3
Relay Feedback

Astrom and Higglund [1] suggest the relay feedback test to generate sustained os-
cillation as an alternative to the conventional continuous cycling technique. It is
very effective in determining the ultimate gain and ultimate frequency. Luyben [2]
popularizes the relay feedback method and calls this method “ATV” (autotune
variation). The acronym also stands for all-terrain vehicle, since ATV provides a
useful tool for the rough and rocky road of system identification.

As pointed out by Luyben, the motivation for using the relay feedback (ATV)
has grown out of a study of an industrial distillation column. The distillation col-
umn is an important unit in chemical process industries. It is rather difficult to ob-
tain a linear transfer function model for highly nonlinear columns. Attempts have
been made using step or pulse tests. Unfortunately, the system results in an ex-
tremely long time constant, e.g. © = 870 h [2]. Moreover, very large deviations oc-
cur in the linear model as the size or direction of the input is changed. Simulation
studies also reveal that, sometimes, very small changes of magnitude (less than
0.01%) have to be made to get an accurate linear model. This immediately rules
out the use of this kind of input design in real plants because plant data are never
known to anywhere near this order of accuracy. Luyben shows that the simple re-
lay feedback tests provide an effective way to determine linear models for such
processes. It has become a standard practice in chemical process control, as can be
seen in recent textbooks in process control [3,4]. Wang et al. [5] discuss various
aspects of the relay feedback.

The distinct advantages of the relay feedback are:

1. It identifies process information around the important frequency, the ultimate
frequency (the frequency where the phase angle is —7 ).

2. It is a closed-loop test; therefore, the process will not drift away from the nomi-
nal operating point.

3. For processes with a long time constant, it is a more time-efficient method than
conventional step or pulse testing. The experimental time is roughly equal to
two to four times the ultimate period.
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3.1 Experimental Design

Consider a relay feedback system where G(s) is the process transfer function, y is
the controlled output, y** is the SP, e is the error and u is the manipulated input
(Figure 3.1A).

An on—off (ideal) relay is placed in the feedback loop. The Astrom—Higglund
relay feedback system is based on the observation: when the output lags behind the
input by —r radians, the closed-loop system may oscillate with a period P, . Fig-
ure 3.1(B) illustrates how the relay feedback system works. A relay of magnitude &
is inserted in the feedback loop. Initially, the input u is increased by /4 . As the out-
put y starts to increase (after a dead time D ), the relay switches to the opposite po-
sition, u = —h . Since the phase lag is —n, a limit cycle with a period P, results
(Figure 3.1). The period of the limit cycle is the ultimate period. Therefore, the ul-
timate frequency from this relay feedback experiment is
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From the Fourier series expansion, the amplitude a can be considered to be the
result of the primary harmonic of the relay output. Therefore, the ultimate gain can
be approximated as [1,6]

K, =3 (3.2)

wa
where % is the height of the relay and a is the amplitude of oscillation. These two
values can be used directly to find controller settings. Notice that Equations 3.1
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Figure 3.1. (A) Block diagram for a relay feedback system and (B) relay feedback
test for a system with positive steady state gain
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and 3.2 give approximate values of @, and K, . A more accurate expression will
be derived shortly.

The relay feedback test can be carried out manually (without any autotuner). The
procedure requires the following steps.

1. Bring the system to steady state.

2. Make a small (e.g. 5%) increase in the manipulated input. The magnitude of
change depends on the process sensitivities and allowable deviations in the con-
trolled output. Typical values are between 3 and 10%.

3. As soon as the output crosses the SP, the manipulated input is switched to the
opposite position (e.g. 5% change from the original value).

4. Repeat step 2 until sustained oscillation is observed (Figure 3.1).

5. Read off ultimate period P, from the cycling and compute K« from Equation
3.2.

This procedure is relatively simple and efficient. Physically, it implies moving
the manipulated input against the process. Consider a system with a positive steady
state gain (Figure 3.1). When you increase the input (as in step 1), the output y
tends to increase also. As a change in the output is observed, you switch the input
to the opposite direction. This is meant to bring the output back down to the SP.
However, as soon as the output comes down to the SP, you switch the input to the
upper position. Consequently, a continuous cycling results, but the amplitude of
oscillation is under your control (by adjusting /). More importantly, in most cases,
you obtain the information you need for tuning of the controller.

