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Another issue is to be able to describe spatial and temporal predicates that asso-
ciated to relationship types will constraint the spatiality and/or the lifecycle of the 
related object types. In MADS these predicates support semantic enhancements 
for relationships, i.e., topological and synchronization, which can be freely com-
bined with the other enhancements described in Sect. 2.3, that is, aggregation, 
transition, and generation. This approach allows maximal flexibility for modeling 
complex real-world phenomena. 

In MADS we adopted a conceptual approach for coping with the continuous 
view of space and time, where a phenomenon that varies over a spatial and/or 
temporal extent is represented as a function having as domain the underlying ex-
tent and whose range is the set of values measuring the phenomenon. This concep-
tual view hides the particular implementation technique used for representing con-
tinuous phenomena in a computer, which pertains to the logical level. From the 
users’ perspective this facilitates the comprehension of the essential spatial and 
temporal characteristics of an application, and in particular this allows to easily 
represent phenomena such as moving points and areas. We have shown that at-
tributes are used for representing continuous phenomena in the database. Accord-
ing to whether the phenomenon varies over a spatial and/or a temporal extent this 
leads to space-varying, time-varying, or space- and time-varying attributes. Fi-
nally, spatial predicates have been extended to the case where constrained geome-
tries are time varying. 

2.4 Supporting Multiple Perceptions and Multiple 
Representations 

The data model specifications that we have discussed so far address classical and 
spatio-temporal data modeling requirements. In this section we analyze and de-
velop specifications for supporting multiple perceptions and multiple representa-
tions. We first discuss why this is essential in good data management and then 
proceed with the analysis of how multiple perceptions and representations can be 
supported from the data modeling perspective. 

2.4.1 Rationale for Multiple Representations 

Databases store representations of identifiable real-world phenomena that are of 
interest to a given set of applications. Which representations are to be stored is de-
termined during the database design process, where application requirements are 
analyzed (in terms of which real-world entities, links between entities, and proper-
ties of entities and links are desirable) and turned into a description of formalized 
data structures. A known difficulty in database design is to reconcile the divergent 
requirements of the applications sharing the same database. While the real world 
is supposed to be unique, its representation depends on the intended purpose. Each 
application has its own perception of the real world, and its data processing tasks 
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lead to specific requirements, both in terms of what information is to be kept and 
in terms of how the information is to be represented. Different applications that 
have overlapping concerns about real-word phenomena normally require different 
representations of the same phenomena. Differences may arise in all facets that 
make up a representation, including the following.  

• What information is kept: the set of objects and links of interest is determined 
by application goals. An organization may store all relevant data in a single da-
tabase, described by a single schema, but many different sub-schemas may be 
defined, each one supporting a given application. Sub-schemas may share ob-
ject and relationship types, as they may share object and relationship instances, 
as well as having specific types or instances. 

• How information is described: even if the same object (relationship) type is of 
interest for several applications, the properties to describe the object (relation-
ship) may well change among applications. The sex of an employee, for in-
stance, may be relevant for management of maternity allowances, but should 
not be relevant for determining the salary. 

• How information is organized (in terms of data structures): a reservoir in a wa-
ter management system may be seen as an object of its own, or as an attribute 
of a catchment area object. 

• How information is coded: dimensions measured in inches versus centimeters, 
coordinates of a point in one reference system versus coordinates of the same 
point in another reference system. 

• What constraints, processes, and rules apply: for the staff management applica-
tion every employee must be assigned to a department, while for the financial 
management application employees supported by external funds are seen as not 
being assigned to a department. 

• How information is presented: the same information may be extracted in many 
different ways, such as different orderings in an employee list (by name, by de-
partment, …). 

• What are the associated spatial and temporal frameworks: the data today versus 
the data yesterday, or the data for this county versus the data for that county. 

To support such heterogeneity of perceptions, the database has to be able to 
hold multiple representations of the same real-world phenomenon (cf. Fig. 2.44). 
Notice that multiple representations may be needed also within a single percep-
tion, as even a single application may need multiple representations at different 
levels of detail (for instance, looking at John as a faculty or as a person, or looking 
at an enterprise as a single entity or as a collection of its component departments). 

Current DBMSs partially support multiple, somehow different, representations 
through the view mechanism. Starting from base representations, the view mecha-
nism allows deriving new representations (views) from the already defined repre-
sentations. Object-oriented DBMSs provide is-a hierarchies (based on the use of 
system-generated object identifiers) that allow multiple representations as progres-
sive refinement from a generic representation to more specialized representations. 
Both approaches, however, are known to be insufficient (in terms of expressive 
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power, user-friendliness, and practicality) to provide full flexibility in multiple-
representation support. The most important weakness is that the concept of per-
ception, i.e., the knowledge of which representations together form a consistent 
whole for an application, is not supported per se. It is only indirectly supported 
through another mechanism, the definition of access rights, i.e., by granting each 
application access to all views and only those views that belong to its perception. 
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Fig. 2.44. Different perceptions of the same reality, in this case leading to different repre-
sentations. 

The view mechanism relies on a two-step approach. First, all information items 
that are needed are represented in the database logical schema. Second, personal-
ized data structures (the views) are defined as queries on the stored data structures 
and previously defined views. Views are new, virtual representations, built 
through filter and combine operations, providing either an alternative representa-
tion for existing objects (object-preserving views) or defining new objects com-
posed from existing objects (object-generating views). Views cannot contain new 
data that are not derivable from the existing data. 

Relational DBMSs support a powerful view mechanism, whose main limitation 
is in the fact that views that do not rely on a 1:1 mapping between tuples in the 
view and underlying tuples in the database cannot be used to update the database, 
because of the inherent ambiguity of such updates. Similarly, to avoid possible in-
consistencies, most commercial object-oriented DBMSs restrict views to object 
preserving ones, defined through simple filtering (selections). The important dif-
ference between views and multi-representation as proposed in MADS is that 
views are isolated and anonymous units of data description. They do not make up 
a schema that consistently represents a given perception of the world of interest. 
Further, views miss the information that identifies the perceptions they convey. 
An application perception can be reconstructed from access control specifications, 
assuming each transaction is only allowed access to the data structures (basic 
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structures or views) that correspond to its perception. However, mixing access 
rights concerns with representational concerns is conceptually disturbing and po-
tentially harmful. 

What a view-based or otherwise centralized representation mechanism can 
definitely not support is the case where different application viewpoints are not 
derivable from each other (irreducible viewpoints). Assume a hospital information 
system, such that patients are identified by medical teams based on a patient num-
ber inscribed on a bracelet that the patient always carries, and the same patients 
are identified by the administrative staff based on a social security number. If the 
two viewpoints do not share other information (such as name and birth date) that 
could provide a common identification scheme, when the patient leaves the hospi-
tal two different update operations have to be made for the medical and the admin-
istrative realms (no update propagation from one realm to the other is possible). 
This has evident drawbacks in financial terms (double cost for updates) and in 
terms of consistency of the database, that can only be guaranteed if appropriate 
procedures are explicitly defined by users and stored in the DBMS to be automati-
cally triggered whenever needed. 

From a traditional, centralized database perspective, the coexistence of irre-
ducible viewpoints in a database may be considered as a design error. From a user 
perspective, it is not. In current DBMSs it is up to application designers and users 
to cope with the situation, whenever it arises, relying on primitive system func-
tionality, such as foreign keys in relational DBMSs or generalization links in ob-
ject-oriented DBMSs, to interrelate different representations of the same phe-
nomenon. It is again up to users and application designers to define and enforce 
the appropriate consistency rules that may constrain the set of representations. 

