
1. Introduction

1.1 Historical Background

Spectral methods are a class of spatial discretizations for differential equa-
tions. The key components for their formulation are the trial functions (also
called the expansion or approximating functions) and the test functions (also
known as weight functions). The trial functions, which are linear combina-
tions of suitable trial basis functions, are used to provide the approximate
representation of the solution. The test functions are used to ensure that
the differential equation and perhaps some boundary conditions are satis-
fied as closely as possible by the truncated series expansion. This is achieved
by minimizing, with respect to a suitable norm, the residual produced by
using the truncated expansion instead of the exact solution. The residual ac-
counts for the differential equation and sometimes the boundary conditions,
either explicitly or implicitly. For this reason they may be viewed as a special
case of the method of weighted residuals (Finlayson and Scriven (1966)). An
equivalent requirement is that the residual satisfy a suitable orthogonality
condition with respect to each of the test functions. From this perspective,
spectral methods may be viewed as a special case of Petrov-Galerkin methods
(Zienkiewicz and Cheung (1967), Babuška and Aziz (1972)).

The choice of the trial functions is one of the features that distinguishes
the early versions of spectral methods from finite-element and finite-difference
methods. The trial basis functions for what can now be called classical spectral
methods – spectral methods on a single tensor-product domain – are global,
infinitely differentiable and nearly orthogonal, i.e. the matrix consisting of
their inner products has very small bandwidth; in many cases this matrix is
diagonal. (Typically the trial basis functions for classical spectral methods
are tensor products of the eigenfunctions of singular Sturm-Liouville prob-
lems). In contrast, for the h version of finite-element methods, the domain
is divided into small elements, and low-order trial functions are specified in
each element. The trial basis functions for finite-element methods are thus
local in character and still nearly orthogonal, but not infinitely differentiable.
They are thus well suited for handling complex geometries. Finite-difference
methods are typically viewed from a pointwise approximation perspective
rather than from a trial function/test function perspective. However, when



4 1. Introduction

appropriately translated into a trial function/test function formulation, the
finite-difference trial basis functions are likewise local.

The choice of test functions distinguishes between the three earliest types
of spectral schemes, namely, the Galerkin, collocation, and tau versions. In
the Galerkin (1915) approach, the test functions are the same as the trial
functions. They are, therefore, infinitely smooth functions that individually
satisfy some or all of the boundary conditions. The differential equation is
enforced by requiring that the integral of the residual times each test function
be zero, after some integration-by-parts, accounting in the process for any re-
maining boundary conditions. In the collocation approach the test functions
are translated Dirac delta-functions centered at special, so-called collocation
points. This approach requires the differential equation to be satisfied ex-
actly at the collocation points. Spectral tau methods are similar to Galerkin
methods in the way the differential equation is enforced. However, none of the
test functions need satisfy the boundary conditions. Hence, a supplementary
set of equations is used to apply the boundary conditions.

The collocation approach appears to have been first used by Slater (1934)
and by Kantorovic (1934) in specific applications. Frazer, Jones and Skan
(1937) developed it as a general method for solving ordinary differential equa-
tions. They used a variety of trial functions and an arbitrary distribution of
collocation points. The work of Lanczos (1938) established for the first time
that a proper choice of trial functions and distribution of collocation points
is crucial to the accuracy of the solution. Perhaps he should be credited
with laying down the foundation of the orthogonal collocation method. This
method was revived by Clenshaw (1957), Clenshaw and Norton (1963) and
Wright (1964). These studies involved the application of Chebyshev poly-
nomial expansions to initial-value problems. Villadsen and Stewart (1967)
developed this method for boundary-value problems.

The earliest applications of the spectral collocation method to partial
differential equations were made for spatially periodic problems by Kreiss
and Oliger (1972) (who called it the Fourier method) and Orszag (1972) (who
termed it pseudospectral). This approach is especially attractive because of
the ease with which it can be applied to variable-coefficient and even nonlinear
problems. The essential details will be furnished below.

The Galerkin approach enjoys the esthetically pleasing feature that the
trial functions and the test functions are the same, and the discretization
is derived from a weak form of the mathematical problem. Finite-element
methods customarily use this approach. Moreover, the first serious appli-
cation of spectral methods to PDE’s – that of Silberman (1954) for mete-
orological modeling – was a Galerkin method. However, spectral Galerkin
methods only became practical for high resolution calculations of such non-
linear problems after Orszag (1969, 1970) and Eliasen, Machenhauer and Ras-
mussen (1970) developed transform methods for evaluating the convolution
sums arising from quadratic nonlinearities. (Nonlinear terms also increase the
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cost of finite-element methods, but not nearly as much as they do for spec-
tral Galerkin methods.) For problems containing more complicated nonlinear
terms, high-resolution spectral Galerkin methods remain impractical.

The tau approach is a modification of the Galerkin method that is appli-
cable to problems with nonperiodic boundary conditions. It may be viewed
as a special case of the so-called Petrov-Galerkin method. Lanczos (1938)
developed the spectral tau method, and Orszag’s (1971b) application of the
Chebyshev tau method to produce highly accurate solutions to fluid dynamics
linear stability problems inspired considerable use of this technique, not just
for computing eigenvalues but also for solving constant-coefficient problems
or subproblems, e.g., for semi-implicit time-stepping algorithms.