Several characteristics can be seen from the relay feedback test. Consider the
most common FOPDT systems.

—Ds
5)=Kee (3.3)
Ts+1

where K, is the steady state gain, D is the dead time and 7 is the time constant.
Figure 3.2 indicates that, if the normalized dead time D/t is less than 0.28, the ul-
timate period is smaller than the process time constant. In terms of plant test, that
implies the relay feedback test is more time efficient than the step test. The reason
is that it takes almost 3z to reach 95% of the steady state value in a step test and
the time required for the relay feedback is also roughly equal to 3P. (to establish a
stable oscillation). Therefore, the relay feedback system is more time efficient than
the step test for systems with

D/t <028 (3.4)

Since the dead time cannot be too large (it often comes from the measurement
delay), the temperature and composition loops in process industries seem to fall
into this category. In other words, Equation 3.4 is fairly typical for many slow
chemical processes, especially for units involved with composition changes.
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Figure 3.2. P,/z as function of the normalized dead time D/t

3.2 Approximate Transfer Functions: Frequency-domain
Modeling

After the relay feedback experiment, the estimated ultimate gain K, and ultimate
frequency @, can be used directly to calculate controller parameters. Alterna-
tively, it is possible to back-calculate the approximated process transfer functions.
The other data useful in finding the transfer function are the dead time D and/or the
steady state gain K, .

In theory, the steady state gain can be obtained from plant data. One simple way
to find K, is to compare the input and output values at two different steady states.
That is:

where Ay denotes the change in the controlled variable and Au stands for the de-
viation in the manipulated input. However, precautions must be taken to make sure
that the sizes of the changes in u are made small enough such that the gain in Equa-
tion 3.5 truly represents the linearized gain. For highly nonlinear processes, these
changes are typically as small as 10~ to 10® % of the full range [2]. Such small
changes would only be feasible using a mathematical model. Trying to obtain reli-
able steady state gains from plant data is usually impractical.

The dead time D in the transfer function can be easily read off from the initial
part of the relay feedback test. It is simply the time it takes for y to start
responding to the change in u (Figure 3.1). For the FOPDT system, it is simply the
time to reach the peak amplitude in a half period, as will be shown in Chapter 4.
Therefore, it is more likely that we will have information on the dead time rather
than the steady state gain.
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Now we are ready to find an approximate model. Typical transfer functions in
process control are assumed and parameters can be calculated. The transfer func-
tions have the following forms:

Model I (integrator plus dead time)

K —Ds
G(s)=—25 (3.6)
s
Model P (pure dead time)
G(s)=K,e ™ (3.7)
Model 1 (FOPDT)
K e—Ds
G(s)=—2 (3.9)
( ) Ts+1

Model 2a (second-order plus dead time)

K e—Ds
s)=—— (39
(rs + 1)
Model 2b (second-order plus dead time with two unequal lags)
K e—Ds
G(s)=—L—— 3.10
( ) (rls+1)(123+1) ( )

In these five models, model I and model P have two unknown parameters, models
1 and 2a have three unknown parameters and model 2b has four unknown parame-
ters. Therefore, additional information, such as D or K, , is needed if the last three
models are employed. As pointed out by Tyreus and Luyben [7], the simplest inte-
grator-plus-time-delay model (model I) provides good approximation for slow
chemical processes, e.g. systems showing a small D/t value. It is the model we
recommend for slow processes.
The relay feedback experiment has the following steps:

1. If necessary, the dead time D can be read off from the initial response, or the
time to the peak amplitude, and the steady state gain can be obtained from
steady state simulation.

2. The ultimate gain K, and ultimate frequency @, are computed (Equations 3.1
and 3.2) after the relay feedback experiment.