The centralized representation paradigm is even more uncomfortable when a 
database results from the integration of different pre-existing data sets, as it is the 
case in federated or cooperative information systems and in data warehouses. Such 
systems are more and more frequently required to support interoperation among 
different organizations, as well as for a single organization that needs to coalesce 
data from different sources, including the Web, to support its enterprise strategy. 
When data from various sources come together into a single data store, the situa-
tion where different representations of the same phenomena coexist is likely to 
happen and cannot be considered as a design error. 

In summary, modern data management requires a new representation paradigm, 
such that multiple representations of the same phenomenon may coexist in a data-
base, and this should be explicitly described and made known to the system so that 
it may manage the situation accordingly. In other words, supporting multiple per-
ceptions and representations means that the users and the system are aware that 
two (or more) stored representations are describing the same real-word phenome-
non, and are aware of which representations together form a perception. To 
achieve this, existing data models need to be extended with new concepts such as 
a means to identify perceptions and their representations, and a multi-
representation link, with a well-defined semantics (which says “this representation 
describes the same real-word phenomenon that this other representation”), com-
plemented with associated constraints and operators. Expected benefits include 

 



96      2 The MADS Data Model 

better real-word modeling, enhanced understanding of schema diagrams and data-
base content, improved consistency management, automatic update propagation, 
and data cleaning facilities (when two representations are used to check one 
against the other and determine if there has been some erroneous data acquisition). 
 
————— In short ———————————————————————————— 
• Applications require multiple representations of the same real-world phenom-

ena. 
• The set of representations needed by an application defines a perception. 
• The view mechanism provided by DBMSs does not provide an adequate solu-

tion for supporting multiple representations. 
————————————————————————————————— 

2.4.2 Multiple Representation and Spatial Databases 

Geographical applications show additional requirements in terms of multiple rep-
resentations, as they need flexibility also in the perception and representation of 
spatial features. 

In the continuous view, diversity of application requirements may lead to dif-
ferent choices in terms of the space granularity needed by the application to cap-
ture spatial distribution, the space zones to be considered, which properties are 
measured and stored (and which technique is used for that purpose), and the level 
of detail in the value domain associated to these properties. Diversity of percep-
tion and representation of spatial features in the discrete view may also exist. For 
instance, the same road entity may be given a linear extent to comply with the re-
quirements of a traffic management application, and a surface extent to comply 
with the requirements of a cadastral application working at a much more detailed 
level. The concept of level of detail in spatial data acquisition is referred to as spa-
tial resolution, defined as the smallest granule of space that can be individually 
denoted and therefore separated from the neighboring granules. For example, if 
the chosen granule is one square meter in a 2D database, objects whose size is less 
than one square meter will be either emphasized and given the minimal extent of 
one square meter, or will be given no extent, or will simply not be recorded in the 
database. In the latter case resolution acts as a filter to determine the universe of 
discourse. Spatial resolution is a fundamental characteristic of a geographic data-
base. Depending on spatial resolution, objects may have to be merged. If, for in-
stance, it is not possible to represent two close buildings (e.g., a villa and its ga-
rage) as separate buildings, each one with its own extent, because they are too 
close, they will be either represented as a single building with an extent that cov-
ers both the villa and the garage, or only the larger one will be spatially repre-
sented (e.g., a visualization will show the villa but not the garage). The geometries 
of a set of building may collapse to form a single built-up area when the details on 
individual buildings are no more of interest. Finally, spatial resolution also has a 
smoothing effect: given a detailed geometry, a less-detailed representation will re-
tain a simplified geometry that leaves out all irregularities whose size is less than a 
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given threshold. Thus, for instance, aerial shapes are more or less approximate 
(with small details smoothed away). 

Choosing an appropriate level of resolution is essential in map production. 
Maps are the most natural way to provide location information, and also serve as 
an excellent means of visualizing analytical data about phenomena that have a 
geo-graphical correlation. Visualizations include geography-compliant maps, that 
show items of interest as faithfully as possible with respect to their real-word loca-
tion and shape, as well as schematic maps (e.g., city transport systems, airline 
connections diagrams, train networks, facility management networks). Schematic 
maps focus on correct connections and readability rather than on precisely locat-
ing lines and nodes. 

A map is drawn according to a given scale, i.e., the actual drawing depends on 
the chosen scale. For instance, a rectangular building can be represented by a rec-
tangle on a 1:10’000 map, by a point on a 1:25’000 map and have no geographic 
representation at coarser scales. Thus, a physical zoom-in or zoom-out operation 
that would only enlarge or shrink geographic representations is simply inadequate. 
Drawing standards change from one scale to another one, items may (dis)appear 
or be (dis)aggregated because their size make them (in)visible depending on the 
scale, their shape may be modified (made simpler or more precise), or simply the 
information is not available at the requested scale. To maintain consistency and 
avoid redundancy, the ideal setting would be of course to maintain a database 
where geometry information is kept at the most precise scale, and geometries at 
less precise scales are automatically computed from those at more precise scales, a 
process called cartographic generalization [Müller 95] [Weibel 99]. 

Unfortunately, there is no complete set of algorithms that automatically derives 
a map at some scale from a map at a more precise scale. Some algorithms exist 
and more are being investigated. Since in addition cartographic generalization 
may be a long and costly process, the alternative is to perform cartographic gener-
alization off-line and to store its result for direct reusability. Given this situation, 
map production systems tend to keep a separate database per scale, leading to 
problems such as lack of consistency and uncertain update propagation. Another 
alternative is to associate to a spatial object in a database a variety of geometric 
representations that are scale dependent. Databases with such a facility are called 
multi-scale databases. Supporting multiple spatial resolutions within a single 
multi-scale database is an on-going effort in GIS research.  

Geographical databases are also subject to classical semantic resolution differ-
ences, such as an application may see the road as a single object, while another 
one may see it as a sequence of road sections, each one represented as an object. 
Semantic resolution, as spatial resolution, allows filtering out objects/relation-
ships/attributes that are not relevant while working at a specific level of detail. In 
traditional databases, semantic resolution may characterize the level of detail that 
is appropriate within is-a hierarchies (how many levels in the specialization tree 
for a given root are relevant?) and aggregation hierarchies (how far is it relevant to 
go in the decomposition of a given object?). Geographical databases add further 
possibilities, such as supporting hierarchical value domains for attributes, where 
values are chosen depending on level of detail. These domains contain a hierarchy 
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of values, each level in the hierarchy corresponding to a given level of detail, such 
that values at a node are more precise than the value in the parent node. A typical 
example is the value domain for a land use attribute, where at the coarser level the 
possible values may be (built-up area, rural area, natural land), at a finer semantic 
level the values for built-up areas may be more precisely defined as (industrial 
area, residential area, dense habitat area, commercial zone, business district), such 
classification refinement going on for as many levels as needed by the different 
applications.  

rural area built-up area
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residential area

dense habitat area

commercial zone

natural land

land use
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orchard

field crop forest
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Fig. 2.45. An example of a hierarchical domain. 

The idea is that each application may see the values that correspond to the se-
mantic resolution level the application is interested in. Geographical databases 
also frequently illustrate the fact that semantic levels of detail may not be compa-
rable to each other (i.e., it is not always possible to define a complete ordering of 
all levels in semantic resolution). For instance, a road segmentation based on 
crossroads (for traffic analysis) may coexist with a different segmentation based 
on the number of lanes (addressing transportation problems), making the two lev-
els of detail not directly comparable. 

In the following sections we use the term resolution to cover both spatial and 
semantic resolution. Indeed, these concepts are strongly tight together as both cor-
respond to the idea that one looks at data using a certain focus. Usually, a precise 
thematic description induces a precise description of spatial features. For instance, 
the choice of a detailed value domain to describe the land use implies the choice 
of an adapted spatial resolution: with a detailed value domain the size of homoge-
neous land use zones tends to become smaller and needs a more detailed spatial 
resolution. Similarly, an application working on national-level data will deal with 
objects such as regions, counties, cities, and so on, while an application addressing 
local-level needs will describe buildings, roads, etc., using a much more precise 
thematic and spatial resolution. The choice of a resolution depends also on the 
perception that is to be represented. For instance, a database used for embedded 
navigation within a city needs a precise resolution to be exhaustive in the descrip-
tion of streets and their geometry. 

