
10

Direction in 2D

Directional processing of visual signals is the largest single analysis toolbox of mam-
malian visual system: it feeds other specialized visual processing areas [114, 173,
235], e.g., face recognition. Directional analysis is gaining increased traction even
in computer vision, as it moves from single-problem-solving systems towards multi-
problem-solving platforms. Nearly all applications of image analysis now have al-
ternatives using direction tensor fields. The necessary tools are more modern and
offer advanced low-level signal processing that was hitherto reserved to processing
of high-level tokens, such as binarized or skeletonized edge maps. In 2D, the earliest
solutions to the problem of finding the direction of an image patch, e.g., [51, 116],
consisted in projecting the image onto a number of fixed orthogonal functions. The
projection coefficients were then used to evaluate the orientation parameter of the
model. When the number of filters used is increased, the local image is described
better and better, but the inverse function, mapping the coefficients to the optimal
orientation, increase greatly in complexity. A generalization of the inverse projec-
tion approach to higher dimensions becomes therefore computationally prohibitive.
Here we will follow a different approach by modeling the shapes of isocurves via
tensors.

10.1 Linearly Symmetric Images

We will refer to a small 2D image patch around a point as an image, to the effect
that we will treat the local image patches in the same way as the global image. Let
the scalar function f , taking a two-dimensional vector r = (x, y)T as argument,
represent an image. Assume that fr = (x, y)T is a two-dimensional real vector that
represents the coordinates of a point in a plane on which an image f(x, y) is defined.
Furthermore, assume that k = (kx, ky)T is a two-dimensional unit vector represent-
ing a constant direction in the plane of the image.

Definition 10.1. The function f is called a linearly symmetric image if its isocurves
have a common direction, i.e., there exists a scalar function of one variable g such
that
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Fig. 10.1. The graph represents the 1D function g(t) = sin(ωt) that will be used to construct
a linearly symmetric 2D function

f(x, y) = g(kT r) = g(kxx + kyy) (10.1)

The direction of the linear symmetry is ±k.

The term is justified in that F , the 2D Fourier transform of f , is concentrated to a line,
as will be shown below. In addition, all isocurves of linearly symmetric functions are
lines that have a common direction k, i.e., they are parallel to each other. Note that the
term isocurves refers to the fact that the values of g and thereby f are invariant when
one moves along certain curves in the argument domain. For linearly symmetric
images, these curves are lines.

It should be noted that while g(t) is a function of one free variable, g(ktr) is a
function of two free variables, (x, y)T since k is constant. In the rest of this section
we will assume that the argument domain of f is two-dimensional, whereas that of g
is one-dimensional and g is a “constructor” of f via Eq. (10.1) and k whenever f is
linearly symmetric. Therefore g(kT r) generates an image despite that g by itself is a
one-dimensional function. By definition, images with the linear symmetry property
have the same gray value at all points r satisfying kT r = C for a given value C.
Because kT r = C describes a line in the (x, y)-plane, it follows that along this line
the gray values of the image do not change and this gray value equals to g(C). In such
images, the only occasion when g can change is when the argument of g changes,
i.e., when the constant C assumes another value. However, the curves kT r = C1,
kT r = C2, ... kT r = Cn, with Ci being different constants, represent lines that
are shifted versions of each other, all having the same direction, k. Consequently,
the one-dimensional function g is a profile of the two-dimensional function g(kT r)
along any line perpendicular to the line kT r = C.

Local images, which can be extracted by multiplying the original image with an
appropriate window function, are, from mathematical viewpoint, no different than
the larger original image from which these local images are “cut”. For notational
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Fig. 10.2. In top, left, the image generated by g(t) = sin(ωt) with the argument t = kT r
is given. The solid and dashed vectors represent k and −k respectively. The 3D graph in
top, right represents g(kT r) as a surface. The FT magnitudes of g(t) and g(kT r) are shown
in bottom, left and bottom, right. The FT coordinates are in the angular frequencies ω and
(ωx, ωy)T

simplicity, we will therefore not make a distinction between an image and a local
neighborhood of it. Both variants will be referred to as an image here, unless an
ambiguity calls for further precision.

Below we detail the process of constructing linearly symmetric images from 1D
functions first by three examples of 1D functions g, that are continuous. The last one
of these will model an ideal line. Then we will study a discontinuous g which will
be a model of ideal edges. Both ideal lines and ideal edges have been used to model
and to detect discontinuities in image processing.
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Fig. 10.3. The graph represents the sinc function, Eq. (10.4)

Example 10.1. The function

g(t) = sin(ωt), with ω =
2π

12
, (10.2)

rendered in Fig. 10.1, oscillates around zero. This sinusoid is used to construct the
linearly symmetric 2D function, shown in Fig. 10.2 (top, left). To render the negative
values of g we added the constant 0.5 and rescaled the gray values to the effect
that white represents 1 and black represents −1 by using 256 gray tones and linear
mapping. The dashed green line through origin shows an example isocurve. We recall
that an isocurve is the curve that joins all points having a certain gray value. The
example isocurve in the constructed 2D image is clearly a line, along which the
gray value of the image is the same. In fact, every other isocurve is also a line and
all isocurves are parallel, just as they should be, because of the way the image is
constructed.

By construction, the gray value of the image cannot change unless the argument
of g changes. For any given image location r, the argument of g will equal a constant
value C

kT r = C (10.3)

to the effect that it is possible to restrict the changes of r to a curve so that C is invari-
ant. By virtue of Eq. (10.3), this path is a line, and the equation represents parallel
lines when k is fixed. We can move in the image, i.e., change r, along a line which
is perpendicular to the line shown as the dashed diagonal, i.e along k, and obtain
changes in the value of C, which in turn changes the values of g. In this path, the ob-
tained function or gray values are identical to the values of the original 1D function,
g(t) = cos(ωt). The solid green arrow illustrates the vector k = (cos(π

4 ), sin(π
4 ))T

used to build the image. The representation is not unique because −k (dashed) would
have generated the same image. In other words, the k used to construct the linearly
symmetric image is unique only up to a sign factor ±1. The color surface in 3D shows



10.1 Linearly Symmetric Images 157

the same image as a landscape, illustrating that the gray variations are identical to
those in Fig. 10.1 across the isocurves.

The magnitudes of the Fourier transforms of g(t) and g(kT x) are also given in
Fig. 10.2 (bottom). The red color represents the value zero in the image. The bright
(yellowish) spots represent the largest values. In the image, the 2D Fourier transform
magnitudes clearly equal zero outside of the two bright points.

Example 10.2. The 1D sinc function

g(t) =
sin(ωt)

ωt
, with ω =

2π

12
, (10.4)

is plotted in Fig. 10.3. The synthetic image represented by the function g(kT r) is
linearly symmetric. Its image is illustrated by the gray image in Fig. 10.4 (top) which
differs from the one in Fig. 10.2 only by the choice of g. The function values are
scaled and shifted to be rendered by the available 256 gray tones. The solid and
the dashed vectors represent k and −k respectively. Both this image and the gray
image in Fig. 10.2 have the same vector k = (cos(π

4 ), sin(π
4 ))T , which represents

the direction orthogonal to the isocurve direction. In the direction of k, any cross
section of the image is identical to the sinc function of Fig. 10.3, as illustrated by the
3D graph in Fig. 10.4, which shows g(kT r) as a surface.

In the (2D) color image, we note that the magnitudes of the Fourier transformed
function equal zero (red color) outside of a line passing through the origin, indicated
by bright yellow in Fig. 10.4 (bottom, right). The line has the direction k. Along
the line, the Fourier transform magnitude has the same shape as the (1D) Fourier
transform magnitude (bottom, left).