In the middle 1980’s newer spectral methods, which combined the Galerkin
approach with Gaussian quadrature formulas, came into common use. These
methods share with the Galerkin approach the weak enforcement of the differ-
ential equation and of certain boundary conditions. In their original version
the unknowns are the values of the solution at the quadrature points, as in
a collocation method. We shall refer to such approaches as Galerkin with
numerical integration, or G-NI, methods.

The first unifying mathematical assessment of the theory of spectral
methods was provided in the monograph by Gottlieb and Orszag (1977). The
theory was extended to cover a large variety of problems, such as variable-
coefficient and nonlinear equations. A sound approximation theory for the
polynomial families used in spectral methods was developed. In his mono-
graph Mercier (1981) advanced the understanding of the role of Gaussian
quadrature points for orthogonal polynomials as collocation points for spec-
tral methods, as had originally been observed in 1979 by Gottlieb. Stability
and convergence analyses for spectral methods were produced for a variety of
approaches. The theoretical analysis of spectral methods in terms of weak for-
mulations proved very successful. As a matter of fact, this opened the door to
the use of functional analysis techniques to handle complex problems and to
obtain the sharpest results. Application developments were equally extensive,
and by the late 1980’s spectral methods had become the predominant numer-
ical tool for basic flow physics investigations of transition and turbulence. All
in all, the 10 years that followed were extremely fruitful for the theoretical
development and the application deployment of spectral methods.

Developments of the first five years that followed Gottlieb and Orszag
(1977) were reviewed in the symposium proceedings edited by Voigt, Gottlieb
and Hussaini (1984). Indeed, that very symposium in 1982 inspired the youth-
ful incarnations of the present authors to produce their first text on this sub-
ject (Canuto, Hussaini, Quarteroni and Zang (1988)). Subsequently, numer-
ous other texts and review articles on various aspects of spectral methods ap-
peared. Boyd (1989, and especially the 2001 second edition) contains a wealth
of detail and advice on spectral algorithms and is an especially good refer-
ence for problems on unbounded domains and in cylindrical and spherical
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coordinate systems. A sound reference for the theoretical aspects of spectral
methods for elliptic equations was provided by Bernardi and Maday (1992b,
1997). Funaro (1992) and Guo (1998) discussed the approximation of differ-
ential equations by polynomial expansions. Fornberg (1996) is a guide for the
practical application of spectral collocation methods, and it contains illus-
trative examples, heuristic explanations, basic Fortran code segments, and
a succinct chapter on applications to turbulent flows and weather predic-
tion. Trefethen (2000) is a lively introduction to spectral collocation methods
and includes copious examples in Matlab. Focused applications of spectral
methods on particular classes of problems were provided by Tadmor (1998)
and Gottlieb and Hesthaven (2001) for first-order hyperbolic problems, by
Cohen (2002) for wave equations, and by Bernardi, Dauge and Maday (1999)
for problems in axisymmetric domains. Peyret (2002) provided a rather com-
prehensive discussion of Fourier and Chebyshev spectral methods for the
solution of the incompressible Navier-Stokes equations, specifically in the
primitive equations and vorticity-streamfunction formulations.

By the late 1980’s classical spectral methods were reasonably mature,
and the research focus had clearly shifted to the use of high-order methods
for problems on complex domains. We shall refer to this class of spectral
methods generically as multidomain spectral methods or as spectral methods
in arbitrary geometries. The 1988 book by the present authors closed with
an overview of this then nascent subject. Funaro (1997) treats spectral-
element methods in the context of elliptic boundary-value problems, espe-
cially convection-dominated flows, and includes a multidomain treatment
for complex geometry. The first comprehensive texts on spectral methods in
complex domains appeared around the year 2000. Karniadakis and Sherwin
(1999) provides a unified framework for spectral-element methods (as intro-
duced by Patera (1984)) and hp finite-element methods (see, for example,
Babuška, Szabó and Katz (1981)). It includes structured and unstructured
domains, and applications to both incompressible and compressible flows.
The Deville, Fischer and Mund (2002) text focuses on high-order methods
in physical space (collocation and spectral-element methods) with applica-
tions to incompressible flows. Its coverage of the implementation details of
such methods on vector and parallel computers distinguishes it from other
books on the subject. Although specifically devoted to the hp-version of finite-
element methods, the book by Schwab (1998) provides many useful theoret-
ical results about the approximation properties of high-order polynomials in
complex domains.

The present book is focused on the fundamentals of spectral methods on
simple domains. A companion book (Canuto, Hussaini, Quarteroni and Zang
(2007)) discusses specific spectral algorithms for fluid dynamics applications
and describes the evolution of spectral methods to complex domains. We
shall refer to the companion book as CHQZ3. Citations in the present text
that refer to specific material in the companion book will have the format
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CHQZ3, Chap. x or CHQZ3, Sect. x.y. For example, a reference such as
CHQZ3, Chap. 1 refers to Chapter 1 of Canuto, Hussaini, Quarteroni and
Zang (2007).

1.2 Some Examples of Spectral Methods

Spectral methods are distinguished not only by the fundamental type of the
method (Galerkin, collocation, Galerkin with numerical integration, or tau),
but also by the particular choice of the trial functions. The most frequently
used trial functions are trigonometric polynomials, Chebyshev polynomials,
and Legendre polynomials. In this section we shall illustrate the basic prin-
ciples of each method and the basic properties of each set of polynomials by
examining in detail one particular spectral method on each of several different
types of differential equations. Each of these examples will be reconsidered
in Chap. 6 from a rigorous theoretical point of view.

