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Introduction

Waves are everywhere around us. We rely on light and sound to sense
our immediate surroundings. Radio waves and microwaves are indispensable
means of communication. Water waves are responsible for the ocean’s perpet-
ually dynamic image. Quantum waves associated with electrons and atoms,
while not directly visible, are important in maintaining the structure and sta-
bility of solids. With such a ubiquitous presence, wave phenomena naturally
occupy a central position in our study of the physical world. Indeed, for waves
in simple systems and ordered structures, an extensive literature already ex-
ists. However, for the more difficult problem of waves in disordered media, i.e.,
multiply scattered waves, a coherent (but by no means complete) understand-
ing has only recently emerged, and from what is already known the picture is
very different from that we normally associate with waves. In particular, the
possibility that a wave can become localized in a random medium is especially
intriguing because localization involves a change in the basic wave character.
A localized wave has no spatial periodicity or possibility for transport and
thus requires a new theoretical framework for its description and understand-
ing. The purposes of this volume are to delineate the main features of this
emerging picture of wave behavior in disordered media and to introduce the
theoretical techniques for describing these features. Mesoscopic phenomena,
which are the natural manifestations of wave scattering and interference ef-
fects, are also treated. A brief sketch below of the prominent random-wave
characteristics serves as both an introduction to the subject and a map to
what follows.

1.1 Relevant Length Scales

In an infinite, uniform medium, a (plane) wave may be characterized by a fre-
quency and a direction of propagation. In contrast, a wave cannot propagate
freely in a disordered medium because of the many scatterings it encounters.
There are two types of scattering. One type, inelastic scattering, alters both
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the wave frequency and the propagation direction. Another type, elastic scat-
tering, preserves the frequency but alters the propagation direction. This book
is concerned mainly with the effect of elastic scattering. Accordingly, the term
“incoherent” is defined to mean waves having different propagation directions
but the same frequency.

The consequence of multiple elastic scatterings may be described in ac-
cordance with the scale of observation. There are two obvious yardsticks in
the problem. One is the average size R of the inhomogeneous scatterers. If
the density of scatterers is not too low, then the interscatterer separation is
also on the same order as R. Another yardstick is the wavelength λ. The ratio
between R and λ is an important parameter in determining the average dis-
tance of coherent propagation between two scatterings. That distance, usually
called the mean free path, is the relevant length scale for separating the differ-
ent regimes of wave phenomena. When λ � R, the scattering is weak and the
mean free path is large (� R) for classical waves, i.e., electromagnetic and
elastic waves. In addition, the scatterers and their placement geometry are
beyond the resolution limit of the wave. Therefore, on the local scale of one to
two mean free paths or less, a disordered medium appears as a homogeneous
effective medium to the probing wave. In fact, since all matter is discrete
at the atomic level, our everyday understanding of a uniform homogeneous
medium reflects this effective medium concept. The same effective medium
characterization holds for the quantum wave at the local scale. However, on
the scale of many mean free paths, the effective medium can no longer be a
valid description; even if locally the scattering is weak, over long distances the
scattering effect accumulates and a wave can still be significantly randomized.
When that happens, the result – diffusive transport – is similar to that of a
classical particle undergoing random Brownian motion. The same result holds
for the case of λ<

∼

R, except that the onset of diffusive transport occurs at a
scale comparable to R, and there is no longer a valid effective medium because
the local microstructure can now be clearly resolved by the wave.

1.2 Diffusive Transport

The fact that wave transport can be diffusive has a prominent example in
our everyday experience of heat conduction. From statistical mechanics, it is
well known that heat in electrically insulating solids is carried by randomly
scattered (mostly short-wavelength) elastic waves, called phonons. Since heat
conduction in solids is known to be governed by the diffusion equation even in
the absence of inelastic scattering (Sheng and Zhou 1991), one immediately
concludes that randomly scattered elastic waves transport diffusively.

