5

Invariant measures for Markov semigroups

We are given a Hilbert space H (inner product (-,-), norm | -|). We
shall use the following notations.

B(z,r) is the open ball in H with centre x and radius r > 0.
Cy(H) (resp. By(H)) is the Banach space of all uniformly continuous
and bounded mappings (resp. Borel bounded mappings) ¢: H — R
endowed with the norm

lello = sup |¢(z)].
zeH

L(Cy(H)) (resp. L(By(H))) is the space of all linear bounded oper-
ators from Cy(H) (resp. By(H)) into itself.

C;7(H) (resp. B; (H)) represents the cone in Cy(H) (resp. Cy(H))
consisting of all non-negative functions, and 1 the function on H
identically equal to 1.

Cy(H)* is the topological dual of Cy(H).

P (H) is the space of all probability measures on (H, Z(H)) where
P (H) is the o-algebra of all Borel subsets of H.

There is a natural embedding of &(H) into Cy(H)*. Namely, for
any u € Z(H) we set

Fu@) = [ el@ulde), ¢ e CyH).

In the following we shall often identify p with F),.

5.1 Markov semigroups

Definition 5.1 A Markov semigroup P, on By(H) is a mapping

[0,+00) — L(By(H)), t~ P,
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such that

(i) Py =1, Pys = P,Ps for all t,s > 0.
(i) For anyt > 0 and x € H there exists a probability measure m (x,-) €
P(H) such that

Pip(z) = /H o(y)mi(x,dy)  for all p € By(H). (5.1)

(iii) For any ¢ € Cy(H) (resp. By(H)) and x € H, the mapping t —
Pip(x) is continuous (resp. Borel).

Obviously, by (5.1) it follows that for ¢ = 0,
mo(x, ) =65, x € H,

where ¢, is the Dirac measure at z.

We notice that in the literature one requires usually only (i) and (ii)
in the definition of Markov semigroup P;. In this case condition (iii)
means that P, is stochastically continuous, see e.g. [10].

Definition 5.2 Let P, be a Markov semigroup.

(i) P, is Feller if Pip € Cy(H) for any ¢ € Cy(H) and any t > 0.
(ii) P, is strong Feller if Py € Cy(H) for any ¢ € By(H) and any
t> 0.
(i4i) Py is irreducible if P1p(y, () > 0 for all x,20 € H, r > 0 and
anyt > 0.

Let us give some general properties of a Markov semigroup P;. First,
notice that by (5.1) we have P,1 = 1 for all ¢ > 0 and that P; preserves
positivity, that is Pup € B, (H) for all ¢ € B, (H).

Moreover, since, for any ¢ € Cy(H),

—liello < w(@) <llello, =€ H,

we have
|Prp(x)] < [lpllo, =€ H.

Consequently || Pt[|1,(B,(m)) < 1, for any ¢ > 0. That is P is a semigroup
of contractions on By(H).

Let us give now some properties of the family of measures m(z, -)
(called a probability kernel).

By (5.1) it follows that for any E € #(H) we have

m(x, E) = Plg(z), t>0, x€ H. (5.2)

Moreover, the following useful result holds.
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Proposition 5.3 Foranyt,s >0, x € H and any E € B(H) we have

Teys(z, E) :/HTrs(y,E)Wt(az,dy). (5.3)

Proof. We have in fact, taking into account the semigroup property of
P, (5.2) and (5.1),

firs(2, E) = Prvslp(z) = Pro(-, E)(2) = /H sy, E)mi(z, dy).

O

Example 5.4 Let us consider the differential equation

{X'(t) — b(X(1)),
X(0) = z, (5.4)

on H = R™ where b: H — H is Lipschitz continuous. As is well known,
there exists a unique solution X (¢, z) of problem (5.4). Set

ﬂ't(l', ) = 5X(t,:c)7 x € R".
Then it is easy to see that the transition semigroup
Pip(z) = (X (t,x)), ¢ € By(R") (5.5)

is a Markov semigroup.

Exercise 5.5 (i) Prove that semigroup P, defined by (5.5), is Feller.
Is P, strong Feller?

