
3

The Role of Coordination and the Inadequacy
of Current Approaches

In the previous chapter, we have identified the need for novel approaches
to software engineering, promoting adaptive self-organization, and context-
awareness. Now, we start to analyze the important role that will be played
by the identification of proper coordination models in the process toward the
definition of a suitable innovative software engineering approach.

In general terms, a coordination model identifies the mechanisms and the
policies according to which an ensemble of “actors” can orchestrate the over-
all activities. Such an orchestration include mechanisms and policies for both
exchange of information and synchronization of activities. The study of co-
ordination models goes beyond computer science [86], in that also behavioral
sciences, social sciences, business management, and logistics somewhat strictly
deal with how various types of actors (e.g., animals, humans, trucks) can prop-
erly coordinate with each other.

In this book, we obviously focus on the coordination of computational
actors, i.e., the components of distributed applications and systems. For the
sake of simplicity, we will often adopt the generic term “agent” to indicate any
component of a distributed network scenario hosting a computational activity
that needs to coordinate with other components. These will this include actual
software agents, processes in a distributed application, peers in a P2P network,
as well as mobile devices and computer-based sensors (or, which is the same,
the system-level processes running over them). Such a generalized adoption
of the agent term, though, is not arbitrary [165]. In fact, it refers to entities
with some degree of autonomy in execution, interacting with other entities,
and situated in some context/environment. That is, entities matching the
canonical definition of agents provided by the agent community [162].



26 3 The Role of Coordination and the Inadequacy of Current Approaches

3.1 The Fundamental Role of Coordination Models and
Infrastructure

Whatever the scenario of interest, agents acting in the context of distributed
applications and systems have the primary need to interact and coordinate
with each other to achieve their goals. In all the scenarios described in the
previous chapter, coordination between the agents constituting the system
has a fundamental role.

• In the micro scale, where each single agent (i.e., micro device) has lim-
ited power and resources, coordination is mainly required to let the agents
cooperate to accomplish tasks that exceed their capabilities as single indi-
viduals. In the “pipe repairing” application (described in Subsect. 2.1.1),
for example, no single agent is large enough to repair a hole in the pipe;
they must cooperate to aggregate into a suitable structure to fix the hole.
As another example, in almost all sensor network applications, coordi-
nation between single sensors is enforced to exceed the sensing power of
each single device or to implement power saving policies. Sensors, in fact,
by coordinating with each other, can average their measures to wash out
environmental noise, or can coordinate duty cycles to save battery energy.

• In the medium scale, agents are the applications running on handheld,
wearable, and embedded devices. Coordinating their activities is at the
core of a lot of pervasive computing applications, where humans can take
advantage of a proper orchestration of distributed activities to improve
their interactions with the surrounding environment. Consider, for exam-
ple, the case of a housewife who “asks” the kitchen for suggestions about
what she could prepare for dinner. The answer could be provided by having
a computer-based fridge analyze what food is in it, by having computers
embedded in the kitchen’s shelves do the same, and by having them all
exchange this information and cooperatively verify on an electronic recipe
book what can be prepared on this basis. That is, answering to the house-
wife question implies a proper coordination of activities among the various
pervasive computing devices in the kitchen.

• In the global scale, again, coordination is of primary importance. For
example, in Internet-scale P2P applications, agents (i.e., peers) need to
coordinate with each other in order to dynamically discover communica-
tion partners and to autonomously engage direct or third-party interaction
patterns. For example, every kind of routing problem (whether on a real
network [20] or on an overlay virtual network [120, 129]) can be easily
regarded as a minimal coordination problem: autonomous nodes must co-
operate, forwarding each other packets, to let the packets flow from sources
to destinations.

The pervasiveness of coordination activities and their primary role in
achieving global application goals in any distributed application and system,



3.1 The Fundamental Role of Coordination Models and Infrastructure 27

clearly make the identification of proper coordination models of fundamen-
tal importance. Not surprisingly, the research area of coordination models
and middleware is particularly crowded and attracts researches from differ-
ent communities like agents [56], software engineering [58], and distributed
computing systems [57].

