2 Topology of a Metric Space

The real number system has two types of properties. The first type are algebraic
properties, dealing with addition, multiplication and so on. The other type, called
topological properties, have to do with the notion of distance between numbers and
with the concept of limit. In this chapter, we study topological properties in the
framework of metric spaces. We begin by looking at the notions of open and closed
sets, limit points, closure and interior of a set and some elementary results involving
them. The concept of base of a metric topology and related ideas are also discussed.
In the final section, we deal with the important concept of category due to Baire and
its usefulness in existence proofs. Also included are some theorems due to Baire.

2.1. Open and Closed Sets

There are special types of sets that play a distinguished role in analysis; these are the
open and closed sets. To expedite the discussion, it is helpful to have the notion of a
neighbourhood in metric spaces.

Definition 2.1.1. Let (X, d) be a metric space. The set
S(xg,7) = {x € X:d(xg,x) < 1}, where r > 0 and x € X,

is called the open ball of radius r and centre xy. The set
S(xp, 1) = {x € X: d(x0,x) =1}, where r > 0 and x € X,

is called the closed ball of radius r and centre x;.
A few concrete examples are in order.

Examples 2.1.2. (i) The open ball S(xy,7) on the real line is the bounded open
interval (xp — 7, xp + r) with midpoint x; and total length 2. Conversely, it is clear
that any bounded open interval on the real line is an open ball. So the open balls
on the real line are precisely the bounded open intervals. The closed balls S(xo, ) on
the real line are precisely the bounded closed intervals but containing more than
one point.
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(ii) The open ball S(xp, ) in R?* with metric d, (see Example 1.2.2(iii)) is the
inside of the circle with centre xy and radius r as in Fig. 2.1. Open balls of radius 1
and centre (0,0), when the metric is d; or dy, (see Example 1.2.2(iv) for the latter)
are illustrated in Figs. 2.2 and 2.3.

(iii) If (X, d) denotes the discrete metric space (see Example 1.2.2(v)), then
S(x,r) = {x} for all x € X and any positive r =1, whereas S(x,r) = X for all
x€ Xandany r > 1.

(iv) Consider the metric space Crl[a, b] of Example 1.2.2(ix). The open ball
S(xp, 1), where xy € Crla,b] and r > 0, consists of all continuous functions
x € Cr[a, b] whose graphs lie within a band of vertical width 2r and is centred
around the graph of xp. (See Fig. 2.4.)
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Definition 2.1.3. Let (X, d) be a metric space. A neighbourhood of the point xy € X
is any open ball in (X, d) with centre xo.

Definition 2.1.4. A subset G of a metric space (X, d) is said to be open if given any
point x € G, there exists r > 0 such that S(x,7) C G, i.e., each point of G is the
centre of some open ball contained in G. Equivalently, every point of the set has a
neighbourhood contained in the set.

Theorem 2.1.5. In any metric space (X, d), each open ball is an open set.

Proof. First observe that S(x,r) is nonempty, since x € S(x, r). Let y € S(x,r), so
that d(y,x) < r, and let ' = r — d(y,x) > 0. We shall show that S(y,7") C S(x,r),
as illustrated in Fig. 2.5. Consider any z € S(y,'). Then we have

d(z,x) =d(z,y) + d(y,x) <1 +d(y,x) =1,
which means z € S(x,7). Thus, for each y € S(x,r), there is an open ball

S(y, ") C S(x, r). Therefore S(x, r) is an open subset of X. O

Examples 2.1.6. (i) In R, any bounded open interval is an open subset because it is
an open ball. It is easy to see that even an unbounded open interval is an open
subset.
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(ii) In 65, let G = {x = {x;};=1: D |xi|* < 1}. Then G is an open subset of /5.
Indeed, G = S(0, 1) is the open ball with centre 0 = (0,0, ...) and radius 1. It is
now a consequence of Theorem 2.1.5 that G is open.

(iii) In a discrete metric space X, any subset G is open, because any x € G is the
centre of the open ball S(x, 1/2) which is nothing but {x}.

The following are fundamental properties of open sets.

Theorem 2.1.7. Let (X, d) be a metric space. Then

(i) & and X are open sets in (X,d);
(ii) the union of any finite, countable or uncountable family of open sets is open;
(iii) the intersection of any finite family of open sets is open.

Proof. (i) As the empty set contains no points, the requirement that each pointin ¢ is
the centre of an open ball contained in it is automatically satisfied. The whole space X
is open, since every open ball centred at any of its points is contained in X.

(ii) Let {Gy: o € A} be an arbitrary family of open sets and H = Uyea G, If H is
empty, then it is open by part (i). So assume H to be nonempty and consider any
x € H. Then x € G, for some a € A. Since G, is open, there exists an r > 0 such
that S(x,r) C G, € H. Thus, for each x € H there exists an r > 0 such that
S(x,r) C H. Consequently, H is open.

(iii) Let {Gj: 1 =i= n} be a finite family of open sets in X and let G = N/_,G;.
If G is empty, then it is open by part (i). Suppose G is nonempty and let x € G.
Then x € Gj,j=1,...,n Since Gj is open, there exists r; >0 such that
S(x,1) € Gj,j=1,...,n. Let r =min{r,r,...,r,}. Then >0 and S(x,r) C
S(x,1),j = 1,..., n. Therefore the ball S(x,r) centred at x satisfies

n
S(x, 1) C []Sx 1) CG.
j=1

This completes the proof. O

Remark 2.1.8. The intersection of an infinite number of open sets need not be open.
To see why, let S, = 5(0,1) €C, n=1, 2,.... Each S, is an open ball in the
complex plane and hence an open set in C. However,

N 5= o}
n=1

which is not open, since there exists no open ball in the complex plane with centre 0
that is contained in {0}.
The following theorem characterises open subsets in a metric space.

Theorem 2.1.9. A subset G in a metric space (X, d) is open if and only if it is the
union of all open balls contained in G.
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Proof. Suppose that G is open. If G is empty, then there are no open balls contained
in it. Thus, the union of all open balls contained in G is a union of an empty class,
which is empty and therefore equal to G. If G is nonempty, then since G is open,
each of its points is the centre of an open ball contained entirely in G. So, G is the
union of all open balls contained in it. The converse follows immediately from
Theorem 2.1.5 and Theorem 2.1.7. O

Remark 2.1.10. The above Theorem 2.1.9 describes the structure of open sets in a
metric space. This information is the best possible in an arbitrary metric space. For
open subsets of R, Theorem 2.1.9 can be improved.

Theorem 2.1.11. Each nonempty open subset of R is the union of a countable
family of disjoint open intervals. Moreover, the endpoints of any open interval in
the family lie in the complement of the set and are no less than the infimum and no
greater than the supremum of the set.

Proof. Let G be a nonempty open subset of R and let x € G. Since G is open, there
exists a bounded open interval with centre x and contained in G. So there exists
some y > x such that (x, ) C G and some z < x such that (z, x) C G. Let

a=1inf{z:(z, x) C G} and b = sup {y: (x, y) C G}. (1)

Then a < x < band I, = (a, b) is an open interval containing x. We shall show that
a¢ G, b¢ G and I, C G. This is obvious if a = —c0 or if b= co. So, assume
—00 < a and oo > b. If a were to be in G, we would have (a — ¢, a+¢) C G for
some € > 0, whence we would also have (a —¢,x) C G, contradicting (1). The
argument that b € G is similar. Now suppose w € I, we shall show that w € G. If
w = x, then of course w € G. Let w # x, so that either a < w < x or x < w < b.
We need consider only the former case: a < w < x. Since a < w, it follows from (1)
that there exists some z < w such that (z,x) C G. Since w < x, this implies that
w e G.

Consider the collection of open intervals {I}, x € G. Since each x € G is con-
tained in I, and each I, is contained in G, it follows that G = | {L: x € G}. We shall
next show that any two intervals in the collection {I,: x € G} are disjoint. Let (a, b)
and (¢, d) be two intervals in this collection with a point in common. Then we must
have ¢ < b and a < d. Since ¢ does not belong to G, it does not belong to (a, b)
and so ¢ = a. Since a does not belong to G, and hence also does not belong to (¢, d),
we also have a = c. Therefore, ¢ = a. Similarly, b = d, which shows that (a,b) and
(¢, d) are actually the same interval. Thus, {I,: x € G} is a collection of disjoint
intervals.

Now we establish that the collection is countable. Each nonempty open interval
contains a rational number. Since disjoint intervals cannot contain the same
number and the rationals are countable, it follows that the collection {I.: x € G}
is countable.

Finally, we note that it follows from (1) that a = inf Gand b < sup G. O
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Definition 2.1.12. Let A be a subset of a metric space (X,d). A point x € X
is called an interior point of A if there exists an open ball with centre x
contained in A, i.e.,

x € S(x,r) C A for some r > 0,

or equivalently, if x has a neighbourhood contained in A. The set of all interior
points of A is called the interior of A and is denoted either by Int(A) or A°. Thus

Int(A) = A° = {x € A: S(x,r) C A for some r > 0}.

Observe that Int(A) C A.

Example 2.1.13. The interior of the subset [0, 1] C R can be shown to be (0,1). Let
x € (0,1). Since (0,1) is open, there exists r > 0 such that (x — r,x 4 r) C [0, 1].
So, x is an interior point of [0,1]. Also, 0 is not an interior point of [0,1], because
there exists no r > 0 such that (— r, ) C [0, 1]. Similarly, 1 is also not an interior
point of [0, 1].

The next theorem relates interiors to open sets and provides a characterisation of
open subsets in terms of interiors.

Theorem 2.1.14. Let A be a subset of a metric space (X, d). Then

(i) A° is an open subset of A that contains every open subset of A;
(ii) A is open if and only if A = A°.

Proof. (i) Let x € A° be arbitrary. Then, by definition, there exists an open ball
S(x, r) € A. But S(x,r) being an open set (see Theorem 2.1.5), each point of it is the
centre of some open ball contained in S(x,7) and consequently also contained in A.
Therefore each point of S(x,r) is an interior point of A, i.e., S(x, r) C A°. Thus, xis
the centre of an open ball contained in A°. Since x € A° is arbitrary, it follows that
each x € A° has the property of being the centre of an open ball contained in A°.
Hence, A° is open.

It remains to show that A° contains every open subset G C A. Let x € G. Since G
is open, there exists an open ball S(x, r) C G C A. So x € A°. This shows that
x € G= x € A°. In other words, G C A°.