We will bring further precision to the relationship between the 1D and 2D Fourier
transforms of the linearly symmetric functions below. For now we note the result of
this example, as illustrated by Fig. 10.5 bottom, right, is consistent with that of the
previous example, Fig. 10.2 bottom, right. Both Fourier transform magnitudes vanish
outside a central line having the direction k, whereas on the line itself both magni-
tudes have at least the same magnitude variations as their 1D counterparts shown on
the respective left. From the magnitudes of Fourier transformed functions, we can
in general not deduce the underlying complex values. However, there is one excep-
tion to that which is a result of the null property of norms, i.e., the magnitudes of
complex numbers are zero if and only if the complex numbers are zero. The Fourier
transforms of the two illustrated example images possessing linear symmetry must
consequently have not only magnitudes but also complex values that equal zero out-
side the referenced line.

The second example actually showed the same sinusoid as in the first one, with
the difference that in the second example, the sinusoid attenuates gradually as 1/t.
The Fourier transform magnitude of the Sinc example is therefore more spread as
compared to that of the pure sinusoid, which consists of a pair of Dirac pulses.

The sinusoid is neither a pure line nor a pure edge, but yet it has a direction. The
classical edge and line detection techniques in image processing model and detect
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Fig. 10.4. (Top) The gray image is generated by substituting t = kT r in Eq. (10.4). The 3D
graph shows g(kT r). (Bottom) The 1D and 2D FT magnitudes of g(t) and g(kT r), respec-
tively

pure lines and edges, without a provision for other types of patterns that have well-
defined directions. In the next example, we show that pure lines can be modeled as a
linearly symmetric function generated by means of an analytic function, a Gaussian.

Example 10.3. The 1D Gaussian

g(t) = exp
(
− t2

2σ2

)
, with σ = 3, (10.5)

is plotted as the green curve in Fig. 10.5. The synthetic image represented by the
function g(kT r) is linearly symmetric and is illustrated by the gray image in Fig.
10.5. The function values are scaled and linearly mapped to 256 gray tones, with 0
corresponding to black, and 1 corresponding to white. In the direction of k, any cross
section of the image is identical to the 1D Gaussian of Fig. 10.5.
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Fig. 10.5. (Top) The graph represents the 1D Gaussian g(t) in Eq. (10.5) and the 2D function
generated by the substitution t = kT r. The solid and dashed vectors represent k and −k
respectively. (Bottom) The 1D FT magnitude of g(t) and the 2D FT magnitude of g(kT r) are
illustrated by the (left) graphics and the (right) image, respectively

When we study the 2D Fourier transform magnitudes of this linearly symmetric
image, Fig. 10.5 bottom, right, we note that it too equals to zero (red) outside of the
same central line (bright yellow) as in the previous two examples. The line has a
profile matching the 1D version of the Fourier transform magnitude, shown in the
bottom, left graph.

Example 10.4. The 1D step function

g(t) =

{
1, if t ≥ 0,

0, otherwise,
(10.6)
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Fig. 10.6. (Top) The graph represents the 1D step function g(t) in Eq. (10.6) and the 2D
function generated by the substitution t = kT r. The solid and dashed vectors represent k and
−k, respectively. (Bottom) The 1D FT magnitude of g(t) and the 2D FT magnitude of g(kT r)
are illustrated by the (left) graphics and the (right) image, respectively

is discontinuous. It is shown as the green curve in Fig. 10.6 with its corresponding
linearly symmetric gray image, which is obtained by sampling

g(kT r) =

{
1, ifkxx + kyy ≥ 0,

0, otherwise.
(10.7)

The gray image models what came to be known as the ideal edge in image process-
ing. Despite the fact that it is discontinuous, it too is a linearly symmetric function,
with Fourier transform magnitudes concentrated to the same central line as in the
previous examples.
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Fig. 10.7. In real images, linear symmetries often resemble “lines” or “edges” but they appear
even as object or texture boundaries. Some of these are illustrated by colored lines in this
photograph

Example 10.5. The linearly symmetric images appear frequently as local images,
both in images of human-made environments and in images of the nature. They are
often perceived as lines or edges (Fig. 10.7), or as repetitive patterns called tex-
tures (Fig. 10.8). Although the cross sections of their isocurves are seldom like the
ideal lines and edges, they usually have a well-distinguishable direction, with Fourier
transform magnitudes concentrated to a line, as Fig. 10.8 shows.

We give precision to the example indications regarding the Fourier transform of
the linearly symmetric images in the following lemma. We recall that the argument
domain of g is one-dimensional, whereas that of f is two-dimensional by the adopted
convention.

Lemma 10.1. A linearly symmetric image f(r) = g(kT r) has a 2D Fourier trans-
form concentrated to a line through the origin:

F (ωx, ωy) = G(kT ω)δ(uT ω) (10.8)

where k, u are orthogonal vectors and δ is the Dirac distribution. The vector ω is
the angular frequency vector ω = (ωx, ωy)T . The function G is the one-dimensional
Fourier transform of g.

�
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Fig. 10.8. Left: a real image that is linearly symmetric. It shows a close-up view of the blinds.
Right: The Fourier transform magnitude of a neighborhood in the central part of the original
(brightness) image. Notice that the power is concentrated to a line orthogonal to isocurves in
the original

Lemma 10.1 is proven in the Appendix of this chapter, Sect 10.17. It states that the
function g(kT r), which is in general a “spread” function such as a sinusoid or an
edge, is compressed to a line having the direction k in the Fourier domain. Even
more important, it says that as far as k is concerned the choice of G, and thereby
g, has no significance. This is because, k, the angle at which all nonzero F reside,
remains the same no matter what G is. This is achieved by the Dirac pulse δ, which
becomes a line pulse along the infinite line uT ω = 0 by the expression δ(uT ω).
Because u is the normal direction of this line and u is orthogonal to k, the direction
of the spectral line uT ω = 0 coincides with the vector k. We have already observed
this line in red-colored images of Examples 10.1–10.5, as a concentration of the
magnitudes to the central line, in the same direction as the same (green) k vector
shown in the gray images, regardless g.

Along this central spectral line, not only the magnitude but also the complex
values conform to that of the 1D Fourier transform. This is because G is the 1D
Fourier transform of g, and Eq. (10.8) is a formula for how to produce the 2D Fourier
transform of the linearly symmetric functions only from the 1D Fourier transform G
and the isocurve normal k. According to the lemma, the vector u can always be
deduced from k up to a sign factor, because it is orthogonal to k. Due to limitations
of the illustration methods, Examples 10.1–10.5 could only be indicative about this
more powerful result, and this only as far as the Fourier transform magnitudes are
concerned.

Consequently, to determine whether or not an image is linearly symmetric is the
same thing as to quantitate to what extent the Fourier transform vanishes outside of
a line, a property which will be exploited to construct computer algorithms below.
Such algorithms can be constructed conveniently to describe textures possessing a
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direction, or by detecting the lack of linear symmetry, to describe textures lacking
direction. Measuring the lack of linear symmetries has been frequently used as a
way of detecting corners in image processing.