The resolution of information in the database is the resolution that either was 
used at data acquisition, or the one that results from a cartographic generalization 
process. Objects with a regular extent are often acquired with a less precise resolu-
tion to reduce data acquisition costs and data storage. Resolution may also be 
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adapted to prevent from eliminating important objects. Therefore, a database is 
likely to hold data at different resolution levels, including in particular the same 
data with different representations for different resolution levels. 
 
————— In short ———————————————————————————— 
• Spatial applications put forward further multi-representation requirements. 
• This includes in particular supporting multiple geometries of the same real-

world phenomena at different resolutions. 
————————————————————————————————— 
 

A multi-resolution spatial item (object, link, or attribute) is an item that is asso-
ciated with multiple geometries at different resolutions. The potential variety of 
representations of spatial objects extends over different facets, such as:  

• Multiple geometries, possibly belonging to different spatial types, like surface 
and point, or surface and line, may characterize the same object in different 
contexts (e.g., different resolutions), 

• Multiple abstraction levels that make a set of objects coexist with the object(s) 
that represents their aggregation (whether the aggregation is based on geomet-
ric, temporal, or semantic criteria), 

• Multiple abstraction levels that result in hierarchical value domains for attrib-
utes, and 

• Multiple representations in terms of thematic information, which corresponds 
to maintaining several perceptions as in traditional databases. 

Several approaches have been proposed to support multiple resolutions:  

• The representations of a real-world entity are embedded in a single instance 
which includes multiple geometries, and all object instances are stored in a sin-
gle-schema database, 

• Each object has multiple, interconnected representations (i.e., database in-
stances) and one of the following solutions apply: 
− There is a single schema that describes all representations, 
− There are multiple schemas that describe the representations with either 1) 

one schema per resolution range and per perception, 2) one multi-resolution 
schema per perception, 3) one multi-perception schema per resolution range, 
or 4) one intrinsic schema and several schemas (one per resolution and/or 
per perception) that jointly describe all representations. 

A further dimension that adds multiple representations is time. A wide range of 
applications needs to manage time-varying information for analysis, planning, and 
forecast, in particular for decision support systems. This includes geographical ap-
plications, where the need for temporal support is critical in the great majority of 
cases. Typical examples include cadastral, risk management, and environmental 
applications. A map is also characterized by a given time period of validity. Of 
particular importance is the manipulation of moving objects [Güting 05], such as 
cars, vessels, and pollution disasters, where the geographic characteristics of an 
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object are time varying. Various multi-representation requirements derive from 
taking time into account. The first and most obvious one is that any phenomenon 
may get different representations at different points in time. The database today 
may differ from the database two months ago or two months ahead, in terms of 
values as well as in terms of relevant information structures. Supporting changes 
in data values has been extensively addressed by research in temporal databases, 
as discussed in the previous section. Supporting changes in data structures (i.e., at 
the meta data level) is known as the schema evolution problem. Versioning tech-
niques are most frequently proposed as a solution to the problem. Additional fac-
ets may arise if multiple time reference systems (i.e., calendars) or if multiple time 
granularities are used. The former is equivalent to using multiple reference sys-
tems for space coordinates. It means that the calendar in use must be recorded as 
part of the metadata and that conversion functions must be available (see [Odberg 
94] for an insight into such functions). The latter is somehow similar to the spatial 
resolution level, but with different behavioral characteristics. Moving from finer to 
coarser granularity (e.g., from day to month) is just a computational problem 
(while in space it raises cartographic generalization issues). Moving from coarser 
to finer granularity results in imprecise temporal specifications (also called tempo-
ral vagueness or indeterminacy). This has attracted attention from several research 
groups (see, for instance, [Dyreson 98] [Bettini 00] [Combi 01]). 

Commercial systems poorly support the need for multiple representations. Few 
GISs can explicitly represent objects with multiple geometries. Current DBMSs 
provide limited support for multiple thematic representations. However, the situa-
tion may soon evolve as the database and GIS research communities have been ac-
tive in developing proposals for new representational schemes. A summary of the 
state of the art is presented in Chap. 7. 

2.4.3 Identifying Perceptions 

Perception is guided by a specific interest in data management and determines a 
corresponding data representation fitting that interest. Perception acts as a com-
plex abstraction process that includes a sequence of filtering levels: 

• A first level filters objects and links leaving out whatever in the real world is 
not of interest. This delimits the universe of discourse. 

• A second level filters the properties of interest that will describe the objects and 
links selected in the first step. 

• A third level filters, among all possible representations of the selected proper-
ties, those that best fit with the objectives of the perception. 

The sub-schema (or external schema, in ANSI/SPARC terminology) concept 
has been used to denote the set of data descriptions for a given perception. A sub-
schema, as the term suggests, identifies a subset of the database schema, where 
descriptions may somehow differ from the corresponding descriptions in the data-
base schema, such that a mapping exists between the sub-schema elements and the 
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database schema elements. The existence of the mapping guarantees that the sub-
schema and the schema are compatible. 

We shall abstract from this sub-schema/schema architecture, since it refers to a 
possible implementation. We shall simply assume that there is a set of identifiable 
perceptions supported by the database, and analyze different approaches to man-
age the perception information such that users can be provided with the in-
formation corresponding to their own perception. 

Differences in perception does automatically entail that different representa-
tions are needed. It may be that the same representation is sharable by two or more 
perceptions. On the other hand, as we already stated, dealing with a single percep-
tion does not imply that no multiple representation facility is needed. For instance, 
a financial application may need the price of an item both in euros and in Swiss 
franks, which is nothing but two representations of the same information. A GIS 
application may need a simultaneous display of the same data at different scales. 
A temporal application may need to compare the values of similar data sets at dif-
ferent times. 

As already stated, perception is driven by many parameters. Previous examples 
illustrated different measurement units (euros versus Swiss franks), spatial and 
semantic resolution, and time. Which parameters are worth being taken into ac-
count varies from one database to another. The choice is a matter of how the hu-
man/enterprise organization is mapped into the database organization, so it should 
be the responsibility of the database designer. At a generic level (i.e., independ-
ently from what the actual perception parameters may be), a perception for which 
n parameters have been chosen as relevant is denoted by a vector: s = <p1, p2, …, 
pn>, where each pi is the value for this perception of its ith parameter. For instance, 
assuming a three-parameter framework based on viewpoint (here understood as 
user category), spatial resolution (with a meter granularity), and time (with a year 
granularity), a given perception may be identified as: 

s1 = <Viewpoint: “Management”, Spatial resolution: 10, Time: 2002>. 

Value domains for the different parameters are not necessarily homogeneous. 
Some domains are discrete and unordered sets, as it is likely to be the case for the 
viewpoint dimension (e.g., if names of user categories are used). Others may be an 
interval of RR, for instance for spatial resolution. We assume that the database de-
signer chooses the parameters that are appropriate as well as the value domain for 
each parameter (how this is done is beyond the scope of this book). This defines 
the value domain for the perception vectors in the database. 

