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Basic Microarray Analysis

Strategies for Successful Experiments

Scott A. Ness

Summary

Microarrays offer a powerful approach to the analysis of gene expression that can be
used for a wide variety of experimental purposes. However, several types of microarray
platforms are available. In addition, microarray experiments are expensive and generate
complicated data sets that can be difficult to interpret. Success with microarray approaches
requires a sound experimental design and a coordinated and appropriate use of statistical
tools. Here, the advantages and pitfalls of utilizing microarrays are discussed, as are prac-
tical strategies to help novice users succeed with this method that can empower them with
the ability to assay changes in gene expression at the whole-genome level.

Key Words: Microarrays; Affymetrix; GeneChips; genomics; gene expression; tran-
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1. Introduction

The large-scale genome-sequencing projects have identified most or all of the genes
in humans, mice, rats, yeast, and a number of other commonly used experimental sys-
tems. At the time of this writing, the publicly available human genome information
available from the National Center for Biotechnology Information includes more than
2.8 x 10° nucleotides of finished, annotated DNA sequence. Although the exact num-
ber of genes continually fluctuates as annotation and gene prediction programs change
and improve, the current number of human genes is nearly 43,000 (Human genome
build 34, version 3). (Information about the current human genome build is available at
www.ncbi.nlm.nih.gov.) Microarrays provide a means of measuring changes in expres-
sion of all the genes at once. This ability provides researchers with enormous potential
to perform experiments that were impossible just a few years ago and also offers unique
challenges in experimental design and data analysis.
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Microarray experiments and the laboratories that perform them can be divided into
several categories. First are the laboratories that specialize in microarray technology and
that perform experiments with hundreds of microarray samples. Such research groups
are often responsible for developing new methods of microarray data analysis and
include dedicated groups of biostatisticians and computer programmers working to
improve the statistical methods and computer programs for analyzing complex data sets
generated by very large microarray experiments. A second class of laboratories has per-
formed dozens of microarray experiments and has already become familiar with the data
analysis tools necessary to accomplish their goals. Such laboratories generally make
use of commercial software for data analysis or “freeware” packages written by the
aforementioned large groups. This chapter is geared toward the third group: the labora-
tories that are considering their first microarray experiments and that need help with
experimental design and data analysis. New users are most likely to rely on a core facil-
ity to actually perform the microarray experiments. For that reason, I do not discuss
the details of manufacturing, manipulating, hybridizing, and scanning the microarrays
here. Instead, the goal is to outline the potential benefits and pitfalls that arise with
microarray experiments in order to help new users avoid common mistakes and reap
the most benefit from experiments that can be very expensive and time-consuming. In
addition, the commercial microarray platform offered by Affymetrix (Santa Clara, CA)
is the most dominant and readily available means for new users to begin performing
microarray experiments. Consequently, this chapter focuses on the Affymetrix platform
and its use in the academic laboratory, although most or all of the discussion also applies
to custom spotted arrays produced by local microarray facilities. There is a wide vari-
ety of uses for microarrays, including detection of single nucleotide polymorphisms,
analysis of alternative RNA splicing, and analysis of transcription factors binding to
promoters (ChIP on a Chip). However, here the discussion is limited to the use of micro-
arrays for gene expression analysis, the most common use of the platform and the most
likely way that new users will be tempted to use microarray technology.

2. When Is a Microarray the Best Approach?

Microarray experiments are extremely powerful and provide researchers with a new
and exciting means of tackling important problems on a genomewide scale. Most micro-
arrays contain probes for 10,000-40,000 different genes, allowing researchers to assess
simultaneously changes in expression of nearly all the genes in the genome. However,
they are also complex, time-consuming, and often very expensive experiments, and
they generate large and complicated data sets that require substantial effort to analyze
and validate. For these reasons, researchers should not be lured into performing micro-
array experiments without spending some time considering other options or without
considerable thought regarding appropriate experimental design. New users should
consult extensively with their local microarray core facility before beginning to pre-
pare samples for microarray analysis. Every microarray facility can tell stories about
users who approached them with samples only to find out that unsuitable preparation
or storage had resulted in RNA that was too degraded for high-quality analysis. Proper
preparation and storage of the RNA is crucial to the success of microarray experiments.
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This is especially true for samples derived from patients or tissues that are difficult or
impossible to replace. The microarray facility should be able to guide users to the best
methods for preparing samples and storing the RNA to ensure that their experiments
will succeed. Because of these limitations, some experiments are better suited for micro-
array analysis than others.

2.1. For Better or Worse: What Can Microarrays Do?

Microarray technology has proven to be extremely powerful for following changes
in gene expression that occur as synchronized cells progress through the cell cycle (1,2)
or when tissue culture cells are treated with a drug (3,4) or are infected with a virus
expressing a recombinant transcription factor (5,6). In such situations, all the cells in
the population are responding in parallel and relatively synchronously, and the micro-
arrays, which measure the average change in gene expression in the population of cells
being studied, can detect changes in gene expression that occur simultaneously in all the
cells. Because of variations in measurements, microarrays are best at detecting changes
that are relatively robust—a twofold or greater change is a common benchmark—in
genes that are expressed at relatively high levels. Cells from different individuals, such
as different patients, can display markedly different gene expression patterns, so micro-
arrays perform best when the samples are closely related, such as tissue culture cells
or treated vs untreated cells from a single patient or animal. Because different cell types
display complex differences in gene expression patterns, heterogeneous samples, such
as solid tumors or tissue samples, give complex microarray results. Optimum results are
obtained from homogeneous samples, such as cell lines or purified cell populations,
when they are available.

