the slope estimate b̂i, RSSi =

∑
j
(yij − ai − bixij)

2, and

SSXi =
∑

j
(xij − (1/mi)

∑mi

j=1
xi)

2, where mi is the number of observations per
participant. Also shown are the degrees of freedom for each participant, namely
dfi = mi − 2.

Patient Arm xi y
i

b̂i RSSi 1/SSXi mi − 2

1 C (0, 2, 3, 4) (248, 250, 251, 251) 0.8000 0.4000 0.1143 2
2 C (0, 1, 2, 3, 4) (216, 214, 215, 214, 213) −0.6000 1.6000 0.1000 3
3 C (0, 1, 2, 3, 4) (217, 218, 220, 217, 216) −0.3000 8.3000 0.1000 3
4 C (0, 1, 4) (195, 195, 191) −1.0769 0.6154 0.1154 1
5 C (0, 2, 3, 4) (197, 200, 200, 199) 0.5714 3.1429 0.1143 2
6 C (0, 1, 2, 3, 4) (251, 250, 252, 253, 254) 0.9000 1.9000 0.1000 3
7 C (0, 1, 2, 3, 4) (187, 187, 187, 188, 186) −0.1000 1.9000 0.1000 3
8 C (0, 1, 2, 4) (208, 208, 207, 206) −0.5429 0.1714 0.1143 2
9 C (0, 1, 3) (231, 234, 239) 2.6429 0.0714 0.2143 1
10 C (0, 1, 3, 4) (188, 190, 191, 192) 0.9000 0.6500 0.1000 2

11 T (0, 1, 3, 4) (231, 228, 224, 222) −2.2000 0.3500 0.1000 2
12 T (0, 1, 2, 4) (200, 200, 202, 203) 0.8286 0.7429 0.1143 2
13 T (0, 1, 2, 3, 4) (271, 269, 267, 262, 261) −2.7000 3.1000 0.1000 3
14 T (0, 1, 2, 3, 4) (226, 227, 225, 222, 226) −0.5000 12.3000 0.1000 3
15 T (0, 1, 2, 3, 4) (182, 178, 176, 175, 170) −2.7000 3.9000 0.1000 3
16 T (0, 2, 4) (212, 213, 213) 0.2500 0.1667 0.1250 1
17 T (0, 1, 2, 4) (208, 203, 201, 198) −2.3429 4.9714 0.1143 2
18 T (0, 3, 4) (178, 174, 173) −1.2692 0.0385 0.1154 1
19 T (0, 2, 4) (257, 255, 252) −1.2500 0.1667 0.1250 1
20 T (0, 1, 3, 4) (203, 200, 198, 196) −1.6000 1.1500 0.1000 2

45.6373 2.2666 42

the variance for a patient with missing data to be similar. Thus, a typical
participant’s SSX at the end of the trial will be

SSX(1) = 6.425(5.25) = 33.7313.

Thus, we estimate the variance of b̂(1) for a typical participant to be

var{b̂(1)} = σ̂2
e/33.7313 + σ̂2

b = 1.0866/33.7313+ 1.2062 = 1.2384.

We estimate the variance of the treatment effect estimate at the end of the
trial with 40 participants per arm by

var{δ̂(1)} = 2(1.2384)/40 = 0.0619.

From this we calculate the information at the end of the trial to be
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I(1) = 1/0.0619 = 16.1551.

The fitted linear model using SAS’s Proc Mixed is y = 214.0587+2.5513u+
(0.3008− 1.6544u)x, where u is 1 for a treatment patient and 0 for a control
patient. Thus, the control slope minus the treatment slope is estimated to
be δ̂ = 1.6544, with an estimated standard error of 0.5078. We estimate the
current information and information fraction to be

I(t) = 1/(0.5078)2 = 3.8781, t = 3.8781/16.1551 = 0.24.

The current z-score and B-value are Z(0.24) = 1.6544/0.5078 = 3.258 and
B(0.24) = (0.24)1/2(3.258) = 1.596.

Calculations like these are useful for computing the conditional probability
that the final z-score will be at least 1.96. This probability, called conditional
power, is very useful for deciding whether there is any hope of seeing a signif-
icant treatment benefit by trial’s end (see Chapter 3).

