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Finite-Volume Methods

Finite-volume methods (FVM) — sometimes also called box methods — are
mainly employed for the numerical solution of problems in fluid mechanics,
where they were introduced in the 1970s by McDonald, MacCormack, and
Paullay. However, the application of the FVM is not limited to flow prob-
lems. An important property of finite-volume methods is that the balance
principles, which are the basis for the mathematical modelling of continuum
mechanical problems, per definition, also are fulfilled for the discrete equations
(conservativity). In this chapter we will discuss the most important basics of
finite-volume discretizations applied to continuum mechanical problems. For
clarity in the presentation of the essential principles we will restrict ourselves
mainly to the two-dimensional case.

4.1 General Methodology

In general, the FVM involves the following steps:

(1) Decomposition of the problem domain into control volumes.

(2) Formulation of integral balance equations for each control volume.

(3) Approximation of integrals by numerical integration.

(4) Approximation of function values and derivatives by interpolation with
nodal values.

(5) Assembling and solution of discrete algebraic system.

In the following we will outline in detail the individual steps (the solution of
algebraic systems will be the topic of Chap. 7). We will do this by example
for the general stationary transport equation (see Sect. 2.3.2)

P 96\
. (pms —a axi) = f (4.1)




78 4 Finite-Volume Methods

for some problem domain 2. We remark that a generalization of the FVM to
other types of equations as given in Chap. 2 is straightforward (in Chap. 10
this will be done for the Navier-Stokes equations).

The starting point for a finite-volume discretization is a decomposition of
the problem domain {2 into a finite number of subdomains V; (i =1,..., N),
called control volumes (CVs), and related nodes where the unknown variables
are to be computed. The union of all CVs should cover the whole problem
domain. In general, the CVs also may overlap, but since this results in un-
necessary complications we consider here the non-overlapping case only. Since
finally each CV gives one equation for computing the nodal values, their final
number (i.e., after the incorporation of boundary conditions) should be equal
to the number of CVs. Usually, the CVs and the nodes are defined on the
basis of a numerical grid, which, for instance, is generated with one of the
techniques described in Chap. 3. In order to keep the usual terminology of
the FVM, we always talk of volumes (and their surfaces), although strictly
speaking this is only correct for the three-dimensional case.

For one-dimensional problems the CVs are subintervals of the problem
interval and the nodes can be the midpoints or the edges of the subintervals
(see Fig. 4.1).

‘ Fig. 4.1. Definitions of CVs and

OV ‘\ No des edge (top) and cell-oriented (bot-
| | tom) arrangement of nodes for
[ ® [ ® | | one-dimensional grids

In the two-dimensional case, in principle, the CVs can be arbitrary poly-
gons. For quadrilateral grids the CVs usually are chosen identically with the
grid cells. The nodes can be defined as the vertices or the centers of the CVs
(see Fig. 4.2), often called edge or cell-centered approaches, respectively. For
triangular grids, in principle, one could do it similarily, i.e., the triangles define
the CVs and the nodes can be the vertices or the centers of the triangles. How-
ever, in this case other CV definitions are usually employed. One approach is
closely related to the Delaunay triangulation discussed in Sect. 3.4.2. Here, the
nodes are chosen as the vertices of the triangles and the CVs are defined as the
polygons formed by the perpendicular bisectors of the sides of the surrounding
triangles (see Fig. 4.3). These polygons are known as Voronoi polygons and
in the case of convex problems domains and non-obtuse triangles there is a
one-to-one correspondance to a Delaunay triangulation with its “nice” prop-
erties. However, this approach may fail for arbitrary triangulations. Another
more general approach is to define a polygonal CV by joining the centroids
and the midpoints of the edges of the triangles surrounding a node leading to
the so-called Donald polygons (see Fig. 4.4).
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Fig. 4.2. Edge-oriented
(left) and cell-oriented
(right) arrangements of
nodes for quadrilateral grids

Node

Ccv

Fig. 4.3. Definition of CVs and nodes for tri-
angular grids with Voronoi polygons

Node

Ccv

Fig. 4.4. Definition of CVs and nodes for tri-
angular grids with Donald polygons

For three-dimensional problems on the basis of hexahedral or tetrahedral
grids similar techniques as in the two-dimensional case can be applied (see,
e.g., [26]).

After having defined the CVs, the balance equations describing the prob-
lem are formulated in integral form for each CV. Normally, these equations are
directly available from the corresponding continuum mechanical conservation
laws (applied to a CV), but they can also be derived by integration from the
corresponding differential equations. By integration of (4.1) over an arbitrary
control volume V' and application of the Gaufl integral theorem, one obtains:

0
/ <pvi¢ - aa;i> n; dS = /de , (4.2)
S v
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where S is the surface of the CV and n; are the components of the unit
normal vector to the surface. The integral balance equation (4.2) constitutes
the starting point for the further discretization of the considered problem with
an FVM.