10.2 Real and Complex Moments in 2D

In image analysis there are a variety of occasions when we need to quantitate func-
tions by comparing them to other functions. Assuming that the integral exists, the
quantity

mpq(κ) = 〈xpyq, κ〉 =
∫ ∫

xpyqκ(x, y)dxdy (10.9)

with p and q being nonnegative integers, is the real moment p, q of the function κ.
If κ has a finite extension, then the real moments defined as above are projections
of an integrable function onto the vector space of polynomials. It follows from the
Weierstrass theorem [193, 209], that the vector space of the polynomials is powerful
enough to approximate a finite extension function κ to a desired degree of accuracy.
In that, the approximation property of moments is comparable to the FCs, although
the polynomial basis of moments is not orthogonal, whereas the Fourier basis is.
Nonetheless, moments are widely used in applications. If κ is a positive function
then it is possible to view it as a probability distribution, after a normalization with
m00. Accordingly,

c̄ = (x̄, ȳ)T =
1

m00
(m10,m01)T (10.10)

represents the centroid or the mean vector of the function κ. The quantity

m̃pq(κ) = 〈
(

x − m10

m00

)p (
y − m01

m00

)q

, κ〉

=
∫ ∫ (

x − m10

m00

)p (
y − m01

m00

)q

κ(x, y)dxdy (10.11)

related to real moments, is called the central moment p, q of the function κ. Both real
moments and central moments have been utilized as tools to quantitate the shape of
a finite extension image region. We will discuss this further in Sect. 17.4.

Another type of moment, which we will favor over real moments in what follows,
is

Ipq(κ) = 〈(x − iy)p(x + iy)q, κ〉 =
∫ ∫

(x + iy)p(x − iy)qκ(x, y)dxdy (10.12)

with p and q being nonnegative integers. This is the complex moment p, q of the func-
tion κ. Notice that complex moments are linear combinations of the real moments,
e.g.,

I20 = m20 − m02 + i2m11

I11 = m20 + m02
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The order number and the symmetry number of a complex moment refer to p+q and
p−q, respectively. The integrals above should be interpreted as summations when the
complex moments of discrete functions are to be computed. In the following sections
we will make use of (real and complex) moments as a spectral regression tool, i.e.,
to fit a line to the FT of a function.

10.3 The Structure Tensor in 2D

The structure tensor1 or the direction tensor models linearly symmetric structures
that are frequently found in images. To represent certain geometric properties of
images, it associates 2 × 2 symmetric matrices that are tensors to them. This is not
different from the fact that in a color image there are several color components per
image point, e.g., HSB, to every point. Typically, however, the structure tensor is used
to quantify shape properties of local images. As such, structure tensors are assigned
to every image point to represent properties of neighborhoods.

Let the scalar function f(r), taking the two-dimensional vector r = (x, y)T as ar-
gument, represent an image, which is usually a neighborhood around an image point.
As before, the (capitalized) letter F is the Fourier transform of f . We denote with
|F (ω)| the magnitude spectrum of f , where ω = (ωx, ωy)T is the Fourier transform
coordinates in angular frequencies, and with |F (ω)|2 we denote the power spectrum
of f . We will use the power spectrum rather than |F | to measure the significance of a
given frequency in the signal because it will turn out that the average values of |F |2
are easier to measure in practice than |F |.

The direction of a linearly symmetric function f(r) = g(kT r) is well-defined by
the vector k, but only up to a sign factor. According to lemma 10.1, if and only if f is
linearly symmetric is its power spectrum, |F |2 concentrated to a central line with the
direction k. The direction of this line represents the direction of the linear symmetry.
We will approach estimating k by fitting the image power spectrum, |F |2, a line in
the total least square TLS sense. Consequently, it will be possible to “measure” if
f is linearly symmetric by studying the error of the fit. If the error is “small” in the
sense that has been defined, then our method will take this as a provision that the fit
was successful and that the image approximates a linearly symmetric image g(kT r)
well. It turns out that, in this procedure, g need not be known beforehand. It will be
automatically determined when the error of the fit is near zero, because we will then
obtain a reliable direction along which to “cut” the image. In turn the 1D function
obtained by cutting the image is g only if f is linearly symmetric. Owing to the
continuity of the TLS error function, the decrease or the increase of the error will be
graceful when f approaches to a linearly symmetric function or departs from one.
We discuss the details of the line-fitting next.

We wish to fit an axis through the origin of the Fourier transform of an image, f ,
which may or may not be linearly symmetric. Fitting an axis to a finite set of points
is classically performed by minimizing the error function:
1 Other names of this tensor include the “second order moment tensor”, “inertia tensor”,

“outer product tensor”, and “covariance matrix”.
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Fig. 10.9. The line-fitting process is illustrated by the linear symmetry direction vector k,
the angular frequency vector ω, and the distance vector d. The function values |F (ω)|2 are
represented by color. The frequency coordinate vector is ω

e(k) =
∑
ω

d2(ω,k) (10.13)

where d(ω,k) is the shortest distance between a point ω and a candidate axis k.
This is the TLS error function for a discrete data set. Noting that ‖k‖ = 1, then the
projection of ω on the vector k is (ωtk)k. As illustrated by Fig. 10.9, the vector d
represents the difference between ω and the projection of ω. This difference vector
is orthogonal to k

d = ω − (ωtk)k (10.14)

with its norm being equal to the shortest distance, i.e., ‖d‖ = d(ω,k). Consequently,
the square of the norm of d provides:

d2(ω,k) = ‖ω − (ωtk)k‖2 (10.15)

=
(
ω − (ωtk)k

)T (
ω − (ωtk)k

)
(10.16)

Since we have a Fourier transform function, F , defined on dense angular fre-
quency coordinates in E2, instead of a sparse point set, Eq. (10.13) needs to be
modified. The following error function is a generalization of Eq. (10.13) to dense
point sets. It weights the squared distance contribution at an angular frequency point
ω with the energy |F (ω)|2 and integrates all error contributions

e(k) =
∫

d2(ω,k)|F (ω)|2dω (10.17)



166 10 Direction in 2D

where dω equal to dωxdωy , and the integral is a double integral over E2. The ex-
pression defines the TLS error function for a continuous data set. Interpreting the
integral as a summation, Eq. (10.13) is a special case of Eq. (10.17). By construc-
tion, the contribution of F (ω) to the error is zero for points ω along the line tk. With
increased distance of ω to the latter axis, the contribution of F (ω) will be amplified.

If |F (ω)|2, which is the spectral energy, is interpreted as the mass density, then
the error e(k) corresponds to the inertia of a mass with respect to the axis k in
mechanics [83]. Besides this function being continuous in k, it has also a screening
effect; that is, F is concentrated to a line if and only if e(k) vanishes for some k.
This is to be expected because the resulting quantity when substituting Eq. (10.16)
in Eq. (10.17) is the square norm of a vector-valued function, i.e.,

e(k) = ‖
(
ω − (ωT k)k

)
F‖2 =

∫
‖
(
ω − (ωT k)k

)
‖2|F (ω)|2dω (10.18)

Because e(k) is the square norm of a function in a Hilbert space,

e(k) = ‖
(
ω − (ωT k)k

)
F‖2 = 0 ⇒

(
ω − (ωT k)k

)
F = 0 (10.19)

Consequently, when e(k) = 0, the expression
(
ω − (ωT k)k

)
F equals (the vector-

valued function) zero. Assuming F 
= 0, this will happen if and only if F equals zero
outside the line tk. A nontrivial F can thus be nonzero only on the line tk, which,
according to lemma 10.1, means that f must be linearly symmetric. Conversely, if F
is zero except on the line tk, the corresponding e(k) vanishes. To summarize, if and
only if e(k) = 0, all spectral energy, |F |2, is concentrated to a line and f is linearly
symmetric with the direction ±k. Leaving the question whether or not ±k always
translates to an unambiguous direction aside (we will discuss this further below), we
proceed to the more urgent question of how to calculate k.