3. Different model structures (Equations 3.6-3.10) are fitted to the data.

3.2.1 Simple Approach

Once the model is selected, we can back-calculate the model parameters from two
equations describing the ultimate gain and the ultimate frequency.
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Model I (Friman and Waller [8])

3.11
K, - o, _ 2 (3.11)
Kll KUPU
p-_" _H (3.12)
20, 4

Notice that no a priori process knowledge is needed for this model. Moreover,
computation of K, and D is quite straightforward.

Model P
1
Ke=%- (3.13)
P
D= 3.14
. (3.14)

Similar to model I, no a priori process knowledge is necessary.

Model 1

- tan(n —Dcou)

o (3.15)
(K,K,) -1
P VR 70 (3.16)
a)ll

For model 1, either D or K, is needed to solve for the time constant. For example,
if the dead time is read off from the relay test, then we can compute 7 from Equa-
tion 3.15. Then, K, can be found by solving Equation 3.16.

Model 2a
tan(n ~Dw,)/2
TE—— (3.17)
(oll
V&K )1 (3.18)
(oll

The equations describing model 2a are quite similar to those for model 1. Again,
we need to know D or K, before finding model parameters.
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Model 2b
-7 =-w,D—tan™' (@ut1) - tan”! (@ut2) (3.19)

[%” ) \/[1+(a)u11)2“:1+(a)u12)2}

Since we have four parameters in model 2b, both K, and D have to be known in
order to solve for the two time constants 7, and 7, . This is the most complex
model structure in our models, and it is often sufficient for process control applica-
tions.

Let us use an FOPDT system to illustrate the parameter estimation procedure.

Example 3.1 WB column [9]

e K

(3.20)

12.8¢
() =Toss 71

This is the transfer function between the top composition x, and the reflux flow
R . From a relay feedback test, we obtain the following ultimate gain and ultimate
frequency: I%u =1.71and &, =1.615. Note that these two values are only an ap-
proximation to the true values: X, =2.1and o, =1.608.

Parameters can be calculated for different model structures:

Model I (no prior knowledge on K, and D)

G(s)

Model P (no prior knowledge on K, and D)

094707
N

G(s)=0.58¢""%

Model 1 (assume D is known, i.e. D = 1)
13.2¢7°
()= Ty
( 14.0s + 1)
Model 2a (assume D is known)
1.12¢7°
G(s)= 2
( 0.59s + 1)
Model 2b (assume K, and D are known)

12,80
G =
()= (555 51) (0.0009541)

Despite varying in model parameters, all these four models have the same ultimate
gain and ultimate frequency. That is, the models are correct around the ultimate
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frequency, which is important for the controller design. However, if we extrapolate
the model to different frequencies, e.g.w =0, then the results can be completely
misleading. For example, the steady state gain of model 2a is only 1.12, which is
less than 10% of the true value. We have to be very cautious when using these
models. ]

3.2.2 Improved Algorithm

In theory, if the model structure is correct and the ultimate gain and ultimate fre-
quency are correctly identified, then we could have a very good approximation of
the transfer function. For example, if the K, and ®, in the previous example are
close to the true values, then we will not have errors in the steady state gains and
time constant for model 1. Unfortunately, since Equations 3.1 and 3.2 only give
approximations to the ultimate gain and ultimate frequency, the parameters derived
from Equations 3.15 and 3.16 can deviate significantly from the true system pa-
rameters. This implies the observed ultimate period P, and the computed ultimate
gain are not the true values.

In order to have a better approximation of the transfer function, fundamental
analysis of the relay feedback system is necessary. First, one would like to know
what the period of oscillation from the relay feedback experiment really represents.
In other words, given a transfer function with known parameters, what is the ex-
pression for the period of oscillation observed from the relay feedback experiment,
B,? The following theorem [1] provides the answer.