Coordination activities may vary from simple mutual exclusion policies
to access shared resources to complex distributed artificial intelligence algo-
rithms for collective problem solving. But, whatever the case, the design and
development of complex distributed applications always call for the identifi-
cation of a coordination model facilitating the overall design and development
process. In the case of the emerging scenarios of interest to this book, such a
coordination model should be able to facilitate adaptive self-organization of
activities, and should be complemented by proper middleware to support the
execution of distributed applications.

In particular, we think that any coordination model and the associated
supporting middleware should provide

1. suitable mechanisms to enable coordination, i.e., interaction and synchro-
nization mechanisms;

2. suitable means to promote context-awareness;

With regard to the first point, coordination requires by definition some
form of communication between agents and some form of synchronization of
activities. Besides sharp means to enforce communication and synchronization
(e.g., messages, semaphores, etc.) one should also account for less obvious
means, i.e., indirect interactions mediated by an environment (also known as
“stigmergy”) or behavioral interaction (i.e., indirect interactions induced by
agents observing each other’s actions).

With regard to the second point, a coordination model for dynamic and
open scenarios also requires some forms of context-awareness. In fact, any
agent has to be somehow aware of “what is around,” i.e., its context, to
meaningfully work in a specific operational environment, and to properly
combine efforts with other agents. However, when agents are embedded in
a possibly unknown, open, and dynamic environment (as in the case of the
depicted emerging scenarios), they can hardly be provided with enough a pri-
ori up-to-date contextual knowledge, and should be supported in the process
of dynamically acquiring it.

The above two points, interaction mechanisms and context-awareness, are
indeed strictly intertwined, in that contextual information can be commu-
nicated only by the available interaction mechanisms. With this regard, it
is worth anticipating that on the one hand, indirect interaction mechanisms
appear much more suited for coordinating activities in open and dynamic sce-
narios, in which agents can appear and disappear at any time. In fact, these
models uncouple the interacting entities and free them from the need for di-
rectly knowing each other to interact. This promotes spontaneous interaction,
which is the basic ingredient to support self-organization. On the other hand,



28 3 The Role of Coordination and the Inadequacy of Current Approaches

for spontaneous indirect interactions to take place in an adaptive way, agents
must somehow affect the surrounding environment by their actions in a way
that can be somewhat perceived by other agents. That is, indirect interactions
require the capability of affecting the context and of perceiving the context.

As a simple example, in cooperative distributed robotics, a lot of imple-
mentations rely on robots interacting by merely observing each other’s actions.
Robots can acquire a picture of the surroundings with their cameras and, us-
ing such a picture, decide what to do without any explicit communication
being involved [67].

In addition, the characteristics of modern distributed scenarios analyzed in
the previous section also alert us that any coordination model, for being effec-
tive, should also promote locality both in interactions and in the acquisition
of contextual information. In fact, for systems which can be characterized by
a large number of decentralized agents, any approach requiring global-scale
interactions is doomed to fail. Scalability and ease of management can be
properly supported only by a model in which most interactions occur at a
local and localized scale. In the simple case of cooperative robotics, for in-
stance, one cannot rely on the fact that each robot sees and understands the
actions of all other robots: that could work only for small environments with
full line of sight, and in any case the presence of a large number of robots
would challenge the limited capabilities of robots.

3.2 An Exemplary Case Study Application

To exemplify and fix ideas on what has been discussed so far, it may be
useful to introduce a case study application. The chosen application involves a
pervasive computing scenario, and in particular a computer-enriched museum
in which tourists, while visiting it, can exploit PDAs or smart phones to get a
better and more immersive experience. A number of devices embedded in the
museum can provide tourists with a sort of interactive guide, but they can
also be exploited by museum guards for the sake of monitoring and control.

In particular, for tourists, the pervasive services provided by the museum
infrastructure may be of help to retrieve information about art pieces, effec-
tively orient themselves in the museum, and meet with each other (in the case
of organized groups). For museum guards, the pervasive services can be used
to improve their monitoring capabilities over art pieces and tourist actions,
and to coordinate each other’s actions and movements. In the following, we
will concentrate on two specific representative problems: (i) how tourists can
gather and exploit information related to an art piece they want to see; and
(ii) how they can be supported in planning and coordinating their movements
with other, possibly unknown, tourists (e.g., to avoid crowd or queues, or to
meet together at a suitable location).