(ii) is immediate from (i). O

The following are basic properties of interiors.

Theorem 2.1.15. Let (X, d) be a metric space and A, B be subsets of X. Then

(i) AC B= A° C B
(ii) (AN B)° = A° N B%
(iii) (AU B)° D A° U B".

Proof. (i) Let x € A°. Then there exists an r > 0 such that S(x, r) C A. Since A C B,
we have S(x,r) C B, i.e, x € B°.
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(i) AN B C Aaswellas AN B C B. It follows from (i) that (A N B)® C A° as well
as (AN B)° C B°, which implies that (AN B)° C A° N B°. On the other hand, let
x € A°N B°. Then x € A° and x € B°. Therefore, there exist r; > 0 and r, > 0 such
that S(x,71) CA and S(x,7,) C B. Let r=min{r,n}. Clearly, r >0 and
S(x,r) C AN B, ie., x € (AN B)“.

(iii) A € AU Bas well as BC AU B. Now apply (i). O

Remark 2.1.16. The following example shows that (A U B)° need not be the same as
A°UB°. Indeed, if A=1[0,1] and B=1[1,2], then AUB=10,2]. Since
A°=(0,1),B°=(1,2) and (AU B)° = (0,2), we have (AU B)° # A° U B°.

Definition 2.1.17. Let X be a metric space and F a subset of X. A point x € X is
called a limit point of F if each open ball with centre x contains at least one point of
F different from x, i.e.,

(S(x, 1) —{x})NF # &.

The set of all limit points of F is denoted by F’ and is called the derived set of E

Examples 2.1.18. (i) The subset F = {1, 1/2, 1/3,...} of the real line has 0 as a
limit point; in fact, 0 is its only limit point. Thus the derived set of F is {0}, i.e.,
F = {o0}.

(ii) The subset Z of integers of the real line, consisting of all the integers, has no
limit point. Its derived set Z' is .

(iii) Each real number is a limit point of the subset of rationals: Q' = R.

(iv) If (X, d) is a discrete metric space (see Example 1.2.2(v)) and F C X, then F
has no limit points, since every open ball of radius 1 consists only of the centre.

(v) Consider the subset F = {(x,y) € C:x >0,y > 0} of the complex plane.
Each point of the subset {(x,y) € C:x=0, y =0} is a limit point of E In fact,
the latter set is precisely F".

(vi) For an interval I C R, the set I" consists of not only all the points of I but also
any endpoints I may have, even if they do not belong to I Thus (0,1) =
(0,11 =[0,1)" = [0,1]" = [0,1].

Proposition 2.1.19. Let (X, d) be a metric space and F C X. If xg is a limit point of
E then every open ball S(xp, r), r > 0, contains an infinite number of points of E

Proof. Suppose that the ball S(x, r) contains only a finite number of points of E. Let
V1> Y2 - - - » ¥n denote the points of S(xp, r) N F that are distinct from x,. Let
& = min {d(y1, %), d(y2,%),...>d(yn %0)}.

Then the ball S(x,8) contains no point of F distinct from xg, contradicting the
assumption that x is a limit point of E O

The following characterisation of the limit points of a set in a metric space is
useful.
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Proposition 2.1.20. Let (X, d) be a metric space and F C X. Then a point x is a
limit point of F if and only if it is possible to select from the set F a sequence of
distinct points xj, X2, ..., Xy, . . . such that lim,, d(x,, %) = 0.

Proof. If lim, d(x,,x) =0, where x;,x,...,%,, ... is a sequence of distinct
points of E then every ball S(xp,r) with centre x; and radius r contains each
of x,, where n=ny for some suitably chosen ny. As x;,%,...,%,,... in F are
distinct, it follows that S(xp, r) contains a point of F different from xy. So, xp is a
limit point of E

On the other hand, assume that x, is a limit point of E Choose a point x; € F in
the open ball S(xp, 1) such that x; is different from x,. Next, choose a point x, € F
in the open ball S(xy,1/2) different from x; as well as from x;; this is possible by
Proposition 2.1.19. Continuing this process in which, at the nth step of the process
we choose a point x, € F in S(x,1/n) different from x;, x,, ..., x,—1, we have a
sequence {x,} of distinct points of the set F such that lim,, d(x,, xo) = 0. O

Definition 2.1.21. A subset F of the metric space (X, d) is said to be closed if it
contains each of its limit points, i.e., F' C F.

Examples 2.1.22. (i) The set Z of integers is a closed subset of the real line.

(i) The set F={1,1/2,1/3,...,1/n,...} is not closed in R. In fact, F' = {0},
which is not contained in E

(iii) The set F = {(x,y) € C:x =0,y =0} is a closed subset of the complex plane
C. In this case, the derived set is F' = F.

(iv) Each subset of a discrete metric space is closed.

Proposition 2.1.23. Let F be a subset of the metric space (X, d). The set of limit
points of F namely, F' is a closed subset of (X, d), i.e., (F') C F'.

Proof. If F' = f or (F')' = (7, then there is nothing to prove. Let F' # ¢f and let
xp € (F')". Choose an arbitrary open ball S(xo, ) with centre xy and radius . By the
definition of limit point, there exists a point y € F' such that y € S(xp, r). If
v =r—d(y,x), then S(y,r") contains infinitely many points of F by Proposition
2.1.19. But S(y, ") C S(xp, r) as in the proof of Theorem 2.1.5. So, infinitely many
points of F lie in S(xo, r). Therefore, xo is a limit point of F i.e., xp € F'. Thus, F’
contains all its limit points and hence F’ is closed. 0

Theorem 2.1.24. Let (X, d) be a metric space and let Fy, F, be subsets of X.

(1) If F] g Fz, then Fi g Fé
(ii) (FUR) = F UF,.
(iii) (AN E) C F,NF,.

Proof. The proofs of (i) and (iii) are obvious. For the proof of (ii), observe that
F{UF, C (F,UF), which follows from (i). It remains to show that
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(FLUF) CF,UF,. Let xy € (F, UF,)". Then there exists a sequence {x,},=, of
distinct points in F; U F, such that d(x,, xy) — 0 as n — oo by Proposition 2.1.20.
If an infinite number of points x, lie in F;, then x € F{, and, consequently,
X € F{UF,. If only a finite number of points of {x,},~; lie in F), then
xp € F5 C F] UF]. We therefore have xy € F; UF, in either case. This completes
the proof of (ii). O

Definition 2.1.25. Let F be a subset of a metric space (X, d). The set FU F' is called
the closure of F and is denoted by F.

Corollary 2.1.26. The closure F of F C X, where (X, d) is a metric space, is closed.

Proof. In fact, by Proposition 2.1.23 and Theorem 2.1.24(ii),

() =(FUF)Y =FU(F)Y CFUF =F CF.
Corollary 2.1.27. (i) Let F be a subset of a metric space(X, d). Then Fis closed if and
only if F = F.

(ii) If A C B, then A C B.
(iii) If A C F and Fis closed, then A C F.

Proof. (i) If F = F, then it follows from Corollary 2.1.26 that F is closed. On the
other hand, suppose that F is closed; then

F=FUF =FCF

It follows from the above relations that F = F.
(ii) This is an immediate consequence of Theorem 2.1.24(i).
(iii) This is an immediate consequence of (ii) above. O

Proposition 2.1.28. Let (X, d) be a metric space and F C X. Then the following
statements are equivalent:
(i) x € F;
(ii) S(x,€) N F # & for every open ball S(x, €) centred at x;
(iii) there exists an infinite sequence {x,} of points (not necessarily distinct) of F
such that x, — x.

Proof. (i)=(ii). Let x € F. If x € F, then obviously S(x,&) N F # . If x ¢ F, then
by the definition of closure, we have x € F'. By definition of a limit point,

(S(x, X NF #

and, a fortiori,
S(x, e)NF# .

(ii)=-(iii). For each positive integer n, choose x, € S(x,1/n) N F. Then the
sequence {x,} of points in F converges to x. In fact, upon choosing ny > 1/,
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where € > 0 is arbitrary, we have d(x,,x) < 1/n<1/ny <e, ie., x, € S(x, &)
whenever n = ny,.

(iii)=>(i) If the sequence {x,},~ of points in F consists of finitely many distinct
points, then there exists a subsequence {x,,} such that x,, = x for all k. So, x € F.
If however, {x,},=, contains infinitely many distinct points, then there exists a
subsequence {x,} consisting of distinct points and lim;d(x,, x) =0, for
lim, d(x,, x) = 0 by hypothesis. By Proposition 2.1.20, it follows that x € F' C F. ]

Condition (ii) of Definition 1.5.1 of a completion can be rephrased in view of
condition (i) and Proposition 2.1.28 (iii) as saying that the closure of metric space X
as a subset of its completion X* must be the whole of X*.

The following proposition is an easy consequence of Theorem 2.1.24.

Proposition 2.1.29. Let F;, F, be subsets of a metric space (X, d). Then
(i) (FUFR) =F UB;
(ii) (LN F) CF NE.
Proof. Using Theorem 2.1.24 (ii), we have
(FUER)=(RUR)URUR) =(FFUR)U(F UF)
=(RUF)U(KRUF) =F UF,
which establishes (i). The proof of (ii) is equally simple.
Remarks 2.1.30. (i) It is not necessarily the case that the closure of an arbitrary

union is the union of the closures of the subsets in the union. If {A,}4cp is an
infinite family of subsets of (X, d), it follows from Corollary 2.1.27 (ii) that

A € | Aa-
acA acA

Equality need not hold, as the following example shows: If A, = {r,}, n=1,2,...

and 71,72, ..., 7y ... is an enumeration of rationals, then A, = {r,} = {r,} and
U,_, A, = Q, whereas | J,_, A, = Q=R

(i) In Proposition 2.1.29 (ii), equality need not hold. For example, if F; denotes
the set of rationals in R and F, the set of irrationals in R, then (F, N F,) = J =
but Fl = Fz =R.

Proposition 2.1.31. Let (X, d) be a metric space. The empty set ¢ and the whole
space X are closed sets.

Proof. Since the empty set has no limit points, the requirement that a closed set
contain all its limit points is automatically satisfied by the empty set.

Since the whole space contains all points, it certainly contains all its limit points
(if any), and is thus closed. O
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The following is a useful characterisation of closed sets in terms of open sets.

Theorem 2.1.32. Let (X, d) be a metric space and F be a subset of X. Then Fis closed
in X if and only if F is open in X.