Some experiments are poorly suited for microarray analysis or need a modified design
to make them work. For example, many researchers would like to transfect tissue cul-
ture cells with a plasmid expressing a molecule of interest and then use microarrays to
measure subsequent changes in gene expression. The problem with this approach is that
transfections are often inefficient and generally only yield 5-10% of cells expressing
the molecule of interest. Because microarrays measure the average changes in gene
expression in all the cells in the culture, a gene would have to be induced at least 20-
fold in the transfected cells to show up as twofold induced when averaged over the
entire cell population. A better design would be to transfect the cells with a plasmid that
expresses the protein of interest as well as green fluorescent protein or some other
marker that would allow the transfected (e.g., green fluorescent protein-positive) cells
to be purified by flow cytometry before performing the microarray analysis. Alterna-
tively, recombinant adenoviruses or some other method of expressing the protein of
interest in nearly 100% of the cells in the culture could be used in place of transfection
(5,6). The goal is to compare the changes in gene expression in one nearly homogene-
ous population with those in another.

Changes in gene expression patterns have been used to provide evidence that partic-
ular biochemical, signaling, or transcription factor pathways are activated or inhibited
in different cell types (7,8). Microarrays can detect subtle changes in gene expression
induced by a variety of extracellular or environmental stimuli (9,10). However, such
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results can be quite complicated. In general, microarray experiments should be designed
with some hypothesis in mind, rather than just as a “fishing” experiment. By testing a
hypothesis, it will be possible to design positive and negative controls that will greatly
facilitate the data analysis. This is discussed in more detail under Heading 4.

3. Choosing a Microarray Platform

The first choice a new user will have to make is which type of microarray to use.
Essentially, microarrays are thousands of spots or probes immobilized on a solid sur-
face such as glass or silicon that can be hybridized simultaneously to fluorescently
labeled experimental samples, referred to as targets. In the simplest scenario (Fig. 1),
mRNA from each sample is used as template in a complementary (c)DNA synthesis
reaction that includes dinucleotide triphosphates labeled with fluorescent tags, usually
Cy3 or Cy5. The resulting fluorescent target cDNA is hybridized to the microarray,
which contains cDNA or oligonucleotide probes for each gene of interest. Usually, a
separate microarray is used for each experimental sample. After washing, a laser scan-
ner is used to measure the fluorescence at each spot, and the data are converted into a
spreadsheet format showing the relative intensity or expression of each gene. Several
variations on this theme provide increased sensitivity or reproducibility. For example,
in the Affymetrix GeneChip system, the target samples are labeled with biotin and are
detected with fluorescent streptavidin. However, even from this simple description of
microarray technology, it is apparent that the most important parameters in the assay are
the quality of the samples, the efficiency of the labeling with fluorescent nucleotides,
and the quality and reproducibility of the gene-specific probes on the microarray.

3.1. Glass Slide Arrays

The first microarrays were produced by using modified writing pens to spot samples
of DNA directly onto glass microscope slides. After chemical or ultraviolet (UV) cross-
linking to fix the DNA to the glass, the fluorescently labeled cDNAs were applied in a
drop of hybridization buffer, covered with a standard cover slip, and allowed to hybrid-
ize overnight. This is still the basic process for most microarrays produced in core facil-
ities, although the machines that make the arrays have become highly automated and
new chemistries and surfaces have been developed to make the glass slides more effi-
cient at binding the DNA and to decrease the background in the hybridization. There are
also differences in what types of DNA probes are attached to the glass.

3.1.1. cDNA Arrays

The first laboratories that made extensive use of microarrays spotted libraries of
cDNA clones, either polymerase chain reaction (PCR)-amplified inserts or whole plas-
mids, directly onto glass slides. The use of relatively long (>300 bp) cDNAs has advan-
tages and disadvantages. The biggest advantage is that the hybridization is quite robust.
Thus, point mutations or even small deletions that might occur in some individuals will
have little or no impact on the results of the hybridization. This feature makes cDNA
arrays quite useful for studies of large sets of human patients who might have minor dif-
ferences in some of their genes. Another advantage of using cDNAs is the relatively low
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Fig. 1. Basic steps in microarray analysis. (A) Starting RNA. Purified mRNA is annealed
with a primer (oligo-dT), ready for the reverse transcription reaction. At this point, control RNAs
are often added (“spiked in”) to give an internal control for the efficiency of the following steps.
(B) Labeled cDNA. In the simplest case, reverse transcription is performed using fluorescently
tagged (e.g., Cy3 or Cy5), dinucleotide triphosphates (ANTPs), resulting in the generation of
fluorescent cDNA. In the Affymetrix system, the dNTPs are biotinylated, and later detection is
performed with fluorescent streptavidin. (C) Target hybridization. The fluorescently labeled cDNAs,
referred to as “targets,” are hybridized to gene-specific “probes.” Each target anneals to its
corresponding probe spot on the microarray. The probes can be spotted cDNAs or oligonucleo-
tides, or oligonucleotides that were synthesized directly on the microarray surface. Although only
two spots are shown, a single microarray can have probes for up to 50,000 different genes and
more than a million spots per square inch. After hybridization, a laser scanner is used to detect

the specific fluorescence at each spot. If all goes well, fluorescence intensity is proportional to
the concentration of the relevant mRNA in the original sample.

cost. A single miniprep or PCR reaction can generate enough purified DNA to produce
many thousand microarrays. Owing to their long lengths, the spotted cDNAs are likely
to detect all the transcripts, such as different versions produced through alternative
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promoter use or alternative RNA splicing, which could be an advantage. Major disad-
vantages are the cost and effort required to assemble large libraries of purified cDNAs
or PCR products, all of which must be correctly identified, subjected to nucleotide sequenc-
ing, and annotated. There have been problems with collections of cDNAs provided by
commercial suppliers, which contain a large fraction of clones that are improperly iden-
tified or contaminated with other plasmids that interfere with PCR amplification. In
addition, cDNAs can contain repeated sequences and may hybridize to closely related
transcripts (gene families) and so may not provide enough specificity for many appli-
cations. Because cDNAs vary in length and G-C content, it is difficult to ensure that
all will hybridize equally well or give the same amount of background signal. These
disadvantages make cDNAs difficult to work with and have contributed to their waning
popularity.