2.4.4 Stamping 

To simplify notations and discourse without loss of generality, we abstract from 
the multidimensionality of perception and simply refer to perception vectors as 
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perception stamps, or just stamps34, denoted as s1, s2, …, sn. In summary, we as-
sume that the database designer defines the set of stamps that will characterize the 
perceptions existing for the database. This set is designated by the predefined 
name DBPerceptions. We show hereinafter how these stamps are used, in associa-
tion with both metadata (data descriptions in the schema) and data (data values in 
the database). While we discuss consistency rules for correct stamping, we do not 
discuss inter-perception relationships and consistency rules that may exist in a 
given framework due to the specific semantics of stamps. For instance, two geo-
metric representations of the same real-world entity whose stamps differ only in 
the resolution parameter (e.g., two lines representing the same road segment for 
different scales) may be constrained by cartographic rules enforcing that the less 
detailed line is the result of a given cartographic generalization algorithm applied 
to the more detailed line. In terms of relationships between perceptions, an exam-
ple would be the case where data perceived by a given user category is by defini-
tion included into the data perceived by another user category (e.g., the perception 
for a manager includes all what is relevant to employees plus some extra manage-
rial data). A full analysis of such semantic relationships and related consistency 
rules remains to be done. 

From data definitions (metadata) to data values, anything in a database relates 
to one or several perceptions. The first step for the database administrator is to 
identify the perceptions that are to be supported by the database and to associate a 
unique stamp to each one of them. This defines the set of stamps that are allowed 
for use with the database. We say that the database schema is stamped with this 
set. For instance, in the Risks application that served as case study for the MurMur 
project, stamps were limited to include the two facets we already mentioned: 
viewpoint and resolution. The former was seen as the primary stamp, expressing 
whether a representation was part of the user’s world or not. The resolution stamp 
was intended to filter data to only retain what was significant for certain usages by 
a given user category. For example, assuming one perception for risk managers (in 
charge of decision-making processes), and two perceptions for risk technicians (in 
charge of observations, measurements and risk map preparation, working at either 
a finer or a coarser scale) were defined, the schema would include the following 
stamps: 

s1 = < Viewpoint: “Management”, SpatialResolution: 50> 
s2 = < Viewpoint: “Technician”, SpatialResolution: 10> 
s3 = < Viewpoint: “Technician”, SpatialResolution: 100> 

Stamping an element of a schema defines for which perceptions the element is 
relevant. Thus, an element that has a single representation may bear multiple 
stamps, meaning that the same representation is shared by several perceptions. 
Consistency mandates that stamps associated to an object (or relationship) type 
form a subset of the stamps associated to the schema. Similar rules apply to prop-

                                                           
34  The term stamping is due to the similarity with timestamping techniques in temporal da-

tabases, where timestamping denotes the technique that associates a period to data for 
identifying the timeframe for which the data is relevant. 
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erties within a type. An object or relationship type relevant to several perceptions 
may show different properties depending on the perception. Consequently, a prop-
erty may be stamped with a subset of the stamps associated to the type it belongs 
to. The same applies at the value level. A multi-perception attribute may have dif-
ferent values that are specific to given perceptions. For instance, in multilingual 
databases, a property such as riverName may take different values according to the 
language in use, the language determining the perception. 

Complementarily to stamping database elements, transactions accessing the da-
tabase should be given a means to specify which perceptions (one or many) they 
adhere to. That will determine the representations (data types and values) relevant 
to them. We assume that transactions issue an openDatabase command to specify 
which perceptions (stamps) they want to use. Matching this set with the sets of 
stamps associated with the object and relationship types defines which object and 
relationship types are actually visible to the transaction, and with which properties 
and which populations. Thus, stamping provides functionality similar to a sub-
schema definition capability, with the advantage that this approach maintains an 
integrated view of all perceptions, while subschema definition (as provided in Co-
dasyl-like database systems) isolates each schema definition. 
 
————— In short ———————————————————————————— 
• A stamp identifies a particular perception with which real-world phenomena 

captured in a database may be viewed. 
• Elements of the database (types, properties, instances) are stamped for defining 

for which perceptions they are relevant. 
————————————————————————————————— 

2.4.5 Multiple Representation Modeling 

Stamping provides an easy way to identify which representations stem from a 
given perception. But how can we design a schema to make the DBMS aware of 
multiple coexisting representations of the same phenomena? Let us assume, as a 
running example, that there are two perceptions of the same real-world entities, 
e.g., road segments, which need slightly different representations. There are two 
complementary techniques to organize multiple representations. 

One solution is to build a single object type that contains both representations, 
the knowledge of “which is which” being provided by the stamps of the properties 
of the type. Following this approach, in Fig. 2.46 the designer defines a single ob-
ject type, RoadSegment, and associates to it the stamps identifying the two per-
ceptions, say s1 and s2. As shown in the figure (notations and semantics are de-
tailed in Sect. 2.4.6), the perception stamps of an object type are shown in a box 
under the name box using the 1 icon. We say RoadSegment is a perception-
varying object type, as the actual representation of road segments changes from 
one perception to another. RoadSegment is both a multi-representation (it holds 
two representations) and a multi-perception (it relates to two perceptions) object 
type. At the instance level, the fact that two representations relate to the same real-
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world entity is in this case conveyed by the fact that the two representations are 
part of the same object instance. Hence, this solution only applies to cases where 
representations in the two perceptions are interrelated at the instance level by a 
(total or partial) 1:1 mapping. 

1 s1,s2

RoadSegment s1:
s2:

s1,s2: number (1,1) Integer
s1,s2: roadName (1,1) String f(1)
s1,s2: nbOfLanes (1,1) Integer
s2: adminClassif (1,1) Integer
s1: type (1,1) Enumeration
     { European,National,Local }
s2: type (1,1) Enumeration
     { Highway,National }
s1: administrator (1,1) String
s2: administrator (1,n) String

 s1,s2: number
 

Fig. 2.46. An illustration of a bi-representation type, bearing stamps s1 and s2. 

Road
Segment1 s1 :

s1: number (1,1) Integer
s1: roadName (1,1) String
s1: nbOfLanes (1,1) Integer
s1: type (1,1) Enumeration
 { European, National, Local }
s1: administrator (1,1) String

1 s2

Road
Segment2 s2 :

s2: number (1,1) Integer
s2: roadName (1,1) String
s2: nbOfLanes (1,1) Integer
s2: adminClassif (1,1) Integer
s2: type (1,1) Enumeration
       { Highway,National }
s2: administrator (1,n) String

1 s1

Corresponds

Integrity Constraint : ∀c∈Corresponds (
             c.RoadSegment1.number = c.RoadSegment2.number ∧
             c.RoadSegment1.nbOfLanes = c.RoadSegment2.nbOfLanes )

1 s1,s2
s1,s2: quality (1,1)
           String

(1,1) (0,1)

R

 s1: number  s2: number

 

Fig. 2.47. The RoadSegment type (from Fig. 2.46) split into two mono-representation ob-
ject types and an inter-representation relationship type. 

Another solution to organize alternative representations is to define two sepa-
rate object types, each one holding the representation for the corresponding per-
ception (each object type bears the corresponding stamp). The knowledge that the 
two representations describe the same entities is then conveyed by linking the ob-
ject types with a relationship type that holds a specific inter-representation seman-
tics (cf. Fig. 2.47). In this example the same real-world road segment is material-
ized in the database as two object instances. Instances of the relationship type 
Corresponds tell which object instances represent the same road segment. To 
make the system aware of the semantics of the relationship, a specific semantic 
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annotation is added to the definition of the relationship type. We call such a rela-
tionship type an inter-representation relationship type. Its inter-representation se-
mantics is visually indicated on schema diagrams by the R  icon. Cardinalities of 
Corresponds show that buildings that have a representation at the most detailed 
level, s2, do not necessarily have one at the less detailed level, s1. 