Proof. Suppose F is closed in X. We show that F¢ is open in X. If
F = J(respectively, X), then F* = X (respectively, () and it is open by Theorem
2.1.7(i); so we may suppose that F # ¢ # F. Let x be a point in F¢. Since F is
closed and x ¢ F, x cannot be a limit point of E So there exists an r > 0 such that
S(x,r) C F*. Thus, each point of F* is contained in an open ball contained in F°.
This means F¢ is open.

For the converse, suppose F° is open. We show that F is closed. Let
x € X be a limit point of E Suppose, if possible, that x ¢ F. Then x € F¢,
which is assumed to be open. Therefore, there exists r > 0 such that S(x, ) C F¢,
ie.,

S(x,r)NF=¢.

Thus, xcannot be a limit point of E which is a contradiction. Hence, x belongs to F []

Theorem 2.1.33. Let (X, d) be a metric space and S(x, ) = {y € X: d(y,x) =r} bea
closed ball in X. Then S(x, r) is closed.

Proof. We show that (S(x, r))¢ is open in X (see Theorem 2.1.32). Let y € (S(x, r))".
Then d(y,x) > r. If r, = d(y,x) — r, then r; > 0. Moreover, S(y,r) C (S(x, ))".
Indeed, if z € S(y, 1), then

d(z,x) = d(y,x) — d(y,z) > d(y,x) —nn =r.
Thus, z & S(x, 1), i.e., z € (S(x,7))". O

The following fundamental properties of closed sets are analogues of the prop-
erties of open sets formulated in Theorem 2.1.7 and are easy consequences of it
along with de Morgan’s laws (see Chapter 0, p. 3) and Proposition 2.1.31.

Theorem 2.1.34. Let (X, d) be a metric space. Then

(i) & and X are closed;
(ii) any intersection of closed sets is closed;
(iii) a finite union of closed sets is closed.

Proof. (i) This is a restatement of Proposition 2.1.31.

(ii) Let {F,} be a family of closed sets in X and F = [, Fa. Then by Theorem
2.1.32, Fis closed if F® is open. Since F° = |, FS by de Morgan’s laws, and since
each F{ is open (Theorem 2.1.32), | J, FS is open by Theorem 2.1.7, i.e., F¢ is open.

(iii) This proof is similar to (ii). O
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Remark 2.1.35. An arbitrary union of closed sets need not be closed. Indeed,
S$(0,1 —1/n), n=2, is a closed subset of the complex plane, but

D 3(0,1 —%) = 5(0,1)
n=2

is not closed (because each point z satisfying |z| = 1 is a limit point of S(0, 1) but is
not contained in S(0,1)).

An explicit characterisation of open sets on the real line is the content
of Theorem 2.1.11. We now turn to the study of closed sets on the real line.
Observe that closed intervals and finite unions of closed intervals are closed
sets in R. Since a set consisting of a single point is a closed interval with
identical endpoints, single point sets, and consequently finite sets, are closed sets
as well.

Theorem 2.1.36. Let F be a nonempty bounded closed subset of R and let & = inf F
and B = supF. Then a € F and B € F.

Proof. We need only show that if o ¢ F, then o is a limit point of E By the
definition of infimum, for any € > 0, there exists at least one member x € F such
that « = x < o + €. But a € F, whereas x € F. So,

a<x<a-4e.

Thus, every neighbourhood of a contains at least one member x € F which is
different from a. Hence, « is a limit point of F O

Definition 2.1.37. Let F be a nonempty bounded subset of R and let a = inf F
and B = supF. The closed interval [«,B] is called the smallest closed interval
containing F

Theorem 2.1.38. If [, B] is the smallest closed interval containing F, where F is a
nonempty bounded closed subset of R, then
[OL, B]\F = (o, B) N F*
and so is open in R.
Proof. Let xy € [«, B]\F; this means that xy € [o, B], x9 € F.If xo € F, then xy # «

and xy # B, because a and B do belong to E by Theorem 2.1.36. It follows that
Xo € (o, B). Moreover, it is obvious that x, € F¢, so that

[o, BI\F C (a, B) N F“.
The reverse inclusion is obvious. O

The following characterisation of closed subsets of R is a direct consequence of
Theorems 2.1.11 and 2.1.38.
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Theorem 2.1.39. Let F be a nonempty bounded closed subset of R. Then F is either
a closed interval or is obtained from some closed interval by removing a countable
family of pairwise disjoint open intervals whose endpoints belong to E

Proof. Let [a, B] be the smallest closed interval containing F, where o = inf F and
B = supF. By Theorem 2.1.38,

[a, BI\F = (o, B) N F€

is open and hence is a countable union of disjoint open intervals by Theorem 2.1.11.
Moreover, the endpoints of the open intervals do not belong to [a, B]\F but do
belong to [a, B]. So they belong to E The set F thus has the desired property. [

This seemingly simple looking process of writing a nonempty bounded closed
subset of R leads to some very interesting and useful examples. The following
example, which is of particular importance, is due to Cantor.

Example 2.1.40. (Cantor) Divide the closed interval I = [0, 1] into three equal
parts by the points 1/3 and 2/3 and remove the open interval (1/3, 2/3) from I
Divide each of the remaining two closed intervals [0, 1/3] and [2/3, 1] into three equal
parts by the points 1/9, 2/9 and by 7/9, 8/9, respectively, and remove the open
intervals (1/9, 2/9) and (7/9, 8/9). Now divide each of the remaining four intervals
[0,1/9], [2/9,1/3], [2/3,7/9] and [8/9,1] into three equal parts and remove the
middle third open intervals. Continue this process indefinitely. The open set G
removed in this way from I = [0, 1] is the union of disjoint open intervals

1 2 1 2 7 8
G=|-,z|]U|l==]Ul==)U....
GERCHIE)

The complement of G in [0,1], denoted by B is called the Cantor set. Important
properties of this set are listed in the Exercise 16 and Section 6.4.

The completeness of R can also be characterised in terms of nested sequences of
bounded closed intervals. An analogue of this result for metric spaces is proved in
Theorem 2.1.44. We begin with some relevant definitions.

2.1.41. Definition. Let (X, d) be a metric space and let A be a nonempty subset of X.
We say that A is bounded if there exists M > 0 such that
dx,y) =M X,y € A.
If A is bounded, we define the diameter of A as
diam(A) = d(A) = sup{d(x,y): x,y € A}

If A is not bounded, we write d(A) = co.
We define the distance between the point x € X and the subset B of X by

d(x,B) = inf{d(x,y):y € B},
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and, in an analogous manner, we define the distance between two nonempty subsets
Band Cof X by

d(B,C) = inf{d(x,y):x € B,y € C}.

2.1.42. Examples. (i) Recall that a subset A of R (respectively, R?) is bounded if and
only if A is contained in an interval (respectively, square) of finite length (respect-
ively, whose edge has finite length). Thus, our definition of bounded set in an
arbitrary metric space is consistent with the definition of bounded set of real
numbers (respectively, bounded set of pairs of real numbers).

(ii) The interval (0, c0) is not a bounded subset of R. However, if R is equipped
with the discrete metric, then every subset A of this discrete space (in particular, the
set (0,00)) is bounded, since d(x, y) =1 for x, y € A. Indeed, d(A) = 1, provided A
contains more than one point. Moreover, any subset of any discrete metric space has
diameter 1 if it contains more than one point.

(iii) If R is equipped with the nondiscrete metric d(x,y) = |x — y|/[1 + |x — y|],
then every subset is bounded and d(R) = 1.

(iv) In the space (¢,, d) (see Example 1.2.2(vii)), consider the set

Y =A{e,en...0en...}

where e, denotes the sequence all of whose terms are equal to 0 except the nth term,
which is equal to 1. If j # k, then d(ej, er) = V2. Hence, Y is bounded and
d(y) = 2.

2.1.43. Proposition. If A is a subset of the metric space (X, d), then d(A) = d(A).

Proof. If x, y € A, then there exist sequences {x,},~; and {y,},=, in A such that
d(x,x,) < €/2 and d(y, y,) < &/2 for n= ny, say, where &€ > 0 is arbitrary. Now for
n=ny, we have

d(x,y) = d(x, x,) + d(%ps yu) + d(y> y)
€ €
=_ <
5T d(xy, yn) + 3
=d(A) +s,
and so d(A) =< d(A), since € > 0 is arbitrary. Clearly, d(A) = d(A). O

Let{I,},= beasequence of intervalsin R. The sequence {I,},,~ , is said to be nested
if I,;; €L, n=1,2,.... The sequence I, = (0,1/n), n € N, is nested. However
ﬂiozl I, is empty. Similarly, the sequence J, = [n,00),n € N, is nested with
ﬂZO: Jo=. In the metric space of rationals, the nested sequence
K, ={x € Q: |x — /2| < 1/n} is such that N~ K, = ), since /2 belongs to K,
for no n. The reader will note that the sequence {I,},~, consists of intervals that are
not closed, the sequence {/,,},, = consists of intervals that are not bounded, whereas
the sequence {K,},,~ | isin Q, which is not complete. It is a very important property of
real numbers that every nested sequence of closed bounded intervals does have a
nonempty intersection. An analogue of this result holds in metric spaces.
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Theorem 2.1.44. (Cantor) Let (X, d) be a metric space. Then (X, d) is complete if and

only if, for every nested sequence {F,}, =, of nonempty closed subsets of X, that is,
(a) F OF D...DOF,D...such that (b) d(F,) — 0 as n — o0,

the intersection (), F, contains one and only one point.

Proof. First suppose that (X, d) is complete. For each positive integer #, let x,, be any
point in F,. Then by (a),

Xn> Xnt1> Xn425 -« -

allliein F,,. Given € > 0, there exists by (b) some integer 1y such that d(F,,) < €. Now,
Xnp> Xng+1> Xnyt2> - - - all lie in F, . For m, n= ny, we then have d(x,,, x,) = d(F,,) < ¢.
This shows that the sequence {x,},=; is a Cauchy sequence in the complete metric
space X. So, itis convergent. Let x € X be such thatlim,_., x,, = x. Now for any given
n, we have the sequence x,;, X,,1 1, . . . C F,,. Inview of this,

x = lim x, €F, = F,

n—o0

since F,, is closed. Hence,
o0
X € ﬂ F,.
n=1

If y€ X and y # x, then d(y,x) = a > 0. There exists n large enough so that
d(F,) < a = d(y,x), which ensures that y ¢ F,. Hence, y cannot be in ()", F,.