3.1.2. Oligonucleotide Arrays

The most common type of glass slide microarrays use custom oligonucleotides,
usually 40 to 60 mer, instead of cDNAs. The oligonucleotides, if designed properly, can
overcome problems of specificity and G-C content associated with using cDNAs. There
are generally fewer problems with improper identification or labeling when ordering
custom oligonucleotides from commercial suppliers, although one must still trust the
supplier to synthesize and purify them correctly and to put the correct oligonucleotides
in each tube. The major drawbacks of using oligonucleotides are the relatively high cost
of purchasing 10,000 or more custom oligonucleotides and the huge amount of bio-
informatics support required to design all the necessary bits of DNA specific for each
gene with matched G-C content and free of hairpins that could affect hybridization effi-
ciency. Depending on how the oligonucleotides are designed, they might still suffer
from some of the specificity problems associated with cDNAs. Complete sets of oligo-
nucleotides are now available from commercial suppliers, greatly simplifying their use
by microarray core facilities producing homemade microarrays. Nevertheless, because
of the cost, it is rare for such collections to contain intentionally more than one oligo-
nucleotide representing each gene.

3.1.3. Advantages and Disadvantages of Glass Slide Microarrays

The biggest advantage of using homemade or in-house-produced glass slide micro-
arrays is the relatively low cost, generally less than $100 per array. However, such arrays
are limited to 20,000 or fewer spots per array, so more than one array is necessary to
screen an entire mammalian genome. It is also rare to have more than one spot for any
gene on each array. Thus, if there are any discrepancies in the production of the arrays,
such as some spots that get too little DNA or that are misshaped or smeared, there are
no backup spots from that gene to confirm the hybridization results. Unfortunately,
not all spots are identical on any spotted array, which makes the data subject to more
variability and also makes multiple hybridizations absolutely essential. As a conse-
quence, most users hybridize their samples to several identical arrays in order to have
multiple measurements and to be able to perform statistics for each spot. This increases
the cost substantially. Thus, if a single array costs $80, two arrays are necessary to rep-



Basic Microarray Analysis 19

Table 1
Comparison of Microarray Platforms
Glass Affymetrix
slide arrays GeneChips
Typical cost per array $80 $450
Arrays per 40,000 genes 2 1
Measurements per gene on each array 1 12
Arrays needed per sample to achieve at least three 6 1
measurements per gene
Array cost per sample $480 $450
Typical amount of total RNA needed per array 10 ug 0.1-1 pg
Total amount of RNA needed from each sample >30 ug <1l pug
Total arrays needed for a three-sample experiment
(untreated, control-treated, experimental-treated) 36 6
performed in duplicate
Total array cost $2880 $2700

resent 40,000 human genes, and each sample is hybridized to three independent arrays
in order to generate statistically significant measurements, each biological sample would
require a total of six arrays, or a total cost of $480 just for the arrays. Thus, the apparent
cost savings by using homemade arrays often disappears when the problems associated
with such arrays are considered in the bigger picture (Table 1).

3.2. Affymetrix GeneChips

The most common commercial microarray platform is the GeneChip system from
Affymetrix. GeneChips are made by synthesizing matched sets of short oligonucleo-
tide pairs, one that matches perfectly (perfect match) and one with a single mismatch,
on a silicon-based substrate using a photolithographic process similar to methods used
in the computer chip industry. The newest GeneChips contain at least 12 pairs of probe
sets for each gene; contain probe sets for more than 50,000 human, mouse, or rat genes;
and generally cost academic users about $450 apiece. Having multiple probe sets for
each gene ensures that even if part of the GeneChip surface becomes damaged or
obscured by background, enough probe sets will still be readable to salvage the experi-
ment. Multiple probe sets also allow statistical analyses to be performed, so both an
expression level and a p value of expression can be reported for each gene. The Affy-
metrix system includes detailed protocols that rely on commercially available kits, auto-
mated fluidics stations for washing the arrays after hybridization, and an automated
scanner and software package for analyzing the arrays. The complete system is expen-
sive but produces very high-quality data and is relatively user-friendly, so it is the plat-
form of choice for mainstream microarray facilities and for novice microarray users.
The analysis kits from Affymetrix can be used with very small amounts of total RNA,
even less than 20 ng, and new kits and specially designed GeneChips offer the ability
to analyze samples extracted from paraffin-embedded clinical samples, making the anal-
ysis of gene expression in archived samples a possibility. The key feature of the Affyme-
trix system is the high-density GeneChips, which are available for several mammalian
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species and several other common experimental organisms. Researchers studying gene
expression in unrepresented organisms will need an alternative approach or will have
to contract with Affymetrix (for a substantial fee) to produce customized GeneChips
for their unique needs.

As shown in Table 1, for users who wish to screen more than 20,000 genes (which
requires two spotted glass slide microarrays but only one Affymetrix GeneChip) and
to have high-quality data (which requires at least three glass slide microarrays but only
one GeneChip), experiments with Affymetrix GeneChips can be less expensive than
using glass slide microarrays.

4. Types of Microarray Experiments

Most microarray experiments can be classified as one of three types. The first is the
comparison of a single cell line, micro-organism, or animal strain before or after some
defined treatment. The second type is a comparison of organisms (micro-organisms, cell
lines, or inbred animals) that are isogenic except for one or a limited number of gene-
tic changes, such as a single overexpressed or mutated gene. The third type is the com-
parison of normal or tumor tissues from multiple individuals, such as breast tumors or
leukemia samples from different patients. Each of these types of experiments can be
addressed with great success using microarray assays, provided that certain pitfalls can
be avoided.