(ii) Prove that P; is strongly continuous in Cy(H) if and only if b is
bounded.

Example 5.6 Let us consider the stochastic differential equation

dX = b(X)dt ++/C dB(t),
X(0) ==, (5.6)
on H = R"™ where B is a standard Brownian motion in a probabil-

ity space (92, #,P) with values in H, b: H — H is locally Lipschitz
continuous, C € L(H) and Hypothesis 4.23 is fulfilled.
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Then by Proposition 4.3 there exists a unique continuous stochastic
process X (-, ), the solution of problem (5.6). Set

m(z, B) = (X(t,2)4P)(E), z€R", E e B(R").

Then the transition semigroup

BMMZEM@wwﬂzéwwm@dw,weBWﬂ, (5.7)

is a Markov semigroup as easily checked.

Exercise 5.7 Prove that the semigroup P;, defined by (5.7), is Feller.

5.2 Invariant measures

In this section P; represents a Markov semigroup on H. A probability
measure 4 € & (H) is said to be invariant for P; if

/ Produ = / wdp  for all p € By(H) and t > 0. (5.8)
H H

If P, is Feller this condition is clearly equivalent (identifying p with F},)
to

Pfu=p forallt>0, (5.9)
where P} is the transpose operator of F;, defined as
<907Pt*F> = <PtQ07F>7

for all ¢ € Cy(H), F € Cy(H)*. ()
If p € #(H) is invariant for P; we have

pA) = Pru(A) = [ Paa(@nd), Ae (),
from which, recalling (5.8),
u(A) = /H mile, Ap(dz), A e B(H). (5.10)

A first basic result is the following.

(1) (.} represent the duality between Cy(H) and Cy(H)*.



Chapter 5 73

Theorem 5.8 Assume that u is an invariant measure for P.. Then for
allt > 0, p > 1, P, is uniquely extendible to a linear bounded operator
on LP(H, p) that we still denote by P;. Moreover

I Pl ooy <1, t>0. (5.11)

Finally, Py is a strongly continuous semigroup in LP(H, ).

Proof. Let ¢ € Cy(H). By the Holder inequality we have

\Ptso(fv)lpS/H\@(y)lpﬂt(ﬂf,dy)=Pt(!<f>|p)($)~

Integrating both sides of the above inequality with respect to p over H
yields

[ IPe@Putn) < [ PlleP)@ntde) = [ o) utde)

in view of the invariance of p. Since Cy(H) is dense in LP(H, ), Py is
uniquely extendible to LP(H, p) and (5.11) follows.

Let us show finally that P; is strongly continuous in LP(H, u). First
let ¢ € Cy(H). Then, by property (iii) in Definition 5.1 of P, we have
that the function ¢ — Pyp(x) is continuous for any = € H. Conse-
quently, by the dominated convergence theorem

lim Pip = in LP(H, p).

The same assertion follows easily when ¢ € LP(H, ) by the density of
Cy(H) in LP(H,p). O

Let p be an invariant measure for P;. We are going to study the
asymptotic behaviour of Py, for ¢ € L?(H, u). This is obvious when
P,p = ¢ for all ¢ > 0. In this case we say that ¢ is stationary. In
general, given ¢ € L2(H, ), one can ask whether there exists the limit

Jim Pip(z), (5.12)

or, if not, if there exists the limit of the means

1T
TEIBOOT/O Pyp(x)ds. (5.13)

We shall prove indeed that this limit always exists in L?(H, u) (Von
Neumann theorem).
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If in addition it happens that
1 T
lim — P, = in L2(H 5.14
Tirile/o o (x)dt /deu in L°(H, ), (5.14)

for all ¢ € L?(H, i), P; is said to be ergodic. In this case the identity
(5.14) is interpreted in physics by saying that the “temporal” average
of Py coincides with the “spatial” average of .

It can also happen in particular that

lim Pttp(ﬂf):/ wdp in L*(H, p). (5.15)
H

t—-+oo

In this case P, is said to be strongly mizing.

Existence and uniqueness of invariant measures will be proved in
Chapter 7. We conclude this introduction by giving two examples of
invariant measures.