This example was instructive because although the interim analysis oc-
curred with data from only one quarter of the patients, each with only between
three and five of the eight observations expected by trial’s end, the estimated
information fraction was 0.24. In other words, the information fraction was
almost the same as the fraction of participants evaluated, even though partic-
ipants had data for only about half the total number of weeks. This occurred
because the variance of δ̂(t) depends on, in addition to the sample size, 1)
the number of observations per participant (reflected through SSXi) and 2)
the random effects variance of the true slopes of different participants. If the
random effects variance is large enough, it will dominate, and we will not ap-
preciably decrease the variance of δ̂(t) regardless of the number of weeks of
data. That is what occurred in this example. If the random effects variance
had been very small, then the number of weeks of data would have contributed
mightily to the amount of information.

2.7 When Is Brownian Motion Not Appropriate?

Sometimes observations in clinical trials are not i.i.d. For example, early in
a trial clinicians or laboratories may not completely understand the proto-
col. Early patients may differ from later patients because once certain patient
sources (e.g., a catheterization laboratory) are exhausted, other sources for
patients must be used. These changes could make the drift nonlinear in t.
Nonlinear drift also occurs with survival analysis when the proportional haz-
ards model does not hold. Nonetheless, these things have little to no effect
on the null distribution of the test statistic over time. Clinical trialists are
most concerned about threats to type 1 error rate, so they do not worry much
about the effect of drift.



2.7 When Is Brownian Motion Not Appropriate? 37

In almost all realistic settings, we must estimate standard errors from the
data. When the sample size is large, we can treat estimated standard errors
as though they were constants (see Section 2.9.1). We cannot do this with a
small sample size even in a nonmonitoring setting. For example, we know that
the t-distribution differs substantially from the standard normal distribution
if the number of degrees of freedom is small. Generally speaking, we need large
sample sizes to use Brownian motion, although Chapter 8 shows that applying
boundaries to p-values instead of z-scores works well unless the sample size is
extremely small.

It is not immediately clear what a large sample size means in a complicated
mixed model. Consider Example 2.5. Does the number of patients or the
number of observations per patient need to be large? Suppose we had only
two observations per patient, one at baseline and one at the end. Then each
patient’s slope would essentially reduce to a change in score from baseline
to end of study. With enough patients, the Brownian motion paradigm would
still apply. On the other hand, suppose the trial included only two patients per
arm, each with a huge number of observations. We would be very confident
about slopes of the four individuals in the study, but not at all about the mean
slopes in the entire populations. Because we aim to make inferences about all
patients in the population, we need a large number of patients, not a large
number of observations per patient.

Another way to determine what must be large in Example 2.5 is to examine
the expression for the variance of the treatment effect estimate. The variance
contains parameters such as σ2

e and σ2
b that must be estimated from the

data. The weakest link is the random effect variance σ2
b . Consider a best case

scenario with an infinite number of observations per participant, so we could
estimate each participant’s slope perfectly. In that case the best estimate of
σ2

b would be the sample variance of those n patient-specific slopes. If n were
small, that sample variance would be a very poor estimate of σ2

b , and so the
Brownian motion approximation would also be poor.

Example 2.6. The Rapid Early Action for Coronary Treatment (REACT)
[LRO00] was a trial that randomized communities instead of individual pa-
tients. The intervention consisted of a media campaign intended to reduce the
delay time between the onset of symptoms of a heart attack and the patient’s
arrival at the hospital emergency room. Control communities received no in-
tervention. The data within each community consisted of delay times as a
function of calendar time, and the slope of the relationship between calendar
time and the logarithm of delay time time summarized the trend in a given
community.

This example is similar to Example 2.5 in certain respects. Both involved
multiple correlated observations on the same randomized unit. The difference
is that the number of randomized units is necessarily small in a community
randomized trial. The primary analysis in REACT was a paired t-test with
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only 9 degrees of freedom. Brownian motion provides a very poor approxi-
mation to the joint distribution of this paired t-statistic over time. Indeed,
the Brownian motion approximation would treat the B-value B(1) at the end
of the trial as a standard normal deviate instead of a t-deviate with only 9
degrees of freedom.

2.8 Summary

This chapter showed that commonly used test statistics of the form δ̂/{var(δ̂)} 1
2

behave like standardized sums of independent random variables with mean δ
and variance 1. In these settings we measure the proportion of the trial com-
pleted in terms of information rather than chronological time. Information,
the inverse of the variance of the treatment effect estimator δ̂, can be inter-
preted as the number of i.i.d. observations with expectation δ and variance
1 whose average has the same variance as δ̂. The information fraction t, the
ratio of the current information to that at the end of the trial, is used to define
the B-value B(t) = t1/2Z(t). The B-value is used to monitor the trial. Tables
2.2 and 2.3 summarize the B-value approach to monitoring.