4.1. Treatment Comparisons

Treating a cell line or micro-organism with a specific treatment condition such as
UV light or a drug that blocks a signal transduction cascade generates immediate and
rapid changes in gene expression that can be detected with microarray assays. This is
the simplest type of microarray experiment to analyze, because all the cells should
behave similarly and relatively synchronously following the treatment. Nevertheless,
there are several things to consider about such an experiment, such as the time course or
duration of the treatment and the dose, etc., that can have dramatic effects. For exam-
ple, the gene expression changes that occur 2 h after UV treatment of a human tissue
culture cell line could be completely different from the changes observed 8 h after treat-
ment. In addition, cells that are synchronized in the cell cycle could show significant
differences compared with cells that are growing asynchronously or are density arrested.
Thus, new users are encouraged to spend some time thinking about exactly what type
of gene expression changes are expected, and in what type of cells those changes would
be best detected.

An example from our laboratory illustrates this point. We developed recombinant
adenovirus vectors expressing the c-Myb transcription factor. The c-Myb virus or a con-
trol virus was used to infect human MCF-7 mammary cells, primary lung epithelial cells,
or primary lung fibroblasts. After 16 h, microarray assays were used to detect changes in
gene expression. In each case, the c-Myb transcription factor caused specific changes in
gene expression. However, the genes that were affected were completely different in each
of the three cell types, suggesting that c-Myb transcriptional activity was strongly affected
by cellular context (5). In this case, if we were trying to identify genes that were regu-
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lated by c-Myb, we would have obtained completely different results in each cell type.
Similarly, UV light or drug treatments could cause different gene expression changes in
different cell types. Thus, it is crucial to study induced gene expression changes in the
most relevant cell type available.

4.2. Analysis of Genetic Differences

A second type of experiment involves comparing otherwise isogenic organisms that
differ at a single genetic locus, through either overexpression or mutation. Such experi-
ments are especially common with yeast, cell lines, and genetically altered mice, or
with cell lines derived from mouse knockout strains. These experiments differ from
the ones described in Subheading 4.1. because the gene expression changes are at steady
state. For example, researchers might use microarrays to compare the gene expression
patterns in cells that differ by a mutation at a single genetic locus. However, if the
cells compensate for the loss of one gene by upregulating other genes, the observed
results could be quite complex. In this case, although the gene expression changes are
aresult of the mutation, the genes that are affected may be regulated by pathways that
have nothing to do with the gene that was mutated, but are affected through secondary
compensatory pathways. A better design might be to reexpress transiently the wild-
type gene in the mutant cells to follow short-term changes in gene expression that are
more directly affected by the gene of interest. This example points out that interpreting
microarray data can be quite complicated, because gene expression pathways are influ-
enced by so many regulatory interactions. Microarray experiments are relatively easy
to perform, but poor experimental design may yield results that are difficult or impos-
sible to interpret.

4.3. Comparison of Patient Samples

Microarray assays offer a rapid and sensitive means of comparing the gene expres-
sion profiles in tumors from different individuals and offers the promise of being used
as a clinical tool to identify tumors that might respond better to a particular treatment
or for identifying patients with better or worse prognoses. Such information could
be extremely valuable for helping clinicians make decisions about which therapeutic
options are most appropriate. Many investigators have access to dozens or even hun-
dreds of clinical samples and see microarrays as a means of analyzing them for common
patterns of gene expression. Several laboratories have been successful at identifying pat-
terns of gene expression that correlate with clinical outcome or define classes of tumors,
similar to other cytogenetic markers (7,11,12). However, these studies invariably require
quite complex data and statistical analyses including methods, such as hierarchical clus-
tering, support vector machines, and other advanced approaches (13,14). For this rea-
son, novice users should consult with experts in complex data analysis before beginning
such a study. In addition, successful clinical studies require balanced cohorts designed
by qualified biostatisticians to avoid common pitfalls and artifacts (see Subheading 5.5.).

5. Planning and Experimental Design

Microarray experiments generate large and complicated data sets that pose special
problems for statistical analysis and researchers trying to interpret the results. This section
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discusses the most common problems faced by novice users beginning microarray experi-
ments and approaches for eliminating them.

5.1. The Problem With Statistics

Most statistical methods depend on the comparison of replicates to estimate experi-
mental variability in order to determine whether an observed difference is statistically
significant. In general, such methods work better as the number of replicates increases.
Thus, the best types of data for normal statistical analyses have relatively few variables
(rows) and many replicate measurements (columns). However, microarray experiments
generate data of exactly the opposite type, with many thousands of variables (genes)
and, because of the high cost, very few replicates. As a consequence, the usual statisti-
cal methods have trouble dealing with microarray data. For example, it is impossible to
use a r-test statistic on data that have fewer than three replicates. Yet, few researchers
can afford to perform more than two or three replicates of microarray experiments that
may cost $1000 per sample. Some specialized data analysis methods have been devel-
oped to get around the problems posed by microarray data. These methods often ana-
lyze the variation in other genes as pseudoreplicates in order to calculate the levels of
variation among the genes in a data set. An example of such a method is the Cross-Gene
Error Model used by the popular microarray analysis software program GeneSpring
(Silicon Genetics, Redwood City, CA), which calculates a trust score for each gene based
on its level of expression and the variation among other genes in the data set expressed
at similar levels. These specialized data analysis methods can be quite effective and
work best when the samples being compared are similar, such as from the same tissue
culture cell line. The cross-gene methods have more difficulty when the samples being
compared display more dramatic differences in gene expression patterns, such as when
tumors from different patients are compared.