To this end, we assume that (i) tourists are provided with a software agent
running on some wireless handheld device, like a PDA or a cell phone, giving



3.2 An Exemplary Case Study Application 29

them information on art pieces and suggestions on how and where to move;
(ii) the museum is provided with an adequate embedded computer network.
In particular, embedded in the museum walls (associated either with each
art item or each museum room), there are a number of computers capable
of communicating with each other (by wired or wireless links) and with the
mobile devices located in their proximity (e.g., by the use of short-range wire-
less links); and (iii) both the devices and the infrastructure hosts are provided
with a localization mechanism to find out where they are actually located in
the museum; this could be implemented by some kind of cheap mechanism re-
lying on well-known algorithms based on radio or acoustic signal triangulation
[50].

Despite this coarse description we think that this kind of case study cap-
tures in a powerful way features and constraints of next-generation application
scenarios:

• It can be of very large size. In fact, in huge museums there can be thou-
sands of embedded electronic devices and hundreds of tourists with mobile
devices. There can be multiple systems concurrently running within the
museum computer infrastructure (e.g., light and heating control systems)
and other systems connected to these other services. In addition, since a
huge museum can have multiple sections managed by different organiza-
tions, some degree of decentralization may also be present.

• It represents a very open and dynamic scenario. In fact, a variable num-
ber of unknown tourists may enter and leave the museum at any time,
each following unpredictable schedules and visiting plans. In addition, the
museum too can exhibit high dynamics, in that huge museums very often
restructure their topology to host temporary special exhibitions, and very
often art pieces are moved from room to room and new art pieces are
added.

• The need for context-awareness is intrinsic in the goals to be pursued by
tourists and museum guards when exploiting the infrastructure, in that
they all somewhat relate in understanding what is happening in the mu-
seum and act accordingly.

The above characteristics carry on a number of implications. Despite the
high dynamics of the scenario, the system should be robust and flexible. When
embedded hosts break down, wireless networks have glitches, or other unex-
pected malfunctioning occurs, the system should exhibit a limited and gradual
decay of performance. When special exhibitions take place or new art pieces
are introduced, the system should immediately reflect the new configuration
in the way it provides its services, and without any temporary unavailability.
Whenever a tourist enters the museum, he must be immediately allowed to
take advantage of the museum services.

From the viewpoint of the museum infrastructure, one cannot rely on
manual configuration and reconfiguration for the above requirements to be



30 3 The Role of Coordination and the Inadequacy of Current Approaches

fulfilled. In fact, the human efforts required to do that would be nearly con-
tinuous and dramatically expensive. Also, for very large museums, the time
required for such reconfigurations would lead either to temporary unavailabil-
ity or to services providing obsolete information. The only feasible solution
is to have the system be able to autonomously configure its operational pa-
rameters in response to changed conditions, in an adaptive and context-aware
fashion, without requiring human intervention and without exhibiting per-
ceivable service malfunctioning.

From the viewpoint of tourists, they must be properly enabled to access
all the available information in an up-to-date way, and they must be given the
possibility of understanding how to move in the museum. Clearly, this should
be done on the fly for each tourist, by having his mobile device spontaneously
connect with the embedded infrastructure, and by having the whole system
dynamically provide personalized services (e.g., “Since you are interested in
both Egyptian art and Greek sculpture, here the best path for you to follow
based on current crowd conditions”). Also, tourists and museum guards should
be enabled to dynamically coordinate with each other (e.g., “All students of
my class please report to me!”). For this to occur, tourists and museum guards
must be able to start interacting possibly without knowing each other a priori
(e.g., “Anyone here interested in discussing Egyptian art?”) and in a context-
aware way (e.g., “Alice, this is Bob, let’s walk toward each other to meet
in between”). Again, since we cannot assume any possibility of centralized
control, all these types of context-aware interactions must be promoted by
the system in an adaptive way without requiring any manual configuration.