Noting that ωT k is a scalar that is indistinguishable from the scalar kT ω, and
‖k‖2 = kT k = 1, the square magnitude distance can be written in quadratic form:

d2(ω,k) = kT
(
IωT ω − ωωT

)
k (10.20)

= kT

[(
ω2

x + ω2
y 0

0 ω2
x + ω2

y

)
−

(
ω2

x ωxωy

ωxωy ω2
y

)]
k (10.21)

Defining the components of ω = (ωx, ωy)T as

ωx = ω1, and ωy = ω2, (10.22)

for notational convenience, Eq. (10.17) is expressed as

e(k) = kT Jk = kT (I · Trace(S) − S)k (10.23)

where I is the identity matrix,

J = I · Trace(S) − S (10.24)

and
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S =
∫

ωωT |F |2dω =
(

S(1, 1) S(1, 2)
S(2, 1) S(2, 2)

)
, with S(i, j) =

∫
ωiωj |F (ω)|2dω

(10.25)

Definition 10.2. The matrix S in Eq. (10.25), which consists of the second-order
moments of the power spectrum, |F |2, is called the structure tensor of the image f .

The matrix J is the inertia tensor of the power spectrum using a term of mechan-
ics. The matrix S is also called the scatter tensor of the power spectrum in statistics.
The structure tensor can be readily obtained from J, and vice versa via Eq. (10.24).
There is another related tensor called the covariance tensor or the covariance matrix
in statistics, C = S − m · mT , where m =

∫
ω|F |2dω. However, for real images

m = 0, since |F | is even when f is real. Because of the tight relationship between the
notions inertia, scatter, and covariance, they are used in an interchangeable manner
in many contexts. Since different notions of the structure tensor coexist, the follow-
ing lemma, which establishes the equivalence of J and S (and of C ), is useful to
remember.

Lemma 10.2. With eigenvalue, eigenvector pairs of J being {λ1,u1} and {λ2,u2},
and those of S being {λ′

1,u
′
1} and {λ′

2,u
′
2}, we have

{λ′
1,u

′
1} = {λ1,u2}, and {λ′

2,u
′
2} = {λ2,u1}. (10.26)

�

The eigenvector with a certain eigenvalue in the first matrix is an eigenvector with
the other eigenvalue in the second matrix. The lemma can be proven by utilizing Eq.
(10.24) and operating with J on u′

i, which is assumed to be an eigenvector of S:

Ju′
i = (I · Trace(S) − S)u′

i = (λ1 + λ2)u′
i − λiu′

i i = 1, 2 (10.27)

The error minimization problem formulated in Eq. (10.17) is reduced to a min-
imization of a quadratic form, kT Jk with the matrix J given by Eq. (10.24). This
is in turn minimized by choosing k as the least eigenvector of the inertia matrix,
J [231]. All eigenvalues of J are real and nonnegative because the error expres-
sion Eq. (10.17) is real and nonnegative. Calling the eigenvalue and eigenvector
pairs of J {λmin,kmin} and {λmax,kmax}, the minimum of e(k) will occur at
e(kmin) = λmin. In other words, the matrix J, or equivalently S, contains suffi-
cient information to allow the computation of the optimal k in the TLS error sense.
We will discuss the motivation behind this choice of error in some detail in Sect.
10.10.

The matrix S is defined in the frequency domain, which is inconvenient, partic-
ularly if S must be estimated numerous times. For example, when computing the
direction for all local patches of an image, we would need to perform numerous
Fourier transformations if we attempt to directly estimate the structure tensor from
its definition. We can, however, eliminate the need for a Fourier transformation by
utilizing (Parseval–Plancherel) theorem 7.2 which states that the scalar products are
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conserved under the Fourier transform. Applying it to Eq. (10.28), the computation
of the matrix elements will be lifted from the Fourier domain to the spatial domain:

S(i, j) =
∫

ωiωj |F (ω)|2dω =
1

4π2

∫
∂f

∂xi

∂f

∂xj
dx i, j : 1, 2 (10.28)

where x1 =x, x2 =y, dx=dxdy, and the integral is a double integral over the entire
2D plane. This is rephrased in matrix form,

S =
∫

ωωT |F |2dω =
1

4π2

∫
(∇f)(∇Tf)dx (10.29)

where

∇f =
(

Dxf,Dyf)T = (
∂f(r)
∂x

,
∂f(r)
∂y

)T

. (10.30)

We summarize our finding on 2D direction estimation via the following theorem,
where the integrals are double integrals taken over the 2D spatial domain.

Theorem 10.1 (Structure tensor I). The extremal inertia axes of the power spec-
trum, |F |2 are determined by the eigenvectors of the structure tensor:

S =
1

4π2

∫
(∇f)(∇Tf)dx (10.31)

=
1

4π2

( ∫
(Dxf)2dx

∫
(Dxf)(Dyf)dx∫

(Dxf)(Dyf)dx
∫

(Dyf)2dx

)
(10.32)

The eigenvalues λmin, λmax and the corresponding eigenvectors kmin, kmax of the
tensor represent the minimum inertia, the maximum inertia, the axis of the maximum
inertia, and the axis of the minimum inertia of the power spectrum, respectively.

�
We note that kmin is the least eigenvector, but it represents the axis of the maximum
inertia. This is because the inertia tensor J is tightly related to the scatter tensor S
according to lemma 10.2. The two tensors share eigenvalues in 2D, although the
correspondence between the eigenvalues and the eigenvectors is reversed.

While the major eigenvector of S fits the minimum inertia axis to the power spec-
trum, the image itself does not need to be Fourier transformed according to the the-
orem. The eigenvalue λmax represents the largest inertia or error, which is achieved
with the inertia axis having the direction kmin. The worst error is useful too, because
it indicates the scale of the error when judging the size of the smallest error, λmin

(the range problem). By contrast, the axis of the maximum inertia provides no addi-
tional information, because it is always orthogonal to the minimum inertia axis as a
consequence of the matrix S being symmetric and positive semidefinite.

10.4 The Complex Representation of the Structure Tensor

Estimating the structure tensor, and thereby the direction of an image, can be sim-
plified further by utilizing the algebraic properties of the complex z-plane. Multi-
plication and division are well-defined in complex numbers, whereas conventional
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vectors cannot be multiplied or divided with each other to yield new vectors. As a
result, an explicit computation of the matrix eigenvalues will become superfluous,
and the structure tensor will be automatically decomposed into a directional and a
nondirectional part.

Central to the structure tensor theory is the maximization of the scatter kT Sk.
Because S is a positive semidefinite matrix with real elements, i.e., S = ATA for
some A having real coefficients, the scatter is (Ak)T (Ak) and is either zero or pos-
itive for any real vector k. By incorporating the complex conjugation into transposi-
tion, i.e., BH = (B∗)T , the Hermitian transposition, the expression (Ak)H(Ak) =
kHSk will be either zero or positive even if the vector k has been expressed in a ba-
sis that has complex elements. Here, we will maximize kHSk, assuming k may have
complex elements. First, we introduce a new basis that has complex vector elements,
using the unitary matrix: UH

k′ = UHk, where UH =
1√
2

(
1 i
i 1

)
, and U =

1√
2

(
1 −i
−i 1

)
. (10.33)

Unitary matrices generalize orthogonal matrices in that a unitary matrix has in gen-
eral complex elements, and it obeys the relationship UHU = UUH = I. Conse-
quently,

kHSk = (Uk′)HSUk′ = k′HZk′ (10.34)

where

Z = UHSU (10.35)

=
1
2

(
S(1, 1) + S(2, 2) −i(S(1, 1) − S(2, 2) + i2S(1, 2))

i(S(1, 1) − S(2, 2) + i2S(1, 2))∗ S(1, 1) + S(2, 2)

)
We call Z the complex structure tensor, and we can conclude that it represents the
same tensor as S, except for a basis change, and that both matrices have common
eigenvalues. They share also eigenvectors, but only up to the unitary transformation,
so that kZ representing an eigenvector of Z is given by kZ = UHkS, with kS being
an eigenvector of S. We define the elements of Z via the complex quantities I20 and
I11 as follows.