1.2.1 A Fourier Galerkin Method for the Wave Equation

Many evolution equations can be written as

∂u

∂t
= M(u) , (1.2.1)

where u(x, t) is the solution, and M(u) is an operator (linear or nonlinear)
that contains all the spatial derivatives of u. Equation (1.2.1) must be coupled
with an initial condition u(x, 0) and suitable boundary conditions.

For simplicity suppose that there is only one spatial dimension, that the
spatial domain is (0, 2π), and that the boundary conditions are periodic.
Most often spectral methods are used only for the spatial discretization. The
approximate solution is represented as

uN (x, t) =
N/2∑

k=−N/2

ak(t)φk(x) . (1.2.2)

The φk are the trial functions, whereas the ak are the expansion coefficients.
In general, uN will not satisfy (1.2.1), i.e., the residual

∂uN

∂t
−M(uN )

will not vanish everywhere. The approximation is obtained by selecting a set
of test functions ψk and by requiring that

∫ 2π

0

[
∂uN

∂t
−M(uN )

]
ψk(x) dx = 0 , (1.2.3)
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for k = −N/2, . . . , N/2, where the test functions determine the weights of
the residual. In this sense the approximation is obtained by a method of
weighted residuals. Most often the numerical analysis community describes
discretizations of differential equations formulated by integral expressions
such as (1.2.3) (possibly after applying integration-by-parts) as discrete weak
formulations. This more common terminology is the one that we follow in this
text. The alternative, discrete strong formulation is characterized by enforc-
ing that the approximate representation of the solution, e.g., (1.2.2), satisfy
the differential equation exactly at a discrete set of points. Finite-difference
methods use a strong formulation, as do spectral collocation methods – see
the example in Sect. 1.2.2. A more comprehensive discussion of alternative
formulations of differential problems is provided in Sect. 3.2.

The most straightforward spectral method for a problem with periodic
boundary conditions is based on trigonometric polynomials:

φk(x) = eikx , (1.2.4)

ψk(x) =
1
2π

e−ikx . (1.2.5)

Note that the trial functions and the test functions are essentially the same,
and that they satisfy the (bi-)orthonormality condition

∫ 2π

0

φk(x)ψl(x) dx = δkl . (1.2.6)

If this were merely an approximation problem, then (1.2.2) would be the
truncated Fourier series of the known function u(x, t) with

ak(t) =
∫ 2π

0

u(x, t)ψk(x) dx (1.2.7)

being simply the familiar Fourier coefficients. For the partial differential equa-
tion (PDE), however, u(x, t) is not known; the approximation (1.2.2) is de-
termined by (1.2.3).

For the linear hyperbolic problem

∂u

∂t
− ∂u

∂x
= 0 , (1.2.8)

i.e., for

M(u) =
∂u

∂x
, (1.2.9)

condition (1.2.3) becomes

1
2π

∫ 2π

0

⎡

⎣
(
∂

∂t
− ∂

∂x

) N/2∑

l=−N/2

al(t)eilx

⎤

⎦ e−ikx dx = 0 .
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The next two steps are the analytical (spatial) differentiation of the trial
functions:

1
2π

∫ 2π

0

⎡

⎣
N/2∑

l=−N/2

(
dal

dt
− ilal

)
eilx

⎤

⎦ e−ikx dx = 0 ,

and the analytical integration of this expression, which produces the dynam-
ical equations

dak

dt
− ikak = 0 , k = −N/2, . . . , N/2 . (1.2.10)

The initial conditions for this system of ordinary differential equations
(ODEs) are the coefficients for the expansion of the initial condition. For
this Galerkin approximation,

ak(0) =
∫ 2π

0

u(x, 0)ψk(x) dx . (1.2.11)

For the strict Galerkin method, integrals such as those that appear in
(1.2.11) should be computed analytically. For the simple example problem
of this subsection this integration can indeed be performed analytically. For
more complicated problems, however, numerical quadratures are performed.
This is discussed further in Sect. 1.2.3.

We shall use the initial condition

u(x, 0) = sin(π cosx) (1.2.12)

to illustrate the accuracy of the Fourier Galerkin method for (1.2.8). The
exact solution,

u(x, t) = sin[π cos(x+ t)] , (1.2.13)

has the Fourier expansion

u(x, t) =
∞∑

k=−∞
ak(t)eikx , (1.2.14)

where the Fourier coefficients are

ak(t) = sin
(
kπ

2

)
Jk(π)eikt , (1.2.15)

and Jk(t) is the Bessel function of order k.
The asymptotic properties of the Bessel functions imply that

kpak(t) → 0 as k → ∞ (1.2.16)

for all positive integers p. As a result, the truncated Fourier series,
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uN (x, t) =
N/2∑

k=−N/2

ak(t)eikx , (1.2.17)

converges faster than any finite power of 1/N . This property is often referred
to as spectral convergence.

An illustration of the superior accuracy available from the spectral method
for this problem is provided in Fig. 1.1. Shown in the figure are the maxi-
mum errors after one period at t = 2π for the spectral Galerkin method,
a second-order finite-difference method, an (explicit) fourth-order finite-
difference method, a fourth-order compact method, and a sixth-order com-
pact method. The integer N denotes the degree of the expansion (1.2.17) for
the Fourier Galerkin method and the number of grid points for the finite-
difference and compact methods. The time discretization was the classical
fourth-order Runge-Kutta method and the exact initial Fourier coefficients
were used for the spectral method. In all cases the time-step was chosen
so small that the temporal discretization error was negligible. (Appendix D
furnishes the formulas (and stability regions) for commonly used time dis-
cretizations. The familiar formula for the classical fourth-order Runge-Kutta
methods is given in (D.2.17).)