Theorem 3.1 Consider the relay feedback system with a transfer function G(s) and
an ideal relay (Figure 3.1). Let HG(TS,Z) be the pulse transfer function of G(s)
with a sampling time of 7. If there is a periodic oscillation, then the period of os-
cillation 2, is given by

HG(é,/z,—l)zo

Astrém and Higglund [1] prove the theorem starting form the discrete-time
state-space equations. The result, HG (131, / 2,—1) =0, is obtained by finding the z-
domain equivalent. The continuous-time response of an ideal relay (Figure 3.1) can
be discretized at the point when the relay switches. The z-transforms of the input
and output are h/(z + 1) and 0 respectively. Since this is a self-oscillation system,
the propagation of the input is described by the gain HG (B, /2,—1)20. This
equation can be used to find the period of oscillation for a known system. In identi-
fication, 131, is observed from the response and one is able to use this to back-
calculate system parameters. Unlike the continuous-time analysis based on the
primary harmonic, the discrete-time expression gives a sound basis for finding the
system parameters, since no assumption is made in the derivation.

Based on the theorem, a better relationship between @, (or 13”) and the system
parameters can be derived. For the transfer functions of interest (models 1, 2a and
2b), the following results can be derived from the modified z-transform [10]:
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Model 1
L T
c?)uln(Zexp(D/r)—l) (3.21)
Model 2a
27 {m +(m—1)exp (—TH
70,
T= (3.22)
N 7T mn T
, [1 +exp (—AH {exp (Aj (1 +exp (— AD - 21
10, 70, 70,
where ,; =1- Da,
V3
Model 2b
2exp[ mir j 2exp[ m7Ar j
710, 7,0,
o[ O gy gy PO (3.23)

Y Y
1+exp[ A j 1+exp[ = j
7100, T,

Equations 3.21-3.23 provide alternative expressions between the observed ultimate
period , e.g. @, , and system parameters. For example, Equation 3.21 relates @, to
D and 7 in a way that differs substantially from the standard phase angle equa-
tion (i.e. Equation 3.15).

- =-&,D—tan”' (&,7)

Again, we can derive a better expression for the amplitude ratio part at the ulti-
mate frequency, since the expression in Equation 3.2 is based on the first harmonic
of the Fourier series expansion. The square-wave response of u (Figure 3.1) con-
sists of many frequency components:

=2 sin((2n+1)wt
(- 3o Cr ) (3.24)

n=0

Therefore, it becomes obvious that the amplitude observed in the relay feedback
response is contributed from multiple frequencies, @ = @, 3d, 5@ , etc. In theory,
one can have a better estimate of the amplitude ratio by employing more terms. An
iterative procedure is necessary if more than one term is employed (e.g. finding
G(s) from the single-term solution and including the higher frequency information,
o =3d, , to find a new G(s) and the procedure is repeated until G(s) converges).
However, experimental results show that the estimation of system parameters can
be improved substantially by improving the expression for period of oscillation
alone, as shown in the next section. Furthermore, for higher order systems, there is
little incentive to improve the expression for the amplitude by including more
terms, since higher order harmonics (e.g. = 3@, or @ = 5@, ) are attenuated by
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the process. If only one term is employed, then the equations describing the ampli-
tude ratio are exactly the same as Equations 3.16, 3.18 and 3.20.

3.2.3 Parameter Estimation

From the ongoing analysis, the procedure for the evaluation of the transfer function
has the following steps:

1. Select model structure.
2. Compute model parameters according to Table 3.1.

Table 3.1 summarizes the information required and the corresponding equations
to find the approximate transfer function. Most of these equation sets can be solved
sequentially. Notice that if the improved algorithm is used, then better estimates of
the ultimate gain and ultimate frequency can be calculated from the model. For
model 2b, if some information is not known, then a different procedure should be
employed. For example, if K, is not available, we can perform a second relay
feedback test [11] or use a biased relay (Chapters 7 and 12) to find additional in-
formation. Nonetheless, the equations noted in Table 3.1 are generally applicable
regardless of the procedure.

3.2.4 Examples

Several examples are used to illustrate the advantages of the improved algorithm.
Consider a first-order plus dead time system.