One of the problems with microarray data analysis is that the results of the experi-
ments are generally reported only as fold change. This is necessary because different
genes are expressed at widely different levels. If one tried to analyze microarrays using
only raw expression-level scores, one would end up paying attention only to the genes
that were expressed at high levels. However, in biological terms, the most highly ex-
pressed genes are often the least interesting, sometimes called “housekeeping” genes.
The more interesting regulatory genes are often expressed at moderate or low levels.
Thus, fold change measurements are necessary in order to emphasize the changes in
gene expression, instead of the total abundance of individual transcripts. Unfortunately,
reporting only fold change measurements introduces serious problems when discuss-
ing genes that are expressed at low levels. For example, using Affymetrix GeneChips,
it is not uncommon for replicate measurements of a single gene in two identical sam-
ples to vary by as much as 1000 raw fluorescence units. An error of 1000 U is an inconse-
quential 5% change for a gene expressed at a level of 20,000 fluorescent units. However,
for a gene expressed at approx 200 U, a 1000-U variation represents a sixfold change.
Consequently, it is much more difficult to measure statistically significant changes in
gene expression for genes that are expressed at low levels. In publications, the raw fluo-
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rescence-level numbers for individual genes are almost never reported, making interpre-
tation of the fold change measurements difficult. However, the relative change in total
fluorescence units must be considered when determining the significance of an observed
fold change.

5.2. Why Replicates Are Absolutely, Positively Required

One of the most common questions raised by new users, especially after calculat-
ing the high cost of a proposed microarray experiment, is: are replicates really neces-
sary? After all, publications almost never show replicates of Northern or Western blots,
two conventional methods of analyzing changes in gene expression. Why are replicates
required for microarray experiments?

The differences are that Northern and Western blots seldom try to measure changes
in gene expression that are as low as twofold and do not use statistical filters to iden-
tify gene products of interest. When microarray assays are used to measure gene expres-
sion patterns in two independent samples that should be identical, the data usually have
a correlation coefficient higher than 0.97. This is a very high correlation coefficient for
biological studies. However, it means that for any filter used to analyze the microarray
data, up to 3% of the genes that pass through the filter will do so solely owing to appar-
ently random fluctuation in the measurements. For an experiment measuring 40,000
genes, this noise could contribute to the improper identification of up to 1200 genes, a
number far too large to be tolerated. However, if the fluctuation is random, different
genes should be improperly identified in each sample. Thus, by performing duplicate
analyses and requiring that genes pass through the filter in both replicates, the number
of genes improperly identified should be only 0.03 x 0.03 = 0.009, or only 36 genes out
of 40,000. Applying the filters to independent triplicate samples should eliminate all
but one or two “false-positives,” or improperly identified genes. For these reasons, new
users should be counseled that replicate microarray assays are absolutely required. If
costs are a concern, duplicate assays will generally suffice, but independent triplicate
assays, if possible, are best.

5.3. Hybridization and Analysis Controls

Before starting a microarray experiment, it is important to consider the controls that
should be included. Microarrays should be designed to allow the inclusion of “spiked”
control mRNAs in the samples to be analyzed. These are most often a set of bacterial
or artificial mRNAs generated by in vitro transcription, and mixed in predefined ratios
representing low-, medium-, and high-abundance transcripts, that can be added to all
the experimental samples and that hybridize to their own special spots on the array.
Spiked controls are an excellent means of following the efficiency of the entire micro-
array analysis process, from reverse transcription through labeling to hybridization,
detection, and quantitation. For Affymetrix GeneChips, premade sets of control RNAs
are available as a kit. Including such controls is highly recommended because it requires
very little additional effort or cost and adds significantly to the quality of the data.
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5.4. The “Day Effect”

Microarrays are quite capable of detecting systematic problems in the analysis or
preparation of samples. This is sometimes referred to as the “day effect,” detected when
techniques, such as Principle Component Analysis, are applied to large data sets con-
taining samples that were analyzed on different days. The samples analyzed on the same
day often correlate with each other better than samples analyzed on different days. The
causes of the day effect are unknown but presumably have to do with batches of enzymes
or reagents that differed or other systematic variations. Whatever the reason, the impli-
cation is that the samples analyzed on the same day will appear to be more similar to
each other than they should, and the samples analyzed on different days will appear to
be more different than they should. This has important implications for experimental
design. For example, because of the day effect, it would be inappropriate to analyze all
the control and untreated samples on one day, and all the treated or experimental sam-
ples on a different day. Instead, if it is impossible to analyze all the samples together,
it is better to divide the samples into manageable groups, keeping both control and
experimental samples in each group. For example, for a small experiment with three
samples—untreated, vehicle alone, and drug-treated—it is recommended that the entire
experiment be performed in duplicate, but on different days. Each set of three micro-
arrays is analyzed together on different days, and then the data sets are compared and the
analyses performed. This practice will ensure that some controls and some experimental
samples are analyzed on different days, so any correlation observed between replicates
will be owing to the experimental manipulations, not the systematic variations that
cause the day effect.

5.5. Importance of Balanced Cohorts

A common use of microarrays is the analysis of clinical samples, with the intention
of identifying patterns of gene expression that are predictive of a particular outcome.
For example, researchers analyze a group of breast tumors in order to identify patterns
in the microarray data that correlate with and can predict poor prognosis. However,
this type of study is particularly prone to problems with experimental design related to
unbalanced cohorts. In a typical study, researchers might have access to 60 tumor sam-
ples, of which 80% have good prognosis and 20% have poor prognosis. They choose
two-thirds of the samples, or 40, to use as a training set and save the other 20 as the test
or validation set. Microarray analysis identifies genes whose expression patterns can
distinguish between the good and poor prognosis samples in the training set. When the
expression patterns of those genes are analyzed in the test samples, they predict the out-
come with 80% accuracy, so the experiment appears to be a success. However, if the
researchers failed to balance the cohorts, they may have been misled. Because 80% of
the original samples had good prognosis, a random selection of any sample would have
an 80% chance of being in the good prognosis group. If the microarray analysis fails
to perform better than random chance, it has not really worked. A better design would
be to choose a balanced cohort, 50% with good and 50% with poor prognosis, to use as
the training set. In this type of experiment, it is essential to get help from a qualified bio-
statistician before beginning, in order to obtain results that are valid and meaningful.