Definition 10.3. The matrix

Z =
1
2

(
I11 −iI20

iI∗20 I11

)
, where

I20 = S(1, 1) − S(2, 2) + i2S(1, 2)
I11 = S(1, 1) + S(2, 2) (10.36)

is the complex representation of the structure tensor.

A matrix Z is called Hermitian if ZH = Z, and if additionally kHZk ≥ 0, which is
the case by definition for the complex structure tensor, is called Hermitian positive
semidefinite. With the above representation, the elements of Z encode the λmax,
λmin as well as kmax more explicitly than S. This is summarized in the following
theorem [28], the proof of which is found in Sect. 10.17.



170 10 Direction in 2D

Theorem 10.2 (Structure tensor II). The minimum and the maximum inertia as
well as the axis of minimum inertia of the power spectrum are given by

I20 = (λmax − λmin)ei2ϕmin =
1

4π2

∫
�(f)(x, y)dx (10.37)

I11 = λmax + λmin =
1

4π2

∫
|�(f)(x, y)|dx (10.38)

with the infinitesimal linear symmetry tensor (ILST) defined as2

�x,y(f)(x, y) =
(

∂f

∂x
+ i

∂f

∂y

)2

(10.39)

The quantities λmin, λmax, and ϕmin are, respectively, the minimum inertia, the max-
imum inertia, and the axis of the minimum inertia of the power spectrum.

�
The eigenvalues of the tensor in theorem 10.1 and the λ’s appearing in this theorem
are identical. Likewise, the direction of the major eigenvector kmax and the ϕmin,
of theorem 10.2 coincide. Accordingly, the eigenvector information is encoded ex-
plicitly in an offdiagonal element of Z, i.e., I20 whereas the sum and the difference
of the eigenvalues are encoded in the diagonal element as I11 and in the offdiagonal
element as |I20|, respectively.

For completeness, we provide the eigenvectors of Z as well. Because the ar-
gument angle of I20 is twice the direction angle of kmax, the direction of latter is
obtained by the direction of the square root of I20. The eigenvectors of S are related
to the eigenvectors of Z via Eq. (10.33), so that we obtain

k′
max = γ(

√
I20, i

√
I∗20)

T (10.40)

k′
min = γ(

√
−I20, i

√
−I∗20)

T (10.41)

where γ is a scalar that normalizes the norms of the vectors to 1.

Summary of the complex structure tensor

• Independence under merging. Averaging the “square” of the complex field
(Dxf + iDyf)2 and its magnitude (scalar) field |Dxf + iDyf |2, automatically
fits an optimal axis to the spectrum,

• Schwartz inequality. The inequality |I20| ≤ I11 holds with equality if and only
if the image is linearly symmetric,

• Rotation-invariance and covariance. If the image is rotated, the absolute values
of the elements of Z, i.e., |I20| as well as I11, will be invariant to the rotation,
while the argument of I20 will change linearly with the rotation.

In the next two sections we discuss two simpler tensors that will be used as basis
tensors for decomposing the structure tensor.
2 The symbol � is pronounced as “doleth” or “daleth”, which is intended to be a mnemonic

for the fact that it is not an ordinary gradient delivering a vector constisting of derivatives
but is a (complex) scalar comprised of derivatives.
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10.5 Linear Symmetry Tensor: Directional Dominance

In this section we will mean the complex structure tensor when we refer to the struc-
ture tensor. An “ideal” linear symmetry is present in the image, when λmax >> 0
and λmin = 0. Such images have a directional dominance in that there is a single
and well-identified direction of isocurves. One way to quantitate this property is by
measuring λmax − λmin and kmax, which are jointly given by the complex scalar
I20 [28]. When λmax −λmin increases, so does the evidence for the image being lin-
early symmetric, and hence we have a crisp direction in the image. For Hermitian3

positive semi definite matrices, which includes the structure tensor Z, the dimension
of the eigenvector space is equal to the multiplicity of the corresponding eigenvalue,
which is the number of times the latter is repeated. The eigenvectors are orthogonal
if they belong to two different eigenvalues. Because there are at most two different
eigenvalues in 2D, there is no need to encode both eigenvectors. The linear symmetry
quality of a 2D image has also been called the “line” property [225], and the “stick”
property [161]. The linear symmetry tensor is a special type of structure tensor such
that

ZL =
1
2

(
|I20| −iI20

iI∗20 |I20|

)
(10.42)

The tensor is fully equivalent to the scalar quantity I20, which determines ZL

uniquely, which is, in turn, a spatial average of �(f):

10.6 Balanced Direction Tensor: Directional Equilibrium

Certain images lack direction, i.e., when a direction is attempted to be fit to the
power spectrum there is not one optimal axis but there are an infinite (uncountable)
number of them, e.g., the image of sand in Fig. 10.13 or the image in Fig. 10.10.
This property is captured by the structure tensor via the condition λmax = λmin, i.e.,
the smallest (or the largest) eigenvalue is repeated twice making its multiplicity 2.
The condition actually does not describe the presence of a property but the lack of
it. It describes the lack of linear symmetry. An image with a structure tensor having
λmax = λmin, has previously been called “perfectly balanced”, in analogy with the
terminology used in mechanics [28]. The term expresses that there is a directional
equilibrium in that no single direction dominates over the others. Such images lack a
single direction4 that is more significant than other directions, a property that justifies
the use of the term “balanced directions” or “balancedness”, both referring to an
equilibrium of directions. Balancedness is quantitated by λmin because, for a fixed
λmax, the larger λmin, the closer it gets to λmax. When λmin reaches its upper bound,
which is λmax, then the structure tensor has one eigenvalue which has a multiplicity
2. The least eigenvalue λmin can be used to signal the presence of a balanced image,

3 We recall that a Hermitian matrix Z fulfills Z = ZH .
4 The pattern may still have a group direction, although it may lack a single direction domi-

nating others, e.g., see Fig. 10.10.
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Fig. 10.10. (Top) A perfectly balanced image f , and its power spectrum, |F |2. The red circles
represent a concentration of the power. (Bottom) The same as on top, except that the image is
rotated with the angle π

4

the state of equilibrium of directions when both eigenvalues are equal. Accordingly,
the balanced direction tensor is given by

ZB =
1
2

(
I11 0
0 I11

)
(10.43)

which is a special case of the complex structure tensor. The tensor is completely
equivalent to the scalar quantity I11, which determines ZB uniquely which is in turn
an average of the magnitude of �(f). This tensor has also been called “isotropic”
[225] and being “ball-like” [161] in other studies. The term isotropic should not be
interpreted as an existence of all directions in the image is a necessity. Figure 10.10
shows two images that contain only two directions and yet they are qualified for the
term. Likewise the term ball tensor should not be interpreted too restrictively such
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as the image must look like a ball, or a junction. The images in Fig. 10.10 as well
as in Fig. 10.13 represent textures in which at every point there is a “ball” tensor
of approximately the same magnitude. We will discuss the use of balanced direction
tensor as a corner detector in Sect. 10.9.