Example 3.2 FOPDT process

G(s) 16.5¢71%
20s5+1

From a relay feedback experiment with #=0.04 we have P, =33.26 and
a=0.26.1f D and/or K, are available, we can back-calculate 7 . The 7 values
calculated from Equations 3.15 and 3.16 are 7 =16.3 and 16.09 respectively. The
improved algorithm (Equation 3.21) gives a better estimate in 7, 7 =19.97, by
improving the expression in the period of oscillation alone. The result from Equa-
tion 3.21 is almost exact (the difference may have resulted from reading off a and
P, from the response curve). Figure 3.3 shows the multiplicative modeling errors,
o, i((;(l-w)_@(,-w)) (‘;(,-w)L, for the transfer function G estimated from Equations 3.15,
3.16 and 3.21. The results show that the error e, is significantly less when 7 is
calculated from Equation 3.21 alone. ]

In the following examples, we assume K, and D are known and the time con-
stant T for models 1 and 2a is obtained by taking the average of the values calcu-
lated from the corresponding equations for the case of the simple algorithm. Next,
the effects of dead time on the estimation of the ultimate gain and ultimate fre-
quency are also investigated. In the original ATV method, K, is calculated from
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Table 3.1. Equations for different model structures

Model Simple algorithm Improved algorithm Prior information
Model T Equatlo;sl ;.11 and B None
Model P Equatlo;sl ‘?; 13 and B None

Equations 3.15and  Equations 3.21 and DorK
Model 1 3.16 3.16 or e
Model 2a Equations 3.17 and  Equations 3.22 and Dork,
3.18 3.18
Equations 3.19 and  Equations 3.23 and D and K
Model 2b 3.0 3.20 and &p
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Figure 3.3. Multiplicative errors of an FOPDT system obtained from Equations 3.15,

3.16 and 3.21

Equation 3.2 and &, is derived from Equation 3.1. In the proposed method,
K, and w, are back-calculated from the estimated transfer function G(s). Again,
this is shown in the following transfer function:

Example 3.3 Variable dead time

G(S)—

16.5¢72s
20s+1
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The percentage errors in K, and @, are compared for these two methods over a
range of dead time (D = 0.1-60). The results (Figure 3.4) show that the errors in
K, for the simple method are quite significant (5-20%). Furthermore, the error in
®, 1s almost nil for the improved method. [ ]

Similar behavior can also be observed for a second-order lag with time-delay
system.

Example 3.4 Second-order system with two unequal lags

()= 37.3¢7 >
(72005 +1)(2s +1)

Figure 3.5 shows that a better estimation of é(s) can be achieved over a range of
D (D < 60) . Again, improvements can be made in finding the correct K, and o,
by using a more accurate expression in the period of oscillation. ]
Since the estimated transfer function is typically employed in the analysis and
design of a feedback control system, the impact of the modeling errors in closed-
loop performance is evaluated. A model-based controller, IMC, is employed to
analyze the performance. One of the advantages of the IMC is that we can specify
the desired trajectory in the design. Figure 3.6 compares the SP responses of IMC
when different models G' are employed in the design of the controllers. Consider
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Figure 3.4. Percentage errors in K, and w, for the FOPDT system over a range of
dead time D
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the FOPDT system

—-10s
G (S) _ 16.5¢
20s+1 .

The SP response of the control system, designed according to G (s) from the sim-
ple algorithm, tends to be more sluggish than the desired trajectory (Figure 3.6).
The proposed method improves this situation, as shown in Figure 3.6. Despite the
fact that a tighter response can be achieved by shortening the closed-loop time con-
stant under modeling errors, one has to realize that the value of a model-based con-
troller is that one can foresee the closed-loop response. In other words, a good
model always helps.

Generally, the proposed method improves the estimation in G(s) at the nominal
condition (with perfect knowledge of K, and D). The robustness with respect to
errors in the dead time is investigated. Since the improved method calculates
K, and w, by finding the transfer function G (s) first, followed by solving the
corresponding equations for them, it is more sensitive to the errors in the dead time
than the original method. Let us take another FOPDT system as an example.