As an additional note, it is worth noting that even testing and debugging
a system of that kind is extremely difficult. That would imply accounting
for an uncountable number of possible situations (e.g., what is the typical
group behavior of a class of children visiting the museum? What happens
when someone shouts “fire!” in a packed room?). For this reason, testing
should also follow a different approach. Rather than trying to account for all
possible situations to verify that the system is flawless, one should structure
the system so as to make it able to dynamically adapt itself to face any
unexpected situation.

To be successful, any approach to designing and developing a system ca-
pable of exhibiting the above characteristics should rely on the choice of a
proper coordination model and by a corresponding supporting middleware
infrastructure. The model should promote spontaneous interactions among
agents that possibly do not know each other a priori (e.g., a new art piece
that connects to the museum infrastructure, or two tourists with common
interests that want to meet to discuss with each other) and should enforce
context-aware interactions in an expressive way, to ensure that any dynamic
adaptation of the system and any coordination activity (e.g., a group of mu-
seum guards that wants to monitor in a coordinated way different areas of
the museum) properly reflect the current conditions of the system and of the
other agents in it.



3.3 Inadequacy of Current Approaches in Supporting Coordination 31

In the rest of this chapter, we will refer to the above case study to evaluate
the inadequacy of current coordination models and middleware to face the
complexities of modern scenarios. Moreover, from time to time in the book,
we will again revert to this case study to ground the discussion.

Although the case study focuses on pervasive computing (which also un-
veils our specific specific area of interest) it introduces issues which are of a
very general nature. In fact, it is analogous to a number of different scenarios,
e.g., traffic management and forklift activity in a warehouse, where navigator-
equipped vehicles can guide their pilots on what to do; mobile robots and
unmanned vehicles exploring an environment; spray computers having to or-
ganize their relative positions and activity patterns; software agents exploring
the Web, where mobile software agents coordinate distributed researches on
various Web sites. Therefore, all our considerations will be of a more general
validity.

3.3 Inadequacy of Current Approaches in Supporting
Coordination

Most coordination models and middleware used so far in the development
of distributed applications appear, in our opinion, inadequate in supporting
coordination activities in dynamic network scenarios, such as those described
in the previous chapter and in the above case study. In the following para-
graphs, we are going to survey various coordination models and middleware
to illustrate their inadequacies from a software engineering perspective. The
analysis will be mainly focused on evaluating how those models and middle-
ware provide agents with contextual information and whether the information
provided is suitable for supporting effective coordination activities.

We identified three main general classes of coordination models encom-
passing almost all the proposals. These include (i) direct coordination models,
i.e., message passing and client-server ones; (ii) shared data space models, i.e.,
tuple space ones; and (iii) event-based models. The implementation of mid-
dleware infrastructures to support a specific model within a class can be very
different from each other (e.g., centralized vs. distributed, or using propri-
etary vs. open protocols). Still, they are mostly equivalent from the software
engineering viewpoint, in that the overall design of an application developed
adopting a specific middleware would not be substantially affected by being
ported on a different middleware relying on a coordination model of the same
class.

3.3.1 Direct Coordination Models

Models based on direct coordination promote designing a distributed applica-
tion by means of a group of agents that can coordinate by directly communi-
cating with each other in a direct and explicit way, by message passing or in



32 3 The Role of Coordination and the Inadequacy of Current Approaches

a client-server way (i.e., adopting some kind of remote procedure call mech-
anism). Client-server middleware systems like Jini [65], and message-oriented
middleware like UPnP [150] and JADE [10], are examples of middleware in-
frastructures rooted on a direct coordination model.

The model

Since, from a software engineering point of view, all the implementations of
direct coordination models are rather similar, here, for simplicity, we will focus
the description according to the terminology adopted by the Jini middleware
(see Fig. 3.1). At the end of this section we will briefly review the main
differences between client-server and message passing implementations.

The main service offered by direct communication models, like Jini, is
lookup and discovery. The main idea at the bottom line of this service is
to provide agents with a shared middleware in which they can store their
identities and capabilities, and in which they can look for other identities and
declared capabilities to find suitable interaction partners. In particular, this
service can be implemented by means of either white or yellow pages.