Basic Microarray Analysis 25

6. Basics of Microarray Data Analysis

Microarray experiments can produce complex data sets, and analyzing them can
be difficult and time-consuming. The details of microarray data analysis methods are
beyond the scope of this chapter. However, even if an expert performs the actual data
analysis, it is important for the researchers to understand the basics of data analysis so
that they can interpret the analysis summaries provided to them and ask the right ques-
tions of the expert analyst.

The analysis of microarray results has three phases. The initial analysis checks qual-
ity scores and controls in order to judge whether the labeling, hybridization, and scan-
ning of the microarrays worked as planned and to identify problematic results that should
be eliminated from the larger data set used for the final analysis. The second step is
scaling and normalization, which adjusts the data obtained from individual arrays so
that they can be compared. The normalization step is particularly important and dra-
matically affects the outcome. Choosing the correct normalization method is critical to
obtaining the best results. Once the data are normalized, the third step, applying a vari-
ety of statistical tests and filters to identify genes whose expression change in the vari-
ous samples is employed. There are many methods for performing this analysis, which
indicates that there is no best or standard approach. Indeed, the statistical methods
used for microarray data analysis are a major area of biostatistics research. For novice
users, the experts in the core facility will likely choose the particular statistical methods
that they are comfortable with and prefer to use, so a description of all possible methods
or software packages currently in use is beyond the scope of this chapter. However, a
description of some of the types of filters that can be applied to simple microarray data
sets is useful to understand how the data are structured and to identify some of the pit-
falls that can occur in microarray data analysis.

6.1. Initial Data Analysis

The first steps in the analysis of microarray data are to check the quality of the data
obtained from each array or GeneChip; validate that all the wet-lab steps, such as reverse
transcription, probe labeling, hybridization, and scanning were successful and efficient;
and eliminate any data sets that are of low quality. For the novice user, these steps will
usually be carried out by the core facility, which should provide the user with a report
describing the overall quality of the data. The exact measurements used for judging data
quality will depend on the microarray platform used and the types of controls present
on the microarray. The Affymetrix GeneChip system includes a number of standard
controls and quality measures that provide excellent examples of how data quality can
be monitored.

6.1.1. Interpreting Affymetrix Quality Scores

Affymetrix GeneChips contain a number of control probe sets that measure the ex-
pression of housekeeping genes, such as 3-actin and glyceraldehyde-3-phosphate dehy-
drogenase. Unlike most probe sets, which are skewed toward the 3'-end of the mRNA,
in order to be less dependent on the quality of the reverse transcription reaction, the
GeneChips contain several probe sets for the housekeeping controls, located at the 5'-
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end, -middle, and 3'-end of the transcripts. By comparing the hybridization signals from
these probe sets the researcher can get an excellent indication of the quality of the mRNA
and the reverse transcription reaction used during the labeling process. For example,
because the reverse transcription reaction begins at the 3'-end, if it was inefficient the
probe sets from the 3'-ends of the housekeeping genes would give much stronger hybrid-
ization signals than the probe sets from the 5'-ends. In general, the ratio of the signals
from the 3'-end to the 5'-end probe sets should be less than three. In addition, the house-
keeping gene probe sets should have robust signals, as expected for transcripts expressed
at high levels.

6.1.2. Percent Present

A second type of quality score provided by the Affymetrix system is the Percent
Present statistic. Affymetrix GeneChips contain 12 or more perfect match probes and
an equal number of mismatch probes for each gene. The analysis software measures
the difference in the hybridization signals for the perfect match and mismatch probe
pairs and then uses a statistical algorithm to determine whether the differences are
significant. Based on this calculation, each gene is labeled “Present,” “Marginal,” or
“Absent.” This statistical flag is independent of the expression level and depends only
on how much agreement there is among the individual probe sets for each gene. The
software also calculates the fraction of genes labeled “Present” and reports this fraction
as the Percent Present. In practice, the Percent Present can vary significantly, depend-
ing on the type of sample (e.g., primary cells vs transformed cell lines) being analyzed.
However, within one experiment analyzing similar samples, all of the GeneChips should
give a similar Percent Present. An abnormally low Percent Present is an indicator that
an RNA sample was of poor quality or that the labeling or hybridization reactions were
flawed.

6.1.3. Interpretation of Scaling Factors

Affymetrix also permits data from individual GeneChips to be scaled, which is simi-
lar to per-chip normalization (see Subheading 6.2.1.). Although scaling is not abso-
lutely necessary, it does provide an additional quality statistic, the scaling factor. Scaling
works by multiplying all the gene expression values by some constant, the scaling fac-
tor, which adjusts the average expression to some preset number, usually 500 or a simi-
lar integer. If scaling is used, the scaling factor provides an excellent quality measure.
Poor-quality data sets invariably have larger scaling factors, because the labeling or
hybridization was affected for all the genes represented on the GeneChip. Ideally, all the
samples being analyzed as a group should have similar scaling factors. If Affymetrix
scaling is used, there is no need to use additional per-chip normalization, discussed in
Subheading 6.2.1.

6.2. Scaling and Normalization

Proper scaling and normalization of microarray data is extremely important and dra-
matically affects the results of the analysis. The two basic types of normalization are
scaling, or per-chip normalization, which adjusts the average intensity of an entire micro-
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array sample, and per-gene normalization, which is used to compare the relative expres-
sion of a single gene within a group of samples.

6.2.1. Per-Chip Normalization

Scaling, or per-chip normalization, is a means of adjusting the overall fluorescence
of each microarray to the same average intensity, analogous to adjusting the sensitivity
of the scanner so that each sample has the same overall brightness. This type of adjust-
ment makes sense for samples that are similar, and that are expected to have similar
numbers of genes expressed, mostly at similar levels. However, it may not make sense
for samples that are dramatically different, such as a comparison of resting cells vs pro-
liferating cells, because the latter may have many more genes expressed. By default,
most samples are subjected to scaling or per-chip normalization. However, the details
of the experiment should be considered carefully to determine whether per-chip nor-
malization is appropriate. In particular, if samples have dramatically different levels
of expression of the housekeeping genes, which contribute greatly to the average fluo-
rescence, it might be better not to subject the samples to per-chip normalization.