10.7 Decomposing the Complex Structure Tensor

In general, an image is neither perfectly linearly symmetric, e.g., Figs. 10.2-10.6, nor
does it totally lack it, e.g., Fig. 10.13. Instead it has the qualities of both types. The
amount of evidence for the respective type can be obtained from the structure tensor.
The structure tensor decomposition can always be achieved into its linear symmetry
and balanced direction components easily using its complex form:

Z =
1
2

(
I11 −iI20

iI∗20 I11

)
= ZL + ZB (10.44)

where

ZL =
1
2

(
|I20| −iI20

iI∗20 |I20|

)
, and ZB =

1
2

(
I11 − |I20| 0

0 I11 − |I20|

)
. (10.45)

Conversely, we also wish to study what happens when joining regions having dif-
ferent structure tensors. Without loss of generality, we consider a composition of
a region consisting of two subregions, each having a different structure tensor, Z′

and Z′′, respectively. This is a realistic scenario since two neighboring regions in an
image might differ in their local structure tensors, and the local structure tensor at
a border point between the two regions is needed. Because the components of the
structure tensor are integrals, they can be computed as the sum of two integrals, each
taken over the respective regions. Accordingly, the structure tensor, Z, of a boundary
point is obtained by the addition

Z = pZ′ + qZ′′ (10.46)

where p, q are two real positive scalars, with p + q = 1, that are proportional to the
areas of the two constituent regions. Following the definition of Z, we obtain

I20 = pI ′20 + qI ′′20 (10.47)
I11 = pI ′11 + qI ′′11 (10.48)

where I ′··, I ′′·· , and I·· are the structure tensor parameters of the first, the second and
the joint patches.

Example 10.6. In Fig. 10.11 we have two regions labelled A, and B. There are four
local images, called images here, and these are marked as 1, · · · , 4 with their borders
shown as (color) circles. Let images 2 and 4 have the (complex) structure tensors Z′

and Z′′, respectively. The corresponding tensor components are therefore
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Fig. 10.11. Illustration of addition using the complex structure tensor. The linear symmetry
tensor components I20 are shown as vectors for four local images. The balanced direction
components, I11, are shown as circles filled with black. The limits of images are marked by
color circles

I ′20 = k′2 = exp(−iπ
2 ) I ′′20 = k′′2 = exp(iπ

2 )
I ′11 = 1 I ′′11 = 1

In these images, the linear symmetry components point at directions given by k2,
where, k is the direction of the respective gradient (Fig. 10.12, left). The balanced
direction components are equal to zero, because both images are linearly symmetric
so that I11 = |I20|. In image 3 we have the structure tensor Z = 1

2Z
′ + 1

2Z
′′, having

the components
I ′20 = 1

2 exp(−iπ
2 ) + 1

2 exp(iπ
2 ) = 0

I ′11 = 1
2 + 1

2 = 1

The linear symmetry component is zero, as it should be. The image is a perfectly
balanced image because none of its constituent directions dominates the others. The
balanced direction tensor element is, by contrast, I11 − |I20| = 1, which indicates
that all spectral power is distributed in such a way that the directions balance each
other perfectly. Conceptually, balanced image phenomenon is present also when the
gradient directions are random (Fig. 10.12, right). Likewise in image 1 we have the
structure tensor Z = 1

4Z
′ + 3

4Z
′′ having the components

I ′20 = 1
4 exp(−iπ

2 ) + 3
4 exp(iπ

2 ) = 1
2 exp(iπ

2 )

I ′11 = 1
4 + 3

4 = 1

In particular, the balanced direction component, I11−|I20| = 1
2 , should be contrasted

to the magnitude of the linear symmetry component |I20| = 1
2 . The argument of I20



10.8 Decomposing the Real-Valued Structure Tensor 175

2ϕ 2ϕ

Fig. 10.12. The linear symmetry component, I20, and the balanced directions component, I11,
of the structure tensor add as vectors and as scalars, independently. The addition of numerous
structure tensors (left) for a merging of local images sharing a common direction, (right) for a
merging that largely lacks such a common direction .

shows the dominant direction of the image. We paraphrase this result as follows.
When the account of directions is finalized there is an excess of a single direction
that is not balanced by other directions. The net excess of this dominant direction is
as significant as the directions that are balanced.

10.8 Decomposing the Real-Valued Structure Tensor

Using its real form, S, the structure tensor decomposition in terms of linear symme-
try and balanced direction components is also possible [161, 225]. This is done by
the spectral decomposition of the tensor S

S = λmaxkmaxkT
max + λminkminkT

min (10.49)

followed by the rearrangement:

S = (λmax − λmin)kmaxkT
max + λmin(kmaxkT

max + kminkT
min)

= (λmax − λmin)kmaxkT
max + λminI (10.50)

where the fact that kmaxkT
max + kminkT

min = I, when kmax and kmin are orthogo-
nal, has been used. The first term of Eq. (10.50) is the linear symmetry tensor, and
the second term is the balanced direction tensor in real matrix representation. When
merging two images, each consisting of balanced directions, the result is an image
that is perfectly balanced. Accordingly, adding the balanced direction components
of two arbitrary images will not result in a change of the linear symmetry compo-
nents. However, if two linearly symmetric images are merged the result usually has
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Fig. 10.13. Left: a real image that is not linearly symmetric. It shows a close up view of sand.
Right: The Fourier transform magnitude of a neighborhood in the central part of the original
image. Notice that the power is isotropic i.e., far from being concentrated to a line

a structure tensor that has a balanced direction component unless both images have
the same direction. Accordingly, the linear symmetry components do not add in a
straightforward fashion in the real matrix representation, causing an “interaction”
contribution to the balanced direction component. In effect, when merging two arbi-
trary images already decomposed into their component tensors, the linear symmetry
components add (matrix addition) first according to Eq. (10.50), possibly producing
a balanced direction term. This additional term should then be added to the sum of
the ordinary balanced direction tensor components of the two images.

The decomposition of the complex structure tensor is conserved and closed under
averaging whereas that of the real structure tensor is not. Paraphrasing, averaging lin-
ear symmetry tensors in their complex form yields linear symmetry tensors, whereas
averaging linear symmetry tensors in their real form may produce tensors that are
not linearly symmetric. This is because (i) the two components I20 and I11 add sep-
arately when merging or smoothing images, and (ii) these components are explicitly
linked to eigenvalues and optimal directions.

10.9 Conventional Corners and Balanced Directions

By using other algebraic functions of λmax and λmin, numerous measures to quanti-
tate the amount of linear symmetry can be obtained. Likewise, we can also measure
the lack of symmetry, which is the balanced directions property of an image.

Example measures include the energy invariant measure, Cf2 [28], for linear
symmetry,

Cf2 =
|I20|
I11

=
λmax − λmin

λmax + λmin
(linear symmetry) (10.51)
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which also immediately defines the energy-invariant measure for the lack of linear
symmetry Cf3:

Cf3 = 1 − |I20|
I11

(balanced directions) (10.52)

At the heart of such measures is how well the Schwartz inequality, |I20| ≤ I11,
is fulfilled. The case of equality happens if and only if one has linear symmetry
(|I20| = I11). The left-hand side of it vanishes and the right-hand side becomes as
large as the energy permits it, if and only we have balanced directions (0 = |I20|).
Having this in mind, then other functionals that measure the distance I11 − |I20| can
be used to quantitate the balancedness of the directions in the image. The popular
detector of Harris and Stephen [97] (a similar measure is that of Forstner and Gulch
[74]) used to measure cornerness, quantitates this distance as well

Chs = λmaxλmin − 0.04(λmax + λmin)2 (10.53)

= (I11 + |I20|)(I11 − |I20|)/4 − 0.04I2
11

= (0.84I2
11 − |I20|2)/4 (10.54)

albeit in the quadratic scale, which is most obvious if the empirical constant 0.84 is
replaced by 1. Because of the constant, the measure Chs must be combined with a
threshold to reject the negative values. This will happen at (local) images that have
only the linear symmetry component (e.g., on lines and edges) where I11 = |I20|,
yielding Chs = −0.04|I20| < 0. The measure Chs responds strongly to many corner
types, including a corner that consists of the junction of two orthogonal directions, or
a corner that consists of the intersection of several lines. A word of caution is in place
because Chs will also respond strongly to other patterns, including at every point in a
texture image that lacks direction. This may be a desirable property for an application
at hand. However, it is also possible that the application is actually unintentionally
accepting (false acceptence) many patterns as corners by using Cf3 or Chs. The
texture images shown in Fig. 10.10 are perfectly balanced everywhere, meaning that
every point is a “balanced directions corner” or “Stephen–Harris corner”. Likewise,
all boundary points, except the boundary corners, between region A and region B
in Fig. 10.11 are the strongest corners in either of the two corner senses above. All
points of these four lines are, in fact, stronger “corners” than the four boundary corner
points, as discussed in Sect. 10.7!