As an example we consider quadrilateral CVs with a cell-oriented arrange-
ment of nodes (a generalization to arbitrary polygons poses no principal dif-
ficulties). For a general quadrilateral CV we use the notations of the distin-
guished points (midpoint, midpoints of faces, and edge points) and the unit
normal vectors according to the so-called compass notation as indicated in
Fig. 4.5. The midpoints of the directly neighboring CVs we denote — again in
compass notation — with capital letters S, SE, etc. (see Fig. 4.6).

x2,Y

Fig. 4.5. Quadrilateral control
volume with notations

% Fig. 4.6. Notations for neighbor-

ing control volumes

The surface integral in (4.2) can be split into the sum of the four surface
integrals over the cell faces S, (¢ = e, w,n,s) of the CV, such that the balance
equation (4.2) can be written equivalently in the form

Jd¢
Z (pvi(b -« z) neg dS. = [ fdV. (4.3)
[ (momegy rads.= |
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The expression (4.3) represents a balance equation for the convective and
diffusive fluxes F¥ and FP through the CV faces, respectively, with

FE:/(pUi¢)ncidSc and F(P:—/(Ozg(é

K3

) Ne; dSC .

c c

For the face S, for instance, the unit normal vector ne = (11, nez) is defined
by the following (geometric) conditions:

(Xpe — Xse) ‘N =0 und |ng|=4/n2 +n2 =1.

From this one obtains the representation

. (ync - ysc) . (mnc - xse)
n, = 55 e; 55, e, (4.4)

where

550 = |XHC - XSC| - \/(xnc - xsc)z + (ync - ysc)2

denotes the length of the face S.. Analogous relations result for the other CV
faces.

For neighboring CVs with a common face the absolute value of the total
flux F, = FC + FP through this face is identical, but the sign differs. For
instance, for the CV around point P the flux F; is equal to the flux —F,
for the CV around point E (since (n.)p = —(nw)g). This is exploited for the
implementation of the method in order to avoid on the one hand a double com-
putation for the fluxes and on the other hand to ensure that the corresponding
absolute fluxes really are equal (important for conservativity, see Sect. 8.1.4).
In the case of quadrilateral CVs the computation can be organized in such a
way that, starting from a CV face at the boundary of the problem domain,
for instance, only F, und F;, have to be computed.

It should be noted that up to this point we haven’t introduced any ap-
proximation, i.e., the flux balance (4.3) is still exact. The actual discretization
now mainly consists in the approximation of the surface integrals and the vol-
ume integral in (4.3) by suitable averages of the corresponding integrands at
the CV faces. Afterwards, these have to be put into proper relation to the
unknown function values in the nodes.

4.2 Approximation of Surface and Volume Integrals

We start with the approximation of the surface integrals in (4.3), which for a
cell-centered variable arrangement suitably is carried out in two steps:

(1) Approximation of the surface integrals (fluxes) by values on the CV faces.
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(2) Approximation of the variable values at the CV faces by node values.

As an example let us consider the approximation of the surface integral

/ W;Teq dSe

Se

over the face S, of a CV for a general integrand function w = (w1 (x), wz(x))
(the other faces can be treated in a completely analogous way).

The integral can be approximated in different ways by involving more or
less values of the integrand at the CV face. The simplest possibility is an
approximation by just using the midpoint of the face:

/wmei dSe = go 6., (4.5)
Se

where we denote with g = weine; the normal component of w at the loca-
tion e. With this, one obtains an approximation of 2nd order (with respect to
the face length §.S,) for the surface integral, which can be checked by means
of a Taylor series expansion (Exercise 4.1). The integration formula (4.5) cor-
responds to the midpoint rule known from numerical integration.

Other common integration formulas, that can be employed for such ap-
proximations are, for instance, the trapezoidal rule and the Simpson rule. The
corresponding formulas are summarized in Table 4.1 with their respective
orders (with respect to 0.5,).

Table 4.1. Approximations for surface integrals
over the face Se

Name Formula Order
Midpoint rule 0Sege 2
Trapezoidal rule  §Se(gne + gse)/2 2
Simpson rule 0Se(gne + 4ge + gse)/6 4

For instance, by applying the midpoint rule for the approximation of the
convective and diffusive fluxes through the CV faces in (4.3), we obtain the
approximations:

FCC ~ pvingi0S. ¢ and FP ~ —an.dS. < &b) ,
— O0x; c

Me

where, for simplicity, we have assumed that v;, p, and « are constant across
the CV. . denotes the mass flux through the face S.. Inserting the definition
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of the normal vector, we obtain, for instance, for the convective flux through
the face Se, the approximation

FeC ~ me¢e = p[vl (yne - yse) - UZ(xne - xse)] .

Before we turn to the further discretization of the fluxes, we first deal
with the approximation of the volume integral in (4.3), which normally also is
carried out by means of numerical integration. The assumption that the value
fp of fin the CV center represents an average value over the CV leads to the
two-dimensional midpoint rule:

/de%fp(SV,
J

where 6V denotes the volume of the CV, which for a quadrilateral CV is given
by
1
oV = §|(Ise - xnw)(yne - ysw) - (xne - zsw)(yse - ynw)| .

An overview of the most common two-dimensional integration formulas
for Cartesian CVs with the corresponding error order (with respect to §V) is
given in Fig. 4.7 showing a schematical representation with the corresponding
location of integration points and weighting factors. As a formula this means,
e.g., in the case of the Simpson rule, an approximation of the form:

/de o L (16 p + Afu+ Afu +Afn + 4+ o+ foo + foo + foo)

It should be noted that the formulas for the two-dimensional numerical inte-
gration can be used to approximate the surface integrals occurring in three-
dimensional applications. For three-dimensional volume integrals analogous
integration formulas as for the two-dimensional case are available.