The second-order and fourth-order finite-difference methods used here
and elsewhere in this book for examples are the standard central-difference
methods with 3-point and 5-point explicit stencils, respectively. The fourth-
order and sixth-order compact methods used in our examples are the classi-
cal 3-point Padé approximations (see, for example, Collatz (1966) and Lele
(1992))

u′j−1 + 4u′j + u′j+1 =
3
∆x

(uj+1 − uj−1) (1.2.18)

and

u′j−1 + 3u′j + u′j+1 =
7

3∆x
(uj+1 − uj−1) +

1
12∆x

(uj+2 − uj−2) , (1.2.19)

respectively, where ∆x is the grid spacing and u′j denotes the approximation
to the first derivative at xj = j∆x. Of course, when nonperiodic boundary
conditions are present, special stencils are needed for points at, and sometimes
also adjacent to, the boundary.

Figure 1.2 compares these various numerical solutions for N = 16 with
the exact answer. Note that the major errors in the finite-difference solutions
are ones of phase rather than amplitude. In many problems the very low
phase error of spectral methods is a significant advantage.

Because the solution is infinitely smooth, the convergence of the spectral
method on this problem is more rapid than any finite power of 1/N . Actually,
since the solution is analytic, convergence is exponentially fast. (The errors
for the N ≥ 64 spectral results are so small that they are swamped by the
round-off error of these calculations. Unless otherwise noted, all numerical
examples presented in this book were performed in 64-bit arithmetic.)
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Fig. 1.1. Maximum errors for the linear hyperbolic problem at t = 2π for Fourier
Galerkin and several finite-difference schemes

Fig. 1.2. Numerical solutions for the linear hyperbolic problem at t = 2π for
N = 16 for Fourier Galerkin and several finite-difference schemes

In most practical applications the benefit of the spectral method is not
the extraordinary accuracy available for large N but rather the small size of
N necessary for a moderately accurate solution.

1.2.2 A Chebyshev Collocation Method for the Heat Equation

Fourier series, despite their simplicity and familiarity, are not always a good
choice for the trial functions. In fact, for reasons that will be explored in
the next chapter, Fourier series are only advisable for problems with periodic
boundary conditions. A more versatile set of trial functions is composed of
the Chebyshev polynomials. These are defined on [−1, 1] by

Tk(x) = cos(k cos−1 x) , (1.2.20)

for k = 0, 1, . . . .
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Let us focus on the linear heat equation

∂u

∂t
− ∂2u

∂x2
= 0 , (1.2.21)

i.e.,

M(u) =
∂2u

∂x2
, (1.2.22)

on (−1, 1) with homogeneous Dirichlet boundary conditions,

u(−1, t) = 0, u(1, t) = 0 . (1.2.23)

Choosing the trial functions

φk(x) = Tk(x) , k = 0, 1, . . . , N , (1.2.24)

the approximate solution has the representation

uN (x, t) =
N∑

k=0

ak(t)φk(x) . (1.2.25)

In the collocation approach the requirement is that (1.2.21) be satisfied
exactly by (1.2.25) at a set of collocation points xj in (−1, 1):

∂uN

∂t
−M(uN )

∣∣∣∣
x=xj

= 0 , j = 1, . . . , N − 1 . (1.2.26)

The boundary conditions

uN (−1, t) = 0, uN (1, t) = 0 (1.2.27)

and the initial condition

uN (xk, 0) = u(xk, 0) , k = 0, . . . , N , (1.2.28)

accompany (1.2.26).
Equations (1.2.26) are based on the strong formulation of the differential

equation, since the approximate solution is required to satisfy the differential
equation exactly at a set of discrete points, in this case called the collocation
points. One can formally obtain the same equations starting from a weak
formulation of the problem by taking as test functions the (shifted) Dirac
delta-functions (distributions)

ψj(x) = δ(x− xj) , j = 1, . . . , N − 1 , (1.2.29)

and enforcing the conditions
∫ 1

−1

[
∂uN

∂t
−M(uN )

]
ψj(x) dx = 0 , j = 1, . . . , N − 1 (1.2.30)

(where the integral should really be interpreted as a duality; see (A.10)).
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A particularly convenient choice for the collocation points xj is

xj = cos
πj

N
. (1.2.31)

Not only does this choice produce highly accurate approximations, but it also
is economical. Note that

φk(xj) = cos
πjk

N
. (1.2.32)

This enables the Fast Fourier Transform (FFT) to be employed in the eval-
uation of M(uN )|x=xj , as is discussed in Sect. 2.4.

For the particular initial condition

u(x, 0) = sinπx , (1.2.33)

the exact solution is
u(x, t) = e−π2t sinπx . (1.2.34)

It has the infinite Chebyshev expansion

u(x, t) =
∞∑

k=0

bk(t)Tk(x) , (1.2.35)

where

bk(t) =
2
ck

sin
(
kπ

2

)
Jk(π)e−π2t , (1.2.36)

with

ck =

{
2 , k = 0 ,

1 , k ≥ 1 .
(1.2.37)

Because of the rapidly decaying Jk(π) factor, the truncated series converges
at an exponential rate. A well-designed collocation method will do the same.
(Since the finite series (1.2.25) is not simply the truncation of the infinite
series (1.2.35) at order N , the expansion coefficients ak(t) and bk(t) are not
identical.)