To prove the converse, let {x,},~, be any Cauchy sequence in X. For each natural
number n, let

F, = {x,:m=n}.

Then {F,},= is a nested sequence of closed sets and since {x,},~, is a Cauchy
sequence,

lim d(F,) =0,
n—0o0
using Proposition 2.1.43.
Let
o0
ﬂ F, = {x}
n=1

If &€ > 0, then there exists a natural number 7, such that d(F, ) < €. But x € F,,, and
thus n= ny implies d(x,,x) < €. O

2.2. Relativisation and Subspaces

Let (X, d) be a metric space and Y a nonempty subset of X. If dy denotes the
restriction of the function d to the set Y x Y, then dy is a metric for Yand (Y, dy) is
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a metric space (see Section 1.2). If Z C Y C X, we may speak of Z being open
(respectively, closed) relative to Yas well as open (respectively, closed) relative to X.
It may happen that Z is an open (respectively, closed) subset of Y but not of X. For
example, let X be R? with metric d, and Y = {(x,0): x € R} with the induced
metric. Then Y is a closed subset of X (for Y = {(x,y) € R*: y # 0} is open in
X). If Z={(x,0):0 < x < 1}, then Z considered as a subset of Y is open in Y.
However, Z considered as a subset of X is not open in X. In fact, no point (x,0) € Z
is an interior point of Z (Z considered as a subset of X) because any neighbourhood
of (x0) in X is the ball S((x,0),r),r > 0, which is not contained in Z. Thus,
Z ={(x,0): 0 < x< 1} is an open subset of Y = {(x,0):x € R} but not of
X =R d,).

The above examples illustrate that the property of a set being open (respectively
closed) depends on the metric space of which it is regarded a subset. The following
theorem characterises open (respectively closed) sets in a subspace Y in terms of
open (respectively closed) subsets in the space X. First we shall need a lemma.

Lemma 2.2.1. Let (X, d) be a metric space and Ya subspace of X. Let z € Y and
r > 0. Then

Sy(z, 1) = Sx(z,r)NY,

where Sy(z, r) (respectively Sx(z, r)) denotes the ball with centre zand radius rin Y
(respectively X).

Proof. We have

Sx(z,r)NY ={xe X:d(x,z) <r}NY
={xeY:dxz) <r}
= Sy(z,r) since Y C X. O

Let X=R* and Y={(x,%0):0<x =1, 0=x, <1, x/ +x}=1}. Here, the
open ball in Ywith centre (1, 0) and radius /2 is the entire space Y. (See Figure 2.6.)

0.1)

FIGURE 2.6
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Theorem 2.2.2. Let (X, d) be a metric space and Ya subspace of X. Let Z be a subset
of Y. Then

(i) Z is open in Y if and only if there exists an open set G C X such that
Z=GNY;

(ii) Z is closed in Y if and only if there exists a closed set F C X such that
Z=FnNY.

Proof. (i) Let Z be open in Y. Then if z is any point of Z, there exists an open ball
Sy(z, r) contained in Z. Observe that the radius r of the ball Sy(z, r) depends on the
point z € Z. We then have

Z = U Sy(z, 1)

zeZ

= U (Sx(z,r)NY) using Lemma 2.2.1

zeZ

= (U SX(z,r)> ny

zeZ
=GNY,

where G = J,., Sx(z, ) is open in X.

On the other hand, suppose that Z = G N Y, where Gis open in X. If z € Z, then
z is a point of G and so there exists an open ball Sx(z, r) such that Sx(z,r) C G.
Hence,

Sy(z,r) = Sx(z,r)NY by Lemma 2.2.1
cGNny =72,

so that z is an interior point of the subset Z of Y. As z is an arbitrary point of Z, it
follows that Z is open in Y.

(ii) Zis closed in Yif and only if (X\Z) N Y is open in Y. Hence, Zis closed in Y'if
and only if there exists an open set G in X such that

(X\Z)NY=GNY using (i) above.
On taking complements in X on both sides, we have
ZU(X\Y) = (X\G) U (X\Y).
Hence

Z=ZNY=(ZUX\Y))nYy
= ((X\GUX\Y))NY.
=(X\G)NY

So, Z is the intersection of the closed set X\G and Y.
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Conversely, let Z = FNY, where F is closed in X. Then X\Z = (X\F) U (X\Y)
and so

(X\Z)NY = (X\F) U(X\Y))NY = (X\F) N Y,

where X\F is open in X. Hence (X\Z) NY is open in Y, i.e.,, Zis closed in Y.  [J

Proposition 2.2.3. Let Y be a subspace of a metric space (X, d).

(i) Every subset of Ythat is open in Yis also open in X if and only if Yis open in X.
(ii) Every subset of Y that is closed in Yis also closed in X if and only if Yis closed
in X.

Proof. (i) Suppose every subset of Y open in Y is also open in X. We want to
show that Y is open in X. Since Y is an open subset of Y, it must be open in
X. Conversely, suppose Y is open in X. Let Z be an open subset of Y. By
Theorem 2.2.2(i), there exists an open subset G of X such that Z= GN Y. Since
G and Yare both open subsets of X, their intersection must be open in X, i.e., Z
must be open in X.

(ii) The proof is equally easy and is, therefore, not included. |

Proposition 2.2.4. Let (X, d) be a metric space and Z C Y C X. If clyZ and clyZ
denote, respectively, the closures of Z in the metric spaces X and Y, then

ClyZ =YnN Cle.

Proof. Obviously, Z C Y NclxZ. Since YNclyZ is closed in Y (see Theorem
2.2.2(ii)), it follows that clyZ C Y N clxZ. On the other hand, by Theorem 2.2.2(ii),
clyZ = Y N F, where Fis a closed subset of X. But then

Z CdyZ CF,
and hence, by Corollary 2.1.27(ii),
cxZ CF.
Therefore,
dyZ=YNFDYnNdyxZ.
This completes the proof. O

In contrast to the relative properties discussed above, there are some properties
that are intrinsic. In fact, the property of x being a limit point of F holds in any
subspace containing x and F as soon as it holds in the whole space, and conversely.
Another such property is that of being complete. The following propositions
describe relations between closed sets and complete sets.

Proposition 2.2.5. If Yis a nonempty subset of a metric space (X, d), and (Y, dy) is
complete, then Yis closed in X.
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Proof. Let x be any limit point of Y. Then x is the limit of a sequence {y,},~, in Y. In
view of Proposition 1.4.3, the sequence {y,},~, is Cauchy, and hence, by assump-
tion, converges to a point y of Y. But by Remark 3 following Definition 1.3.2, y = x.
Therefore, x € Y. This shows that Yis closed in X. O

Proposition 2.2.6. Let (X, d) be a complete metric space and Ya closed subset of X.
Then (Y, dy) is a complete space.

Proof. Let {y,},~ be a Cauchy sequence in (Y, dy). Then {y,}, > is also a Cauchy
sequence in (X, d); so there exists an x € X such that lim,_,, ¥, = x. If follows (see
Proposition 2.1.28) that x € Y, which is the same set as Y by Corollary 2.1.27(i). [

2.3. Countability Axioms and Separability

Definition 2.3.1. Let (X,d) be a metric space and x € X. Let {G\},ep be a
family of open sets, each containing x. The family { Gy },c, is said to be a local base
at x if, for every nonempty open set G containing x, there exists a set G, in the family

{Gy\}yea such that x € G, C G.

Examples 2.3.2. (i) In the metric space R? with the Euclidean metric, let Gy =
S(x,N\), where x=(x;,x,)€R* and O<AE€R. The family {G\:0<AER}=
{S(x, N\):0<N€R} is a family of balls and is a local base at x. Note that S(x, \),
where x=(x1,x,), can also be described as {(y1,y,) ER*: (y, —x)2+ (72 —x)2 <N\

(ii) Let x = (x;,x) € R? and G\ = {(y1,72) ER*: (11 — x1)> +2(3, — x2)> < \},
where 0 < N € R. Then the family {G,:0 < N\ € R} is a local base at x. To see why,
consider any open set G C R? such that x € G. Since G is open, there exists r > 0
such that S(x,r) C G. Now S(x,7) = {(y1,12) € R*: () — x)* + (y, — x)? < ).
Let A = r%. Then y € G\ = (y; — x1)? +2(y, — ) <\= (n — x1)? + (r, — x)?
<AN=(n — x)? + (r, — 0)? <= y € S(x,7), so that Gy C S(x,7) C G. In this
example, the sets Gy are ellipses.

(iii) Let x € R. Consider the family of all open intervals (7,5) containing x and
having rational endpoints rand s. This family is a local base at x. It consists of open
balls, not necessarily centred at x. Moreover, the family is countable and thus
constitutes what is called a countable base at x.

Proposition 2.3.3. In any metric space, there is a countable base at each point.

Proof. Let (X, d) be a metric space and x € X. The family of open balls centred at x
and having rational radii, i.e., {S(x, p): p rational and positive} is a countable base at
x. In fact, if G is an open set and x € G, then by the definition of an open set, there
exists an € > 0 (¢ depending on x) such that x € S(x,€) C G. Let p be a positive
rational number less than €. Then

x € S(x,p) C S(x,8) C G. O
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Definition 2.3.4. A family {G,},ca of nonempty open sets is called a base for the
open sets of (X, d) if every open subset of X is a union of a subfamily of the family
{G)\})\GA'

The condition of the above definition can be expressed in the following equiva-
lent form: If G is an arbitrary nonempty open set and x € G, then there exists a set
G, in the family such that x € G, C G.

Proposition 2.3.5. The collection {S(x,¢€): x € X, € > 0} of all open balls in X is a
base for the open sets of X.

Proof. Let G be a nonempty open subset of X and let x € G. By the definition of an
open subset, there exists a positive €(x) (depending upon x) such that

x € S(x,e(x)) C G.

This completes the proof. O

Generally speaking, an open base is useful if its sets are simple in form. A space
that has a countable base for the open sets has pleasant properties and goes by the
name of “second countable”.

Definition 2.3.6. A metric space is said to be second countable (or satisfy the
second axiom of countability) if it has a countable base for its open sets.

The reason for the name second countable is that the property of having
a countable base at each point, as in Proposition 2.3.3, is usually called first
countability.

Examples 2.3.7. (i) Let (R,d) be the real line with the usual metric. The collection
{(x, y) : x, y rational} of all open intervals with rational endpoints form a countable
base for the open sets of R.