• A white page server basically provides a database where agents can store
their name together with the network address and port they are listening
to. Agents connect to the server either to publish themselves on the net-
work by storing their own identities, or to look for the address of agents
with which they want to interact. After obtaining such information agents
can communicate directly (i.e., through sockets) with each other. Although
this service decouples the agent symbolic names from the host in which
they are running, it actually requires an a priori (i.e., compile time) ac-
quaintanceship between the agents.

• A yellow page complements white pages, by allowing an agent to associate
a machine readable description of their capabilities with their network
address. This allows a better decoupling of agent interaction, in that an
agent can look for the specific service it needs, disregarding the identity
of the agent providing that service.

In Jini, for example, a specific lookup and discovery server provides the
above functionalities. To give agents access to the server it is possible to install
it at a well-known network address, or the agents can start a local network
broadcast search.

Once an agent connects to a newly discovered one, a communication prob-
lem arises: the agents need to talk the same language. Earlier proposals, like
Jini, adopt a client-server approach: agents export an interface (in the object-
oriented sense) and other agents can invoke methods on that interface disre-
garding the methods’ actual implementation. More recent proposals like JADE
[10] do not encode the agents’ interaction by means of method invocation, but
by means of formatted text messages. Agents receiving such messages must



3.3 Inadequacy of Current Approaches in Supporting Coordination 33

be able to understand the message syntactic and semantic content to decide
which action to undertake. Such understanding is typically promoted by the
adoption of shared ontologies between agents [10].

Discovery


Discovery


Discovery
 Register


Register
Lookup


Use


Lookup Service


Client


Service


Service


Fig. 3.1. Direct coordination: Jini main operations

Inadequacy

One problem of direct coordination approaches, as promoted by the adoption
of the Jini middleware or of an alike middleware, is that agents have to interact
directly with each other and can hardly sustain the openness and dynamics
of near future computing scenarios. Firstly, explicit and expensive discovery
of communication partners – as supported by directory services – has to be
enforced for enabling agents that do not previously know each other to inter-
act. Secondly, agents are typically placed in a “void” space: the model, per
se, does not provide any contextual information: agents can only perceive and
interact with (or request services from) other agents, without any higher-level
contextual abstraction.

In the case study scenario, tourists have to explicitly discover locations of
art pieces and of other tourists. Also, to orchestrate their movements, tourist
must explicitly keep in touch with each other and agree on their respective



34 3 The Role of Coordination and the Inadequacy of Current Approaches

movements by direct negotiation. These activities require notable computa-
tional and communications efforts and typically end up with ad hoc solutions
– brittle, inflexible, and nonadaptive – for a contingent coordination problem.

To better clarify these ideas, let us focus the attention on the meeting
problem in the museum case study. Specifically, let us consider the case in
which a group of agents wants to meet in the best room according to the
current locations of the agents (i.e., at the center of gravity of their current
positions). The pseudo-code in Fig. 3.2 implements an agent performing the
meeting application by exploiting the services of a Jini-like middleware.

01: // register myself to the discovery middleware

02: middleware.register(this)

03: // get a reference to the other agents in the meeting group

04: for every name in the meeting group

05: agent[i] = middleware.get(name)

06: end for

07: // get the museum map

08: museum = middleware.get(MuseumMap)

09: //proceed with the meeting

10: while not meet

11: // find where the other agents are

12: for every agent in agent[]

13: location[i] = agent[i].getLocation()

14: end for

15: // compute the best room for the meting on the basis

16: // of the agent current locations and museum map

17: room = computeBestRoom(museum, location[])

18: // move toward the meting room

19: goTo(museum, room)

20: end while

Fig. 3.2. Pseudo code of the meeting application with a direct coordination mid-
dleware

Looking at the pseudo-code, the problems inherent in direct coordina-
tion models are immediately evident. First of all, the system relies on global
middleware services that can be difficult to implement and can represent a
bottleneck or a single point of failure. Secondly, the system does not cope
gracefully with situations in which agents can dynamically join or leave the
meeting group (in rows 4-6 and 12-14, the members of the meeting group are
supposed to be fixed). Thirdly, a notable decision burden is left to the agents.
Agents have to exchange information about their current positions and eval-
uate by themselves the best room for the meeting, by merging information
about the museum map and other agent current locations (row 17). Moreover,
they have to implement some navigation (i.e., routing) algorithm to move to



3.3 Inadequacy of Current Approaches in Supporting Coordination 35

the destination room within the museum map (row 19). Whenever some con-
tingency occurs or some new information is available (i.e., a room in the path
of an agent is discovered to be so crowded that it should be best avoided), the
agents have to explicitly renegotiate a new meeting point.