Despite such clear-cut examples, however, diffusive transport for waves still
raises some important questions concerning basic principles. A basic property
of the wave equation is that of causality, which means that the speed at
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which a wave can carry information is always finite. For the diffusion equa-
tion, however, causality is not valid because the speed of propagation for a
disturbance can be infinite. In addition, directly related to causality is the
phase information of a wave, which is completely absent in diffusion. Just
from this simple consideration it is already clear that the diffusion description
of multiply scattered waves cannot be completely accurate since, whatever its
appearance, the multiply scattered wave is still a solution of the wave equation
(albeit with random coefficients) and therefore must satisfy the basic prop-
erties of its solution. Thus for wave diffusion there should be some deviation
from classical diffusion where the wave character asserts itself. In the past
decades, this expectation was borne out by the experimental demonstration
(Tsang and Ishimaru 1984; van Albada and Lagendijk 1985; Wolf and Maret
1985) of the coherent backscattering effect , or the weak-localization effect as
it is sometimes called, which represents not only a deviation from classical
diffusion, but also the precursor to wave localization.

1.3 Coherent Backscattering and the Approach
to Localization

The coherent backscattering effect means what the name implies: After a
wave is multiply scattered many times, its phase coherence is preserved in the
direction opposite to its incident direction (backscattering direction), but not
in other directions. The reason for this behavior is fully explained in a later
chapter, but we may appreciate some of its consequences here. By preserving
the coherence in the backscattering direction, the probability of backscattering
is enhanced through constructive interference. This leads to a decrease in the
diffusion constant from its classical value, because whatever the direction of
the wave, the increased backscattering tends to drag it back as if the wave
medium were more “viscous” than it should be classically.

From elementary kinetic theory, the diffusion constant may be expressed
as D = (1/3)vl, where v is the velocity of the diffusing “particle” and l is its
elastic collision mean free path. When D decreases, either l or v, or both, may
be the cause. For wave diffusion, the mean free path may be measured as the
distance a plane wave can penetrate into a scattering medium before it loses its
phase front. The velocity v, on the other hand, is a problem because the usual
wave speed, whether the phase velocity or the group velocity, is defined for
wave states that have well-defined wave vectors. Definitions of phase velocity
requires a constant-phase surface perpendicular to the wave vector, and the
definition of the group velocity – the wave vector derivative of frequency –
requires both the wave vector and the dispersion relation between frequency
and wave vector to be well defined. However, in a strongly scattering medium
a wave vector cannot possibly describe a multiply scattered wave state because
such a state has neither a unique direction of propagation nor a unique spatial
periodicity for defining a wavelength. What, then, is the v in the wave diffusion
constant?
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The v relevant to the wave diffusion is the average speed at which the wave
energy is transported locally. In the presence of strong scattering, especially
resonant scattering, this transport velocity can be smaller than the free-space
phase velocity for classical waves (van Albada et al. 1991), but it is always
identical to the group velocity for the quantum wave associated with free
electrons. This striking difference between the classical and the quantum waves
has its origin in the different dispersion relations for the two kinds of waves and
the manner in which the randomness enters the two types of wave equations.
Therefore, through increasingly strong scattering the mean free path must
decrease for the quantum case but both the transport speed and the mean
free path can decrease for the classical waves.

The downward renormalization of the diffusion constant and the coherent
backscattering effect itself have several important features. First, the decrease
in the diffusion constant is proportional to the scattering strength. If the
scattering is weak, the coherent backscattering effect is correspondingly weak
so that it can be ignored in general. But if the backscattering is strong enough,
the decrease in the diffusion constant can make it vanish, thus leading to wave
localization.

Second, the coherent backscattering effect is fully operative only when the
system is time-reversal invariant, meaning that macroscopically there should
be no preferred direction of time established, for example, by a uniform av-
erage velocity of the scatterers or by the presence of a magnetic field. In the
presence of effects that break time-reversal invariance, the correction to the
wave diffusion constant is diminished.