In summary, by applying the midpoint rule (to which we will retrict
ourselves) we now have the following approximation for the balance equa-
tion (4.3):

> rhede Z ane; 0Se ( o¢ ) fp V. (4.6)

— ~——
conv. fluxes diff. fluxes source

In the next step it is necessary to approximate the function values and deriva-
tives of ¢ at the CV faces occurring in the convective and diffusive flux ex-
pressions, respectively, by variable values in the nodes (here the CV centers).
In order to clearly outline the essential principles, we will first explain the
corresponding approaches for a two-dimensional Cartesian CV as indicated in
Fig. 4.8. In this case the unit normal vectors n. along the CV faces are given
by
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Fig. 4.7. Schematic representation of numerical integration formulas for two-
dimensional volume integrals over a Cartesian CV

Nne =€, Ny = —€, Ny =€, Ng= —€
and the expressions for the mass fluxes through the CV faces simplify to

Me = P'Ul(yn - ys) , My = p’Ug({Ee - l'w) 5
My = p1(Ys — Yn), Ths = pv2(Ty — Te) -

Particularities that arise due to non-Cartesian grids will be considered in
Sect. 4.5.

4.3 Discretization of Convective Fluxes

For the further approximation of the convective fluxes FC, it is necessary
to approximate ¢. by variable values in the CV centers. In general, this in-
volves using neighboring nodal values ¢g, ¢p, ... of ¢.. The methods most
frequently employed in practice for the approximation will be explained in
the following, where we can restrict ourselves to one-dimensional considera-
tions for the face Se, since the other faces and the second (or third) spatial
dimension can be treated in a fully analogous way. Traditionally, the corre-

sponding approximations are called differencing techniques, since they result
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x2,Y n,
n
Yn
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Ny P Ne
1T 0Sw ° 0Se | P
0Ss
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Fig. 4.8. Cartesian control volume
with notations

Tw nNg Te
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in formulas analogous to finite-difference methods. Strictly speaking, these are
interpolation techniques.

4.3.1 Central Differences

For the central differencing scheme (CDS) ¢, is approximated by linear inter-
polation with the values in the neighboring nodes P und E (see Fig. 4.9):

Pe X VePE + (1 - 7e)¢P . (47)
The interpolation factor ~, is defined by

Te — P
Yo = ————.
IE — Tp

The approximation (4.7) has, for an equidistant grid as well as for a non-
equidistant grid, an interpolation error of 2nd order. This can be seen from a
Taylor series expansion of ¢ around the point xp:

N2 /a2
o(x) = ¢p + (x — p) (%)F + (CC+P) (%)F + Ty,

where Ty denotes the terms of higher order. Evaluating this series at the
locations z. and xg and taking the difference leads to the relation

(26 — xp)(7E — 20) (0%
2 <W)P + TH 5

which shows that the leading error term depends quadratically on the grid
spacing.

P = '-YeﬁbE + (1 - ’Ye)QSP -
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® ¢ ® Fig. 4.9. Approximation of ¢.
P E with CDS method
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By involving additional grid points, central differencing schemes of higher
order can be defined. For instance, an approximation of 4th order for an
equidistant grid is given by

L Sn + 276m + 270 — 36w) |

(be:ﬁ

where EE denotes the “east” neighboring point of E (see Fig. 4.11). Note that
an application of this formula only makes sense if it is used together with an
integration formula of 4th order, e.g., the Simpson rule. Only in this case is
the total approximation of the convective flux also of 4th order.

When using central differencing approximations unphysical oscillations
may appear in the numerical solution (the reasons for this problem will be
discussed in detail in Sect. 8.1). Therefore, one often uses so-called upwind
approzrimations, which are not sensitive or less sensitive to this problem. The
principal idea of these methods is to make the interpolation dependent on the
direction of the velocity vector. Doing so, one exploits the transport property
of convection processes, which means that the convective transport of ¢ only
takes place “downstream”. In the following we will discuss two of the most
important upwind techniques.

4.3.2 Upwind Techniques

The simplest upwind method results if ¢ is approximated by a step function.
Here, ¢, is determined depending on the direction of the mass flux as follows
(see Fig. 4.10):

¢e:¢P, ifme>oa
bo =, if e <0.

This method is called upwind differencing scheme (UDS). A Taylor series
expansion of ¢ around the point zp, evaluated at the point z., gives:
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_ 2 2
(rbc = ¢P + (fc 71‘13) <g_f)13 + w (%)P +TH~

This shows that the UDS method (independent of the grid) has an interpola-
tion error of 1st order. The leading error term in the resulting approximation
of the convective flux FC becomes

e\Le P 6mp'

anum

The error caused by this is called artificial or numerical diffusion, since the
error term can be interpreted as a diffusive flux. The coefficient ayum is a
measure for the amount of the numerical diffusion. If the transport direction
is nearly perpendicular to the CV face, the approximation of the convective
fluxes resulting with the UDS method is comparably good (the derivative
(0¢/0x)p is then small). Otherwise the approximation can be quite inaccurate
and for large mass fluxes (i.e., large velocities) it can then be necessary to
employ very fine grids (i.e., zo — zp very small) for the computation in order
to achieve a solution with an adequate accuracy. The disadvantage of the
relatively poor accuracy is confronted by the advantage that the UDS method
leads to an unconditionally bounded solution algorithm. We will discuss this
aspect in more detail in Sect. 8.1.5.

|

|

|

|

|

| |

I : I T Fig. 4.10. Mass flux dependent
® L ® approximation of ¢, with UDS
P E method

An upwind approximation frequently employed in practice is the quadratic
upwind interpolation, which in the literature is known as the QUICK method
(Quadratic Upwind Interpolation for Convective Kinematics). Here, a quad-
ratic polynomial is fitted through the two neighboring points P and E, and a
third point, which is located upstream (W or EE depending on the flow direc-
tion). Evaluating this polynomial at point e one obtains the approximation
(see also Fig. 4.11):
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be = a1¢0p — azpw + (1 — a1 +az)pp, if e >0,
$e = bigpp — bagpr + (1 — b1 +b2)¢p, if 1he <0,

where
oy = 2w gy = L7 = )’
L4 7 —Yw 14+ 7 — Yw
b= LFW)A =7 e
1+ vee — e ’ 14+ Yee — e

For an equidistant grid one has:
3 1 3 1
al = - = - = =
In this case the QUICK method possesses an interpolation error of 3rd or-
der. However, if it is used together with numerical integration of only 2nd order

the overall flux approximation also is only of 2nd order, but it is somewhat
more accurate than with the CDS method.