Unlike a Galerkin method, which in its conventional version is usually
implemented in terms of the expansion coefficients ak(t), a collocation method
is implemented in terms of the nodal values uj(t) = uN (xj , t). Indeed, in
addition to (1.2.25), we have the expansion

uN (x, t) =
N∑

j=0

uj(t)φj(x),

where now φj denote the discrete (shifted) delta-functions, i.e., the unique
N -th degree polynomials satisfying φj(xi) = δij for 0 ≤ i, j ≤ N .
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(These particular functions will be more commonly denoted by the symbol
ψj in the sequel and referred to as characteristic Lagrange polynomials; see,
e.g., (1.2.55)). The expansion coefficients are used only in an intermediate
step, namely, in the analytic differentiation (with respect to x) of (1.2.25).
The details of this step, which will be derived in Sect. 2.4, follow.

The expansion coefficients are given by

ak(t) =
2

Nc̄k

N∑

l=0

c̄ −1
l ul(t) cos

πlk

N
, k = 0, 1, . . . , N , (1.2.38)

where

c̄k =

{
2 , k = 0 or N ,

1 , 1 ≤ k ≤ N − 1
. (1.2.39)

The exact derivative of (1.2.25) is

∂2uN

∂x2
(t) =

N∑

k=0

a
(2)
k (t)Tk(x) , (1.2.40)

where

a
(1)
N+1(t) = 0, a

(1)
N (t) = 0 ,

c̄ka
(1)
k (t) = a

(1)
k+2(t) + 2(k + 1)ak+1(t) , k = N − 1, N − 2, . . . , 0 ,

(1.2.41)

and

a
(2)
N+1(t) = 0, a

(2)
N (t) = 0 ,

c̄ka
(2)
k (t) = a

(2)
k+2(t) + 2(k + 1)a(1)

k+1(t) , k = N − 1, N − 2, . . . , 0 .
(1.2.42)

The coefficients a(2)
k obviously depend linearly on the nodal values ul;

hence, there exists a matrix D2
N such that

∂2uN

∂x2
(t)

∣∣∣∣
x=xj

=
N∑

k=0

a
(2)
k (t) cos

πjk

N
=

N∑

l=0

(D2
N )jlul(t) (1.2.43)

(see Sect. 2.4.2 for more details). By (1.2.27), we actually have u0(t) =
uN (t) = 0. Substituting the above expression into (1.2.26), we end up with
a system of ordinary differential equations for the nodal unknowns:

duj

dt
(t) =

N∑

l=0

(D2
N )jlul(t), j = 1, . . . , N − 1. (1.2.44)
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Supplemented by the initial conditions (1.2.28), the preceding system of or-
dinary differential equations for the nodal values of the solution is readily
integrated in time.

The maximum errors at t = 1 in the numerical solutions for a Chebyshev
collocation method, a second-order finite-difference method and a fourth-
order compact method are given in Fig. 1.3, along with the maximum errors
for the truncated Chebyshev series of the exact solution at t = 1. The Cheby-
shev method used the N + 1 non-uniformly distributed collocation points
(1.2.31), whereas the finite-difference methods used N + 1 uniformly dis-
tributed points. The maximum errors have been normalized with respect to
the maximum value of the exact solution at t = 1. The fourth-order scheme
is the classical 3-point Padé approximation,

u′′i−1 + 10u′′i + u′′i+1 =
12

(∆x)2
(ui−1 − 2ui + ui+1) , i = 1, . . . , N − 1 ,

(1.2.45)
supplemented with a compact, third-order approximation at the boundary
points (see Lele (1992)), e.g.,

u′′0 + 11u′′1 =
1

(∆x)2
(13u0 − 27u1 + 15u2 − u3) , i = 0 . (1.2.46)
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Fig. 1.3. Maximum errors for the heat equation problem at t = 1 for Chebyshev
collocation and several finite-difference schemes. The Chebyshev truncation result
is shown for comparison

Before leaving this example, we consider a more general equation than
(1.2.21), namely,

∂u

∂t
− ∂

∂x

(
κ
∂u

∂x

)
= 0, (1.2.47)
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where the conductivity coefficient κ varies in (−1, 1) and may even depend
on the solution u. In this case, it is not convenient to apply the collocation
scheme (1.2.26) to equation (1.2.47) directly, as this would require the exact

differentiation of the heat flux F(uN ) = κ
∂uN

∂x
. Instead, one first computes

the nodal values Fl(t) = F(uN )(xl), l = 0, . . . , N , of this flux, then applies
a transformation similar to (1.2.38), and follows that with a differentiation
of the flux as in (1.2.41); the resulting expansion of the derivative is then
evaluated at the collocation points. This process amounts to differentiating
exactly the numerical flux FN (uN ) = IN (F(uN )), which is obtained by in-
terpolating the flux F(uN ) at the collocation points by a global N -degree
algebraic polynomial. (Here and in the rest of the book, IN is a general sym-
bol that denotes an interpolation operator.) The resulting collocation scheme
reads as follows:

∂uN

∂t
− ∂

∂x
IN

(
κ
∂uN

∂x

)∣∣∣∣
x=xj

= 0 , j = 1, . . . , N − 1 . (1.2.48)

Equivalently, we have

duj

dt
(t) =

N∑

l=0

(DN )jlFl(t), j = 1, . . . , N − 1, (1.2.49)

where DN is the Chebyshev collocation derivative matrix, which is discussed
in detail in Sect. 2.4.2.