10.10 The Total Least Squares Direction and Tensors

It is in place to ask what makes the matrices J, S, or even Z (second-order) tensors.
We recall that the basic difference between a second-order tensor and a matrix is
subtle and lies in that a tensor represents a physical quantity on which the coordinate
system has no real influence except for a numerical representation. The numerical
representation of a tensor is then a matrix that corresponds to physical measurements
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in a specific basis. A representation of the same tensor in a different basis can only
be obtained by a similarity transformation using the basis transformation matrix.
For first-order tensors and vectors, a similar subtle difference exists. The first-order
tensor is represented as a vector in a specific basis. Another representation of it can be
obtained by a linear transformation corresponding to a basis change. The zero-order
tensors represent physical quantities that are scalars. Their numerical representations
do not change with basis transformations.

As illustrated by Fig. 10.9, the error function e(k) employed by the total least
square (TLS) error represents the spectral power weighted by its shortest (orthog-
onal) distance to the estimated axis k. This makes e a zero-order tensor and k a
first-order tensor. If we apply a basis change e.g., rotate the coordinates of the power
spectrum, e(k) will not change at all and only the numerical representation of k will
change. The new direction vector, k′, will be coupled to the old k linearly using the
inverse of the matrix that caused the basis change.

To appreciate the TLS error in this context we compare it to the mean square
(MS) error which is extensively used in applications where one has a black box
controlled by known inputs resulting in a measurable output. In such applications
there is thus a response measurement, y, that may contain measurement errors and
that is to be explained by means of another set of known (error-free) variables, called
explanatory variables X, via a linear model

y = Xk (10.55)

Here k is the unknown regression parameter, which will be estimated by minimizing
the following residual:

min
k

‖y − Xk‖2 (10.56)

Adapted to our 2D direction estimation problem, the MS error yields:

min
γ

e(γ) =
∫

‖ωy − γωx‖2|F (ωx, ωy)|2dω (10.57)

This is the classical regression problem. Here, the direction coefficient γ is unknown
and will be estimated from the data F (ωx, ωy). The unknown γ is related to the di-
rection vector k = (cos θ, sin θ)T as γ = − cos θ

sin θ . Notice that the integrand measures
the distance between the data point ω and a point on the k-axis to be fitted. This
distance is in general not the shortest, distance as illustrated by the vector d in Fig.
10.14. The MS error would accordingly depend on the coordinate axis directions to
the effect that after a basis change, the new error using the same data will be dif-
ferent. Likewise, the new direction k′ will not be given by multiplying the inverse
of the basis transformation matrix with k, the estimated direction before the basis
change. In consequence, neither the MS error nor γ are tensors. One can associate
k and kkT to every γ = − cos(θ)

sin(θ) . These quantites are not tensors, although they are
conventional vectors and matrices. A more detailed discussion of the TLS error can
be found in [115] and [59].

Through Taylor expansion a spatial interpretation of e(k), as an alternative to its
original interpretation, the spectral inertia, can be obtained. In this view, the structure
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|F|2
yω

xω

ω

Fig. 10.14. The error, ‖d‖2, used in the MS estimate. The error is not measured as the shortest
distance between a frequency coordinate ω and the k-axis. This should be contrasted with the
TLS error, which does measure the shortest distance, as shown in Fig. 10.9

tensor, via its minor eigenvector, encodes the direction in which a small translation of
the image causes it the least departure from the original. To see this, we perform the
expansion, i.e., we express the image f at r+ εk, where the direction k = (kx, ky)T

has the unit length, by using the partial derivatives of f at r

f(r+εk) = f(r)+ε
(
kxDx+kyDy

)
f(r)+

ε2

2
(
kxDx+kyDy

)2
f(r)+· · · (10.58)

Accordingly,
ε
(
kxDx + kyDy

)
f(r) = f(r + εk) − f(r) (10.59)

is the linear approximation of the difference between the function f(r) and its trans-
lated version, f(r + εk). In consequence,

(
(
kxDx + kyDy

)
f(r))2 (10.60)

is the magnitude of the rate of the change in the direction of k, which can be viewed
as the error rate or resistance rate when translating the image in the direction k.
Integrating this function and using the (Parseval–Plancherel) theorem 7.2, yields∫ ∫ (

kT∇f(x, y)
)2

dxdy = kT

(∫ ∫
∇f(x, y)∇T f(x, y)dxdy

)
k = kT Sk

(10.61)
which is the dynamic part of our original error function, e(k), because
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e(k) = Trace(S) − kT Sk (10.62)

Accordingly, minimizing Eq. (10.62) yields the direction of minimum translation
error. Evidently maximizing Eq. (10.62) yields the direction of maximum translation
error. Both minimum and maximum error directions are given by the eigenvectors of
S. Paraphrased, the structure tensor encodes the minimum resistance direction in the
spatial domain, which is identical to the direction of the line fit to the power spectrum
in the TLS sense.

10.11 Discrete Structure Tensor by Direct Tensor Sampling

Until this section, the theory for detection of the orientation of a scalar function in
2D space has been based on continuous signals. One such technique was summarized
by theorem 10.1 which we will attempt to approximate by use of discrete functions.
We call this approach direct tensor sampling since the suggested method examines
whether or not the spectrum of an image consists of a line, by directly estimating the
matrix S, with the elements given by Eq. (10.28) without first estimating the power
spectrum by a discrete local spectrum.

We need to approximate the continuous integrand of Eq. (10.28) from a discrete
image. To that end, we need the approximation of

∂f(r)
∂xi

∂f(r)
∂xj ,

with i, j = 1, 2, x1 = x, and x2 = y, (10.63)

on a Cartesian grid i.e., r = rl, where rl is the coordinates of the grid nodes. In
analogy with the theory presented in Sects. 8.2, 8.3, and 9.2, we can do this by
filtering the original image linearly:

∂f(rl)
∂xi

=
∑

k

f(rl + rk)
∂µ(rl)
∂xi

with i = 1, 2 (10.64)

where ∂µ(rl)
∂xi

= ∂µ(r)
∂xi

|r=rl
, ∂f(rl)

∂xi
= ∂f(r)

∂xi
|r=rl

, and then applying pointwise multi-
plication between the two thus-obtained discrete partial derivative images:

∂f(rl)
∂xi

∂f(rl)
∂xj

, with i, j = 1, 2, x1 = x, and x2 = y. (10.65)

The latter is an estimate of Eq. (10.63) on a Cartesian grid. Note that the continuous
form of Eq. (10.63) is not known, but we estimated nevertheless its discrete version
by applying a linear discrete filtering to the discrete f(rl), followed by a pointwise
multiplication on the grid rl.

To estimate the structure tensor elements, Eq. (10.28), we first reconstruct (10.63)
from its samples (10.65):

∂f(r)
∂xi

∂f(r)
∂xj

=
∑

l

∂f(rl)
∂xi

∂f(rl)
∂xj

µ(r − rl) i, j : 1, 2 (10.66)
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where x1 = x, x2 = y. The vectors rl represent points on a grid as before, and µ(r)
is the continuous interpolation function, assumed to be a Gaussian with the variance
σ2

p:

µ(r − rl) = exp
(
− 1

2σ2
p

‖r − rl‖2
)

(10.67)

We proceed by substituting (10.66) in Eq. (10.28)

S(i, j) =
1

4π2

∑
l

∂f(rl)
∂xi

∂f(rl)
∂xj

∫
E2

µ(r − rl)dxdy (10.68)

=
C

4π2

∑
l

∂f(rl)
∂xi

∂f(rl)
∂xj

(10.69)

Here the integral evaluates to a constant C∫
E2

µ(r − rl)dxdy = C

that is independent of rl because the area under a shifted Gaussian is the same re-
gardless of the amount of the shift. The summation in Eq. (10.69) is taken over all
image points, rl, on the grid.