I
I I
I I
I I I
I I I
I I I
I I I
| | I
@ @ . L g L g
W P e E EE

Fig. 4.11. Mass flux dependent approximation of ¢. with QUICK method

Before we turn to the discretization of the diffusive fluxes, we will point to
a special technique for the treatment of convective fluxes, which is frequently
employed for transport equations.

4.3.3 Flux-Blending Technique

The principal idea of fluz-blending, which goes back to Khosla und Rubin
(1974), is to mix different approximations for the convective flux. In this way
one attempts to combine the advantages of an accurate approximation of a
higher order scheme with the better robustness and boundedness properties
of a lower order scheme (mostly the UDS method).

To explain the method we again consider exemplarily the face S, of a CV.
The corresponding approximations for ¢, in the convective flux EC for the
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two methods to be combined are denoted by ¢MY and ¢MH, where ML and
MH are the lower and higher order methods, respectively. The approximation
for the combined method reads:

de = (1= B)oa™ + Bop™ = oM + B — p2™™) . (4.8)
[}
bo°
B

From (4.8) for =0 and S=1 the methods ML and MH, respectively, result.
However, it is possible to choose for § any other value between 0 and 1,
allowing to control the portions of the corresponding methods according to
the needs of the underlying problem. However, due to the loss in accuracy,
values 8 < 1 should be selected only if with 8 = 1 on the given grid no
“reasonable” solution can be obtained (see Sect. 8.1.5) and a finer grid is not
possible due to limitations in memory or computing time.

Also, if 3 =1 (i.e., the higher order method) is employed, it can be be-
neficial to use the splitting according to (4.8) in order to treat the term bg’e
“explicitly” in combination with an iterative solver. This means that this
term is computed with (known) values of ¢ from the preceding iteration and
added to the source term. This may lead to a more stable iterative solution
procedure, since this (probably critical) term then makes no contribution to
the system matrix, which becomes more diagonally dominant. It should be
pointed out that this modification has no influence on the converged solution,
which is identical to that obtained with the higher order method MH alone.
We will discuss this approach in some more detail at the end of Sect. 7.1.4.

4.4 Discretization of Diffusive Fluxes

For the approximation of diffusive fluxes it is necessary to approximate the
values of the normal derivative of ¢ at the CV faces by nodal values in the
CV centers. For the east face S, of the CV, which we will again consider
exemplarily, one has to approximate (in the Cartesian case) the derivative
(0¢/0x)e. For this, difference formulas as they are common in the framework
of the finite-difference method can be used (see, e.g., [9]).

The simplest approximation one obtains when using a central differencing
formula

oz TE — Tp

which is equivalent to the assumption that ¢ is a linear function between the
points zp and zg (see Fig. 4.12). For the discussion of the error of this ap-
proximation, we consider the difference of the Taylor series expansion around
T at the locations zp and zg:
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(3¢> _ ¢ —¢p n (ze — zp)? — (25 — @) (32¢>

Oz TE — Tp 2(xg — xp) ox2
 (we —wp)’ 4 (wm — we)® (0%
6(zg — 2p) Ox3 eJrTH'

One can observe that for an equidistant grid an error of 2nd order results,
since in this case the coefficient in front of the second derivative is zero. In
the case of non-equidistant grids, one obtains by a simple algebraic rearrange-
ment that this leading error term is proportional to the grid spacing and the
expansion rate &, of neighboring grid spacings:

(1 — &) (e — zp) (32¢

TE — Te
2 0x?

) with & =

Te — Tp

This means that the portion of the 1st order error term gets larger the more
the expansion rate deviates from 1. This aspect should be taken into account
in the grid generation such that neighboring CVs do not differ that much in
the corresponding dimensions (see also Sect. 8.3).

¢
0
oz ),
y «
[ : )
| fe—dr |
TE — Tp
| |
I |
| : I T Fig. 4.12. Central differencing
@ L @ formula for approximation of 1st
P e E derivative at CV face

One obtains a 4th order approximation of the derivative at the CV face
for an equidistant grid by

dp\ 1
(%)e ~ M(ébw 27¢p + 27¢E — ¢ER), (4.10)
which, for instance, can be used together with the Simpson rule to obtain an
overall approximation for the diffusive flux of 4th order.

Although principally there are also other possibilities for approximating
the derivatives (e.g., forward or backward differencing formulas), in practice
almost only central differencing formulas are employed, which possess the
best accuracy for a given number of grid points involved in the discretization.
Problems with boundedness, as for the convective fluxes, do not exist. Thus,
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there is no reason to use less accurate approximations. For CVs located at the
boundary of the problem domain, it might be necessary to employ forward or
backward differencing formulas because there are no grid points beyond the
boundary (see Sect. 4.7).

4.5 Non-Cartesian Grids

The previous considerations with respect to the discretization of the convective
and diffusive fluxes were confined to the case of Cartesian grids. In this section
we will discuss necessary modifications for general (quadrilateral) CVs.