The approach used for the discretization of (1.2.47) highlights a general
strategy that is adopted for collocation methods: differentiation is applied to
a function only after the argument of the function is interpolated by a global
polynomial at a suitable set of collocation points. Obviously, when the argu-
ment is itself a polynomial of degree ≤ N , as in the constant-coefficient heat
equation (1.2.21), the interpolation returns the value of the argument.

1.2.3 A Legendre Galerkin with Numerical Integration (G-NI)
Method for the Advection-Diffusion-Reaction Equation

Spectral methods are also applicable to time-independent equations. The
general boundary-value problem is given by the equation

M(u) = f (1.2.50)

to be solved in a specified domain, along with the boundary conditions

B(u) = 0 . (1.2.51)

As a first example, we consider the one-dimensional advection-diffusion-
reaction equation
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M(u) =
dF(u)

dx
+ γu = f, (1.2.52)

where the advection-diffusion flux is defined as

F(u) = −ν du
dx

+ βu.

The domain for the equation is (−1, 1), and the boundary conditions are

B1(u) = u(−1) = 0, (1.2.53a)
B2(u) = F(u)(1) + g = 0. (1.2.53b)

We assume that the coefficients ν, β and γ as well as the data f may vary
in the domain, and that the diffusion coefficient satisfies ν ≥ ν̄ for some
constant ν̄ > 0.

Trial and test functions are defined as follows. Consider the N -th degree
Legendre orthogonal polynomial LN (x). (A detailed discussion of the prop-
erties of Legendre polynomials is furnished in Sect. 2.3.) The polynomial LN

has N − 1 extrema xj , i.e., L′
N (xj) = 0, for j = 1, . . . , N − 1; they belong

to the interval (−1, 1). Adding the boundary points x0 = −1 and xN = 1,
we obtain N +1 points, which are high-precision quadrature nodes (they are
termed the Legendre Gauss-Lobatto nodes); indeed, there exist weights wj

such that the quadrature formula

∫ 1

−1

p(x) dx ∼
N∑

j=0

p(xj)wj (1.2.54)

is exact for all polynomials p of degree ≤ 2N − 1. Based on these nodes, we
now introduce the characteristic Lagrange polynomials

ψj(x) =
1

N(N + 1)
(1 − x2)
(xj − x)

L′
N (x)

LN (xj)
, j = 0, . . . , N, (1.2.55)

which are discrete (shifted) delta-functions, i.e., they are N -th degree poly-
nomials which approximate the (shifted) Dirac delta-functions δ(x− xj), as
they satisfy

ψj(xk) = δjk, j, k = 0, . . . , N. (1.2.56)

In view of the boundary condition (1.2.53a), we drop ψ0. The remaining
functions ψj , j = 1, . . . , N , will be our trial and test functions. The approx-
imate solution is sought in the form

uN (x) =
N∑

l=1

ulψl(x). (1.2.57)

Note that the coefficients in the expansion are precisely the values of uN at
the nodes ul = uN (xl), l = 1, . . . , N .
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In order to arrive at the equations which uniquely define uN , we have
to go back to the exact solution u of our boundary-value problem. We shall
derive a set of integral conditions satisfied by the exact solution (which con-
stitute the weak formulation of the problem). The same integral conditions
are enforced on the discrete solution. To this end, consider (1.2.52), multiply
both sides by any test function ψj and integrate over the interval (−1, 1); we
obtain the equations

∫ 1

−1

dF(u)
dx

ψj dx+
∫ 1

−1

γuψj dx =
∫ 1

−1

f ψj dx, j = 1, . . . , N. (1.2.58)

Integrating the first term by parts, we get
∫ 1

−1

dF(u)
dx

ψj dx = −
∫ 1

−1

F(u)
dψj

dx
dx+ [F(u)ψj ]

1
−1

= −
∫ 1

−1

F(u)
dψj

dx
dx− g δjN ,

where we have used the boundary condition (1.2.53b), as well as the relations
(1.2.56). Thus, recalling the definition of the flux F(u), we see that u satisfies

∫ 1

−1

ν
du
dx

dψj

dx
dx −

∫ 1

−1

βu
dψj

dx
dx+

∫ 1

−1

γuψj dx (1.2.59)

=
∫ 1

−1

f ψj dx+ g δjN , j = 1, . . . , N.

This is precisely the set of equations which we ask to be satisfied by uN as
well. If we replace u by uN in (1.2.59), we obtain the numerical scheme

∫ 1

−1

ν
duN

dx
dψj

dx
dx −

∫ 1

−1

βuN dψj

dx
dx+

∫ 1

−1

γuN ψj dx (1.2.60)

=
∫ 1

−1

f ψj dx+ g δjN , j = 1, . . . , N.

Note that uN satisfies (1.2.53a) exactly; conversely, (1.2.53b) is not en-
forced directly on uN , yet it has been incorporated into (1.2.59). We say that
we enforce this boundary condition in a weak, or natural, manner.