(ii) The collection

{S(x,r):x = (x1, %0, ..., %), x; rationals, 1=i=mn, and r positive rational}
of all r-balls with rational centres and rational radii is a countable base for the
open sets of the metric space (R”, d), where d may be any of the metrics on R”
described in Example 1.2.2(iii).

(iii) Let X have the discrete metric. Then any set {x} containing a single point x is
also the open ball S(x, 1/2) and therefore must be a union of nonempty sets of any
base. So any base has to contain each set {x} as one of the sets in it. If X is
nondenumerable, then the sets {x} are also nondenumerable, forcing every base to
be nondenumerable as well. Consequently, X does not satisfy the second axiom of
countability when it is nondenumerable.

It is easy to see that any subspace of a second countable space is also a second
countable space. In fact, the class of all intersections with the subspace of the sets of
a base form a base for the open sets of the subspace.
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Definition 2.3.8. Let (X, d) be a metric space and G be a collection of open sets in X.
If for each x € X there is a member G € G such that x € G, then G is called an open
cover (or open covering) of X. A subcollection of G which is itself an open cover of
X is called a subcover (or subcovering).

Examples 2.3.9. (i) The union of the family {...,(—3, — 1), (—2,0),(—1,1),
(0,2),...} of open intervals is R. The family is therefore an open covering of R.
However, the family of open intervals { ..., (-2, —1),(—= 1,0),(0,1),(1,2),...} is
not an open covering, because the intervals’ union does not contain the integers.
The aforementioned cover contains no subcovering besides itself, because, if we
delete any interval from the family, the midpoint of the deleted interval will not
belong to the union of the remaining intervals.

(i) Let X be the discrete metric space consisting of the five elements 4, b, ¢, d, e.
The union of the family of subsets {{a}, {b, c}, {c, d}, {a, d, e}} is X and all subsets are
open. Therefore the family is an open cover. The family {{b, c}, {¢, d}, {a, d, e}} is a
proper subcover.

(iii) Consider the set Z of all integers with the discrete metric. As in any discrete
metric space, all subsets are open. Consider the family consisting of the three subsets

{3n:neZ},{3n+1:ne€Z}and {3n+2:n€ Z}.

Since every integer must be of the form 3n, 3n+4 1 or 3n+ 2, the above three
subsets form an open cover of Z. There is no proper subcover.

(iv) The family of intervals {(— n, n): n € N} is an open cover of R and the family
consisting of the open balls {z € C: |z + 17| < #*/%, n € N} is an open cover of C.
If we extract a subfamily by restricting #n to be greater than some integer n, the
subfamily is also an open cover. Indeed, if we delete a finite number of sets in the
family, the remaining subfamily is an open cover. Thus, there are infinitely many
open subcovers.

Definition 2.3.10. A metric space is said to be Lindelof if each open covering of X
contains a countable subcovering.

Proposition 2.3.11. Let (X, d) be a metric space. If X satisfies the second axiom of
countability, then every open covering { Uy },cp of X contains a countable subcover-
ing. In other words, a second countable metric space is Lindel6f.

Proof. Let {G;: i = 1,2,...} be a countable base of open sets for X. Since each Uj is
a union of sets Gj, it follows that a subfamily {Gi].: j=12,...} of the base
{Gi:i=1,2,...} is a covering of X. Choose U; 2 G; for each j Then
{Uj:j=1,2,...} is the required countable subcovering. 0

Definition 2.3.12. A subset X; of a metric space (X, d) is said to be everywhere
dense or simply dense if Xy = X, i.e., if every point of X is either a point or a limit
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point of Xy. This means that, given any point x of X, there exists a sequence of
points of X, that converges to x.

It follows easily from this definition and the definition of interior (see Definition
2.1.12) that a subset of X, is dense if and only if X has empty interior.

It may be noted that X is always a dense subset of itself; interest centres around
what proper subsets of a metric space are dense.

Examples 2.3.13. (i) The set of rationals is a dense subset of R (usual metric) and so
is the set of irrationals. Note that the former is countable whereas the latter is not.

(ii) Consider the metric space (R",d) with any of the metrics described in
Example 1.2.2(iii). Within any neighbourhood of any point in R”, there is a point
with rational coordinates. Thus,

Q"=QxQx...xQ

is dense in R".
(iii) In the space C[0, 1] of Example 1.2.2(ix), we consider the set Cy consisting of
all polynomials with rational coefficients. We shall check that Cj is dense in C[0, 1].
Let x(t) € CI0, 1]. By Weierstrass’ theorem (Theorem 0.8.4), there exists a polyno-

mial P(t) such that
sup{|x(t) — P(0)|: 0=t =1} <

>

N M

where € > 0 is given. Corresponding to P(f) there is a polynomial Py(t) with
rational coefficients such that

sup{|P(t) — Py(1)[:0=t =1} < ;

So,
sup{|x(t) — Py(1)[:0=t=1} <.

It is easy to see that G is countable. In fact, if 7, denotes the set of all polynomials
of degree n and having rational coefficients, then the cardinality of 2, is the same as
that of Q"' = Q x Q x ... x Q, which is countable. The assertion now follows
from the fact that a countable union of countable sets is countable.

(iv) Let (X, d) be a discrete metric space. Since every subset is closed, the only
dense subset is X itself.

(v) Let X = £, of Example 1.2.2(vii). Recall that the metric is given by

= 1/p
d(x,y) = (Z |xi — J’ip> -
iz

Let E denote the set of all elements of the form (r,7,...,1,,0,0...), where r; are
rational numbers and 7 is an arbitrary natural number. We shall show that E is
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dense in /. Let x = (x;,%,,...) be an element in £, and let € > 0 be given. There
exists a natural number 7y such that

o0 gp
> Il <3
j=m+1
Choose an element xy = (11,72, ...,p,,0,0,...) in E such that
Ny SP
Dokl <=
; 2
j=1
We then obtain
1y 00
(deex0))'=D | —rl"+ Y |xglf <&,
=1 j=m+1
and this implies
d(x,x) < €.

Thus, Eis dense in (¢p, d). Also, Eis countable (in fact, if E, denotes the subset of all
those elements x = {r;};~ such that r; = 0 for j=n+ 1, then E, is countable and
E= Unoo:l E).

(vi) By Definition 1.5.1, any metric space is dense in its completion.

Definition 2.3.14. The metric space X is said to be separable if there exists a
countable, everywhere dense set in X. In other words, X is said to be separable if
there exists in X a sequence

{xl’xZ’---} (21)

such that for every x € X, some sequence in the range of (2.1) converges to x.

Examples 2.3.15. In Examples 2.3.13(i)—(iii) and (v), we saw dense sets that are
countable. Therefore, the spaces concerned are separable. In (iv) however, the space
is separable if and only if the set X is countable.

There are metric spaces other than the discrete metric space mentioned above
which fail to satisfy the separability criterion. The next example is one such case. Let
X denote the set of all bounded sequences of real numbers with metric

d(x,y) =sup{|xi —y;|:i=1,2,3,... },

as in Example 1.2.2(vi). We shall show that X is inseparable.

First we consider the set A of elements x = (x;, X, ... ) of X for which each x; is
either 0 or 1 and show that it is uncountable. If E is any countable subset of A, then
the elements of E can be arranged in a sequence s, 5, . . .. We construct a sequence s
as follows. If the m™ element of s,, is 1, then the m™ element of sis 0, and vice versa.
Then the element s of X differs from each s, in the m™ place and is therefore equal
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to none of them. So, s ¢ E although s € A. This shows that any countable subset of
A must be a proper subset of A. It follows that A is uncountable, for if it were to be
countable, then it would have to be a proper subset of itself, which is absurd. We
proceed to use the uncountability of the subset A to argue that X must be
inseparable.

The distance between two distinct elements x = (x;,x,...) and y = (y1, 2, ...)
of Ais d(x,y) = sup{|x; — y;| :i=1,2,3,...} = 1. Suppose, if possible, that E, is a
countable, everywhere dense subset of X. Consider the balls of radii 1/3 whose
centres are the points of FEy. Their union is the entire space X, because E, is
everywhere dense, and in particular contains A. Since the balls are countable in
number while A is not, in at least one ball there must be two distinct elements x and
y of A. Let xy denote the centre of such a ball. Then

1 1
I=d(xy)=dxx) +doy) <s+5<1
which is, however, impossible. Consequently, (X, d) cannot be separable.

Proposition 2.3.16. Let (X, d) be a metric space and Y C X. If X is separable, then Y
with the induced metric is separable, too.

Proof. Let E = {x;:i = 1,2, ...} bea countable dense subset of X. If Eis contained in
Y, then there is nothing to prove. Otherwise, we construct a countable dense subset of
Y whose points are arbitrarily close to those of E. For positive integers n and m, let
Snym = S(xn, 1/m) and choose v, ,» € Sy, m N'Y whenever this set is nonempty. We
show that the countable set {y,, ,,: n and m positive integers} of Yis dense in Y.

For this purpose, let y € Y and € > 0. Let m be so large that 1/m < ¢/2 and find
X, € S(y,1/m). Then y € S, N Y and

1 1 £ €
d)nmsdan dn’nm — < -+ —=g¢.
s Yny ) = Ay x0) + A Yoy ) < — 4 <oA=
Thus, y,, m € S(y,€). Since y € Y and € > 0 are arbitrary, the assertion is proved. [

The main result of this section is the following.

Theorem 2.3.17. Let (X, d) be a metric space. The following statements are equiva-
lent:

(1) (X, d) is separable;
(ii) (X, d) satisfies the second axiom of countability;
(ii1) (X, d) is Lindelof.

Proof. (i)=-(ii). Let E = {x;:i = 1,2,...} be a countable, dense subset of X and let
{rji:j=1,2,...} be an enumeration of positive rationals. Consider the countable
collection of balls with centres at x;,i = 1,2, ... and radii r;,j = 1,2,...; i.e,

{S(x;, 1j): %, € E for i = 1,2,...and rj,is rational j = 1,2,...}.
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If G is any open set and x € G, we want to show that for some 7 and some
J» x € S(x;, 1;) € G. Since G is open, there is a ball S(x,8) such that S(x,8) C G.
Let 7, > 0 be a rational number such that 0 < r; < 3. Since x is a point of closure of
E, there is a point x; € E such that d(x, x;) < 1/2rx. Hence,

1
x € S(x;, Erk) C S(x, 1) C G.