Table 2.2. Brownian motion framework for four testing scenarios. For survival, n
and N are the numbers of patients with an event at calendar fraction τ and the
end of the trial (τ = 1), respectively. For the other three scenarios, they are the
numbers of patients evaluated at those times. The expressions given for information
and information fraction assume equal per-arm sample sizes for means, proportions,
and survival.

Means Proportions Survival MLE

Parameter δ µT − µC pT − pC ln(λT /λC) arbitrary

Estimator δ̂(τ) ȲT − ȲC p̂T − p̂C

∑n

i=1
(Oi−Ei)∑

n

i=1
Vi

MLE

I(τ) = [var{δ̂(τ)}]−1 n
2σ2

n
2p(1−p)

∑n

i=1
Vi Fisher info.

Info. fraction t n/N n/N ≈ n/N ≈ n/N

Z(t) {I(τ)}1/2 δ̂(τ) {I(τ)}1/2δ̂(τ) {I(τ)}1/2 δ̂(τ) {I(τ)}1/2δ̂(τ)

Drift θ = E{Z(1)} {I(1)}1/2δ {I(1)}1/2δ {I(1)}1/2δ {I(1)}1/2δ

The advantage of monitoring the trial using the B-value instead of the
more commonly used z-score is that its mean is a linear function of t. In fact,
E{B(t)} = θt, where θ = E{Z(1)} is the expected z-score at the end of the
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Table 2.3. Distribution and relationship between B(t) and Z(t).

B-value Relationship Z-score
E{B(t)} cov{B(s), B(t)} between B(t) and Z(t) E{Z(t)} cov{Z(s), Z(t)}

s ≤ t s ≤ t

θt s B(t) = t1/2Z(t) θt1/2 (s/t)1/2

trial. Plotting the B-value against θt makes it very easy to see whether, and to
what degree, the current trend in the data is better or worse than expected.

2.9 Appendix

2.9.1 Asymptotic Validity of Using Estimated Standard Errors

In Section 2.1.1, the variance of δ̂ depended on σ2, which we treated as known.
In practice we estimate σ2 by the sample variance s2. We know that in a
nonmonitoring setting, we can substitute s2 for σ2 and treat it as fixed if
the sample size is large because δ̂/(2s2/N )1/2 = ZN + RN , where ZN =
δ̂/(2σ2/N )1/2 converges in distribution to a standard normal deviate Z and
RN = {δ̂/(2σ2/N )1/2}(σ/s − 1) converges in probability to 0. Similarly, in a
nonmonitoring situation we treat the standard error of the MLE as if it were
a fixed constant instead of being estimated from the data because δ̂/σ̂δ̂ =
ZN + RN , where ZN = δ̂/σδ̂ converges in distribution to a standard normal
deviate and RN = (δ̂/σδ̂)(σδ̂/σ̂δ̂ −1) converges in probability to 0. Both these
cases relied on Slutsky’s theorem (Cramér, 1946 [C46]), which says that if
ZN converges in distribution to Z and RN converges in probability to 0, then
ZN +RN converges in distribution to Z.

With monitoring, we know that (δ̂1/σδ̂1
, . . . , δ̂k/σδ̂k

) converges in distribu-
tion, and we want to show that (δ̂1/σ̂δ̂1

, . . . , δ̂k/σ̂δ̂k
) converges in distribution

to the same thing. We need the following generalization of Slutsky’s theorem.

Result 2.9 Suppose that Xn = (Xn1, . . . , Xnp) converges in distribution to
X = (X1, . . .Xp).

1. If Y n = (Yn1, . . . , Ynp) converges to 0 in probability, then Xn + Y n con-
verges in distribution to X.

2. If An is an m×p dimensional matrix of random variables, each converging
in probability to the corresponding element of the constant matrix A, then
AnXn converges in distribution to AX .