Example 3.5 Error in the observed dead time
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s)=105¢
20s+1
10
5 e improved algorithm
= ~ o simple algorithm
L S
- > eq
. 0 L_TY
3
ES [ [
g -5t .
L]
5 o oo 50000 ° o .,
E-10 © ©2s,
= p &,
= { ]
.
—15 | . 1
®ee
—20 :
10-1 100 101
D
10
o improved algorithm
= o simple algorithm
— [
52
3
d ® o o eoseves PP PPy PRIPAPY
= ° o 000
h SR
S o
sl oo¢
=5 e 6 o ° ©
—10 . -
10-1 100 10t

D

Figure 3.5. Percentage errors in K, and w, for a second-order plus dead time sys-
tem over a range of delay time D
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Figure 3.6. SP responses of IMC designed according to the estimated transfer
functions G(s) (the closed-loop constant is 20 for the desired trajectory)

Figure 3.7 shows the estimate of K, and w, for both methods when the per-
centage errors in dead time range from —50% to 50%. Despite the fact that the er-
rors in K, and o, are less for the improved method over a reasonable range of er-
rors in dead time, it is more sensitive to the error in D . Therefore, care should be
taken in reading off the dead time from the initial responses or the time to the peak
amplitude. ]

3.3 Approximate Transfer Functions: Time-domain
Modeling

Up to this point, the model identification is based on the frequency domain ap-
proach, which is based on the describing functions. A method to derive FOPDT-
type systems was proposed by Wang et al. [12] using a single relay test. In a sepa-
rate attempt, Majhi and Atherton [3] proposed a technique to identify plant pa-
rameters, but the method needs a correct initial guess and convergence is not guar-
anteed. Kaya and Atherton [14] describe another method (A-locus) to identify low-
order process parameters from relay autotuning. Panda and Yu [15] develop ana-
lytical models to represent relay responses produced by different systems. The re-
lay output consists of a series of step changes in manipulated variables (with oppo-
site sign). Hence, the stabilized output is a sum of infinite terms of step responses
due to those step changes. For systems with dead time D , the actual relay output



Relay Feedback 37

10 ——r— T —— . —
S 5k Proposed method
- .
3 L]
3 .
< e
L]
£ o -~y
& )
I Original ATV method * e,
S S
§ | \ _
_10 1 L 1

-50 -40 -30 —20 -10 0 10 20 30 40 50
Errorin D, (%)

O e e e e B e e R

Proposed method 1

(o)}
T

P e
L
LA ]
LA
® o 4

Errorin wy, (%)
<

{
o))
T
L

Original ATV method

—10 P T AN S W US TSI W) L L L

~50 -40 -30 -20 -10 0 10 20 30 40 50
Errorin D, (%)

Figure 3.7. Percentage errors in K, and w, for a first-order system over a range of
variation in the dead time

lags behind the input by a time unit D . The inputs and outputs can be synchro-
nized by shifting the output forward in time by an amount D, as shown in Figure
3.8B, and, in doing this, the dead time D can be eliminated from the expression
for relay responses, as will be shown later. The shifted version of a typical relay
feedback response provides the basis for the derivation.

It is assumed that the relay response is formed by n-number of step changes, of
opposite directions (tu ), in input. The switching period for each step change is
P, /2, except for the initial step change. In Figure 3.9, in the first interval, as time
changes from =0 to z =D, the response y; is produced due to the first step
change u;. Again, in the second interval, time progressing from D to D+ P, /2,
response y; results due to the combined effects of step changes u; and u, . Simi-
larly, the effect of u;, u, and u; produces y; during the third time interval
(D+P,/2 to D+ P,). Two half periods (P, /2) are of special interest in Figure
3.9. The even values of n result in descending half period y,, , and the odd values
of n formulate the ascending half periods y;,.;. It is interesting to note that the
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Figure 3.8. Schematic representation of the shifted version of relay feedback re-

sponse for the development of their analytical expressions: (A) original relay feed-
back responses and (B) output y shifted by D
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Figure 3.9. Shifted version of relay input u and output y response of a typical
SOPDT system
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generalized response term y, slowly forms a convergent series. Let us use a sec-
ond-order system to illustrate the derivation as they are rich in system dynamics.!