6.2.2. Per-Gene Normalization

The absolute level of expression among different genes varies dramatically, from
thousands to less than one transcript per cell. As a result, it is difficult to compare changes
in the level of expression of specific genes among samples. As discussed in Subheading
5.1., a 1000-fluorescent unit change in expression of a high-abundance transcript may
represent a small change, as little as 5%, but could represent a manyfold change in
expression of a gene that is expressed at low levels. Per-gene normalization is used to
overcome this problem by comparing the relative expression of each gene across the
various samples in an experiment, expressed as fold change. As a consequence, genes
that display similar patterns of up or down changes in expression across samples can
be identified despite the absolute differences in their expression levels.

The big problem with per-gene normalization is deciding what to normalize each
sample to. By default, most microarray data analysis programs calculate the mean
expression level for each gene, then normalize each sample against that mean, or con-
trol value. This approach works but can result in some strange results. Take the exam-
ple described in Subheading 5.4. of a small microarray experiment containing just three
conditions—untreated, vehicle treated, and drug treated—performed in duplicate. The
entire experiment would consist of six microarrays, two independent measurements
for each condition (Fig. 2A). Now, consider a gene expressed at or near zero in the un-
treated and vehicle-treated conditions. The software never reports an expression value
of zero, so assume that the average value in the untreated and vehicle-treated samples is
alow number, e.g., 200. If this gene is strongly induced by the drug treatment its expres-
sion level could go up to an average of 2000 U. Using the default per-gene normaliza-
tion described above, the mean intensity across all six samples would be 800. The fold
change reported for the untreated and vehicle-treated samples would be 0.25 and the
fold change for the drug-treated samples would be 2.5. This gene would just barely pass
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A Treatment Trial 1 Trial 2

Mock-Treated Array 1 Array 4
Vehicle Only Array 2 Array 5

Drug-Treated Array 3 Array 6

B Trial 1 Trial 2
Treat cells, Treat cells,
Prepars RNAs Prepars RNAs
Check RNA quality Check RNA quality
v v
Add spike-in controls Add spike-in controls
Prepare fluorescent Prepare fluorescent
hybridization targets hybridization targets
Hybridize, wash and Hybridize, wash and
scan the microarrays, scan the microarrays,
L »

Combine data from Trials 1 and 2 for analysis
Per-Chip normalization (scaling)

Per-Gene Normalization
(normalize all to mean of arrays 1,2,4 and 5)

Filtering to identify drug-induced changes

Fig. 2. Design and analysis strategy for a simple microarray experiment. (A) Simple micro-
array experiment design. A six-microarray experiment is designed to test the effect of drug treat-
ment on tissue culture cells. Duplicate samples of the drug-treated cells will be compared with
duplicates of vehicle-treated or mock-treated samples. Each sample will be analyzed with its
own microarray, making a total of six assays. (B) Flow chart of simple microarray experiment.
RNA samples from the two trials are collected and analyzed separately, and then the data are
combined for the analysis. Keeping the samples separate helps to avoid day effects and other sys-
tematic problems. The data are normalized to the mean of the four control samples (mock treated
or vehicle treated) to identify drug-induced changes in gene expression in the two treated samples.

a filter designed to find genes induced more than 2.5-fold by the drug. However, com-
parison of the raw scores shows that the average expression actually changed from
200 to 2000, which is a 10-fold change! In this case, the default normalization scheme
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was inappropriate. The data should have been normalized to the untreated or the vehi-
cle-treated samples, rather than to the average of all the samples. As the example illu-
strates, choosing the correct normalization scheme is extremely important and affects
the results and the genes that will be identified by the analysis.

In general, if the experiment has true control samples, such as the untreated and
vehicle-treated samples in the example described in Fig. 2A, per-gene normalization
should use those samples as the controls. The result will be fold-change data that reflect
the change relative to the controls, a much more logical type of result than a fold change
relative to the mean of all the samples. On the other hand, when no true controls are
available, such as when comparing the gene expression profiles of a number of tumor
samples from different patients, normalization to the mean of all the samples may be
the only available choice. In either case, it is important for the researcher to understand
how the data were normalized in order to interpret the fold-change results.

6.3. The Simplest Analysis: Filtering to Identify Regulated Genes

After normalization, a variety of techniques can be used to identify genes with altered
expression in one or more of the experimental conditions. This section focuses on fil-
tering, the simplest method to identify interesting genes and one of the most useful for
novice microarray users. Filtering is direct and related to the experimental design, so it
is relatively easy to set up and understand. However, filtering is best used for address-
ing specific biological questions in relatively simple experiments. The filtering approach
rapidly becomes cumbersome as the experimental design becomes more complicated
and is not suitable for experiments with more than three or four types of experimental
conditions. Nevertheless, a basic discussion of data analysis using filtering can point
out the strengths and weaknesses in microarray data analysis and prepare users for adopt-
ing more advanced techniques, if they are necessary.

6.3.1. The Analysis Strategy

To illustrate the concepts and pitfalls of data analysis by filtering, consider the exam-
ple experiment described in Fig. 2A, with two biological replicates each for untreated,
vehicle-treated, and drug-treated samples, or a total of six microarrays. This experiment
has a simple experimental design (Fig. 2A). Nevertheless, it is important to predict what
types of results are expected in order to design the appropriate filters.