When more than two representations are needed, it is up to the designer to de-
cide which ones are to be instantiated separately from others, and which ones 
should be integrated to form a single instance. Any mix of multi-perception types 
and inter-representation links can convey the solution that best fits application re-
quirements. If more than two types are used to describe and store the desired set of 
representations for a given set of entities, these types have to be linked by as many 
inter-representation links as appropriate. Inter-representation links at the type level 
are not transitive. It is possible to have inter-representation links between types T1 
and T2 and between types T2 and T3 without an inter-representation link between 
T1 and T3. Consider, for instance, a database with object types Person, Company, 
and CarOwner, and rules for this database stating that persons and companies are 
separate sets of objects, while both persons and companies may own cars. In this 
case there will be an inter-representation link between Person and CarOwner, an-
other between Company and CarOwner, but no link between Person and Com-
pany. Alternatively, one could think of using n-ary inter-representation links to 
bind in a single instance link all object instances that represent the same real-
world entity. But usually this would be inappropriate. N-ary links can only be in-
stantiated if all linked instances exist at the same time (data modeling practices do 
not support links with pending roles), which cannot be assumed to be the general 
case for multi-representation. 
 
————— In short ———————————————————————————— 
• Multiple perceptions of a real-world phenomenon can be embedded into a sin-

gle object type. 
• An alternative solution is to use inter-representation relationship types for re-

lating object types holding different representations of the same phenomenon. 
————————————————————————————————— 

2.4.6. Perception-Varying Object Types 

Stamping object types and relationship types, possibly with multiple stamps, de-
fines for which perceptions the type is relevant. We call this the visibility of the 
type. Only transactions whose associated set of stamps intersects the set of stamps 
characterizing a type (its visibility) will see the type. Consistency mandates that 
stamps associated to a type form a subset of the stamps associated to the schema. 
Similar rules apply to properties within a type. A property cannot be visible when 
its type is not. Hence, a property is stamped with a subset (possibly the whole set) 
of the stamps associated to the type it belongs to (cf. Fig. 2.46).  

Non-stamped types could be allowed as a shortcut for bearing all stamps de-
fined in the schema they belong to. Such types convey a real-world representation 
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that is independent of any perception, i.e., the representation holds whatever per-
ception is considered. Such types, their properties, and instances are always visible 
whatever the transaction stamp is, unless their visibility is restricted as described 
hereinafter. Similar rules apply at the property level. In the absence of restrictions, 
stamps defined at the type level extend over properties, providing properties and 
their values with the same visibility as the type they belong to.  

Let us resume the RoadSegment example (cf. Fig. 2.46), where the designer 
has decided to merge the representations needed by two perceptions, identified by 
stamps s1 and s2, into a multi-representation object type RoadSegment. Below the 
object type name are shown the stamps associated to the type: s1 and s2. Road 
segments are spatial objects (i.e., objects whose spatial extent is relevant for the 
applications). In schema diagrams the spatiality associated to a type is shown 
right-hand to the type name. As shown by the icons, the spatial extent is repre-
sented either as a surface (more precise description, stamp s2) or as a line (less 
precise description, stamp s1) depending on resolution. 

Representation s1 needs attributes road segment number, road name, number of 
lanes, type, and administrator (denoting the maintenance firm in charge). Repre-
sentation s2 needs attributes road segment number, road name, number of lanes, 
administrative classification, type, and administrator. While the road segment 
number and the number of lanes are the same for s1 and s2, the name of the road 
is different, although a string in both cases. For instance, the same road may have 
name “RN85” in representation s1 and name “Route Napoléon” in s2. The road 
segment type takes its values from predefined lists, the lists being different for s1 
and s2. Finally, s2 may record several administrators for a road segment, while s1 
records only one. More precisely, the list of attributes shows that: 

• number is a monovalued and mandatory attribute (minimum and maximum 
cardinalities equal to 1) shared by s1 and s2. 

• roadName is a shared monovalued mandatory attribute whose value is a func-
tion of stamps. We call this a perception-varying attribute, identified as such by 
the f(1) notation. 

• nbOfLanes is a monovalued and mandatory attribute shared by s1 and s2. 
• adminClassif is a monovalued mandatory attribute that only belongs to repre-

sentation s2. 
• type is a monovalued mandatory attribute in both s1 and s2, with specific enu-

merated domains for each representation. 
• administrator is a mandatory attribute in both s1 and s2, but it is monovalued 

for s1 and multivalued for s2. 

Moreover perceptions s1 and s2 share a common key, the attribute number, i.e., no 
two instances, belonging to the same perception or different perceptions, may 
have the same number value. 

As shown by the example, the geometry attribute in spatial objects often has 
several representations that correspond to different spatial resolutions. The lifecy-
cle attribute in temporal objects can also be perception varying. For example, the 
designer could add to the RoadSegment object type a perception-varying lifecy-
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cle. That would allow him/her to describe the lifespan of an instance to begin, for 
perception s1, at the beginning of the construction of the road segment, and, for 
perception s2, at the end of the construction. Attribute variation depending on per-
ception extends to all facets of the attribute: visibility, cardinalities, value domain, 
value, as well as time and space variability. 

Instances are another component of a type; hence they obey the same stamping 
consistency rule as properties. In our example, a RoadSegment instance can be 
created by a transaction using stamp s1, or using stamp s2, or using both stamps. If 
the transaction uses both s1 and s2, it may create the whole value of the instance, 
as in a normal insert operation in traditional databases. If the transaction holds or 
uses only one stamp, it can create values only for the attributes that exist for that 
stamp. In short, it can create only a part of the instance. Partial creation of an in-
stance means that two transactions using different stamps must be able to share an 
identification mechanism (e.g., the road segment number) guaranteeing that their 
data can correctly be merged by the DBMS into a single instance. 

Consider the creation of a RoadSegment instance. It can be done by two trans-
actions. The first one creates a new instance. This transaction has to provide a 
value for all the mandatory attributes corresponding to the format at the given 
stamp. For instance, the following insert operation inserts a new instance of 
RoadSegment stamped with s135: 

id = insertObject (RoadSegment, {s1}, (geometry: Line <(x1,y1), …, (xn,yn)>, 
number: 1, roadName: “E66”, nbOfLanes: 4, type: “European”, 
administrator: “Bouygues” )) 

The second transaction adds a new representation to the instance that was pre-
viously defined, and thus, the transaction has to identify the instance it wants to 
extend. For example, the following operation adds a new representation to the 
previously created road segment instance36: 

addORepresentation (RoadSegment, id, {s2}, ( 
geometry: SimpleSurface <(x'1,y'1), …, (x'n,y'n)>, roadName: “A41”, 
adminClassif: 1, type: “Highway”, 
administrator: {“Bouygues”, “SaraCie”} )) 

Stamps associated to a type may be restricted at the instance level, to limit visi-
bility of an instance to a subset of the type visibility. This allows defining different 
subsets of instances that are visible for different stamps among those supported at 
the type level. Thus, multi-perception types have a system attribute (not accessible 
to users) called perceptions allowing to keep track of the visibility of its instances. 
For example, as the object type RoadSegment has two stamps s1 and s2, it is pos-
sible to define instances that are only visible to s1, instances that are only visible 
to s2, and instances that are visible to both s1 and s2. An instance is visible for at 
least one of the stamps of its type, the stamp that has been used while inserting the 
instance in the database. A transaction with stamp s1 only will see the instances 

                                                           
35  The insertObject operation is defined in Chap. 5. 
36  The addORepresentation operation is defined in Chap. 5. 
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stamped s1 or {s1, s2}. Similarly for transactions stamped s2 only. A transaction 
with both stamps s1, s2 will see all RoadSegment instances, but it has to be aware 
that the actual format of each instance varies according to its stamps. Indeed, a 
stamp restriction at the instance level also applies to attributes and values within 
the instance: An instance that bears only a subset, say S, of the stamps of the ob-
ject type will have only the properties that have a representation for some (or all) 
of the perceptions defined by S. An example was given above for the road seg-
ment number 1 within the time interval defined by the insertion of its s1 represen-
tation and the addition of its s2 representation. 
 