In fact, if y € S(x;,1/2r¢) then d(y, x) = d(y, x;) + d(x;,x) < 1/2r + 1/21 = 1.
(ii)=>(iii). See Proposition 2.3.11.
(iii)=(i). From each open covering {S(x,€):x € X}, we extract a countable
subcovering {S(x;,€):x; € X, i=1,2,...} and let A(e) = {x,x,...}. Define
E={J,_,A(}). Then Eis a countable, dense subset of X. 0

2.4. Baire’s Category Theorem

Definition 2.4.1. Let (X, d) be a metric space. A subset Y C X is said to be nowhere
dense if (Y)° is empty, i.e., (Y)° contains no interior point. A subset F C X is said
to be of category I if it is a countable union of nowhere dense subsets. Subsets that
are not of category I are said to be of category II.

Remarks 2.4.2. (i) A subset Yof X is nowhere dense if and only if the complement
(Y) is dense in X, or (X — Y) = X. This follows easily from the remark immedi-
ately after Definition 2.3.12.

(ii) If d denotes the discrete metric, the only nowhere dense set is the null set.

(iii) The notion of being nowhere dense is not the opposite of being everywhere
dense, i.e., not being nowhere dense does not imply that the set is everywhere dense.
For an example of a set which is neither, let R denote the real line with the usual
metric and consider the set Y = {x € R:1 < x < 2}. Then

(Y)°=Y#Zand (V) '={xeR:x<1orx>2}=(—00,1)U(2,00),

which is not dense in R.

(iv) Every subset must be either of category I or of category II.

(v) It is clear that the null set is of category I. Also, the subset Q of rationals in R
is a set of category I. Indeed, if x1, x3, . . . is an enumeration of the rationals, each {x;}
is closed and {x;}° = J; it follows that U{x;}, the set of all rationals in R, is of
category I.

(vi) Since a denumerable union of denumerable sets is again a denumerable set, it
follows that, if Y3, Y5, ... are each of category I, then so must be [ J; Y;.

(vii) If X = Y; U Y; and it is known that Y) is of category I while X is of category
I1, then Y, must be category II. For, if Y is of category I, then it follows from (vi)
above that X, too, is of category I, which is a contradiction.
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(viii) A subset of a nowhere dense set is nowhere dense and, therefore, a subset of
a set of category I is again of category I.

Theorem 2.4.3. (Baire Category Theorem) Any complete metric space is of
category II.

Proof. We assume the contrary, i.e., we suppose that (X, d) is a complete metric
space and

where each of the E, is nowhere dense. Since each E,, is nowhere dense, each (E,) is
everywhere dense. So we can assert the existence of points in each of these sets (E,)°
(i.e., none of them can be empty). In the case of (E;)¢, let x; € (E;)¢. Since (E;) is
open, there exists r > 0 such that S(x;, r) C (E;)°. For g, < r, we have

S(x1,€1) C S(x1,1) C (E) C Ej.
This, in turn, implies
S(X],Sl) n El = @

We make the following induction hypothesis: There exist balls S(xx,ex) for
k=1,2,...,n— 1 such that

S(xp, 1) N B = &, where x; € (Ey)°

and

1
Skfigk—l fork=2,...,n—1.

Using this information, we can construct the nth ball with the above properties. To
this end, choose
Xn € S(Xp—1,€n-1) N (Ey)".
Such an element must exist, because otherwise
S(xp-1,€n-1) € Ey

and this implies x, | € (E,)°, contradicting the fact that (E,)° is empty. Since the
intersection S(x,_1,€,-1) N (E,) is open, there exists € > 0 such that

S(xm g) g S(xn—bgn—l) N (E_n)c
Now we choose a positive €, < min {g, (1/2)e,_;}. Then

S(xm gn) g S(xm g) g S(xnfly 8,,,1) n (E_n)c)
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which says

g(xm e,) NE, = .

As we also have

En= l8
n— B n—1»
the nth ball with the requisite properties has been constructed.

As S(x€4) €S(x,-1,841), the balls {S(x,,€,)},=, form a nested sequence of
nonempty closed balls in a complete metric space with diameters tending to zero.
By Theorem 2.1.44, there exists xo € ()" S(xu €,). Since S(x,,€,) NE, = & for
every n, we have xy € E, for any n, i.e., xp € E;, for all n. However, ﬂcf E = .
This contradiction shows that X is not of category 1. This completes the proof. [

Corollary 2.4.4. The irrationals in R are of category II.

Proof. Since R is a complete metric space, it follows from Remarks (v) and (vii)
prior to the Baire category theorem (Theorem 2.4.3) that the irrationals are of
category Il in R. O

Corollary 2.4.5. A nonempty open interval is of category I1.

Proof. If a nonempty open interval is of category I, then so is each of its translates.
Since R is a countable union of such translates, it follows that R is of category I,
contradicting the Baire category theorem (Theorem 2.4.3). 0

We next take up some applications of the Baire category theorem.

Theorem 2.4.6. (Osgood) Let ¥ be a collection of continuous real-valued functions
on R such that for each x € R, there exists M, > 0 for which |[f(x)| = M, forallf € 7.
Then there exists an M > 0 and a nonempty open subset Y C R such that

|f (x)] = M for each x € Y and for each f € 7.

Proof. For each integer n, let E, s = {x € X:|f(x)| =n} = f~'([ — n,n]). This set
E,, ris closed for the following reason: Let xy be a limit point of it. Then there exists
a sequence {Xy},=, in E, r such that lim, .. x, = x. For each m, we have
—n= f(x,) = n, from which it follows that —n= f(xy) = n, using the continuity
of f. Therefore, xy € E,, 7, showing that the set is closed. It now follows that the
intersection E, = [\;.s E,, s is a closed subset of R. Observe that R = J,;_, E,.
Indeed, if x € R, by hypothesis there exists M, > 0 such that |f(x)| = M, for each
f € ¥, which shows that x € E, for any integer 1y > M,. Since R is complete, there
exists an integer M > 0 such that Ej is not nowhere dense (Baire category
theorem). Since Ej is closed, it must contain some nonempty open set Y. Then,
for each x € Y, we have |f(x)|= M forall f € 7. O
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Another illuminating application of Baire’s category theorem is the following. To
begin with, we make an observation regarding a continuous real-valued function f
defined on [0,1]. Let f; be an integral of f, that is,

fi(x) = f(x) for all x € [0, 1].

Let f, be an integral of f; and so on. If fy = 0 for some k, then obviously the same is
true of f. The proof of the following generalisation of this observation uses the Baire
category theorem.

Theorem 2.4.7. Let fbe a continuous real-valued function on [0, 1]. Let f; be an
integral of f, that is, f{(x) = f(x) for all x € [0, 1]. Let f, be an integral of f; and so
on. If for each x € [0, 1], there is an integer k depending on x such that fi(x) =0,
then fis identically 0 on [0,1].

Proof. Let Z, = {x € [0, 1]: f,(x) = 0}. Observe that Z, is closed. Indeed, if
x€[0,1] is the limit of a sequence {x,} in Z, then f,(x)=
fu(lim,, x,,) = limy, fu(x,,) = 0, so that x € Z,. Also, by hypothesis,

[j Z, =10, 1].

n=1

Since [0,1] is a complete metric space, there exists a positive integer # such that Z, is
not nowhere dense and so Z, # (J. Let xy € Z,. Then there exists an € > 0 such
that [x) — €, x% +¢€] C Z;. Since f,(x) =0 on [x) — &, x + €], it follows that
f(x) =0on [x — &, x + €]; in particular, f(x) = 0, and, hence, f(x) = 0 for all
xX€Z,.

LetY, = Z,\Z, = Z,N ([0, 1]\Z}). Now Y,, being the intersection of closed sets,
is itself closed. Moreover, (Y,)° = Y, = . So, Y, is nowhere dense. Thus, f(x) = 0
for all x € [0, 1] except possibly for a set of category I. Since fis continuous, we
shall argue that f(x) = 0 for all x € [0, 1]. Let xo € [0, 1] be such that f(x,) # 0.
Since fis continuous, there exists a nonempty open interval I, containing x such
that f(x) # 0 for x € I,,. By the argument above, I, is contained in a set of category
I and hence is itself a set of category I (see Remark (vii) after Definition 2.4.1),
which contradicts Corollary 2.4.5 of the Baire category theorem. O

That a continuous function may fail to have a derivative at any point of its
domain of definition, though surprising, is nevertheless true. It turns out that
“most” continuous functions have this property. More specifically, the set of
continuous functions that have a finite derivative even on one side constitute a
set of category I in the metric space C[0,1]. Thus, the functions that one deals with
in calculus form a subset of a set of category I. In what follows, we shall show that
functions in C[0,1] that are nowhere differentiable form a set of category II.

Consider the metric space C[0,1] equipped (as usual) with the metric

d(f,g) = sup {|f(x) — g(x)[:0=x=1}, f,g € C[0,1].
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It is a complete metric space. (See Proposition 1.4.13.)

Let A denote the subset of C[0, 1] such that, for some x € [0, 1], f has a finite
right hand derivative, i.e., there exists £ € R such that, given any &€ > 0, there exists a
d > 0 for which

h) —
ot ),
h
for all h satisfying x + h € [0,1] and 0 < h < 8.

For each positive integer n, let E, denote the set of all f € C[0, 1] such that for
some x € [0,1 —1/n],

=n

‘f(erh)—f(x)
h

whenever 0 < h < 1/n. It is clear that E, C E, ;. Moreover, if f has a finite right
hand derivative at x, then f € E, for some n. So, A C | ;" E,.

We shall show that each E, is nowhere dense; then the union of the E, is of
category I and, hence, so is A. The space C[0, 1] with metric d, being complete, is
of category II. Consequently, A, which consists of those functions in C[0, 1] that do
not possess a right hand derivative at any point, is of category II. Since A¢ is a subset
of those f € C[0, 1] that do not possess a derivative anywhere, it follows that there
exist continuous functions that are nowhere differentiable and that the collection of
these functions is a subset of category IL

In order to prove that each E, is nowhere dense, we proceed by showing:
(i) E, = E,, and (ii) E; is empty.

Let g€ E, and { fiti=1 be a sequence of functions in E, such that
lim;_. d(f}, g) = 0. Since each of the f; is in E,, there exists some point x; (de-
pending on f;) such that

0 =n for 0 < h<1/n x€[0,1—1/n].