6.3.2. Filter on Flags

The first criterion is that only those genes that can actually be detected above back-
ground levels should be considered for further analysis. If a gene is expressed at such
low levels that it cannot be distinguished from background in any of the samples, there
is no sense in applying a filter to see whether its expression has increased. This may
seem obvious but it is actually a major concern in microarray experiments that utilize
normalized data, because once the data are normalized, all the information about abso-
lute expression levels are lost. Thus, it is a common error to identify genes that are up- or
downregulated based on fold change without paying attention to whether the genes are
actually expressed at a level that is significant and above background. For several rea-
sons, this problem is a special concern for users of glass spotted arrays. First, absolute
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background levels are difficult to measure using glass spotted arrays. This is because
the background hybridization in the areas spotted with DNA can be much greater than
in the areas without DNA, because background levels can vary from probe to probe,
depending on the G-C content, and because such arrays often suffer from high back-
ground and “smearing,” all of which complicate background measurements. Second,
glass spotted arrays often have only one spot per gene, so there is no way to do statisti-
cal calculations to determine whether an expression measurement is significantly differ-
ent from background. Finally, signals using glass spotted arrays are often weak, so most
spots are detected in the near-background range. Sometimes it is possible to increase
the sensitivity of the scanner to alleviate this problem, but detection of low- and even
medium-abundance mRNAs can nevertheless be quite difficult.

The Affymetrix GeneChip system has incorporated a number of measures to enable
more accurate background detection and to permit statistical measures to be applied to
determine whether each gene is expressed above background. On the Affymetrix arrays,
at least 12 perfect match probes and an equal number of corresponding single nucle-
otide mismatch probes represent each gene. By comparing the hybridization signals
for the perfect and mismatch probes, which in each case differ by only one nucleotide,
a fairly accurate estimate of the difference between specific and nonspecific signals can
be determined. The 12 or more independent measurements allow statistical tests to be
made, and the size of the corresponding p value is used to calculate a Present/Margi-
nal/Absent call. This “flag,” or qualitative measure that accompanies the raw expression
score, is a measure of whether the genes are statistically different from background.
The flag allows the data to be filtered to exclude genes that cannot be accurately mea-
sured. In general, it is advisable to filter Affymetrix data to exclude genes that are
flagged “Absent” in all the samples, which is often one-third or more of the genes on the
array. It is also possible to be more selective. In our example experiment (Fig. 2A), if
one was interested only in genes that were “off” in the controls and “on” in the drug-
treated samples, one could filter for genes that were flagged “Absent” in the untreated
and vehicle-treated samples and also flagged “Present” in the drug-treated samples.
However, such a specific use of flags is generally unwarranted because it could be too
selective.

6.3.3. Filter on Fold Change

The most basic type of filtering is the comparison of fold change. Microarray data
are generally filtered to identify genes that are at least twofold different in the experi-
mental conditions. In our example experiment, one would try to identify genes that were
at least twofold up- or downregulated in the drug-treated samples compared with both
the vehicle and the untreated samples.

The best approach is to combine filters to achieve the most specific result possible.
For example, to identify genes that are upregulated by the drug treatment, a filter should
be designed to find only genes that are flagged “Present” and also twofold or more up-
regulated in both of the drug-treated samples, because it makes no sense to study genes
that are apparently upregulated but cannot be detected in a statistically significant man-
ner. Whether the genes are flagged “Present” or “Absent” in the controls is irrelevant.
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For downregulated genes, the measurements must be flagged “Present” in all the con-
trols but expressed at 0.5-fold or less in both of the drug-treated samples. It is not log-
ical to find genes that appear to be downregulated unless they were actually expressed
above background in the controls.

6.3.4. Other Filters

Numerous additional filters can be applied to microarray data. To be most conser-
vative, some users will wish to limit their analysis only to genes that are most robustly
expressed, and that can be most easily detected by other methods, such as Northern
blots. For that purpose, it may be useful to filter on the raw expression level, essentially
setting a cutoff for minimum expression above which a gene must be expressed to be
considered further. The cutoff is somewhat arbitrary and depends on the data set and the
settings used for the scanners and for the normalization. Nevertheless, this approach can
help identify the genes that will be simplest to study in subsequent validation experi-
ments, at the expense of eliminating some of the most interesting genes that are expressed
at lower levels, closer to the background level.

6.4. More Advanced Analysis: Clustering

Microarray data can be extremely complex, and many methods of data analysis are
available. In fact, the development of new and improved methods for analyzing micro-
array data is a major area of research among bioinformatics specialists. The most com-
mon of these methods involves various supervised and unsupervised clustering methods
that have been developed primarily for the analysis of large data sets, especially those
that compare numerous samples from different individuals, such as a series of tumor
vs normal samples. These methods are generally not too useful for novice microarray
users performing simple experiments; their description is beyond the scope of this arti-
cle, but they are discussed in Chapter 4. Nearly all the advanced methods use statis-
tical tests to group genes or patients in clusters, based on their expression profiles, and
do better with larger numbers of samples. However, as a general rule, it is best to filter
the data first in order to limit the analysis to the smallest possible set of genes that are
informative. It makes little sense to include thousands of genes that cannot be detected
above background in the data set being subjected to statistical clustering. Once the data
are limited to the genes that are truly flagged “Present” and that change twofold or more
in the experimental samples, clustering methods may be able to divide the genes into
interesting groups, especially if the experiment includes several different types of sam-
ples, such as treatments with different drugs or a time course of drug treatments.

7. Conclusion

Microarray technologies have empowered novice users with the ability to assay
changes in gene expression at the whole-genome level. There is little doubt that micro-
array results will lead to new and entirely unexpected results, and pursuing such experi-
ments will be worthwhile for many investigators. However, there are several concerns
that should be heeded. Microarray experiments are expensive and they can be quite
labor-intensive. In addition, the data that they produce are quite complex. Novice users
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should seek out advice from their core facilities or collaborators to make sure that they
have designed the most efficient experiment that is compatible with microarray assays.
A poorly designed experiment is the most common reason that microarray experiments
fail to yield results that are interpretable. In most cases, clear thinking and a discussion
with an experienced microarray user, a core facility leader, or a biostatistician will lead
to much better experimental design and much better data.
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