For the convective fluxes, simple generalizations of the schemes introduced
in Sect. 4.3 (e.g., UDS, CDS, QUICK, ...) can be employed for the approxi-
mation of ¢.. For instance, a corresponding CDS approximation for ¢, reads:

_ Ixe —xp| |xp — xg

¢ (4.11)

e ™~ E P
|xg — xp] |xg — xp|
where x; is the intersection of the connnecting line of the points P and E with
the (probably extended) CV face S, (see Fig. 4.13). For the convective flux

through S, this results in the following approximation:
FC ~ e

A | (|xs — xp|oE + |xE — X5|dP) -

xE — Xp
When the grid at the corresponding face has a “kink”, an additional error
results because the points xz and x. do not coincide (see Fig. 4.13). This
aspect should be taken into account for the grid generation (see also Sect. 8.3).

€2

Fig. 4.13. Central difference approx-
imation of convective fluxes for non-

X1 .
Cartesian control volumes

Let us turn to the approximation of the diffusive fluxes, for which farther
reaching distinctions to the Cartesian case arise as for the convective fluxes.
Here, for the required approximation of the normal derivative of ¢ in the
center of the CV face there are a variety of different possibilities, depending
on the directions in which the derivative is approximated, the locations where
the appearing derivatives are evaluated, and the node values which are used
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for the interpolation. As an example we will give here one variant and consider
only the CV face S..

Since along the normal direction in general there are no nodal points,
the normal derivative has to be expressed by derivatives along other suitable
directions. For this we use here the coordinates é and 7} defined according
to Fig. 4.14. The direction é is determined by the connecting line between
points P and E, and the direction 7 is determined by the direction of the CV
face. Note that £ and 7, because of a distortion of the grid, can deviate from
the directions & und 7, which are defined by the connecting lines of P with
the CV face centers e and n. The larger these deviations are, the larger the
discretization error becomes. This is another aspect that has to be taken into
account when generating the grid (see also Sect. 8.3).

Fig. 4.14. Approximation of dif-
fusive fluxes for non-Cartesian con-
trol volumes

A coordinate transformation (z,y) — (&,7) results for the normal deriva-
tive in the following representation:

oo} oo} 1 [/ 0y ox 0¢ or dy 0¢
o2 e = = [ Z e —ZEnn)| L ( ZEnn—Zng ) 22| (412
5‘:5 ne1+ ay Ne2 7 |:< 877 Ne1 E)ﬁ ne2) ag + ag Ne2 8§ Tlel 877 ( )

with the Jacobi determinant
_Ox 0y Oyox
9c0n  0g o’
The metric quantities can be approximated according to

ox XE — Xp 0X  Xpe — Xseo
—~— and —x—,
o |xp —xp| on 0Se

which results for the Jacobi determinant in the approximation

(4.13)

(2 — 2P)(Yne — Yse) — (YE — YP) (Tne — Tse)
|XE - XP| (SSe

Jo = = cos,
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where 1 denotes the angle between the direction ¢ and n, (see Fig. 4.14). ¢
is a measure for the deviation of the grid from orthogonality () = 0 for an
orthogonal grid).

The derivatives with respect to € and 7 in (4.12) can be approximated
in the usual way with a finite-difference formula. For example, the use of a
central difference of 2nd order gives:

0¢ _ ¢ —¢p

o€ ~ |xEg — Xp|

8¢ ¢ne - ¢se

— = 4.14
on 6Se ( )
Inserting the approximations (4.13) and (4.14) into (4.12) and using the com-
ponent representation (4.4) of the unit normal vector n, we finally obtain the

following approximation for the diffusive flux through the CV face S.:

and

F(? %De(d)E _¢P) +Ne(¢ne _¢se) (415)
with
« [(yne - yse)2 + (xne - xse)2]

De = (l'ne - xse)(yE — yp) — (yne _ yse)(SCE _ xP) ) (416)

_«a [(Yne — Yse)(YE — YP) + (Tne — Tse) (xE — xp)]
Ne - (yne B yse)(xE o xP) - (.’L'ne - xse)(yE - yP) . (417)

The coefficient N, represents the portion that arise due to the non-orthogo-
nality of the grid. If the grid is orthogonal, n, and xg — xp have the same
direction such that N, = 0. The coefficient N, (and the corresponding values
for the other CV faces) should be kept as small as possible (see als Sect. 8.3).

The values for ¢ and ¢ in (4.15) can be approximated, for instance, by
linear interpolation of four neighboring nodal values:

_ op¢p + YEPE + INON + YNEPNE
Y +E +IN + INE

Pre

with suitable interpolation factors yp, vg, YN, and yng (see Fig. 4.15).

Fig. 4.15. Interpolation of values in CV
edges for discretization of diffusive fluxes
for non-Cartesian CV
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4.6 Discrete Transport Equation

Let us now return to our example of the general two-dimensional transport
equation (4.3) and apply the approximation techniques introduced in the pre-
ceding sections to it.