The points {x; };~, constitute a bounded sequence of real numbers and so, by the
Bolzano-Weierstrass theorem (Theorem 0.4.2), there exists a subsequence {x;}; =,
such that x;, — x. Since any subsequence of a convergent sequence converges to the
same limit, it follows that lim;_. d(f;,, g) = 0. Now,

|g(x0 + h) — g(x0)| = [g(x0 + h) — g, + M| + |g (x5, + ) — f (x5, + h)|
+ |ﬁk(xjk +h) _ﬁk(xjk)| + |ﬁk(xjk) _g(xjk)| + |g(xjk) —g(x0)|
(2.2)

By continuity of g, there exists m; such that jx = m; implies

1 1
80x) —gl)l <zehand gl +h) — g(x; + h)| < eh,
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in view of the fact that x;, — x. Since limy . d(f;, g) = 0, there exists m1, such that
Jk = my implies
1
sup{|fj,(x) — g(x)|: x € [0,1]} < Zsh.

Choosing jx > max {m,, m,), we obtain from (2.2) that

j}k(xjk +h) _f]'k(xjk)
h

8o + 1) — glx)| _
. =

+e=n+e.

Since xy € [0,1 — 1/n] and & > 0 is arbitrary, it follows that ¢ € E,,. This establishes (i).

We next establish (ii), i.e., that E, is nowhere dense. Since E, is closed by (i), it
is enough to show that E¢ is everywhere dense (see Remark (i) after Definition 2.4.1).
Let f € C[0, 1]. Since fis uniformly continuous on [0,1], there exists 8 > 0 such that

1
If(x) — f(X)| < 3¢ whenever |x — x/| < 8.
Choose a positive integer n such that (1/n)e < 3. Let
O=x<x<...<x,=1

be the partition of [0, 1] that divides the interval into n equal parts. Consider the
rectangle with vertices

(i1 F k1) = 380 (30 f 00 = 26D, (30 f 00+ 38, (1 fr) + ),

Join the points (xx—1, f(xk—1)), (% f(xx)) by a sawtooth function that remains
inside the rectangle and whose line segments have slopes greater than # in absolute

value. Carrying out this process for each subinterval (xx_1, %), k=1,2,...,n, we
obtain a function gin C[0,1] such that |f(x) — g(x)| < € for all x € [0,1]. Moreover,
g € E;. This completes the proof. O

The above proof of the existence of a continuous function that is nowhere
differentiable is nonconstructive in the sense that it does not provide a concrete
example of such a function. The first known example, namely, Z?:o “’52—3"", is due to
Weierstrass. The following example, due to van der Waerden, of a continuous
nowhere differentiable function is the easiest to work with. Although the proof of
its continuity uses a result to be proved in the next chapter, we prefer to present it

here because of its immediate relevance to the foregoing discussion.

Example 2.4.8. Let /i: R — R be defined as
0
h(x) = ]
2

extended to all of R by requiring that
h(x+1) = h(x);
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in other words, his periodic of period 1. (See Figure 2.7.) It is easily verified that h is
continuous on R. Define

o0 h n
fo =3 M
n=0

Since this series is dominated by the convergent series (1/2) > 7 1/10", it follows
by the Weierstrass M-test (see Theorem 3.6.12) that the series converges uniformly.
Its sum is therefore a continuous function, as argued in Chapter 1. We shall show
that this function is nowhere differentiable. As the function is periodic, we may
restrict ourselves to the case when 0=x < 1. Let a € [0,1) have the decimal
representation a = .aja ... a,. ..

For n € N, let

Xp=.ady...a,1byayyy ...,

where b, = a, + 1 if a, #4 or 9, while b, = a, — 1 ifa, =4 or 9. Thus x,, — a =
+107" and so lim,_,, x, = a. To complete the proof, it will be suficient to show
that

i LC) — f(a)

n—00 Xy — a

does not exist.
Now,

0 if m=n,

h(10™x,) — h(10™a) =
(10%%,) — h(10%4) {ilom" if m< n

(1,0) (2,0)

FIGURE 2.7
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Thus,
fx) = fla) = h(10™x,) — h(10™a)
e 2 10— a)
7 ”ii 10m-"
AT £ 107
n—1
= +1 (2.3)
m=0

Thus, for each n, the difference quotient on the left of (2.3) is the sum of n terms,
each of which is either 1 or —1, so that the sum is an odd integer when # is odd and
an even integer when # is even. It follows that

lim f(xy) — f(a)

n—00 Xy — a

does not exist.
Finally, we show that the set of points of discontinuity of an arbitrary real-valued
function defined on R is of a special kind. We begin with the following definition.

Definition 2.4.9. A subset S of R is said to be of type Fq if S = |J,—_ | Sy, where each
S, is a closed subset of R.

Examples 2.4.10. (i) If F is a closed subset of R, then F is of type F;, since
F=U)_ | F,where F =Fand , =F =...= .

(ii) The set Q of rationals in R is of type F,. Indeed, if x5, x, ... is an
enumeration of Q, then each set {x;} is closed and we have Q = [ J;2, {x;}.

(iii) Each open interval (a,b) is of type F,. This is because, if m is a positive
integer such that 2/m < b — a, then

o0

1 1
(ab)= {M—;,b—;].

n=m

The statement now follows, as [a+ 1/n, b — 1/n] is closed for each n.
Let fbe a real-valued function defined on R. We shall show that the set of points
of R at which fis discontinuous is always of type F.

Definition 2.4.11. Let f:R — R. If I is any bounded open interval of R, we define
o(f,I), called the oscillation over I of the function f, as

o(f,I) =supf(x) —inf f(x).
xel xel
If a € R is arbitrary, the oscillation at a of the function f, w(f, a), is defined as
o(f,a) =inf w(f,I),

where the inf is taken over all bounded open intervals containing a.
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Clearly, w( f,I) and w( f, a) are both nonnegative.
The following criterion of continuity is well known from real analysis:

Proposition 2.4.12. Let fbe a real-valued function defined on R. Then w(f, a) = 0 if
and only if fis continuous at a.

Proof. Suppose fis continuous at a. Let € > 0 be arbitrary. There exists a & > 0
such that |x—a|<d=|f(x)—f(a)|<e/2. If I=(a—238,a+3d), then for
x€l, fla)—e/2<f(x)<f(a)+e/2. So, (f,I)=sup,f(x)—inf.;f(x)<e
and consequently,

o(f,a) =info(f,I) <e.

Since € > 0 is arbitrary, and w(f, a) =0, it follows that w(f,a) = 0.
On the other hand, suppose that w(f, a) = 0. If fis not continuous at a, there

exists € > 0 such that in every bounded open interval containing g, there exists an x
for which [f(x) — f(a)| =, that is,

f(x)=f(a)+¢€or f(x)=f(a) —e.
So, for every bounded open interval I containing a,

o(f,I) = sup f(x) — inf f(x) = 2¢,
xel xel

which, in turn, implies
o(f,a) =2,

and this contradicts the supposition that w( f,a) = 0. O

Theorem 2.4.13. Let f: R — Rand S, = {x € R:w(f, x) = 1/n}. Denote by S the set
of points of R at which fis not continuous. Then, for each # the set S, is closed.
Moreover,

Thus, the points of R at which fis not continuous form a set of type F.

Proof. Let x be a limit point of S,,. We need to show that x € S,,. Let I be a bounded
open interval containing x. Then I contains a point y € S,. But then
o(f,I) = o(f,y) =1/n. As I is any bounded open interval containing x, we have
o(f,x) = 1/n, that is, x € S,..

It remains to show that S =J7 | S,. Let x € S. Then by Proposition 2.4.12,
o(f,x) > 0. So, there exists a positive integer n such that wo(f,x) = 1/n. Hence
x € S,. On the other hand, if x € S, then clearly, x € S. O
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The irrational numbers in R form a set A of category II (see Corollary 2.4.4). We
shall show that A is not of type F,. Suppose that, on the contrary,

where each F; is closed. Since each closed set F; contains only irrational numbers, it
cannot contain an interval. Thus, F; is nowhere dense and so A is of category 1. This
contradicts the fact that A is of category II. We have thus proved the following
theorem:

Theorem 2.4.14. There is no real-valued function defined on R that is continuous at
each rational point and is discontinuous at each irrational point.

We give an example of a function that is continuous at every irrational number
and discontinuous at every rational number.

Example 2.4.15. The function f defined as

_ J 1/n where nis least in N such that x = m/n,
flx) = A
0 if x is irrational

has the required property, as we shall argue.

Let ¢ € R be rational, so that f(c) = 1/n, where # is the least integer in N such
that ¢=m/n and m € Z. Choose € =1/2n. For any & >0, the interval
(¢c—98,¢+9d) contains an irrational number x, so that |f(x)—f(c)] =
|0 —1/n] = 1/n > €. Therefore, when &€ = 1/2n, no positive number & can have
the property that |x — ¢| <3 = [f(x) — f(¢)| < &.

On the other hand, if ¢ € R is an irrational number and € any positive number
whatsoever, there exists (by the Archimedean property of R) some 7y € N such that
1/ny < €. Now consider the interval (¢ — 1/2n%, ¢ + 1/2n5). For any p and q in
this interval, |[p — g| < 1/n2. It follows that this interval can contain at most one
rational number of the form r = m/n with n =< n, because, when m;n, — myn; # 0,
we have
me ny

m 1)

:|m1n2—m2n1| - 1 i

=
= -
0

nm =ny, M =Hny =
1R ny 1y n,

If there is any such r in the interval (¢ —1/2n, ¢+ 1/2n3), let = |c —r|. If
there is no such r, let 8 =1 /Zn(z). In both cases, no number x in the interval
(¢ —8,¢c+d) can be of the form x = m/n with n= ny. Thus, every number in
this interval is either irrational or is a rational number of the form m/n with n > ny.
Therefore,
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|x — ¢| < & = either f(x) =0 or f(x) :% with n > ng
= either |f(x) — f(c)] = 0 or |[f(x) — f(¢)| :% with n > nq

1
= |f(x) — f(0)] L

2.5. Exercises

. Let S(x, 8) be a ball with centre x and radius 8 in a metric space (X, d). Prove that

if 0 < e <8 —d(x,z), then S(z,&) C S(x,d).
Hint: If y € S(z,¢), then d(x,y) =d(x,z) + d(z,y) < d(x,z) +€ <38.

. Prove that S(x,&) C {y:d(x,y) <e} and give an example of a metric space

containing a ball for which the inclusion is proper.
Hint: {y: d(x, y) = €} is closed and contains S(x, €); use Corollary 2.1.27(iii). Let
(X,d) be discrete, X contain more than one point, and let € = 1. Then

S(x, 1) = {x} = {x}, whereas {y: d(x,y) =1} = X.