————— In short ———————————————————————————— 
• Stamping allows defining for which perceptions a type is relevant. 
• Properties and instances may also be stamped. 
• The stamps of a type (respectively, of a property or an instance) are included in 

the set of stamps of its schema (respectively, of its type). 
• The system attribute perceptions allows keeping the perceptions at which an in-

stance is visible. 
————————————————————————————————— 
 

Visibility restrictions can be independently specified for several attributes 
within the same type. In particular, stamp restriction can be performed at all levels 
of a complex attribute. The restriction of a complex attribute stamp applies to all 
of its components. The attributes composing a complex stamped attribute implic-
itly have the same stamp as the complex attribute they belong to. If needed, they 
can restrict this implicit stamp by keeping only a subset. However, visibility re-
strictions must obey the constraint that the set of attributes for each stamp must 
form a consistent data structure for the type. Consistency here means that the at-
tribute tree built by pruning according to the stamp filter must be a subtree of the 
original attribute tree (with the type as root) such that: for every attribute in the 
subtree its parent attribute in the original tree must also be in the subtree, and for 
every complex attribute in the original tree that appears in the subtree at least one 
of its original component attributes must be in the subtree. 

1 s1,s2,s3

County

s1,s2,s3: name (1,1) String
s1,s2,s3: nbInhabitants (1,1) Integer
s1,s2,s3: catchmentArea (1,n)
    s1,s2,s3: number (1,1) Integer
    s1,s3: river (1,1)
    s2: extent (1,1)  

Fig. 2.48. Stamping components of a complex attribute. 

In Fig. 2.48, catchmentArea is a multivalued complex attribute composed of 
number (monovalued), river (monovalued, linear), and extent (monovalued, sur-
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face). Attribute catchmentArea bears the stamps of its object type, s1, s2, and s3. 
Attributes river and extent restrict these stamps: river to s1 and s3, and extent to s2. 
The object type is therefore visible at s1 and s3 with attributes geometry, name, 
nbInhabitants, catchmentArea.number, and catchmentArea.river, and at s2 with at-
tributes geometry, name, nbInhabitants, catchmentArea.number, and Catchmen-
tArea.extent. 

1 s1,s2,s3

County

s1,s2,s3: name (1,1) String
s1,s2,s3: nbInhabitants (1,1) Integer
s1,s2: catchmentArea (1,n)
    s1,s2: number (1,1) Integer
    s1,s2: river (1,1)
    s1,s2: extent (1,1)  

Fig. 2.49. Stamping a complex attribute. 

On the other hand, in Fig. 2.49, the attribute catchmentArea restricts the stamps 
of its object type. In this case, the object type is visible at s1 and s2 with attributes 
geometry, name, nbInhabitants, and catchmentArea with its components number, 
river, and extent, and at s3 with attributes geometry, name, and nbInhabitants. 

1 s1,s2,s3

County

s1,s2,s3: name (1,1) String
s1,s2,s3: nbInhabitants (1,1) Integer
s1,s2: catchmentArea (1,n)
    s1,s2: number (1,1) Integer
    s1: river (1,1)
    s1,s2: extent (1,1)  

Fig. 2.50. Stamping a complex attribute and its components. 

Finally, in Fig. 2.50, the attribute catchmentArea restricts the stamps inherited 
from its object type, and the attribute river further restricts the stamps. In this case, 
the object type is visible at s1 with attributes geometry, name, nbInhabitants, 
catchmentArea.number, catchmentArea.river, and catchmentArea.extent, at s2 
with attributes geometry, name, nbInhabitants, catchmentArea.number, and 
catchmentArea.extent, and at s3 with attributes geometry, name, and nbInhabi-
tants. 
 
————— In short ———————————————————————————— 
• Stamp restriction can be applied to all levels of a complex attribute. 
————————————————————————————————— 
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In a multi-perception framework, generalization/specialization hierarchies may 
include object (relationship) types that belong to various perceptions and possibly 
hold multiple representations. As we know from Sect. 2.2.5, is-a links are charac-
terized by population inclusion semantics and inheritance of properties and links. 
These characteristics put strong consistency constraints that should be preserved 
while allowing for multi-perception and multi-representation types. As a conse-
quence, is-a links have also to be characterized with respect to perception, i.e., 
they should be stamped so that the system knows exactly which instances are to be 
constrained by the link. An is-a link must belong to the same perception as the ob-
ject (relationship) types it links. Otherwise stated, the supertype and the subtype 
must share one or several stamps, and the is-a link is stamped with a non-empty 
subset of these common stamps.  

Public
Building

Private
Building

Crisis
Building

Building

1 s1,s2

1 s1 1 s1 1 s1,s2

1 s1 1 s1,s2

Building

1 s1,s2

1 s1

Crisis
Building

1 s1,s2

a) b)

1 s2

 

Fig. 2.51. Example of perception-dependent generalization hierarchies. 

Fig. 2.51 a) presents an example where the above rules are obeyed. Perception 
s1 sees all four object types, with PublicBuilding, PrivateBuilding, and CrisisBuild-
ing as subtypes of the Building supertype. Perception s2 sees only the Building and 
CrisisBuilding object types, with CrisisBuilding subtype of Building. Transactions 
with only perception s2 see only this portion of the hierarchy. 

Overlapping links, like is-a links, are perception dependent. Fig. 2.51 b) shows 
an example where, for perception s1, the set of CrisisBuilding instances stamped s1 
is a subset of the Building instances stamped s1. But this inclusion rule does not 
hold for perception s2: There may exist CrisisBuilding instances stamped s2 that 
have no corresponding (i.e., with the same oid) instance stamped s2 in Building. 
For perception s2 CrisisBuilding and Building are in multi-instantiation only. 
 
————— In short ———————————————————————————— 
• Is-a and overlapping links are also perception dependent, and therefore 

stamped. 
• The stamps of is-a and overlapping links are included in the set of stamps of 

each of the object or relationship types they link. 
————————————————————————————————— 
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2.4.7 Perception-Varying Relationship Types 

Relationship types are as dependent on perception as object types are. Therefore 
they may have different representations, and representations may be stamped with 
the same semantics and according to the same rules as for object types: Attributes 
and instances may be stamped with the whole set of stamps of the relationship 
type, or with a subset only. Attributes may have different representations (i.e., 
definitions) associated to the perception stamps. Moreover, the structure (roles and 
association/multi-association kind) and the semantics (e.g., aggregation, topology, 
synchronization) may also have different definitions depending on the perception. 
An example of different sets of attributes and of different definitions of attributes, 
depending on perception, for a relationship type, could be exactly as the example 
of RoadSegment of Fig. 2.46.  

Building

1 s1,s2

GivesAccess

1 s1,s2

Road

1 s1,s2
(1,n)(0,n) s1:

 

Fig. 2.52. A relationship type with perception-varying semantics. 

Fig 2.52 shows an example of different semantics, where the designer defined 
the relationship GivesAccess as 1) a topological adjacent relationship type for per-
ception s1, and 2) a plain relationship for perception s2 (i.e., an association, with-
out any peculiar semantics or constraint). This would allow users to link, through 
GivesAccess instances stamped s1, couples of Road and Building instances whose 
geometries are indeed adjacent. GivesAccess instances stamped s2 and not s1 will 
allow users to link a road to a building that is not adjacent to the road, but that is 
somehow connected to the road, for instance by a private driveway. The kind of 
constraint that defines a relationship type as topological or synchronization may 
also be perception varying. In other words, the same relationship type may, for in-
stance, hold a topological constraint “inside” for perception s1, and a topological 
constraint “adjacent” for perception s2. 

The kind association/multi-association of a relationship type may also depend 
on the perception. Let us again refer to a relationship type GivesAccess linking the 
two object types Road and Building, but with different characteristics this time. 
Assume that the designer has specified that GivesAccess is a topological adjacent 
association for perception s1, and a topological adjacent multi-association for per-
ception s2 with cardinalities permitting to link, by one GivesAccess instance, one 
road to the set of buildings that are adjacent to this road. This would create two 
disjoint sets of GivesAccess instances: the association instances linking one road 
and one building, and the multi-association instances linking one road and a set of 
buildings.  