Third, the coherent backscattering is fully effective only when all scatter-
ings are elastic. In the presence of inelastic scattering, which is inevitable in
real materials having various dissipation mechanisms, the coherent backscat-
tering effect is again diminished. However, the manner in which this occurs
is directly coupled to the next feature; that is, the magnitude of the coherent
backscattering effect, manifested in the amount of (negative) correction to
the diffusion constant, is a monotonically increasing function of the physical
sample size. Where the sample size is infinite, the de facto “sample size” is
set by the inelastic scattering rate, because over a distance where there are
several inelastic scatterings, the coherent backscattering can no longer be op-
erative, and that distance essentially becomes the limiting “sample size.” Since
electron inelastic scattering is generally temperature dependent, the combina-
tion of the last two features offers a means by which to observe the coherent
backscattering effect (indirectly) in electronic systems through the tempera-
ture dependence of conductivity in disordered materials.

1.4 Sample Size Dependence

From the point of view of classical physics, the sample size dependence
of the coherent backscattering effect is revolutionary because it makes the
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Fig. 1.1. A schematic of the variation of the renormalized diffusion constant with
sample size, i.e., the scale of observation. The sample size must be larger than the
mean free path before diffusion can be observed. The three cases of weak scattering,
strong scattering, and localization are shown. D(B) denotes the classical Boltzmann
value of the diffusion constant

renormalized diffusion constant no longer intensive, as would generally be
expected, since the diffusion constant belongs to the same class of inten-
sive quantities as density, electrical conductivity, and temperature. Figure 1.1
shows the renormalized diffusion constant schematically as a function of
sample size for three cases.

In the weak scattering limit, the diffusion constant is independent of the
sample size, as expected classically. When the scattering is strong the diffusion
constant is renormalized downward as a function of the sample size, with an
asymptotic value that can be significantly less than its classical value (which is
nonetheless still observable at small sample size). When the asymptotic value
of the renormalized diffusion constant vanishes, then by definition a localized
state is created. Therefore, a pulse injected into a strongly scattering medium
would evolve initially as in a uniform medium, then quickly make a transition
into diffusive transport, accompanied by a gradual slowdown of diffusion over
time. Localization occurs when the overall diffusion is stopped.

Two comments can be made concerning the sample size dependence of
the coherent backscattering effect. First, on the most elementary level, the
backscattering aspect of the effect is responsible for its sample size depen-
dence, because larger samples are more opaque than smaller samples. Thus one
can expect more backscattering and less transmission for the larger samples.
The coherence part of the effect then enhances the backscattering intensity
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from what is expected from ordinary diffusion. Through refinement, this sim-
ple viewpoint can be made quantitative, as will be seen in Chap. 8. Second,
the size dependence is necessary if one looks ahead to localization. When
a wave is trapped by randomness, there appears a new length scale – the
localization length – which naturally introduces sample size dependence into
the physical transport property of the system. Let us expand on this point
below by using the quantum waves associated with the electronic system as
an example.

If one measures the electrical conductivity of a sample in which the elec-
trons are localized – a disordered insulator – the usual measurement at finite
temperatures is expected to yield only the conductivity of the electrons ther-
mally activated from their localized states to some higher-energy mobile states
able to carry electrical current. Now imagine a thought experiment where the
temperature is lowered to absolute zero so that all electrons are in their lo-
calized states. The electrical conductivity of a bulk insulating sample at zero
degree is usually regarded as zero – or too small to be measured. Nevertheless,
if the sample dimension is small enough so that it becomes comparable to the
localization length – a possibility which is increasingly becoming a technolog-
ical reality nowadays – then even an insulator can conduct some electricity.
Conduction can occur because localization prevents the wave, in this case the
quantum wave associated with an electron, only from moving outside the spa-
tial domain defined by the localization length, but the electron can still be
mobile inside the domain of localization. If the edge of the localized domain is
not abrupt but has an exponential tail, then the ability of a localized electron
to conduct electricity would decrease exponentially as a function of the sample
size when its linear dimension increases beyond the localization length. The
result is the sample size dependence of the transport characteristics expected
from localized states. If one did not know about the coherent backscattering
effect but wanted to invent a mechanism for localization, such a mechanism
would need to incorporate some kind of sample size dependence as necessi-
tated by its desired result. From this perspective, the sample size dependence
is an essential and necessary attribute for a localization mechanism.