3.3.1 Derivation for a Second-order Overdamped System

The transfer function of an SOPDT system with a damping coefficient greater than
one can be expressed as G (s) = Ke™ /[(rls+1)(rzs+l)}, where K, is the steady state
gain, 7, and 7, are process time constants with 7; >7,, and D is the dead time.
The original step response of an overdamped SOPDT can be given by

y=Kp[l- ae~(=D)/11 4 pe-(-D)/1:]

where a; and b, are given by
! and b, = T2
T1—12 T1 =12
Under the shifted version (Figure 3.8B), the first segment of the relay response y;
is simply the step response without dead time in the time index:

a) =

ryi=K, |:1—ale*f/fl +ble*”T:] (3.25)

At the second instant, the time is reset to zero at the initial point. The step response
(relay output) is given by (i.e. introducing a time shift by D amount in Equation
3.22)

_D _D _t _t
» ZKp|:1—a1€ T +bhe © :|—2Kp|:1—a1€ o +ble T::|

Here, the first term represents the effect of the first step change (occurred at D
time earlier) and the second term shows the effect of the second step input, switch-
ing to the opposite direction. The above equation can be simplified to

=K, {[1—2] —aew [63 —2j+b1eft: (efj —2j} (3.26)

The relay response at the third interval is the result of three step changes, lags by
an amount D+ P, /2 from input. After introducing a time shift of D+ P, /2 in
Equation 3.22, the net effect becomes

_t+D+P, /2 _t+D+P, /2
yv3i=K,<|1-ase g + bie 2

_t+P, /2 _t+P, /2 _t _t
-2|1—aje © +be +2|1—aje © + be t

which can be simplified further as

! One may skip the derivation in Section 3.3.1 and refer directly to Tables 3.2 and 3.3 for the
results.
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_t 7D+PL,/2 B A
y3:Kp{[1—2+2]—ale T x{e T —2e 2t 4+2 |+be T

_D+P,/2 b
X| e T2 —2e 212 42

It can be seen that the terms in the right-hand side (RHS) of the above equation are
slowly forming a series.

With the progress of time, the response becomes stabilized and the general ex-
pression for the nth term can be described as

[ _D+(n-2)PR,/2
vn=Kpi[1-2+2—--]-ase r.{e T

(3.27)

(n-2)P, (n-1)P, _ P
—De 2t 4+ 2e 21, — o4 Qe 21, =2
(3.28)
_t D+(n-2)P, /2 (n-2)P, (n—1)P,
+bie © |:e 72 —2e 2. 42e 2

_A
— .4 2e 21, _2:|

The RHS of Equation 3.28 has three parts, and each part consists of an infinite se-
ries, F1, I, and F3.

_t _r
Yn :Kp{F'l -aje o F2 +b1€ TZE}

If n is odd, the first series F) is simply
F=[1-2+2-2+--]=1

The second series becomes:
_b
Fy=|e tipn2=2pn=242pn=3 _Qpn-44...-2r 42

where r=¢™"" and v, = P,/2t, . This above series is convergent and can be put
into the following form (note that terms are rearranged from the back side of the
above expression):

F, =Jﬂ(e_D/rr”_2)+2(l—r+r2—r3+---)

=2[1—r+r2—r3+--1= 2 = 2},/2
I+r 1+e v’ 0
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In a similar way, the F; of the RHS of Equation 3.28 can also be simplified. Ulti-
mately, the response can be given by

_t 2 _t 2
yn=Kp<l-ae n [W]—i—ble 2 [W} (3.29)
l+e = l+e

This represents the ascending response (7 is odd). Since this response is dis-
symmetric, the general form can be employed as

_L 2 -t 2 n
Vn = Kp —1"1‘6116 71 [W}—ble 2 [W} (_1) (330)
I+e I+e

1 2

One can refer to Panda and Yu [15] for the derivations for critically damped and
underdamped SOPDT systems, as well as for high-order systems.