The roles of a relationship type may also be perception dependent. For exam-
ple, in Fig. 2.53, the cardinalities of the role linking LandPlot to the relationship 
Intersects are (0,1) in perception s1 and (0,n) in perception s2. Further, the same 
relationship type may be a binary relationship type in one perception and a ternary 
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relationship type in another perception. For example, Fig. 2.54 (a variant of Fig. 
2.21) shows that an observation is perceived in s1 as a relationship between an ob-
server and an avalanche event, while perception s2 sees the same observation as 
also involving a validator having validated the observation.  

Risk
Zone

Land
Plot

Intersects
s2:(0,n)

(0,n)s1:(0,1)

1 s1,s2 1 s1,s21 s1,s2
f(    ) f(    )

 

Fig. 2.53. A role with perception-varying cardinalities. 

Avalanche
EventObserver Observes s1,s2:(1,n)s1,s2:(0,n)

s2:(0,n)

1 s1,s2 1 s1,s21 s1,s2

Validator

1 s1,s2

f(    )

 

Fig. 2.54. A relationship type with an additional role specific to perception s2. 

However, the objects (or sets of objects) linked by a relationship instance can-
not change from one perception to another one within the same relationship in-
stance. This is because the linked objects are inherently part of the relationship in-
stance, i.e., they participate in the identification of the relationship instance. If any 
of them is replaced with another object, it is not anymore the same relationship in-
stance. So, for a given relationship instance and role, the object instance(s) that is 
(are) linked is (are) always the same, whatever the perception is. On the other 
hand, as already stated, a perception may see only a subset of the roles. But, as a 
perception must always abide by the basic rules of the data model, a perception of 
a relationship must contain at least two roles. 

As already mentioned, the basic rule for stamping, stating that “a component 
element may be stamped with all or a subset of the stamps of the element to which 
it belongs”, is valid for attributes and instances of a relationship type, exactly as 
for an object type. The rule is also valid for the structure and the semantics of a re-
lationship type. In other words, the attributes, instances, roles, association/multi-
association kind, semantics of a relationship type may bear a subset (or the set) of 
the stamps attached to the relationship type. 

Contrarily to is-a links, a relationship type may link object types that do not be-
long to the same perception as the relationship itself. These relationship types are 
bridges that relate different perceptions. For example, in Fig. 2.47, the Corre-
sponds relationship type links the s1 object type RoadSegment1 and the s2 object 
type RoadSegment2. All Corresponds instances, whatever their stamps, link one 
s1 object and one s2 object. As in this specific case Corresponds has inter-
representation semantics, it allows transactions holding both stamps s1 and s2 to 
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navigate from one representation of road segments the other one. In other words, 
Corresponds is a bridge between perceptions and between representations37.  

Building

1 s1

GivesAccess

1 s1

Road

1 s1
(1,n)(0,n)

 

Fig. 2.55. A topological relationship type that is local to perception s1. 

Let us now consider the relationship type in Fig. 2.55. In this example, the rela-
tionship type and the linked object types all bear the same, single stamp s1. All 
GivesAccess instances necessarily link objects belonging to the same perception 
as the relationship, they are local to the s1 perception. We say that a relationship 
type is local if each of its instances, for each of its perceptions, is local. GivesAc-
cess is the simplest example of a local relationship type. Non-local relationship 
types are bridge relationship types, i.e., they have at least one instance that, for at 
least one perception, links at least one object that does not belong to that percep-
tion. 

Let us now refer back to the GivesAccess relationship type as defined in Fig. 
2.52, where the two object types and the relationship type in between hold the 
same two stamps, s1 and s2. Depending on the configuration of its instances, this 
GivesAccess relationship type may be local or bridge. It is local if every instance 
stamped s1 links a Road instance and a Building instance both stamped at least s1, 
and if every instance stamped s2 links a Road instance and a Building instance 
both stamped at least s2. Otherwise, it is a bridge relationship type. As a bridge re-
lationship type may contain local instances, transactions may use its local in-
stances to navigate within the corresponding perception, and its bridge instances to 
navigate between perceptions. It is worth noting that bridge instances of a rela-
tionship type do not belong to any mono-perception view of the database.  

It is also worth noting that, contrarily to Corresponds, the GivesAccess rela-
tionship type of Fig. 2.52 may be a bridge between perceptions, but is not a bridge 
between representations. The characteristic, local or bridge, is independent from 
the other characteristics of relationship types. In particular, bridge relationship 
types can bear any kind of semantics. They can be inter-representation, like Corre-
sponds in Fig. 2.47, as well as plain relationships with no peculiar semantics, or 
constraining relationships like GivesAccess in Fig. 2.52.  

Access to bridge relationships is ruled by the basic principle that relationships 
are only meaningful if they come together with the objects they link. This defini-
tional constraint must be enforced also with respect to perceptions. Hence, a rule 
that must obviously be enforced is that a transaction may see a representation of a 
relationship type only if its stamps allow seeing the relationship type and the 
linked object types (i.e., pending roles are not allowed). At the instance level, the 
same rule applies: Only visible instances of the relationship that link object in-

                                                           
37  Notice that if Corresponds were stamped s3 (instead of s1, s2) the only change would be 

that transactions using Corresponds would have to hold stamp s3 in addition to stamps s1 
and s2. 
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stances visible to a transaction may be delivered to the transaction. Therefore, see-
ing a bridge relationship always requires several perception stamps. For example 
in Fig. 2.47, transactions must hold at least both stamps, s1 and s2, to be able to 
see the Corresponds relationship type.  

Topological and synchronization relationship types rely on the geometry and 
lifecycle attributes of the linked object types. Whenever an instance of these rela-
tionship types is to be created for a given perception, the geometries or lifecycles 
in the linked object instances have to be retrieved to check that the topological or 
temporal constraint is satisfied. This means that the transaction creating or access-
ing the relationship instance must see the linked geometries or lifecycles, and not 
only the linked object types (i.e., it must have at least one stamp of the relationship 
type and one stamp of the constrained geometry – or lifecycle – of both linked ob-
ject types).  

If the linked objects have several definitions, depending on perception, for the 
geometry or lifecycle attributes, the specification of the topological or temporal 
predicate has to explicitly denote which definitions are to be used. Similarly, if the 
linked object types define geometry or lifecycle as perception-varying attributes, 
the topological or temporal predicate has to explicitly specify which is the in-
tended semantics (whether one value or all values have to satisfy the predicate), in 
the same way it is done in case of time-varying geometries.  

As a practical note, it is worth mentioning that in our experiments with applica-
tion-oriented designers, we have seen that they tend to use the default stamping for 
relationship types, i.e., giving them all the stamps of the database or all the stamps 
of the linked object types. On the other hand they are very keen on choosing a 
specific subset of stamps for each object type. 
 