1.5 Localization and Scaling

Since localization is a major theme of this book, a brief digression on the
development of the localization concept would be helpful. In the early days
of solid-state physics, the recognition that electronic states in a periodic lat-
tice form energy bands was a breakthrough that clarified a basic question
about why some materials are electrically conducting and some are insulat-
ing. In the simplest version of the band picture, electrical conductors have a
half-filled energy band whereas an insulator has filled bands. Mott took the
conductor picture a step further and proposed that if the lattice constant of a
half-filled band conductor can be continuously increased, then at some point
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the conductor becomes an insulator. The rationale behind this hypothesis is
that when the atoms are separated far enough, they will behave as individ-
ual neutral atoms instead of as a metal in which the conduction electrons
can pass freely from one atomic site to the next. The basic physics of the so-
called Mott transition is the Coulomb interaction between the electrons (Mott
1949, 1974). It does not involve disorder. In contrast, Anderson proposed in
1958 that electronic diffusion can vanish in a sufficiently random potential, in
the absence of any electron–electron interaction (Anderson 1958). This pro-
posal, together with Mott’s previous works, formed the theoretical basis for
the study of the metal–insulator transition in doped semiconductors. How-
ever, it was not until the late 1970s and the early 1980s that the Anderson
localization was linked to the coherent backscattering effect and explained
on that basis. At about the same time, the study of Anderson localization
was extended to classical waves, which offer an advantage over the disordered
electronic systems where the Mott mechanism and the Anderson mechanism
are inseparable: In classical waves, the Anderson localization may be studied
alone, without the additional complication of wave–wave interaction. In this
volume, the term “localization” denotes the phenomenon only in the sense of
the Anderson mechanism.

Although the coherent backscattering effect was important to the under-
standing of wave multiple scattering phenomena and localization, an overview
of the localization phenomenon was actually first achieved through the differ-
ent perspective of a phenomenological theory, the scaling theory of localization
(Abrahams et al. 1979). The scaling theory is a scheme for interpolating be-
tween an extended wave state and a localized one. The term “scaling” is
popular in physics nowadays. In the present context, it has the following
connotations. First, scaling implies that the conclusions of the theory are in-
dependent of the many details of the physical model. For example, it is often
the case that electron multiple scattering and localization are studied in the
context of a lattice model of the solid atomic lattice. A scaling theory of lo-
calization would imply that the conclusions of the theory are independent of
the type of lattice, be it simple cubic, body-centered cubic, or whatever. The
conclusions are also independent of the type of random scatterings, the sta-
tistics of the randomness, etc. Therefore, scaling implies broad applicability:
Because the theory depends on few essential physical quantities, one hopes to
obtain a better overall picture of the phenomenon without being encumbered
by details. Herein lies the attraction of a scaling theory.

Second, scaling here means literally changing the scale, or physical size, of
the sample under consideration. The scaling theory of localization considers
how a quantity, defined as the dimensionless conductance γ, varies under a
sample size change. For an electronic system, γ is simply the ordinary conduc-
tance Γ divided by the quantum unit of conductance, e2/h, where e denotes
the electronic charge and h is Planck’s constant. For classical waves, γ may
be expressed alternatively as the ratio of two energy scales, which are defined
and motivated in Chap. 8. How the dimensionless conductance γ varies with
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sample size is very simple for electrical conductors (samples in which the wave
states are extended). How γ varies with sample size for disordered insulators,
in which the wave states are all localized, can also be inferred from the earlier
discussion on the sample size dependence of the coherent backscattering ef-
fect. To these known facts the scaling theory adds the following assumption:
The rule governing the variation of γ with sample size can depend on only
one parameter, which is the value of γ itself. With this seemingly innocent
proposition, the scaling theory reaches some startling conclusions, the most
striking of which is the dependence of the localization phenomenon on the
spatial dimensionality of a sample. In particular, the scaling theory tells us
that regardless of how weak the randomness, all waves are localized in 1D or
2D samples of infinite extent. For 3D samples, the scaling theory predicts the
possibility of coexistence for extended and localized wave states, where the
extended states can exist in one or several frequency regimes and the localized
states can exist in the other. The frequency that separates a localized regime
from a neighboring extended regime is called the “mobility edge.” In the jar-
gon of the physics community, spatial dimension two is called the “marginal
dimension” for localization. In order to understand this prediction, let us first
clarify the meaning of spatial dimensionality as applied to physical samples,
as well as the conditions under which the predictions apply.

