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many results obtained from their high-resolution simulations was convincing
evidence that the scaled energy spectrum (where the wavenumber is scaled by
the inverse of the Kolmogorov length scale = (v3/€)}/4, with v the viscosity
and € the average dissipation rate) is not the classical Kolmogorov result of
k=5/3, but rather k=" with m ~ 5/3 — 0.10.

Fig. 1.6. Direct numerical simulation of incompressible isotropic turbulence on
a 2048 grid by Y. Kaneda and T. Ishihara (2006): High-Resolution Direct Numer-
ical Simulation of Turbulence. Journal of Turbulence 7(20), 1-17. The figure shows
the regions of intense vorticity in a subdomain with 1/4 the length in each coordi-
nate direction of the full domain [Reprinted with kind permission by the authors
and the publisher Taylor & Francis Ltd., http://www.tandf.co.uk/journals]

Rogallo (1977) developed a transformation that permits Fourier spectral
methods to be used for homogeneous turbulence flows, such as flows with
uniform shear. Blaisdell, Mansour and Reynolds (1993) used the extension of
this transformation to the compressible case to simulate compressible, homoge-
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A related family of weighted Sobolev spaces is useful, namely,

Hio®y) = {ve IL(Ry) | (1+2)* v e HERY)},  m20,
(5.7.3)

equipped with the natural norm |[v[|gm (&) = [[(1+ x)a/Qv\|H$(R+).
For each u € L2 (Ry), let Pyu € Py be the truncation of its Laguerre

series, i.e., the orthogonal projection of u upon Py with respect to the inner
product of L2 (R,):

/ (u—Pyu)pe Tdr=0 forall ¢ €Py.
Ry

The following error estimate holds for any m > 0 and 0 < k < m:
lu — Pyullgs @,y < ON*% ullagy, =) - (5.7.4)

For the orthogonal projection P upon Py in the norm of HL(R,), the
following estimate holds for m > 1, 1 < k < m:

lu — Pyull s m,) < CN*2~% lulley Ry s (5.7.5)

the same result holds for the projection Py’ upon P, (Guo and Shen (2000)).
Concerning interpolation, let us consider the N + 1 Gauss-Radau points
zj, j = 0,...,N, where zyp = 0 and z;, for j = 1,..., N, are the zeros
of Iy, 1(x), the derivative of the (N + 1)-th Laguerre polynomial. For each
continuous function v on Ry, let Iyu € Py be the interpolant of u at the
points x;. Then, for any integer m > 1,0 <k <m and 0 < € < 1, one has

N33 | g, (5.7.6)
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(see Xu and Guo (2002), where additional approximation results can be
found). The result stems from the error analysis given by Mastroianni and
Monegato (1997) in the family of norms (r > 0 real)

- 1/2
lollay,. &) = (Z(l +k)" vZ) :
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where 05, = (v, l;io))Lﬁ,(M) are the Laguerre coefficients of v. For such norms,
one has [[v| g, &) < c|vllgr () for any integer r. Examples of applica-

tions to spectral Laguerre discretizations of boundary-value problems in R
are provided in the above references. Usually, an appropriate change of
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unknown function is needed to cast the differential problem into the correct
functional setting based on Laguerre-weighted Sobolev spaces.

Hermite approximations can be studied in a similar manner. The basic
weighted space L2 (R) involves the norm

1/2
HU”qu(R) = (/ v2(x)ea:2dm) .
R

The Sobolev spaces H'(R) are defined as above, with respect to this norm.
The L? -orthogonal projection operator Py upon Py satisfies the estimate

lu = Prvul| sy 2y < CN% ™% [Jull ) (5.7.7)

for all m > 0 and 0 < k < m (Guo (1999)). Interestingly, all H’ -orthogonal
projection operators Pf(, upon Py, for £ > 0, coincide with Py, due to prop-
erty (2.6.12) of Hermite polynomials. For the interpolation operator Iy at
the Hermite-Gauss nodes in R, Guo and Xu (2000) proved the estimate

m

lu— Inul| i gy < CN3 2%

ull gm(w) (5.7.8)

form>1and 0 <k <m.

When dealing with the unbounded intervals R} and R, an alternative to
polynomials as approximating functions is given by functions that are the
product of a polynomial times the natural weight for the interval. Thus, one
uses the Laguerre functions ¥ (z) = ¢(x)e™* in Ry or the Hermite functions
P(x) = (b(ge)e_”’c2 in R, where ¢ is any polynomial in Py. The behavior at
infinity of the function to be approximated may suggest such a choice. We
refer, e.g., to Funaro and Kavian (1990) and to Guo and Shen (2003) for the
corresponding approximation results and for applications.

5.8 Approximation in Cartesian-Product Domains

We shall now extend to several space dimensions some of the approximation
results we presented in the previous sections for a single spatial variable. The
three expansions of Fourier, Legendre and Chebyshev will be considered.
However, we will only be concerned with those Sobolev-type norms that are
most frequently applied to the convergence analysis of spectral methods.

5.8.1 Fourier Approximations

Let us consider the domain §2 = (0, 27)¢ in R?, for d = 2 or 3, and denote an
element of R? by x = (z1,... ,24). The space L?(£2), as well as the Sobolev
spaces H]"(§2) of periodic functions, are defined in Appendix A (see (A.9.h)
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