Proof of 1: By the Cramer-Wold device (see, for example, page 18 of Serfling,
1980 [S80]), it suffices to prove that a · (Xn + Y n) converges in distribution
to a ·X for every p-dimensional nonrandom vector a. But a ·Xn converges in
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distribution to a · X, and a · Y n converges to 0 in probability. By Slutsky’s
theorem for one-dimensional random variables, a · (Xn + Y n) converges in
distribution to a ·X, completing the proof of 1. ||
Proof of 2: AnXn = AXn + (An − A)Xn. It is clear that AXn converges in
distribution to AX because f(x) = Ax is a continuous function of x. Further-
more, because each element of the matrix An −A converges in probability to
0 and Xn converges in distribution, (An − A)Xn converges in probability to
the m-dimensional zero vector. It follows from part 1 that AnXn converges
in distribution to AX . ||

Result 2.9 shows that when the sample sizes are large, we can treat the
estimated standard errors of δ̂1, . . . , δ̂k as if they were exact because
(
δ̂1
σ̂δ̂1

, . . . ,
δ̂k
σ̂δ̂k

)
=

(
δ̂1
σδ̂1

, . . . ,
δ̂k
σδ̂k

)(
σδ̂1

σ̂δ̂1

− 1, . . . ,
σδ̂k

σ̂δ̂k

− 1

)
+

(
δ̂1
σδ̂1

, . . . ,
δ̂k
σδ̂k

)

(2.25)
and each σδ̂i

/σ̂δ̂i
− 1 converges to 0 in probability.

2.9.2 Proof of Result 2.1

One direction is obvious, so we prove that if SN/v
1/2
N is asymptotically stan-

dard normal, then the asymptotic distribution of (Sn1/v
1/2
N , . . . , Snk/v

1/2
N ) is

that of B(t1), . . . , B(tk).
We first prove that the asymptotic distribution of (SM −Sm)/(vM−vm)1/2

is standard normal form < M ,m → ∞,M → ∞ such that vm/vM → t. Write

(SM/v
1/2
M )

(
vM

vM − vm

)1/2

=
SM − Sm

(vM − vm)1/2
+ (Sm/v

1/2
m )

(
vm

vM − vm

)1/2

Wm,M = Um,M + Vm,M ,

where Um,M and Vm,M are independent, Wm,M converges in distribution to
N(0, (1− t)−1) and Vm,M converges in distribution to N(0, t/(1− t)). Because
Um,M is independent of Vm,M ,

E(eisWm,M ) = E(eisUm,M )E(eisVm,M ). (2.26)

The left side of (2.26) converges to exp[−s2/{2(1 − t)}], while E(eisVm,M )
converges to exp[−s2t/{2(1 − t)}]. It follows that E(eisUm,M ) converges to
exp[(−s2/2){1/(1−t)−t/(1−t)}] = exp(−s2/2), the characteristic function of
a standard normal deviate. Hence, (SM −Sm)/(vM −vm)1/2 is asymptotically
standard normal as m → ∞, M → ∞, vm/vM → t.

Let n = 10n1 + . . . + 10nk, so that each (n1, . . . , nk) corresponds to a
unique integer n. Let ZT

n = (Sn1/vn1 , (Sn2 − Sn1)/(vn2 − vn1)1/2, . . . , (Snk −
Snk−1)/(vnk − vnk−1 )1/2). The Zni are independent, and we have shown that
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each converges in distribution to a standard normal, so the asymptotic distri-
bution of Zn is that of i.i.d. standard normals Z = (Z1, . . . , Zk)T . Moreover,
(Sn1/v

1/2
N , . . .Snk/v

1/2
N )T = AnZn, where the (i, j)th element of the k × k

matrix An is {(vnj −vnj−1 )/vN}1/2 if j ≤ i and 0 if j > i, where vn0 = 0. The
(i, j)th element ofAn converges toAij = (tj−tj−1)1/2 for j ≤ i and 0 for j > i,
where t0 = 0, so by Result 2.9, (Sn1/v

1/2
N , . . .Snk/v

1/2
N )T converges in distri-

bution to AZ . The joint distribution of AZ is multivariate normal with zero
means and covariance matrix AAT . Direct calculation shows that (i, j)th com-
ponent of AAT is tj for j ≤ i and ti for j > i. Thus, (Sn1/v

1/2
N , . . .Snk/v

1/2
N )

converges in distribution to (B(t1), . . . , B(tk)). ||

2.9.3 Proof that for the Logrank Test, Di = Oi − Ei Are
Uncorrelated Under H0

To show that the Di are uncorrelated, mean 0 random variables, we use
the identity var(Y ) = E{var(Y |X)} + var{E(Y |X)} for a random vari-
able Y with finite variance and a random vector X . The unconditional
mean and variance of Di are E(Di) = E{E(Di |m0i,m1i)} = E(0) = 0
and var(Di) = E{var(Di |m0i,m1i)} + var{E(Di |m0i,m1i)} = E(Vi) +
var(0) = E(Vi). The Di are uncorrelated because cov(Di, Dj) = E(DiDj) =
E{E(DiDj |Di,m0j,m1j)} = E{DiE(Dj |Di,m0j,m1j)}.