Exercise 5.9 Consider the ordinary differential equation,
Z'(t)=2(t) - 2°(t), Z(0) =z,

and the corresponding transition semigroup
Pip(x) = o(Z(t,x)), ¢ € Co(H).

Prove that P; is a Markov semigroup and that m(z, E) = 0z(;.)(F), £ €
BR), t>0, z R

Show moreover that measures dg,d; and d_; are invariant, ergodic
and strongly mixing.

Exercise 5.10 Consider the stochastic differential equation in R,
dX(t) =—-X(t)dt +dB(t), X(0)==x,

whose solution X (t,x) is given by the Ornstein—Uhlenbeck process (see
Proposition 4.10),

t
X(t,x)=e "'z +/ e 9dB(s), t>0, z cR.
0
Prove that

€

m(x, ) = N, “tz, 1 (1—e~2t) reR, t>0.

Show moreover that the measure 4 = N1 is invariant, ergodic and
2
strongly mixing.

Hint. Check that (5.8) holds for ¢(z) = ¢* where h € R.
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In order to study the behaviour of limTHJroo% fOT Ppdt, we need
some general result about the averages of the powers of a linear oper-
ator, proved in the next section.

5.3 Ergodic averages

We are given a linear bounded operator T' on a Hilbert space E (norm
| - ||, inner product (-,-)).® We set

1 n—1
anﬁ ];)Tk, neN.

Theorem 5.11 Assume that sup,cy ||T"] < +o00. Then there exists
the limit
lim M,z := Myx forallx € E. (5.16)

n—oo
Moreover My, € L(H), M2 = My, and My (E) = Ker (1 —1T).
Proof. First notice that the limit of (M,,x) certainly exists when either
x € Ker (1—=T),o0r z € (1—T)(FE). In fact in the first case we have

obviously
lim M,z =x forallze€ Ker (1-1T),

n—oo

and in the latter we have

lim M,z =0 forallze (1-T)(F),

because
(1= T)M, = My(1 —T) = % (1—T™), nel. (5.17)
Consequently we also have
lim M,z =0 foralze (1-T)(E), (5.18)

n—oo

where (1 — T')(E) is the closure of (1 —T')(E).

Now let « € F be fixed. Since ||M,,z||,en is bounded by assumption,
there exists a sub-sequence (ny) of N, and an element y € H such that
M,z — y weakly as k — oo. By (5.17) it follows also that T'M,, z —
Ty =y, so that y € Ker (1 —1T).

) Later we shall take E = L?(H, ).
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Now we prove that M,z — y. First note that, since y € Ker (1-T),
we have M,y =y, and so

Mnx:Mny+Mn(x_y) :y+Mn(x_y)' (5'19)

We claim that x —y € (1 — T)(FE), which will prove (5.17) by (5.16).
We have in fact
r—y= lim (z — My, z),

k—o0

and x — My, x € (1 —T)(E) because

ne—1

1 h
x—Mnkx:n—k Z(l—T K
h=0
1 ne—1
=— > A+T+..+T"1-T)a.
[y

Therefore (5.16) holds.

Finally, since (1 — T)M,, — 0, we have M*> = TM®, so that
TFM>® = M>, k € N, and M>® = M, M>, which yields as n — oo,
M™> = (M*>)?, as required. [J

5.4 The Von Neumann theorem

In this section we assume that there is an invariant measure p for the
Markov semigroup P;. This will allow us to extend the semigroup P,
to L2(H, ), as proved in Theorem 5.8.