We employ exemplarily the midpoint rule for the integral approximations,
the UDS method for the convective flux, and the CDS method for the diffusive
flux. Additionally, we assume that we have velocity components vy,ve > 0
and that the grid is a Cartesian one. With these assumptions one obtains the
following approximation of the balance equation (4.3):

(pU1¢P - a¢E : ¢P) (yn - ys)
TR Irp
_ <pv1¢w _ aM) (g — 3)
Trp TWwW

+ <P’02¢P - QM> (Te — Tw)
YN —YpP

¢p — ¢s
- <pv2¢s —a——— ) (Te — Tw) = fP(Yn — Ys)(Te — Tw) -
Yyp — Ys
A simple rearrangement gives a relation of the form
apdp = apPr + awdw + anén + asos + bp (4.18)
with the coefficients
«
ag = s
BT (e — op) (Te — o)
_pu @
W e —aw (zp — 2w ) (Te — Ty)
(0%
aN = )
(yn —yP) (Y — ¥s)
PU2 Q@
as = + ’
Un—Ys  (yp —¥s)(Yn — ¥s)
pu1 a(zg — 2w)
ap = + +
P e — e | (wp — 2w) (@R — 2p)(Te — T)
P2 a(yn — ys)
Yn—Ys  (yp —ys)(Un — Yp)(Un — ¥s)
bp = fp.

If the grid is equidistant in each spatial direction (with grid spacings Az and
Ay), the coefficients become:
@ U1 @ @ PU2 @
g = —, OWw=—+—, aN = =——+ -
Az "W Az T Az TN T A Ay Ay?’
pU1 2a pPU2 2a

ap=——+ 5+ +

Az ' Az?2 T Ay A2 be = Je.
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In this particular case (4.18) coincides with a discretization that would result
from a corresponding finite-difference method (for general grids this normally
is not the case).

It can be seen that — independent from the grid employed — one has for
the coefficients in (4.18) the relation

ap =ag +aw +anx +as.

This is characteristic for finite-volume discretizations and expresses the con-
servativity of the method. We will return to this important property in
Sect. 8.1.4.

Equation (4.18) is valid in this form for all CVs, which are not located
at the boundary of the problem domain. For boundary CVs the approxima-
tion (4.18) includes nodal values outside the problem domain, such that they
require a special treatment depending on the given type of boundary condi-
tion.

4.7 Treatment of Boundary Conditions

We consider the three boundary condition types that most frequently oc-
cur for the considered type of problems (see Chap. 2): a prescibed variable
value, a prescibed flux, and a symmetry boundary. For an explanation of the
implementation of such conditions into a finite-volume method, we consider
as an example a Cartesian CV at the west boundary (see Fig. 4.16) for the
transport equation (4.3). Correspondingly modified approaches for the non-
Cartesian case or for other types of equations can be formulated analogously
(for this see also Sect. 10.4).

Let us start with the case of a prescribed boundary value ¢y, = ¢°. For
the convective flux at the boundary one has the approximation:

Fvg ~ mw¢w = mw¢0'

With this the approximation of F is known (the mass flux 7, at the bound-
ary is also known) and can simply be introduced in the balance equation (4.6).
This results in an additional contribution to the source term bp.

The diffusive flux through the boundary is determined with the same ap-
proach as in the interior of the domain (see (4.18)). Analogously to (4.9) the
derivative at the boundary can be approximated as follows:

(%) o —dbw _ p—¢°
Ox Wpr—xW_J:p—xw’

This corresponds to a forward difference formula of 1st order. Of course, it is
also possible to apply more elaborate formulas of higher order. However, since
the distance between the boundary point w and the point P is smaller than

(4.19)
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the distance between two inner points (half as much for an equidistant grid,
see Fig. 4.16), a lower order approximation at the boundary usually does not
influence the overall accuracy that much.

N
L]

1

P B
s S e

5

' S
[ ] [
Fig. 4.16. Cartesian boundary CV at west boundary
L o with notations

In summary, one has for the considered boundary CV a relation of the
form (4.18) with the modified coefficients:

aw = 0,
pu1 a(zg — ow)
ap = + +
To— Tw (Tp — Tw)(zp — 2p)(Te — Tw)
pU2 a(yn — ys)
+ )
Yo —Ys (Y —ys)(Yn — yP)(Yn — Ys)
v o
bp = fp + puL @0,

Te —Tw (TP — Tw)(Te — Tw)

All other coefficients are computed as for a CV in the interior of the problem
domain.

Let us now consider the case where the flux F,, = FY is prescribed at
the west boundary. The flux through the CV face is obtained by dividing F°
through the length of the face . —. The resulting value is introduced in (4.6)
as total flux and the modified coefficients for the boundary CV become:

aw = 0,
v o
ap = L4 +
Te — Ty (2B — 2p)(Te — Tw)
pU2 a(yN —ys)
+ )
Yn—Ys  (yp —ys)(yn —yp)(Yn — ¥s)
FO
bp = fp + —.
Te — Ty

All other coefficients remain unchanged.
Sometimes it is possible to exploit symmetries of a problem in order to
downsize the problem domain to save computing time or get a higher accuracy
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(with a finer grid) with the same computational effort. In such cases one has
to consider symmetry planes or symmetry lines at the corresponding problem
boundary. In this case one has the boundary condition:

o9

83%
From this condition it follows that the diffusive flux through the symmetry
boundary is zero (see (4.18)). Since also the normal component of the velocity
vector has to be zero at a symmetry boundary (i.e., v;n; = 0), the mass flux
and, therefore, the convective flux through the boundary is zero. Thus, in the
balance equation (4.6) the total flux through the corresponding CV face can
be set to zero. For the boundary CV in Fig. 4.16 this results in the following
modified coefficients:

n;=0. (4.20)

aw = 07
v [0
ap = L4 +
Te —Tw (TE —2p)(Te — Tw)
PU2 a(yN - yS)

Yn — Us * (yp —ys)(yn —yp)(Yn — ¥s)

If required, the (unknown) variable value at the boundary can be determined
by a finite-difference approximation of the boundary condition (4.20). In the
considered case, for instance, with a forward difference formula (cp. (4.19))
one simply obtains ¢y = ¢p.