For all these reasons, direct coordination models are not suited to effec-
tively support agent coordination activities in dynamic scenarios.

3.3.2 Shared Data Space Models

Coordination models based on shared data spaces support agent interactions
with the mediation of localized shared data structures, which agents can read
and write, and which could also be used for representing contextual informa-
tion. These data structures can be hosted in some data space such as a tuple
space, as in EventHeap [66], JavaSpaces [39], and TSpace [83], or they can
be carried by agents themselves and dynamically merged with each other to
enable interactions, as in Lime [112] or XMiddle [96].

The model

Let us refer to the tuple space model, the most general and widely used model
based on shared data spaces.

A tuple space is a shared, associatively addressed, memory space, orga-
nized as a multiset, i.e., as a bag of tuples. The tuplespace concept was origi-
nally proposed in the context of the Linda coordination language [43], and has
recently received renewed attention because of several innovative proposals,
like Sun’s JavaSpaces [39].

The basic element of a tuple space system is the tuple, which is simply a
vector of typed values, or fields. Templates are used to associatively address
tuples by pattern matching. A template (often called anti-tuple) is also tuple,
but with some (zero or more) fields in the vector replaced by typed place-
holders (with no value) called formal fields. A formal field in a template is
said to match an actual tuple field if they have the same type, whatever
the value in the actual field of the tuple. If the field of the template is not
formal, both fields must also have the same value to match. Thus, a template
matches a tuple if they have an equal number of fields, with types respectively
corresponding, and each field of the template matches the corresponding tuple
field.

A tuple is created by an agent and placed in a tuple space by a write prim-
itive (called in in the original version of Linda). Tuples are read or extracted
by a tuple space with read and take primitives respectively (the latter called
out in the original version of Linda), which take a template and return the first
matching tuple. Since a tuple space is an unstructured multiset, the choice
among multiple matching tuples is arbitrary and implementation-dependent.
Most tuple space implementations provide both blocking and non-blocking
versions of the tuple retrieval primitives. A blocking read, for example, waits



36 3 The Role of Coordination and the Inadequacy of Current Approaches

until a matching tuple is found in the tuple space, whereas a non-blocking ver-
sion will return a “tuple not found” value if no matching tuple is immediately
available.

Tuple spaces provide a simple, yet powerful mechanism for agent coordi-
nation. Tuple space-based programs are easier to write and maintain, because
tuple-based interactions uncouple interacting agents. Destination uncoupling
is enforced because the creator of a tuple requires no knowledge about the fu-
ture use of that tuple, i.e., about which other agent will read that tuple. Time
uncoupling is enforced because tuples have their own life span, independent of
the life cycle of the processes that generate them, or of the processes that may
read them in the future. These two types of uncoupling enable time-disjoint
processes and processes that do not know each other to coordinate seamlessly.

In addition, tuple-based coordination models provide for notable flexibility,
which is an important requirement for open and dynamic software systems.
Lacking a schema or a predefined organization, a tuple space does not re-
strict the format of the tuples it stores or the types of data it can contain,
thus making it suitable for unexpected types of interactions. In addition, the
scalability of a tuple space system is provided by the complete anonymity of
tuple operations. No one has to keep track of connected processes to a specific
tuple space. Thus, it is possible to conceive systems based on a multiplicity
of independent localized tuple spaces [112], to enforce locality in interactions
(see Fig. 3.3).

Agent


Agent


Agent


Shared Space

Shared Space


Take


Take


In


In


Read


Fig. 3.3. Shared data space model: main operations on a tuple space, as provided
in Javaspaces



3.3 Inadequacy of Current Approaches in Supporting Coordination 37

Inadequacy

When adopting a tuple-based coordination model (i.e., when developing appli-
cations exploiting a middleware relying on tuple-based services), agents are no
longer strictly coupled in their interactions, because shared tuple spaces me-
diate interactions promoting uncoupling. Also, a shared localized tuple space
can be effectively used as a repository of local, contextual information. Still,
such contextual information can only represent a strictly local description of
the context that can hardly support the achievement of global coordination
tasks.