3.3.2 Results

Different types of transfer function are considered, and the analytical expressions
for their relay feedback output response are developed following the above proce-
dure. Table 3.2 gives a list of first-, second-, and third-order plus dead time proc-
esses and their corresponding mathematical expressions for the stabilized relay
feedback output responses. These equations y, denote the upward or ascending
trend (or sometimes, curves in the lower part of midline for higher order systems)
of relay feedback output (while time ¢ changes from 0 to P, /2 ). The downward
or descending trend can be obtained by reversing the sign of the output (—y, ).

In Table 3.2, the individual expressions, for relay feedback responses of first-,
second- and third-order systems contain terms similar to those of the corresponding
equations for the step responses, except that they differ only in weighting factor
(2/ (1+e*Pu/ 2t ) ). If we compare the terms of the expressions of the relay feed-
back response with those of step response of a process, we see that they differ by a
weighting factor of 2/(1+e*Pu/ ZT) . For an FOPDT system, the response starts
(t=0) from the minimal point, at y =—a, and ends (¢ = F,/2) at the maximal
point, at y =a. Also note that, for an unstable FOPDT system, stable limit cycles
can occur only if D/t <In(2) . For the lead/lag second-order system (No. 6 in Ta-
ble 3.2), the expression is applicable to systems with left-half plane (73 >0) or
right-half plane (73 < 0 ) zero.

Analytical expressions of relay feedback output responses for higher order sys-
tems are presented in Table 3.3. They are of much interest because, when we see,
for example, the expression for fifth-order process, the equation contains mainly
five terms (except ‘1”) and each of these terms represents corresponding lower or-
der processes. The first term inside the third bracket of the first line/row appears to
be for an FOPDT. The second term (having two terms inside the first bracket) is
for an SOPDT (critically damped). The third term (having three terms inside the
first bracket) is for a third-order process. The terms in the second row/line (having
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four terms inside) are for a fourth-order process. In the third or last row/line there
are five terms for a fifth-order process. Hence, the number of terms (size of the se-
ries) for a particular order of process is thythmic. These tables are similar to the ta-
bles of inverse Laplace transform and will help in finding an equation for relay
feedback responses.

3.3.3 Validation

Two kinds of response can be observed in the analytical expressions in Tables 3.2
and 3.3. These responses are tabulated in Figure 3.10. Systems with serial numbers
1 and 2 in Table 3.2 always produce a monotonic response, where, at ¢ =0, the re-
sponse from the model starts at the lowermost (or uppermost) point (A or B) and,
at t=P, /2, it ends at the other extreme point (B or C). Processes with serial
numbers 3, 4, 5 and 6 in Table 3.2 may give a non-monotonic response, as shown
in Figure 3.10. The third type is higher order systems without dead time (i.e.
n>3). For this type of system, this value occurs at the mid-point of the half pe-
riod, as also shown in Figure 3.10.

Figure 3.10 shows the correctness of the derived mathematical models. If the
relay height is other than unity, then the model for the relay output response will be
just multiplied by actual value of relay height 4 .

3.4 Conclusion

In this chapter the relay feedback test is introduced and the steps required to per-
form the experiment are also given. It can be carried out with or without a com-
mercial autotuner. Once you have obtained the information on the ultimate fre-
quency, the controller settings can be decided using the original or modified
Ziegler—Nichols methods. You can also go a step further to find an appropriate
transfer function for the process. This can be useful for implementing MPC or dead
time compensator (Smith predictor). Better approximation can be achieved using
the improved algorithm. Finding transfer functions using the biased relay plus hys-
teresis was discussed by Wang er al. [12]. Finally, analytical expressions for relay
feedback responses are tabulated for different types of process. This can be useful
if the model structure is known.
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Figure 3.10. Validation of analytical expressions for relay output of different sys-
tems: solid line is relay output and dashed line is model output. (A denotes starting
of one cycle that ends at B. Again from B next cycle starts and ends at C).
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