Since the integrals in (1.2.59) are evaluated exactly, we have obtained a
pure Galerkin scheme. However, only in special situations (e.g., constant co-
efficients and data) can the integrals above be computed analytically. Other-
wise, we have to resort to numerical integration, in which case the natural
choice is the quadrature formula (1.2.54). In this way, we obtain the follow-
ing modified scheme, which we term the Galerkin with numerical integration
scheme, or in short, the G-NI scheme:
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N∑

k=0

(
ν

duN

dx
dψj

dx

)
(xk)wk −

N∑

k=0

(
βuN dψj

dx

)
(xk)wk +

N∑

k=0

(γuNψj)(xk)wk

=
N∑

k=0

(f ψj)(xk)wk + g δjN , j = 1, . . . , N. (1.2.61)

Inserting the expansion (1.2.57) for uN , we can rephrase this scheme as
a system Ku = b of N algebraic equations in the unknowns ul; in particular,
they are

N∑

l=1

Kjlul = bj , j = 1, . . . , N, (1.2.62)

where the matrix entries are

Kjl =
N∑

k=0

(
ν

dψl

dx
dψj

dx

)
(xk)wk −

(
β

dψj

dx

)
(xl)wl + γ(xj)wjδlj ,

and the right-hand side components are

bj = f(xj)wj + g δjN .

Efficient solution techniques for such a system are described in Sect. 4.2.
The G-NI scheme can be given a pointwise, or collocation-like, interpre-

tation, which serves to highlight the effect of the weak enforcement of the
boundary condition (1.2.53b). To this end, we denote by INϕ the N -th de-
gree algebraic polynomial that interpolates a function ϕ at the Gauss-Lobatto
nodes xj , j = 0, . . . , N ; this allows us to introduce the numerical flux

FN (uN ) = IN (F(uN )).

The two first sums in (1.2.61) can be written as

N∑

k=0

(
ν

duN

dx
dψj

dx

)
(xk)wk −

N∑

k=0

(
βuN dψj

dx

)
(xk)wk =

= −
N∑

k=0

(
F(uN )

dψj

dx

)
(xk)wk = −

N∑

k=0

(
FN (uN )

dψj

dx

)
(xk)wk.

Now it is crucial to observe that both the terms FN (uN )
dψj

dx
and

dFN (uN )
dx

ψj

are polynomials of degree ≤ 2N−1; hence, they can be integrated exactly by
the quadrature formula (1.2.54). Thus, we are allowed to counter-integrate
by parts in the last sum appearing above, obtaining
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−
N∑

k=0

(
FN (uN )

dψj

dx

)
(xk)wk = −

∫ 1

−1

FN (uN )
dψj

dx
dx

=
∫ 1

−1

dFN (uN )
dx

ψj dx− [FN (uN )ψj ]1−1

=
N∑

k=0

(
dFN (uN )

dx
ψj

)
(xk)wk −F(uN )(1)ψj(1) .

If we insert this expression into (1.2.61) and use the relations (1.2.56), we
obtain the following equivalent formulation of the G-NI scheme:
(

dFN (uN )
dx

+ γuN

)
(xj)wj−F(uN )(1)δjN = f(xj)wj+gδjN , j = 1, . . . , N.

(1.2.63)
For j = 1, . . . , N − 1, this is simply

dFN (uN )
dx

+ γuN − f

∣∣∣∣
x=xj

= 0, (1.2.64)

i.e., at the internal quadrature points we are collocating the differential equa-
tion after replacing the exact flux F(uN ) by the numerical one FN (uN ). For
j = N we get

dFN (uN )
dx

+ γuN − f

∣∣∣∣
x=1

− 1
wN

(F(uN ) + g
)∣∣

x=1
= 0, (1.2.65)

i.e., at x = 1 we are collocating a particular linear combination of the discrete
form of the differential equation and the boundary condition. Since 1/wN

grows like N2 as N → ∞ (see Sect. 2.3.1), (1.2.65) shows that the boundary
condition is approximately fulfilled in a more and more accurate way as the
equation residual MN (uN ) − f

∣∣
x=1

gets smaller and smaller for N → ∞
(recall that the residual vanishes at all internal nodes, see (1.2.64)).

The example addressed above is indeed a paradigm for a general class
of second-order steady problems. The G-NI discretization consists of collo-
cating the differential equation (with numerical flux) at the internal Gauss
Lobatto nodes; Dirichlet boundary conditions (i.e., conditions involving only
pointwise values of the unknown function) are fulfilled exactly at the bound-
ary points, whereas Neumann or Neumann-like boundary conditions (i.e.,
conditions involving also the first derivative(s) of the unknown function) are
enforced via an intrinsically (and unambiguously) defined penalty method.

The accuracy of the G-NI method is illustrated by the following example.
We consider the problem (1.2.50)–(1.2.53) in the interval (−1, 1) with ν = 1,
β(x) = cos(π/4 · (1+x)) and γ = 1. The right-hand side f(x) and the datum
g are computed so that the exact solution is

u(x) = cos(3π(1 + x)) sin(π/5 · (x+ 0.5)) + sin(π/10) . (1.2.66)
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For several values of N , we denote by uN the G-NI solution (N is the
polynomial degree) and by up (p = 1, 2, 3) the (piecewise-polynomial) finite-
element solution corresponding to a subdivision in subintervals of equal size.
In all cases, N +1 denotes the total number of nodal values. In Fig. 1.4 (left)
we plot the maximum error of the solution, while on the right we plot the
absolute error of the boundary flux |(ν dup

dx (1)+βup(1))−g| for p = 1, 2, 3, N .
The two errors exhibit a similar decay with respect to N . In particular, the
boundary condition at x = 1 is fulfilled with spectral accuracy.
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Fig. 1.4. Comparison between the accuracy of the G-NI solution (corresponding
to the curve p = N) and the finite-element solutions of order p = 1, 2 and 3 versus
N which represents the total number of nodal values. The maximum error between
the numerical solution and the exact one u(x) = cos(3π(1+x)) ·sin(π/5 ·(x+0.5))+
sin(π/10) (left) and the absolute value of the error on the flux at x = 1 (right)