Now consider E{DiE(Dj |Di,m0j,m1j)}. Just prior to the jth death, Di

is relevant only in that it provides information about the numbers m0j and
m1j of patients at risk at that time. Therefore, once we condition on m0j and
m1j, the additional variable Di becomes irrelevant so E(Dj |Di,m0j,m1j) =
E(Dj |m0j,m1j) = 0.

2.9.4 A Rigorous Justification of Brownian Motion with Drift:
Local Alternatives

Up to now we have not been completely rigorous in our use of Brownian motion
with drift. Consider the t-test for a continuous outcome trial. Ordinarily, we
think of the treatment effect δ as a fixed constant (e.g., a 3 mm Hg blood
pressure difference between the treatment and control arms). But then the
expected final z-score,

θ =
δ√

2σ2/N
,

would tend to ∞ as N → ∞, reflecting the obvious fact that power tends to
1 as the sample size tends to ∞. To avoid having the power tend to 1, we
must consider local alternatives (i.e., treatment effects δN that approach 0
as N → ∞). The situation is analogous to the Poisson approximation to the
binomial (n, p) distribution; for fixed p, the number of successes tends to ∞ as
n→ ∞, but if p = pn tends to 0 such that npn → λ, the number of successes
has an approximate Poisson distribution with mean λ.
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Returning to the t-test, consider the location shift setting in which the
2N observations at the end of the trial in the control and treatment arms are
i.i.d. F (x) and i.i.d. F (x − δN ), respectively, for some distribution function
F (x) and location parameter δN . We can imagine generating such data by
generating 2N i.i.d. observations Y1, . . . , Y2N from F and adding δN to the
first N . The interim z-statistic after n observations/arm is

Zn =
∑n

i=1(Yi + δN ) −
∑n

i=1 YN+i√
2nσ2

=
∑n

i=1 Yi −
∑n

i=1 YN+i√
2nσ2

+
√

n

2σ2
δN .

Converting to B-values gives

Bn =
∑n

i=1 Yi −
∑n

i=1 YN+i√
2Nσ2

+

√
N

2σ2
δN (n/N ) (2.27)

The first term of (2.27) is the B-value under the null hypothesis, whose joint
distribution over information time is asymptotically standard Brownian mo-
tion. Let θN = {N/(2σ2)}1/2δN and suppose that as N → ∞, n/N → t and
δN → 0 such that θN → θ for some constant θ. The rightmost term of the
right side of (2.27) converges in probability to θt, so the multivariate version
of Slutsky’s theorem implies that the joint distribution of Bn1 , . . . , Bnk is that
of a Brownian motion with drift θ.

A similar technique can be used with dichotomous outcome trials. A rigor-
ous justification of local alternatives in survival analysis is beyond the scope
of this book. An excellent reference for the required martingale approach is
Helland (1982) [H82].

2.9.5 Basu’s Theorem

Result 2.10 Basu (1955) [B55]. If δ̂ = (δ̂1, . . . , δ̂p) is a complete sufficient
statistic for (δ1, . . . , δp) and A = (A1, . . . , Am) is ancillary, then δ̂ and A are
independent.

Proof: Let f(A) be any function with finite expectation, and let ψ(δ̂) =
E{f(A) | δ̂}. Then E{ψ(δ̂)} = E{f(A)}, so E[ψ(δ̂)−E{f(A)}] = 0. Because A
is ancillary, E{f(A)} does not depend on δ, so ψ(δ̂) − E{f(A)} is a statistic
and a function of δ̂. Completeness of δ̂ implies that ψ(δ̂) = E{f(A)}. Thus,
E{f(A) | δ̂} = E{f(A)} for any function f with finite expectation. Taking
f(A) = I(A1 ≤ a1, . . . , Am ≤ am) shows that A and δ̂ are independent. ||
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