As with all other discretization techniques, the algebraic system of equa-
tions resulting from a finite-volume discretization has a unique solution only
if the boundary conditions at all boundaries of the problem domain are taken
into account (e.g., as outlined above). Otherwise there would be more un-
knowns than equations.

4.8 Algebraic System of Equations

As exemplarily outlined in Sect. 4.6 for the general scalar transport equation,
a finite-volume discretization for each CV results in an algebraic equation of
the form:

apgp — Y acpe = bp
c

where the index ¢ runs over all neighboring points that are involved in the
approximation as a result of the discretization scheme employed. Globally, i.e.,
for all control volumes V; (i = 1,..., N) of the problem domain, this gives a
linear system of N equations
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apdp — Y algl=bp forall i=1,...,N (4.21)
C

for the N unknown nodal values ¢% in the CV centers.

After introducing a corresponding numbering of the CVs (or nodal values),
in the case of a Cartesian grid the system (4.21) has a fully analogous structure
that also would result from a finite-difference approximation. To illustrate
this, we consider first the one-dimensional case. Let the problem domain be
the interval [0, L], which we divide into N not necessarily equidistant CVs
(subintervals) (see Fig 4.17).

o R S TR
—O—e— ——+— @& —— @ +—@—O x
0 W w P e E L

Fig. 4.17. Arrangement of CVs and nodes for 1-D transport problem

Using the second-order central differencing scheme, the discrete equations
have the form:

app — apdl — aw Py = bp - (4.22)
With the usual lexicographical numbering of the nodal values as given in
Fig. 4.17 one has:

Py = ot forall i=2,...,N,
¢ =o¢p ! forall i=1,...,N—1.

Thus, the result is a linear system of equations which can be represented in
matrix form as follows:

- T - FpL T
11 Pp P
p —ag )
2 2 2 : bp
—ayy ap —ag 0
i—1
P
—ayy ap —ay L= b
i+1
P
N—1
0 . < —ap
N N N N
L —ay af | L 9P | L op
——
A o} b

When using a QUICK discretization or a central differencing scheme of
4th order, there are also coeflicients for the farther points EE and WW (see
Fig. 4.18):
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appp — GEEPEE — AEQE — OWOwW — awwdww = bp, (4.23)

i.e., in the corresponding coefficient matrix A two additional non-zero diago-
nals appear:

1 1 1
ap —ag —4gg
2 2 2 2
—ayy Gp —ap —agg 0
3 3 3 3 3
—Qww —Qw Gp —a —O4gg
i i i i i
A= —Qww —OGw ap —Og —4gg
N-2
—agg
N—1
O . . . —aE
N N N
L —Oww —aw ap
i—2 i—1 i i1 i+2
P ¢P QS%’ P <ZSP
——+——@&—+—@&—+—@—+—@
WW W w P e E EE

Fig. 4.18. CV dependencies with higher order scheme for 1-D transport problem

For the two- and three-dimensional cases fully analogous considerations
can be made for the assembly of the discrete equation systems. For a two-
dimensional rectangular domain with NV x M CVs (see Fig. 4.19), we have,
for instance, in the case of the discretization given in Sect. 4.6 equations of
the form

LIV IVETY IR 2 SR % B 1 BV 2 N 2% By % B 2 BYX 2 R N 2%
ap’ ¢p —ag Op — ayy Oy — ag” dg ay o5 = bp

fori=1,...,N and j=1,..., M. In the case of a lexicographical columnwise
numbering of the nodal values (index j is counted up first) and a corresponding
arrangement of the unknown variables ¢p’ (see Fig. 4.19), the system matrix
A takes the following form:
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T oAbl gl o 11 -
ap” —ay - - —ay
1,2
—ag .. . 0
0
GN-1LM
—ag
A= 2,1
Oy
0
0 . . . —ag’M71
N,M N,M N,M
L —ayw - 0 -—ag ap ]
M+1 i—c o—i
M ° ° ° ° )
0,541
° ° ¢Po ° °
i—1,j i it1,j
i ° ¢Po ¢Po ¢Po )
i,5—1
° ° ¢Po ° )
1 . . ° . ° I Fig. 4.19. Arrangement
0 i—c of CVs and nodes for 2-D
0 1 e i e N N+1 transport problem

As outlined in Sect. 4.5, due to the discretization of the diffusive fluxes, in
the non-Cartesian case additional coeflicients can arise, whereby the number
of non-zero diagonals in the system matrix increases. Using the discretization
exemplarily given in Sect. 4.5, for instance, one would have additional depen-
dencies with the points NE, NW_ SE, and SW, which are required to linearly
interpolate the values of ¢ in the vertices of the CV (see Fig. 4.20). Thus, in
the case of a structured grid a matrix with 9 non-zero diagonals would result.

4.9 Numerical Example
As a concrete, simple (two-dimensional) example for the application of the

FVM, we consider the computation of the heat transfer in a trapezoidal plate
(density p, heat conductivity k) with a constant heat source ¢ all over the
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i Fig. 4.20. Interpolation of vertice

values for non-Cartesian CV

plate. At three sides the temperature T is prescribed and at the fourth side
the heat flux is given (equal to zero). The problem data are summarized in
Fig. 4.21. The problem is described by the heat conduction equation

o*T 9T
K — Kk =
Ox? Oy? Pa
with the boundary conditions as indicated in Fig. 4.21 (cp. Sect. 2.3.2). For the
discretization we employ a grid with only two CVs as illustrated in Fig. 4.22.