In the case study, one can assume that the museum provides a set of
tuple spaces, storing information such as a list of nearby art pieces as well
as message tuples left by the other agents. Tourists can easily discover what
art pieces are near them, but to locate a distant art piece they should query
either a centralized shared tuple space or a multiplicity of localized tuple
spaces, and agents have to internally synthesize all the information to compute
the best route to the target. To meet with each other, tourists can build an
internal representation of the other people’s positioning by accessing several
distributed data spaces, by reading tuples reporting about their presence, and
then by locally computing a path in the museum. However, the availability of
such information does not free them from the need for negotiating with each
other to orchestrate movements.

The pseudo-code in Fig. 3.4 implements an agent performing the meeting
application by accessing a shared (Javaspaces-like) tuple space middleware.
Here, we have assumed the presence of a global space (whether provided by
a specific server or obtained by merging agents’ private spaces) on which all
the agents can post and retrieve information in the form of tuples. It is rather
easy to see that this kind of middleware is much more suited to manage
open meeting groups than direct coordination middleware. In fact, the space
uncouples the interaction between the agents in the meeting group (on rows 7-
9, the agent retrieves tuples independently for who actually wrote them), and
somehow provides a suitable means by which to access contextual information
(i.e., the location of other tourists). However, in our opinion, a key problem
is that agents are left alone in discovering relevant contextual information,
in evaluating and possibly negotiating a meeting room, and in navigating
across the museum (rows 12-14). This can lead to noticeable computational
and communication burden.

It is fair to say that models like MARS [22] and TuCSoN [121], by relying
on programmable tuple spaces, are better suited for dealing with coordination.
In fact, agents can program the middleware so that it can perform low-level
coordination tasks on the agents’ behalf. In the case study, for example, an
agent could program the middleware to properly aggregate relevant informa-
tion about other agent locations. In this way the agent would have access to
the already aggregated information without the burden of doing it on its own.



38 3 The Role of Coordination and the Inadequacy of Current Approaches

01: // get the museum map

02: Tuple mapT = new Tuple("MUSEUM MAP")

03: museum = middleware.read(mapT)

04: // proceed with the meting

05: while not meet

06: // find where the other agents are

07: Tuple readT = new Tuple("MEETING", *, *)

08: Tuple[] locT = middleware.read(readT)

09: location[] = parse(locT[])

10: //compute the best room for the meting on the basis

11: // of the agents current location and museum map

12: room = computeBestRoom(museum, location[])

13: // move toward the meting room

14: goTo(museum, room)

15: // update my location

16: Tuple writeT = new Tuple("MEETING", this,this.getLocation())

17: middleware.write(writeT)

18: end while

Fig. 3.4. Pseudo-code of the meeting application with a shared data space middle-
ware

3.3.3 Event-Based Models

Event-based models relying on publish/subscribe mechanisms make agents in-
teract with each other by generating events and by reacting to events of in-
terest, without having them to interact explicitly with each other. Typical
infrastructures rooted on this model are Jedi [26] and Siena [23]. In [35] is
presented a complete survey on this kind of model.

The model

A software event is a piece of data generated to indicate that something has
occurred in a system, e.g., a user moved the mouse, or a datagram has arrived
from the network, or a sensor has detected that someone is knocking at the
door. All of these occurrences can be modeled as events, and information
about what happened can be included as attributes in the events themselves.

Event-based programming, i.e., writing software systems in terms of event
processing, is a commonly accepted practice: programming becomes a process
of specifying “when this happens, do that.” This is particularly evident in
graphics programming: if the mouse moved, move the cursor with it; if the
user clicks this button, execute that procedure.