However, the structure tensor is most frequently needed for a local image, rather
than the entire image. A simple way to achieve this goal is to approximate ∂f

∂xi

∂
∂xj

for the local image by multiplying its global version with a window function, w(r),
placed around the current point r0. Without loss of generality, we assume that the
local image for which the structure tensor is to be estimated is the one around the
origin. Using a Gaussian as a window function, this amounts to replacing µ in Eq.
(10.66) with

µ(r − rl)w(r) = exp
(
− 1

2σ2
p

‖r − rl‖2

)
exp

(
− 1

2σ2
w

‖r‖2

)
(10.70)

where σ2
w is a constant that controls the effective width of the second Gaussian, the

window defining the local image around the origin. Substituting this into Eq. (10.66)
and then using it in Eq. (10.28) yields the local structure tensor elements:

S(i, j) =
1

4π2

∑
l

∂f(rl)
∂xi

∂f(rl)
∂xj

∫
E2

µ(r − rl)w(r)dxdy (10.71)

=
1

4π2

∑
l

∂f(rl)
∂xi

∂f(rl)
∂xj

µl (10.72)

where µl is defined as

µl =
∫

E2

exp
(
− 1

2σ2
p

‖r − rl‖2

)
exp

(
− 1

2σ2
w

‖r‖2

)
dxdy

= (µ ∗ w)(rl) =
2π

4
σ2

pσ2
w

σ2
p + σ2

w

exp
(
− 1

2(σ2
p + σ2

w)
‖rl‖2

)
. (10.73)
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Fig. 10.15. On the left, the test image, the axes of which are marked with fractions of π
representing the spatial frequency. On the right is the color code representing the directions.
The marks on the axes are separated by 5 degrees when joined to the center. The colored dots
in both images define the curves from which 1D direction measurements will be sampled

The integral represents a continuous convolution, and Eq. (10.73) is obtained by
noting that both µ and w are Gaussians and that a convolution of them yields another
Gaussian, with a variance that is the sum of the variances of µ and w. An easy way
of seeing this is by applying the Fourier transform to µ ∗ w. Eq. (10.72), which
computes the local tensor around the origin, is therefore a discrete convolution by
a Gaussian if S(i, j) needs to be computed for local patches around all points of
the original image grid. Since the values of µls decrease rapidly outside of a circle
with radius

√
σ2

p + σ2
w, we can truncate the infinite filter when its coefficients are

sufficiently small, typically when the coefficients have decreased to about 1% of
the filter maximum. Thus, Eq. (10.72) implies that the local tensor (of the origin) is
obtained as a window-weighted average of the gradient outer products:

S =
1

4π2

∑
l

(∇fl)(∇fl)T µl (10.74)

where ∇fl is the gradient of f(r) at the discrete image position rl, and µl is a discrete
Gaussian. Defining Dxfl and Dyfl, for convenience, as the components of ∇fl, at
the mesh point rl:

∇fl = (Dxfl,Dyfl)T = (
∂f(rl)

∂x
,
∂f(rl)

∂y
)T , (10.75)

We summarize our finding on tensor discretization as a theorem:

Theorem 10.3 (Discrete structure tensor I). Assuming a Gaussian interpolator
with σp and a Gaussian window with σw, the optimal discrete structure tensor ap-
proximation is given by
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S = C
∑

l

(∇fl∇Tfl)µl (10.76)

= C
∑

l

(
(Dxfl)2 (Dxfl)(Dyfl)

(Dxfl)(Dyfl) (Dyfl)2

)
µl (10.77)

where µl is a discrete Gaussian with σ =
√

σ2
p + σ2

w.

�

In analogy with Eqs. (10.63)–(10.65), the quantity

Dxf(rl) + iDyf(rl) (10.78)

can be obtained by two convolutions using real filters, one for Dxf(rl) and one for
Dyf(rl). After that, the complex result depicted by Eq. (10.78) is squared to yield
the ILST image:

�(f)(rl) = (Dxf(rl) + iDyf(rl))2 (10.79)

In consequence of theorem 10.2, the following theorem then holds true:

Theorem 10.4 (Discrete structure tensor II). Assuming a Gaussian interpolator
with σp and a Gaussian window with σw, the optimal discrete structure tensor com-
plex elements are given by

Z =
1
2

(
I11 −iI20

iI∗20 I11

)
(10.80)

where

I20 = C
∑

l

(Dxfl + iDy)2µl (10.81)

I11 = C
∑

l

|Dxfl + iDy|2µl (10.82)

with µl being a discrete Gaussian with σ =
√

σ2
p + σ2

w.

�

Figure 10.15 shows a frequency-modulated test (FM-test) image. The test im-
age has axes marked by the spatial frequencies of the waves in the horizontal and
vertical directions from the image center. The absolute frequency of the waves de-
creases exponentially radially, whereas the direction of the waves changes uniformly
angularly. The exponential decrease occurs between the spatial frequencies 0.4π and
0.9π. The image on the right represents the color code of the ideal orientation in
double-angle representation, i.e., exp 2ϕ, where ϕ is the polar angle coordinate of
a point in the image. In half of the image, spatially uncorrelated Gaussian noise X ,
with mean 0.5 and variance 1/36, has been added to the image signal, f , according
to pf + (1 − p)X , where the weight coefficient p = 0.3, and X is the noise. On
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Fig. 10.16. The images illustrate the direction tensor, represented as I20 (left) and I11 (right),
for Fig. 10.15 and computed by using theorem 10.4. The hue encodes the direction, whereas
the brightness represents the magnitudes of complex numbers

the right the reference orientation is encoded as a color image. Using the HSB color
space, the hue is modulated by 2ϕ, whereas the brightness and the saturation are set
to the maximum at all points. The colored dots define curves along which the struc-
ture tensor measurements will be extracted and discussed in detail further below. The
color coded reference image has axes marked by angles separated in 5◦ as seen from
the center.

The images in Fig. 10.16 illustrate the structure tensor computed for all local
images. The color image on the left represents the complex-valued I20. The hue of
an image point is modulated by the arg(I20) of its local neighborhood, whereas its
brightness is given by |I20|. The saturation of all points is set to the maximum. The
computations are implemented according to theorem 10.4 where the derivative Gaus-
sian filter had σp = 0.8 and the integrative Gaussian filter,

√
σ2

p + σ2
w = 2.5. The

hue of a point should be the same as the reference color given at the same point of the
color image in Fig. 10.16. Visually, it appears that the colors are in good conformity
with those of the reference image. The image on the right shows I11, which, being
nonnegative and real-valued, modulates the gray values. It is possible to verify that
the direction measurements adhere to the theoretical values, even in the noisy part of
the test image, where the signal-to-noise ratio, (SNR), was 2 log2(

0.3
0.7 ) ≈ −2.4 dB.

The brightness of the points at the noisy part are lower in both images for two rea-
sons. First, the |I20| should be weak or ideally zero because the unique direction is
disturbed, and second, because the linear derivation and integration operations have
effectively a bandpass character and the noise components are suppressed by the lin-
ear process. In the clean part of the signal, the brightness of the corresponding points
in the left and the right images is the same. We will discuss these conclusions more
quantitatively next.
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