We denote by ¥ the set

Y= {feL*H,p): Pf=f, pae foralt>0} (5.20)

of all stationary points of P;. Clearly ¥ is a closed subspace of L?(H, )
and 1 € 3.
Let us consider the average

1 T
M(T)wzf/o Pupdt, @€ L*(H,p), T > 0.

Theorem 5.12 There exists the limit

Jim M(T)p =: Moo in L*(H, p). (5.21)
— 00
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Moreover My, is a projection operator on X, and

/H Moopdp = /H wdji. (5.22)
Proof. For all 7' > 0 write
T=np+rp, npeNU{0}, rpr€][0,1).
For ¢ € L?(H, 1) we have
1 "l rkl

1 T
M(T)p = T Z A Pspds + T/ Pspds
k=0 nr

npr—1

1 1 1 [rr
= T Z /0 P ppds + T /0 Ps-l—n(T)(pdS
k=0

1 npr—1

nr k rr n
= = — P))M(1 —(P))"T M ) 5.23
T o 2 BIMWe R (5:2)
Since ny -
T Tl e

letting n — oo in (5.23) and invoking Theorem 5.11, we get (5.21).
We prove now that for all ¢t > 0

Moo Py = P,Myo = M. (5.24)

In fact, given t > 0 we have

1 /T 1 [t+T
My Py = lim —/O Piyspds = lim T/t Pspds

T—oo T T—o0
T t T+t
= lim — / Pscpds—/ Psgods—{—/ Pspds
T—o0 0
= Moo

and this yields (5.24).
By (5.24) it follows that M., f € X for all f € L?(H, j1), and more-
over that
Mo M(T) = M(T)Ps = Moo,
which yields, letting T — oo, M2 = M. Finally, (5.22) follows, by
integrating (5.21) with respect to p. O
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5.5 Ergodicity

Let p be an invariant measure for P;. We say that p is ergodic if

1 T
Jim T/ Pipdt =3 for all p € L*(H, ), (5.25)
— 00 0

where
7= | el@nlda).

Proposition 5.13 Let u be an invariant measure for P;. Then p is er-
godic if and only if the dimension of the linear space ¥ of all stationary

elements of L*(H, ) defined by (5.20) is 1.

Proof. If u is ergodic it follows from (5.25) that any element in ¥ is
constant, so that dimension of 3 is 1. Conversely assume that dimension
of ¥ is 1. Then there is a linear bounded functional F on L?(H, ;1) such
that

Moo = F(p)1.

By the Riesz representation theorem there exists an element ¢g €
L?(H,p) such that F(p) = (p,¢q). Integrating this equality on H
with respect to p and taking into account the invariance of My, (see
(5.22)), yields

/HMoo<pdu:/Hs0du:<so,1>:<90,soo>, ¢ € L*(H, p).

Therefore ¢g = 1. [J

Let i be an invariant measure for P;. A Borel set I' € #(H ) is said
to be invariant for P; if its characteristic function 1p belongs to 3. If
w(T) is equal to either 0 or 1, we say that I is trivial, otherwise it is
nontrivial.

We now want to show that u is ergodic if and only if all invariant
sets are trivial. For this it is important to notice that X is a lattice, as
proved in the next proposition.

Proposition 5.14 Assume that p and v belong to 3. Then the follow-
ing statements hold.

(i) ] € X.
(ii) o*, o~ € %O
©) o+ = max{p,0}, = = max{—¢, 0}.
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(ii) oV 1p, o Ap € 8.3
(iv) For any a € R we have 1i,ch. o(x)>a) € -
Proof. Let us prove (i). Let ¢ > 0 and assume that ¢ € ¥, so that
o(z) = Pyp(x). Then we have
()| = |Pip(z)| < Pi(lel)(x), =€ H. (5.26)

We claim that
lp(z)] = P(l¢|)(z), p-as.

Assume by contradiction that there is a Borel subset I C H such that
p(I) >0 and

o) < PileD(x), zel

Then we have

[ le@lntdn) < | P @pn(ds).
H H

Since, by the invariance of p,

| Pieh@ntds) = [ 1¢l@nldo).
H H

we find a contradiction.
Statements (ii) and (iii) follow from the obvious identities

1 1
ot = s Fleh, v =5 —l¢l),

eV =(p—)"+9, oA =—(p—¥)" +o.

Finally let us prove (iv). It is enough to show that the set {¢ > 0}
is invariant, or, equivalently, that 14, belongs to 3. We have in fact,
as it is easily checked,

sy = nlggo on(z), =€ H,

where p, = (npt) A1, n € N, belongs to ¥ by (ii) and (iii). Therefore
{¢ > 0} is invariant. O
We are now ready to prove the following result.