. Show that for any two points x and y of a metric space there exist disjoint open

balls such that one is centred at x and the other at y.
Hint: Let r = d(x, ). Then r > 0, and S(x,7/2) and S(y,/2) are the desired balls.

. Let (X, d) be a metric space and let S(x, 1) and S(y, r,) be two intersecting balls

containing a common point z. Show that there exists an r; > 0 such that
S(z,13) C S(x, 1) N S(y, 1r2).

Hint: Since z € S(x, 1) and S(x,r1) is open, there exists an open ball S(z, r])
centred at z and with radius r| such that S(z,7]) C S(x, ;). Similarly, there exists
an open ball S(z,r}) centred at z and with radius 7} such that S(z,7}) C S(y, r2).
Let r; = min {r{, r3}. Then S(z, r3) C S(x, 1) N S(y, 12) since S(z,13) C S(z, 1) as
well as S(z,13) C S(z,15).

. Let S(x,7) be an open ball in a metric space (X, d) and A be closed subset of X such

that d(A) =r and AN S(x,r) # &. Show that A C S(x, 2r).
Hint: Let y € AN S(x, ). For z € A,

d(z,x) = d(z,y) + d(y,x) <r+r=2r.

.Let AC [0,1] and F = {f € C[0,1]: f(¢) = O for every t € A}. Show that Fis a

closed subset of C[0, 1] equipped with the uniform metric.

Hint: Let + € A be fixed. The set {f € C[0,1]: f(#) = 0} can be shown to be a
closed subset of C[0, 1] as follows: If fis a limit point of the set, then there exists a
sequence {f,},=1 in the set such that lim, . f, = f uniformly. Since uniform
convergence implies pointwise convergence, lim,_, f,(¢) = f(t). Since F is an
intersection of such sets, Theorem 2.1.34(i) applies.
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7. Let C[0, 1] be equipped with the metric defined by

1
d(f,g) = J F(0) — g(D)ldt, frg € ClO,1].

With notations as in Exercise 6, show that F is not necessarily closed.
Hint: Let A = {0}. Consider the sequence

1

n 0=t=-—

fult) = ;"
1 t>—.
n

If f = 1, then
1/n 1
d(ﬂ[)f):J (1 —nt)dt =— — 0 as n — oo.
0 2n
The functions of the sequence {f,},~, are in E, but f & F.

8. Let X denote the space of all bounded sequences with

d(x, y) = sup;|x; — yil,

99

where x = {x;};~, and y = {y;};~ are in X. Show that the subset Y of conver-

gent sequences is closed in X.

Hint: Let z € X be a limit point of Y. Then there exists a sequence {y"},~, in Y

satisfying the following condition: For every € > 0 there exists #,(¢) such that

n=ny(e) implies
€

supyly” — il < 3

The sequence { yj("”) jtj= 1, being convergent, is Cauchy. So there exists / such that

i,j = | implies
€
|y’§no) _ y;no)‘ < S

Now,

|z — gl = |z — ™ | + " =y + Iy — gl <& forij=1

The bounded sequence {z};~ is Cauchy and is, therefore, convergent and,

hence, belongs to Y.

9. Let A be a subset of a metric space (X, d). Show that

A:m{FgX:Fis closed and F D A}
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Hint: A is a closed set and A D A. Therefore, on the one hand, A is one of the sets
in the intersection, while on the other hand, by Corollary 2.1.27(iii), it is a
subset of every set in the intersection.

10. Let X = C with the usual metric and A = {(x,y):y =sin(1/x), 0 < x=1}.
Show that
A=AU{0,y): —1=y=1}

Hint: Each open ball centred at (0,y), —1 =<y =1, has nonempty intersection
with A. It may be seen that every point outside AU {(0,y): —1 =y =1} is the
centre of a ball having an empty intersection with A.

11. Let X = {(x1,x) € R?:|x;| <2 and |x;| < 1} be equipped with the metric
induced from R?. For any x = (x;,x,) € X and r = 2+/5, show that

Sx(x, 1) = X.

Hint: Sx(x, r) = S(x, r) N X, where

SGe ) = 1) € R 14/ 10 — x>+ (n — x)] < 1.

It is enough to show that X C S(x,r). For x € X as well as y € X, we have
d(y,x) =d(X) =2\/5=r.

12. et A={z€ C:|z+1°<1} and B={z€ C:|z— 1]" < 1}, and let AU B be
equipped with the metric induced from C. Identify cla p(B).
Hint: clyup(B) = (AUB)Nclc(B) = (AUB)N{z € C: |z — 1|2 =1} = BU {0}

13. Let (X, d) be a metric space and A be a subset of X. Show that (i) X\A = (X\A)®%
(i) X\A° = (X\A).
Hint: (i) x € (X\A)° iff there exists a ball S(x,€)) centred at x with suitable
radius € such that S(x,&) C X\A iff S(x,e) NA = ¥ iff x & A.
(ii) Replace A by X\A in (i) and take complements.

14. Give an example of a subset Y of a metric space (X, d) for which (Y)° # (Y°).
Hint: Let (R, d) be the usual real line and Ydenote the set of rationals in R. Then

(Y)° = (R)° = R whereas (Y°) = &J = (.

15. For a subset Yof a metric space (X, d), (X\Y)° is called the exterior of Yand is
denoted by ext(Y). The boundary of Y is defined to be Y N (X\Y) and is
denoted by 9(Y). Show that

(i) O(Y) = O(X\Y);
(i) Y = Y U O(Y);
(iii) Y°Na(Y) = &;
(iv) (X\Y)?na(Y) = &;
(v) X =Y°UOI(Y)U(X\Y)%
(vi) Y\O(Y) = Y°.
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16.

17.

18.

19.

Hint: (i) 9(X\Y) = (X\Y) N (X\(X\Y)) = (X\Y) NY = 9(Y).

(i) O(Y)CY, Y°CYCY.SoYUIY)CY.Let ye Y. If y € Y°, then
yeYouo(ly) If ygY° then for all €>0, S(y,e)ZY, ie,
S(y, €)N(X\Y) # . Hence, y € (X\Y). So y € YN (X\Y) = A(Y). Conse-
quently, y € Y° U (Y).

(iii) Y°NO(Y)=Y°N(YN(X\Y))= (Y°NY)N(Y°N(X\Y))= Y°N(Y°N(X\Y?))
=Y°NI=¢J, using Exercise 13(ii).

(iv) Replace Y by X\Y in (iii) and use (i).

(v) YPUO(Y)U (X\Y)° = YU (X\Y)° = YU (X\Y) = X, using (ii) and Ex-
ercise 13(i).

(vi) Y\O(Y)=YN(X\O(Y))=YN(Y°U(X\Y)%)= (YNY°)U(YN(X\Y)°)=Y?,
using (iii), (iv) and (v) above.

Show that the Cantor set P is nowhere dense.
Hint: No segment of the form

3k+1 3k+2
( R ) (2.3)
3m 3m

where k and m are positive integers, has a point in common with P. Since every
interval («, B) contains an interval of the form (2.3) whenever

it follows that P contains no interval.

Consider the rationals Q as a subset of the complete metric space R. Prove that Q
cannot be expressed as the intersection of a countable collection of open sets.

Hint: Suppose Q = G; N G, N ..., where each G; is open in R. Then the set of
irrationals is | Ji~ | G, where each Gf is closed. Since each Gf contains only
irrationals, no G{ contains a nonempty interval. Thus, Gf is closed and nowhere

dense foreachi=1,2....

Consider a real valued function f on [0, 1]. If f has an nth derivative that is
identically zero, it easily follows by using the mean value theorem that f
coincides on [0, 1] with a polynomial of degree at most n — 1. The following
generalisation is valid: If fhas derivatives of all orders on [0, 1], and if at each x
there is an integer n(x) such that ") (x) = 0, then f coincides on [0, 1] with
some polynomial.

Hint: See [3; p. 58].

Let A be either an open subset or a closed subset of (X, d). Then (9(A))° = &,
so that (A) is nowhere dense. Is this true if we drop the requirement that either
A is open or A is closed?

Hint: One need prove only the case of a closed set, because A is open iff A€ is
open and O(A) = 0(A°) by Exercise 15(i) above. If A is closed, then
0(A) = AN (X\A). Let G be an open subset of (X,d) such that G C 9(A).
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20.

21.

22.

2. Topology of a Metric Space

Then G C AN (X\A). This implies not only that G C A, so that G C A° (be-
cause A° is the largest open set contained in A), but also that (see Exercise
13(ii) ) G C (X\A) = X\A°. Hence, G = J. When A is neither open nor closed,
O(A) need not be nowhere dense: Consider the set A of rational numbers in the
metric space (R,d). For this set, (A) = AN (X\A) = RNR =R, and hence
(0(A))° =R # .

Let G;, Gy, ... be a sequence of open subsets of R, each of which is dense. Prove
that ()_, G, is dense.

Hint: Suppose not. Then there exists x € R and an open interval I, containing x
such that I, N2, G, = &. Thus, x € I, C [J;~, G5. But each G is nowhere
dense, and, hence, UZO:1 Gy, is of category I (see Definition 2.4.1). But I is of
category II by Corollary 2.4.4. Since a subset of a set of category I must be of
category I (see Remark (viii) just before Theorem 2.4.3), we arrive at a contra-
diction. (The reader may note that the argument is valid in any complete metric

space.)

Let E be a closed subset of a metric space (X, d). Prove that E is nowhere dense if
and only if for every open subset G there is a ball contained in G\E.

Hint: Suppose E is nowhere dense. Then G\E # (JJ because, otherwise, G C E,
and this contradicts the supposition that E is nowhere dense. Let
x € G\E = GN E°. Since G and E° are both open, there exists an r > 0 such
that S(x, r) C G\E. For the converse, the hypothesis implies that every open set
has nonempty intersection with E°. It follows that E¢ = (E)‘ is dense in X, so
that E is nowhere dense.

Let (R, d;) be the metric space where

_ I+l =yl + 1y ifxF#E oy,
dl(X,)’) - { 0 lfx:y

Show that the g-ball about 0 with the metric d; is the same as the (g/2)-ball
about 0 with the usual metric. Also, if 0 < & < |y|, then the g-ball about any
nonzero element y with the metric d; consists of y alone. Describe a base for the
open sets of (R, dy).
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