1.6 Spatial Dimensionality in Localization and Diffusion

All physical objects must have finite cross-sections or thicknesses. Therefore,
there cannot be true 2D or 1D samples of vanishing thickness or cross-section.
Spatial dimensionality means that if wave propagation and scattering are al-
lowed only in two (backward and forward) directions defined by a line, the
sample is 1D; if propagation and scattering are allowed only in directions de-
fined by a surface, the sample is 2D; and if they are allowed in all 3D space,
the sample is 3D. The restriction on the direction(s) of wave propagation
and scattering can be achieved by making the thickness, or cross-sectional
dimension of a sample smaller than, or comparable to, the wavelength. For
example, if a wave is confined inside a sample whose thickness is smaller than
the wavelength (but larger than half the wavelength), then the excitation in
the thickness direction must be a standing wave. In addition, all other standing
wave states are higher in frequency, with frequency increments large enough to
make them inaccessible (e.g., through thermal excitation). Therefore, all scat-
tering and propagation are confined to the planar directions, and the sample
may be described as 2D. Another possibility of observing 2D waves is found in
interfacial excitations, where the wave amplitude decays exponentially away
from the interface and the wave can propagate only along the interface, as the
name implies. Similar reasoning applies to the description of a 1D sample.

On the basis of the scaling theory predictions, should all thin and wirelike
objects be good electrical and thermal insulators? The answer depends on
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the conditions under which the measurements are made. The conclusions of
the scaling theory are meant to apply only to samples at absolute zero tem-
perature, so that finite-temperature effects, such as the activation of charge
carriers and the inelastic scattering (that essentially limits the sample size
as described before), are all absent. Therefore, the predicted 1D and 2D lo-
calization effects should not be ordinary, everyday experience. However, they
should apply under laboratory conditions where the temperature of a sample
is lowered to close to absolute zero and the sample dimensions are controlled
to within the tolerance of being qualified as 1D or 2D.

A particularly intriguing prediction of the scaling theory is the inevitabil-
ity of wave localization in 1D and 2D samples even at the weak scattering
limit. To better understand this limiting case, let us first construct and an-
alyze an “apparent” dilemma. Consider a 1D sample of finite extent L. The
heterogeneties in the sample are characterized by a scale R which is assumed
to be smaller than the wavelength λ. To be more specific, the wave is a clas-
sical pulse with a gentle envelope whose width is many wavelengths so that
the additional frequency components are negligible. The question is: What
happens when L → ∞ and λ → ∞? If λ → ∞ first, the previous discussion
on effective medium shows that the 1D random medium should always ap-
pear homogeneous to the probing wave, with no net scattering in the static
limit of λ/R → ∞. This would remain true for every finite L as L → ∞.
Therefore, the end result of λ, L → ∞ should be an infinite (homogeneous)
effective medium where there is no localization. Now consider the reverse order
of taking the limits. By letting L → ∞ first, one can immediately invoke the
prediction of the scaling theory – that all waves are localized in 1D samples
of infinite extent – and this conclusion remains true for every λ as λ → ∞. If
a unique physical state is assumed for λ, L → ∞, then the two contradicting
conclusions yield a dilemma. The above description applies to a 1D sample,
but similar reasoning leads to the same dilemma in 2D samples.