The required coordinates for the distinguished points for both CVs are indi-
cated in Table 4.2.

(4.24)

Yy
Lo =2 L3 =6
T:iy3 p = 1kg/m®
16 g = 8 Nm/skg
k= 2N/Ks

Fig. 4.21. Configuration of trapezoidal plate heat conduction example (temperature
in K, length in m)

The integration of (4.24) over a control volume V' and the application of
the Gaufl integral theorem gives:

oT oT
ZFCHZ/(%era—yng) dSC:/qu,
c c S, v
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Fig. 4.22. CV definition for trapezoidal
plate

Table 4.2. Coordinates of distin-
guished points for discretized trape-
zoidal plate

CV1 CV2

Point T Y T Y
P 13/4 2 31/4 2
e 11/2 2 10 2
w 1 2 11/2 2
n 7/2 4 13/2 4
S 3 0 9 0
nw 2 4 5 4
ne 5 4 8 4
se 6 0 12 0
SW 0 0 6 0
Volume 18 18

where the summation has to be carried out over ¢ = s,n,w,e. For the ap-
proximation of the integrals we employ the midpoint rule and the derivatives
at CV faces are approximated by second-order central differences. Thus, the
approximations of the fluxes for CV1 is:

4 0T 1 0T
Fo=—r [ (=% +—=75)dS.~
ﬁs/(max may>

17
~ D, (TE — Tp) —+ Ne(Tne — Tse) = —— (TE — Tp) — 10,

9
29T 1 0T

Fy=— S T )dS, =
KS/< V5 O ﬁ8y>

w

2120 , 115,
- S Z 22 2202 48, = 60,
K/( \/316x+\/§16>
S,

w

oT oT
F,=— _— N — _— o — T ~
s %/( 8y>d5§ K(ay)s<xse Tsw)
S.

s

Tp — T
—K <u> (Tse — Tsw) = 6Tp,
yp — Ys

Q
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oT oT
Fn:_ a_ n~ — a ne — Tnw) ~
K 3de H(ay>n(x Tnw)

n

(TN —Tp
—K | ————
YN —YpP

Q

) (Tne — Tnw) = 3Tp — 60.

The flux Fy, has been computed exactly from the given boundary value func-
tion. Similarly, one obtains for CV2:
17
F.=0, I,= K(TP—TW)+1O, Fy~6Tp, F,~3Tp—60.
For both CVs we have 0V = 18, such that the following discrete balance
equations result:

98 17 98 17

—Tp— —Tg =154 d —Tp——Tw=19%.

g 1P g ik an g P g tw
We have Tp = T and Tg = T3 for CV1, and Tp = 15 and Ty = T; for CV2.
This gives the linear system of equations

98T — 1715, = 1386 and 98Th — 1777 = 1746

for the two unknown temperatures 77 and T5. Its solution gives T7 =~ 17,77
and Tb ~ 20, 90.

Exercises for Chap. 4

Exercise 4.1. Determine the leading error terms for the one-dimensional
midpoint and trapezoidal rules by Taylor series expansion and compare the
results.

Exercise 4.2. Let the concentration of a pollutant ¢ = ¢(z) in a chimney be
described by the differential equation

-3¢ —2¢" = xcos(rx) for 0<z<6

with the boundary conditions ¢'(0)=1 and ¢(6) =2. Compute the values ¢;
and ¢9 in the centers of the two control volumes CV1 = [0, 4] and CV2 = [4, 6]
with a finite-volume discretization using the UDS method for the convective
term.

Exercise 4.3. Consider the heat conduction in a square plate with the prob-
lem data given in Fig. 4.23. Compute the solution with a finite-volume method
for the two grids illustarted in Fig. 4.24. Compare the results with the analytic

solution T, (x,y) = 20 — 2y? + 23y — xy3.
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Y T=12—8x+22°
2m
oT 3 oT
K% =2y K% =24y — 2y3
2m
p = lkg/m®
q = 8 Nm/skg
k =2N/Ks Fig. 4.23. Problem def-
T inition for Exercise 4.3
T =20 (temperatures in K)
Y Y
2 2
p® p?
p? p? 3/2
1
p® PP
p® PP
x x
0 0
0 1 2 0 3/2 2

Fig. 4.24. Numerical grids for Exercise 4.3

Exercise 4.4. Formulate a finite-volume method of 2nd order for equidis-
tant grids for the bar equation (2.38). Use this for computing the displace-
ment of a bar of length L = 60 m with the boundary conditions (2.39) with
A(x) =14 x/60, up =0, and k, = 4N employing a discretization with three
equidistant CVs.

Exercise 4.5. Formulate a finite-volume method of 4th order for the mem-
brane equation (2.17) for an equidistant Cartesian grid.

Exercise 4.6. Consider the integral

ISZQSdS

for the function ¢ = ¢(x,y) over the face S, of the CV [1,3]%. (i) Determine
the leading error term and the order (with respect to the length Ay of S.) for

the approximation
I~ ¢(3,a)Ay
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depending on the parameter o € [1,3]. (ii) Compute I for the function
é(x,y) = 23y* directly (analytically) and with the approximation defined
in (i) with oo = 2. Compare the two solutions.

Exercise 4.7. The velocity vector of a two-dimensional flow is given by
V= (Ul(xv y)7 '02(113, y)) = (l’ cosmy, x4y) .
Let the flux through the surface S of the control volume V' = [1, 2]? be defined

by

S

(i) Approximate the integral with the Simpson rule. (ii) Transform the in-
tegral with the Gauf integral theorem into a volume integral (over V) and
approximate this with the midpoint rule.
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