The simplicity of event-based programming is a key to its success: iden-
tify the events of interest; identify who (which processes/objects/agents) are



3.3 Inadequacy of Current Approaches in Supporting Coordination 39

interested in handling those events; and identify what procedures event han-
dlers have to execute upon the occurrence of specific events. Events and event
handlers are coupled by exploiting a publish-subscribe schema: agents inter-
act by publishing events and by subscribing to the classes of events they are
interested in (subscriptions are associated with event handlers). An operating
system component, called event dispatcher, is in charge of collecting subscrip-
tions and events, and of triggering the proper reactions in event handlers (see
Fig. 3.5).

In distributed systems, event-based programming can be supported by
means of middleware services acting as event dispatchers, in charge of col-
lecting subscriptions from agents interested in specific classes of events, and
in charge of distributing events (i.e., in triggering reactions) to subscribers
whenever appropriate. A variety of schemas can be conceived for subscrip-
tions [26] (e.g., subscribing to specific classes of events, or to events whose
attributes match a specific template, or to events occurring at specific sites
and/or at specific times). A variety of solutions can also be conceived for how
to implement event dispatchers (e.g., centralized vs. distributed) and for how
to distribute events to subscribers (e.g., broadcasting vs. direct forwarding).

Whatever the solution adopted, event-based coordination models clearly
provide for full uncoupling among interacting entities (the same as tuple space
models), and also provide for an effective way to achieve contextual informa-
tion at runtime (indeed, an event represents something that has happened in
a context).

Inadequacy

The fact that event-based models promote both uncoupling (all interac-
tions occur by asynchronous and typically anonymous events) and context-
awareness (agents can be considered as embedded in an active environment
capable of notifying them about what is happening) represent important fea-
tures for large-scale, open, and dynamic systems.

In the case study example, a possible use of an event-based approach would
be to have each tourist notify his movements across the building to the rest
of the group. Notified agents can then easily obtain an updated picture of the
current group distribution in a simpler and less expensive way than required by
adopting shared data spaces. However, such information still relies on agents
for the negotiating of coordinated movements and does not alleviate their
computational tasks (i.e., in the case study, tourists still have to explicitly
negotiate their movements, as from the pseudo-code in Fig. 3.6).

It is rather easy to see that here agents are indeed provided with an ac-
tive middleware that notifies them about other agents’ movements (the react
method in row 9 is invoked by the middleware upon the detection of an agent
movement). However, agents need to process these events on their own and,
in this case, the computeBestRoom and goTo methods can be source of com-
plexity, brittleness and inflexibility.



40 3 The Role of Coordination and the Inadequacy of Current Approaches

Subscribe


Event Dispatcher


Subscriptions


Fire Event


Trigger Reaction


Match!


Agent


Agent


Agent


Fig. 3.5. Event based model: publish-subscribe operations

3.4 Requirements for Next-Generation Coordination
Models and Systems

In this chapter, we have outlined the fundamental role of coordination for
the engineering of adaptive self-organizing applications. At the same time,
we have shown how current coordination models and infrastructures appear
inadequate to the needs of emerging computing scenarios.

To summarize, the key characteristics that a proper coordination model
should exhibit include

• the uncoupling of application agents, to properly facilitate spontaneous
interactions and coordination activities in an open world;

• the integration of expressive means to acquire context-awareness, in or-
der to facilitate agents in actually exploiting such information for their
application purposes;

• the promotion of locality in interactions, to support scalability in large-
scale and decentralized systems.

In the following chapter, we introduce field-based coordination as a poten-
tial candidate meeting the above requirements.



3.4 Requirements for Next-Generation Coordination Models and Systems 41

01: main() {

02: // get the museum map

03: museum = middleware.read(map)

04: // subscribe to other agents movements

05: Event newLocation = new Event("MEETING",*,*)

06: middleware.subscribe(newLocation)

07: }

08:

09: react(Event newLocation) {

10: // update my internal representation of the agents distribution

11: location[].add(newLocation.source, newLocation.location)

12: //compute the best room for the meting on the basis

13: // of the agents current distribution and museum map

14: room = computeBestRoom(museum, location[])

15: // move toward the meting room

16: goTo(museum, room)

17: // notify other agents about my movement

18: Event move = new Event("MEETING", this,this.getLocation())

19: middleware.fireEvent(move)

20: }

Fig. 3.6. Pseudo-code of the meeting application with an event-based middleware



http://www.springer.com/978-3-540-27968-6