What can be the resolution of this dilemma? The answer is that both con-
clusions are correct, because even as L, λ → ∞, the ratio L/λ still needs to be
adjusted. There can indeed be different physical states depending on whether
that ratio approaches 0 or ∞, which are the two possibilities probed by taking
the limits in two different orders. But what does this imply physically for wave
localization? If L → ∞ first, then as λ → ∞, locally (inside the wave packet)
the effective medium should be an increasingly good approximation, because
scattering by classical waves diminishes as λ/R → ∞. As the wave packet
travels through the medium, the scattering is small at every instant of time.
Therefore, if localization were to occur as predicted, the small scatterings at
successive times must accumulate so that the net effect is large enough to lo-
calize. In other words, even if R/λ = ε is small, yet over large travel distances,
measured in terms of 1/ε (or even larger in 2D), there is still an order one ef-
fect, i.e., localization. If the travel distance is limited by the sample size L, then
the localization limit can never be reached and one always obtains the effective
medium limit instead. Therefore, the following physical picture emerges from



10 1 Introduction

an analysis of this apparent dilemma: In the weak scattering limit, a localized
wave can exhibit propagating behavior locally ; through increasing sample size
and the effect of accumulated scatterings, the wave transport character is al-
tered progressively from propagating to diffusion to localized. Of course, one
recognizes the coherent backscattering effect in this scattering accumulation
process, especially its sample size dependence. But why should this accumu-
lation process be especially effective only in 1D and 2D? What is so magical
about the spatial dimensionality two? Some insight into this question may be
obtained through the special character of diffusion and its interaction with
the coherent backscattering effect.

The usual way to describe diffusion is through the net distance r traveled
by a random walker at the end of a time period t. The diffusion relation
is described by r2 ∝ t, independent of the spatial dimensionality where the
random walker executes its “walks.” That is, in time t the random walker
covers an “area” proportional to r2. If the random walker is limited to moving
on a line or a flat surface, the trace of its path would appear dense, but if
the random walker is a flying particle that can freely traverse the 3D space,
then the trace of its path would appear to be flimsy, because an area does not
go a long way toward covering a volume. While this description of diffusion
may be somewhat simplistic, it can be made rigorous by adding qualifying
conditions. Let us consider the path traversed by a random walker from t = 0
onward. As t → ∞ in d = 1, 2 the random walker will visit the infinitesimal
neighborhood of any given point with probability one, i.e., with certainty.
In d = 3, however, the probability is infinitesimal that it would visit any
given infinitesimal neighborhood. One way to appreciate that difference is
by calculating the probability, at a time tm > 0 onward, that a random
walker will return to the neighborhood of the origin, the point where the
walker started its motion at t = 0. According to the solution of the diffusion
equation, the probability density for the walker at distance r from the origin
at time t is given by P (r, t) = (4πDt)−d/2 exp(−r2/4πDt), where d denotes
the spatial dimensionality of the random walk and D is the diffusion constant.
The desired probability is therefore given by

lim
T→∞

T∫

tm

P (0, t)dt = lim
T→∞

T∫

tm

dt

(4πDt)d/2
.

For d = 1, 2 the integral diverges as T → ∞, independent of tm, implying that
the random walker will certainly return to the neighborhood of the origin. This
is intuitively plausible from the fact that the path of a random walker covers
an “area.” For d = 3, on the other hand, the integral is proportional to 1/

√
tm,

so that as tm increase, the probability decreases toward zero. Thus, in terms
of this probability, there is a qualitative difference between diffusion in one
and two dimensions and diffusion in three dimensions. If the probability of
returning to the origin is heuristically equated with backscattering, then this
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special property of diffusion translates into more effective coherent backscat-
tering in one and two dimensions, leading to localization. From this viewpoint,
the marginal dimension of localization is a direct result of the exponent two
in the diffusion relation r2 ∝ t.