Theorem 5.15 Let i be an invariant measure for P;. Then p is ergodic
if and only if any tnvariant set is trivial.

(max{gp’ 1/}}, e AN 1/J = min{go, 1/’}
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Proof. Let I' be invariant for p. Then if u is ergodic 1p must be
constant (otherwise dim ¥ > 2) and so I is trivial. Assume conversely
that the only invariant sets for p are trivial and, by contradiction,
that p is not ergodic. Then there exists a non-constant function ¢y €
>.. Therefore by Proposition 5.14 for some A € R the invariant set
{¢o > A} is not trivial. O

5.6 Structure of the set of all invariant measures

We still assume that P, is a Markov semigroup on H. We denote by A
the set of all its invariant measures and we assume that A is non-empty.
Clearly A is a convex subset of Cy(H)*.

Theorem 5.16 Assume that there is a unique invariant measure (i
for P;. Then p is ergodic.

Proof. Assume by contradiction that p is not ergodic. Then there is a
nontrivial invariant set I'. Let us prove that the measure ur defined as

ur(A) = M(}) WANT), AeB(H),

belongs to A. This will give rise to a contradiction.
Recalling (5.10), we have to show that

pr(4) = [ mle, Apr(ds), A€ B(H)

or, equivalently, that

W(ANT) = /F (e, Au(de), A e B(H). (5.27)

In fact, since I' is invariant, we have
Pt]-F - 1Fa Pt]-FC - ]—Fca t Z 07

and so
m(x,T) = 1p(x), m(x, 1) = 1pe(z), t>0.

Consequently,

m(x, ANT) =0, pra.e. inl and m(z, ANT) =0, p-a.e. in°,
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and so

/Fm(x,A)u(da:) = /Fm(ac,A NT)u(dx) + /Fm(x,A NT)u(dx)

:/wt(x,AﬂF)u(dm) :/ mi(w, AN T)u(de) = p(ANT),
N H

and (5.10) holds. O
We want now to show that the set of all extremal points of A is
precisely the set of all ergodic measures of P;. For this we need a lemma.

Lemma 5.17 Let p,v € A with v ergodic and v absolutely continuous
with respect to . Then p = v.

Proof. Let I' € #A(H). By the Von Neumann theorem there exists
T, T oo such that

1 I
nhqrgoT—N ; Plrdt = u(T), p-a.e. (5.28)
Since v < p, identity (5.28) holds also v-a.e. Now integrating (5.28)
with respect to v yields

1 Ty
lim — / (/ Ptlpdl/> dt = v(I"), p-a.e.
n—co Ty Jo H

Consequently v(I') = p(I") as required. O
We can now prove the announced property of A.

Theorem 5.18 The set of all invariant ergodic measures of P, coin-
cides with the set of all extremal points of A.

Proof. We first prove that if p is ergodic then it is an extremal point
of A. Assume by contradiction that y is ergodic and it is not an extremal
point of A. Then there exist pi, ua € A with pu; # p2, and o € (0,1)
such that

p=oypr + (1 —a)ps.

Then clearly p; < p and po < p. By Lemma 5.17 we get a
contradiction.

We finally prove that if p is an extremal point of A, then it is
ergodic. Assume by contradiction that p is not ergodic. Then there
exists a nontrivial invariant set I'. Consequently, arguing as in the proof
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of Theorem 5.16, we have ur, ure € A. Since

p=p()pr + (1 — () pre,
we find that p is not extremal, a contradiction. [J

Theorem 5.19 Assume that p and v are ergodic invariant measures
with u # v. Then u and v are singular.

Proof. Let I' € #(H) be such that u(T") # v(I'). From the Von Neu-
mann theorem it follows that there exists T}, T +oo and two Borel sets
M and N such that u(M)=1,v(N) =1, and

1 In
lim 7/ (P1.)(2)dt = u(T), ¥ z € M,
n J0

1T
lim 7/ (P1.)(2)dt = v(T), Yz € N.
n—oo n 0

Since pu(I') # v(I') this implies that M N N = &, and so p and v are
singular. [J
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