————— In short ———————————————————————————— 
• Relationship types may be perception dependent, and therefore stamped. 
• The rules for property and instance stamping are the same as for object types. 
• In addition, the structure and the semantics of relationship types may also be 

perception dependent. 
• Relationship types can either link object types belonging to the same perception 

as themselves, or link object types of other perceptions.  
• The latter are bridges allowing users to go from one perception to another one. 
————————————————————————————————— 

2.4.8 Consistency of a Multi-Perception Database 

A multi-perception database defined for say N perceptions contains the equivalent 
of N classic mono-perception databases, obeying usual consistency rules of con-
ceptual data models, plus a number of implicit and explicit links among the mono-
perception databases. Explicit links are the bridge relationship types that relate ob-
ject types of different perceptions. Implicit links are all the multi-perception object 
and relationship types that, per definition, belong to several perceptions.  
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A multi-perception database, taken as a whole, does not necessarily obey the 
usual consistency rules for classic mono-perception databases. It can contain dif-
ferent (one per perception) representations for the same fact that may be conflict-
ing at the schema or at the instance level. It may be, for instance, that for one per-
ception s1 the entity type A is a subtype of the entity type B, and that the is-a link 
does not hold in another perception s2. Or, in perception s1 the entity types A and 
B are related by an aggregation relationship, and they are not linked in the percep-
tion s2. As a last example, the instance i0 of the entity type A has different values 
in perceptions s1 and s2. The rules defining the consistency of a multi-perception 
database, D, containing perceptions s1, s2, ..., sn are: 

• Consistency rule for each perception: Each of the mono-perception databases 
composing D must abide by all the classic consistency rules for classic data-
bases. The mono-perception database of D for perception s is obtained as fol-
lows. It contains each s perception of each object type that has a s perception, 
each is-a link that is defined for the s perception, and the s perception of each 
relationship that is local to the s perception (i.e., such that all its s roles link ob-
ject types belonging to the s perception). 

• Inter-perception consistency rule 1: If two perceptions share a common ele-
ment (object type, relationship type, attribute, role of a relationship type) that 
has the same definition for both perceptions and this definition is not percep-
tion-varying, then at the instance level, these two elements must have the same 
instances or values. For example in Fig. 2.46, the s1 and s2 perceptions of the 
object type RoadSegment share the attribute number which is not perception-
varying, therefore any RoadSegment instance belonging to perceptions s1 and 
s2 must have the same value for the number attribute for both perceptions. 

• Inter-perception consistency rule 2: A relationship type, be it local or bridge, 
must obey all classic consistency rules of semantic data models for relation-
ships, including the fact that no dangling roles are allowed. Therefore, a rela-
tionship representation is delivered only if the perception stamps hold by the 
requesting transaction make visible the complete instance for at least one per-
ception or combination of perceptions. Similarly, a relationship type is visible 
only to transactions whose stamps make visible a representation of the relation-
ship type that is complete for at least one perception or combination of percep-
tions. This restriction ensures that, for the database users, the bridge relation-
ships behave like classic, mono-perception relationships. 

All these consistency rules are precisely defined in the formalization of the MADS 
data model provided in Annex A. 

2.4.9 Summary on Multi-Representation Modeling 

Nowadays it is crucial for information management to support multiple represen-
tations of the same real-world phenomena. The fundamental activity of the ab-
straction process is to determine the characteristics of real-world phenomena that 
are essential to an application. However, determining what is essential and what it 
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is not depends on many aspects, including in particular operational objectives. As 
a consequence, several applications sharing real-word phenomena of interest usu-
ally require different representations of the same phenomena. In addition, spatial 
and temporal information add further requirements with respect to multiple repre-
sentations. A typical example for space arises when the spatial extent of phenom-
ena has to be kept at different levels of detail, for instance for producing maps at 
different scales. 

We have seen that traditional solutions for this problem, like the view mecha-
nism in database management systems, or the generalization and aggregation links 
in the object-oriented paradigm, are not sufficient for coping with the require-
ments for multi-representation. The problem with these approaches is that they 
presuppose a centralized representation paradigm, where there is a “canonical” or 
common viewpoint from which all other perspectives of the same phenomena can 
be derived. This solution definitely does not address current information manage-
ment requirements where different data sources have to be put together for build-
ing cooperative information systems (whether federated or peer-to-peer). In such a 
setting no particular viewpoint can be favored, each one of them has its raison 
d’être, and the divergences in viewpoints must be reconciled.  

A first necessary step to cope with this problem is to identify the different per-
ceptions that are needed for considering a real world of interest. These perceptions 
are driven by many parameters, and the number and characteristics of the parame-
ters vary from one database to the other. For example, in our Risks application the 
perceptions were defined by a couple of user category and spatial resolution. The 
approach followed by MADS is to identify perceptions by (multi-dimensional) 
stamps. The stamps are then used for defining which elements of the database 
(i.e., types, properties, instances) are relevant for the corresponding perception. 

We have shown that there are two complementary ways to deal with multi-
represented objects. In the first, integrated approach, a single object (or relation-
ship) type groups the different perceptions associated to a particular phenomenon. 
In this approach one real-world phenomenon is represented by a single database 
instance. An alternative solution is to capture the different representations in dis-
tinct object types that are linked by inter-representation relationship types. Such 
links keep track of the different representations (or more precisely, the different 
database instances) corresponding to the same real-world phenomenon. We have 
shown that MADS allows to the designer to decide the particular mix of multi-
perception types and inter-representation links that best fits application require-
ments. 

The stamping solution advocated by MADS for coping with multiple represen-
tations (i.e., stamping object and relationship types as well as their attributes and 
characteristics) leads to perception-varying types, where the structure of the data-
base, of its types, and of their corresponding instances depends on the perception 
in use. Further, following a similar approach as for space- and time-varying attrib-
utes, perception-varying attributes allow to represent attributes whose value for a 
particular instance depends on the perception. This provides in particular an ele-
gant solution to the problem of multi-scale databases, where the geometry of fea-
tures depends on spatial resolution. Stamping is also associated to instances, al-
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lowing the population of a type to vary according to the perception. Finally, we 
have shown how stamping also applies to is-a links, thus creating generalization 
hierarchies that depend on the perception. 

MADS data manipulation languages (presented in Chap. 5) allow users to cor-
rectly manipulate the database in one of two modes: mono-perception database or 
multi-perception database. In the second mode, the user sees several representa-
tions, can access any one of them, and can navigate from one representation to an-
other one.  

2.5 Integrity Constraints 

Integrity constraints provide a way to more precisely define the semantics of data 
and play an essential role in establishing the quality of a database and its correct 
evolution. Integrity constraints are assertions that restrict the data that may appear 
in the database, to prevent the insertion of data that are obviously incorrect with 
respect to rules governing the real world and its representation in the database. 
Different kinds of restrictions can be specified. Restrictions on a value domain are 
possibly the simplest form of integrity constraints. Typical examples include the 
specification of a limited allowed range over the underlying domain (e.g., stating 
that allowed values for the windForce attribute are decimal numbers in the 1.0-
10.0 range), and the explicit enumeration of allowed values (e.g., stating that al-
lowed values for a gender attribute only include two values, female and male). 
These restrictions are intended to limit the possibility of entering erroneous data, 
or generating erroneous data by some inappropriate update of existing data. Unfor-
tunately, they can only avoid errors that may be detected. They cannot avoid en-
tering a value that is plausible but is not the value that was to be entered (e.g., en-
tering 16.2 as value for the windForce attribute can be rejected if the domain has 
been restricted to the 1.0-10.0 range, but entering 6.2 instead of 2.6 cannot be pre-
vented by a simple value domain restriction). Integrity constraints may be of arbi-
trary complexity, involving data retrieval operations and computations on many 
values stored in the database. Most often they restrict attributes values, forcing 
conformance to application rules. But they may also restrict the creation of object 
or relationship instances. For example, cardinality constraints associated to roles 
in relationships limit the number of relationships that can be created.  

Most data models come with embedded integrity constraints, i.e., constraints 
that can be specified using predefined clauses of the associated data definition 
language. For example, the SQL language supported by major relational DBMSs 
allows the specification of uniqueness constraints (using PRIMARY KEY and 
UNIQUE clauses), and referential constraints (using FOREIGN KEY clauses). 
Embedded constraints cannot cope with all the complexity of application rules that 
concur in defining correctness criteria for data in use. Consequently, a data defini-
tion language has to provide a way for expressing ad-hoc integrity constraints. 
SQL, for example, offers a CHECK clause to define ad-hoc value domain restric-
tions and generic constraints among attributes of one or more relations, whenever 
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