Although the scaling theory gives a global view of what can happen in
different spatial dimensions, the details of this explanation need to be filled
in with results of calculations based on the mechanisms of diffusion plus co-
herent backscattering. This proves to be possible, because the correction to
the diffusion constant introduced by the coherent backscattering is consistent
with the scaling hypothesis. As a result, formulas for the localization length
and its frequency dependence, plus explicit forms for the scaling functions,
can all be derived in spatial dimensions one and two. In spatial dimension
three, however, our knowledge of the subject is still incomplete. It is known
that if randomness is introduced into a periodic structure or if the system is
discrete, such as an electron in a disordered lattice, then the localized states
and mobility edge(s) can exist. This is due to the fact that in the absence
of randomness, periodic structures yield frequency bands, and near the band
edges the Bragg scattering gives rise to standing waves, i.e., waves with zero
group velocity. Such wave states are, in a sense, waiting to be localized as
randomness is introduced. For a continuous random system without any long-
range periodic correlation, however, quantum wave is known to localize at low
energies, whereas classical wave localization is possible only if the scattering
is strong enough. One possibility is resonant scattering, e.g., Mie resonance
for electromagnetic wave scattering from small particles, which can give a
much higher scattering cross-section than usual. But resonant scattering has
the disadvantage of associated large absorption, which can mask the localiza-
tion effect. Hence the most likely systems for classical wave localization are
those with large index of refraction contrast between the scatterers and the
matrix material in which they are dispersed (Sheng 1986). Indeed, light local-
ization was observed in GaAs powders with an index of refraction value ∼ 3.5.
(Wiersma et al. 1997)

1.7 Mesoscopic Phenomena

Wave multiple scattering and localization can lead to various physical mani-
festations. For electronic systems, the direct proportionality relation between
the conductivity and the diffusion constant is known as the “Einstein rela-
tion.” Therefore, the observation of electronic conductivity is equivalent to ob-
serving electron diffusion. For classical phonons, heat conduction has already
been mentioned as a manifestation of phonon diffusion. In dirty conductors,
indirect observation of the coherent backscattering effect is contained in the
measurements of anomalous temperature dependence of resistivity and the
anomalous magnetoresistance, both in conducting films. However, these indi-
rect measurements suffer from the ambiguity that a competing effect – that
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of electron – electron interaction–can yield similar results, so there is no way
to attribute the measured behavior entirely to the coherent backscattering
effect. A more direct observation of the consequences of wave multiple scat-
tering is via measurements on mesoscopic samples. Here “mesoscopic” denotes
a sample size regime intermediate between the molecular and the bulk. More
precisely, it means a sample size whose linear dimension is smaller than a
“dephasing length,”

√
Dτin, where τin is the inelastic collision time for the

wave. In a mesoscopic sample, all collisions are elastic, so the effects of co-
herent backscattering and interference can be manifest and not be averaged
out. For classical waves, the inelastic scattering rate is generally low and tem-
perature insensitive. Wave–wave interaction is also negligible, in contrast to
the interaction between electrons. Thus a mesoscopic sample in this case is a
bulk sample, and the experiment can be done at room temperature. In fact,
the cleanest quantitative demonstration of the coherent backscattering effect
came from light scattering from bulk disordered systems. For electronic sys-
tems, on the other hand, the inelastic scattering length is generally small and
inversely temperature dependent. Therefore, the observation of mesoscopic
phenomena in electronic systems generally requires small samples whose lin-
ear dimensions are on the order of micrometers or smaller. In addition, the
experiments must be performed at low temperatures to ensure that the inelas-
tic scattering rate is sufficiently low. However, with today’s microfabrication
and cryogenic technologies these requirements are not difficult barriers, and
the relentless push for miniaturization in the electronic industry means that
the mesoscopic phenomena could very well serve as the basis for tomorrow’s
quantum devices.

Mesoscopic phenomena are manifest in the measurements of conventional
quantities in mesoscopic samples. Electrical conductivity is an example. The
definition of mesoscopic conductance is problematic at first sight because elec-
trical conductance is always associated with dissipation, whereas in meso-
scopic samples the absence of inelastic scattering means that there is no
dissipation. Thus, there is a need to define what one means by conductance
in a mesoscopic sample. By analogy with the resistance of a tunnel junction,
Landauer has proposed that the conductance of a mesoscopic sample should
be proportional to the wave transmission probability (Landauer 1957). In that
case, dissipation occurs not inside the sample but in the leads connected to the
sample, and through consideration of equilibrium with the leads an expression
for the mesoscopic conductance can be derived.

Conductance of mesoscopic samples has many unconventional characteris-
tics. Not only does it vary with sample size (due to the coherent backscattering
effect), it can also fluctuate wildly from sample to sample, even if the samples
were fabricated identically in the same batch. The conductivity can also show
large fluctuations upon the application of a varying magnetic field. Moreover,
as the sample size increases, these fluctuations do not decrease (as long as in-
elastic scattering is absent); i.e., the fluctuations are not averaged out as one
would expect from additive noise. All these effects are basically due to the
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fact that even though the waves are multiply scattered, they can still exhibit
phase interference and retain some long-range memory.

1.8 Localization vs. Confinement

The term localization has often been used in the literature to denote non-
propagating wave states which are not localized in the Anderson sense. In
particular, wave confinement, e.g., standing waves formed inside a cavity or
by totally reflecting interfaces, should be distinguished from the Anderson
wave localization that has just been described. Wave confinement may in-
volve walls made of material that has no wave state at the relevant frequency.
Hence waves can only totally reflect from such interfaces, penetrating the in-
terface only by an exponentially decaying evanescent tail. Spectral bandgaps
in photonic or phononic crystals or crystalline electronic systems are typi-
cal examples which can form effective wave confining cavities or waveguides.
Viewed in more general terms, the crucial difference in spectral bandgap con-
finement and Anderson localization is that a bandgap denotes a frequency
regime which is empty of wave states, whereas a localized wave is a nonprop-
agating wave state. The two mechanisms can interact, nevertheless. A most
interesting case is the disordered spectral bandgap systems in which the crys-
talline periodicity is perturbed by disorder as mentioned before. The sharp
edge of the crystalline bandgaps would then be smeared out to form a transi-
tion region. In that transition regime there would be spatial regions that are
deficit of wave states, so that instead of total confinement, the waves would
be restricted in their propagation directions. That is, instead of propagating
in straight lines, the waves would be traveling in a labyrinth. Another way of
saying the same thing is that the total scattering is increased, leading to the
enhancement of localization effect. That is why the bandedge states are easily
localized.

1.9 Topics not Covered

The discussion thus far is a brief and qualitative guide to the contents of this
volume. At this point it is perhaps also important to point out the relevant
subjects that are left out. First is wave dissipation. In this volume, dissipation
is treated only as a constraint, or limitation, on the effects due to elastic scat-
tering. No attempt is made to examine either the mechanism of dissipation or
the combined effect of both elastic scattering and dissipation. The second ne-
glected topic is nonlinearity, which can couple waves of different frequencies.
Since the magnitude of nonlinearity depends on the amplitude of a wave, its
neglect means that we will be concerned only with small-amplitude waves, and
waves of different frequencies will be treated as independent. The third ne-
glected topic is wave–wave interaction. A well-known example in this regard is
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the electron–electron interaction through their electrical charges. Here, over-
looking wave–wave interaction implies that wave scattering is treated as a
“single-body” problem, in contrast to the “many-body” problem where the
presence of more than one electron changes the nature of the system. For elec-
trons, interaction effects are important at low densities. At high densities, the
Coulomb interaction effect is weakened by screening, resulting in an electron
dressed in a cloud of screening charges that can be treated as an independent
“quasiparticle.” The neglect of electron–electron interaction here implies that
whenever the term electron is used in this volume, it denotes a quasi-particle
in the high-density limit. For classical waves, on the other hand, the interac-
tion between electromagnetic waves is weak, and the same is true for elastic
waves of small amplitudes. Therefore, their neglect is well justified.

The three topics not covered – dissipation, nonlinearity, and interaction
– are interesting and rich subjects in themselves. They have been omitted
solely to attain the simplicity and coherence made possible by focusing on the
subjectively chosen main line of exposition. The author, rather than trying
to be inclusive and complete, intends this volume to clarify a few essential
points, leaving the readers to further explore this challenging field.
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