1.2.4 A Legendre Tau Method for the Poisson Equation

Our second example of a steady boundary-value problem is the Poisson equa-
tion on (−1, 1) × (−1, 1), with homogeneous Dirichlet boundary conditions.
The choice of M and B in (1.2.50) and (1.2.51) is as follows:

M(u) = −
(
∂2u

∂x2
+
∂2u

∂y2

)
, (1.2.67)

B1(u) = u(x,−1) , (1.2.68a)
B2(u) = u(x,+1) , (1.2.68b)
B3(u) = u(−1, y) , (1.2.68c)
B4(u) = u(+1, y) . (1.2.68d)

(We prefer to use the negative sign in second-derivative operators such as
(1.2.67) so that M(u) is a positive, rather than a negative, operator. Al-
though this might be disconcerting to some, it does simplify the discussion
of the mathematical properties of the operator and its numerical approxima-
tions. For example, some spectral approximations to (1.2.67)–(1.2.68) yield
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symmetric and positive-definite matrices, albeit not the particular approxi-
mation discussed in the present subsection. This will become clearer in due
course, particularly in Chaps. 4, 6 and 7.)

Both Legendre and Chebyshev polynomials are suitable trial functions.
A two-dimensional Legendre expansion is produced by the tensor-product
choice

φkl(x, y) = Lk(x)Ll(y) , k, l = 0, 1, . . . , N , (1.2.69)

where Lk is the Legendre polynomial of degree k. The approximate solution
is

uN (x, y) =
N∑

k=0

N∑

l=0

aklLk(x)Ll(y) . (1.2.70)

Note that the trial functions do not satisfy the boundary conditions indi-
vidually. (In most Galerkin methods the trial functions do satisfy the bound-
ary conditions.) In this case two separate sets of test functions are used to
enforce the PDE and the boundary conditions. For the PDE the test functions
are

ψkl(x, y) = Qk(x)Ql(y) , k = 0, 1, . . . , N − 2 , (1.2.71)

where
Qk(x) =

2k + 1
2

Lk(x) ; (1.2.72)

for the boundary conditions they are

χi
k(x) = Qk(x) ,

i = 1, 2 ,
k = 0, 1, . . . , N ,

(1.2.73a)

(1.2.73b)

χi
l(y) = Ql(y) ,

i = 3, 4 ,
l = 0, 1, . . . , N .

(1.2.73c)

The integral conditions for the differential equations are
∫ 1

−1

dy
∫ 1

−1

M(uN )ψkl(x, y) dx = 0 , k, l = 0, 1, . . . , N − 2 , (1.2.74)

while the equations for the boundary conditions are

∫ 1

−1

Bi(uN )χi
k(x) dx = 0 ,

i = 1, 2 ,
k = 0, 1, . . . , N ,

(1.2.75a)

∫ 1

−1

Bi(uN )χi
l(y) dy = 0 ,

i = 3, 4 ,
l = 0, 1, . . . , N .

(1.2.75b)

Four of the conditions in (1.2.75) are linearly dependent upon the others; in
effect the boundary conditions at each of the four corner points have been
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applied twice. For the Poisson equation the above integrals may be performed
analytically. The result is

−(a(2,0)
kl + a

(0,2)
kl ) = fkl , k, l = 0, 1, . . . , N − 2 , (1.2.76)

N∑

k=0

akl = 0 ,
N∑

k=0

(−1)kakl = 0 , l = 0, 1, . . . , N , (1.2.77a)

N∑

l=0

akl = 0 ,
N∑

l=0

(−1)lakl = 0 , k = 0, 1, . . . , N , (1.2.77b)

where

fkl =
∫ 1

−1

dy
∫ 1

−1

f(x, y)ψkl(x, y) dx , (1.2.78)

a
(2,0)
kl =

(
k + 1

2

) N∑

p=k+2
p+k even

[p(p+ 1) − k(k + 1)]apl , (1.2.79a)

a
(0,2)
kl =

(
l + 1

2

) N∑

q=l+2
q+l even

[q(q + 1) − l(l + 1)akq] . (1.2.79b)

These last two expressions represent the expansions of ∂2uN/∂x2 and ∂2uN/∂y2,
respectively, in terms of the trial functions.
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Fig. 1.5. Maximum errors for the Poisson problem for Legendre tau and second-
order finite-difference schemes
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The Legendre tau approximation to the Poisson equation consists of
(1.2.76) and (1.2.77). An efficient scheme for the solution of these equations
is provided in Sect. 4.1.

The specific example that will be used to illustrate the accuracy of this
method is

f(x, y) = 2π2 sinπx sinπy , (1.2.80)

which corresponds to the analytic solution

u(x, y) = sinπx sinπy . (1.2.81)

The results are given in Fig. 1.5 along with results for a second-order finite-
difference scheme. The integer N denotes the degree of the expansion (1.2.70)
in each dimension for the Legendre tau method and the number of uniform
intervals in each dimension for the finite-difference method.

1.2.5 Basic Aspects of Galerkin, Collocation, G-NI
and Tau Methods

The Galerkin, collocation, G-NI and tau methods are more general than
suggested by any of the above examples. In a broad sense, pure Galerkin
and tau methods are implemented in terms of the expansion coefficients,
whereas collocation methods and G-NI (Galerkin with numerical integra-
tion) methods are implemented in terms of the physical space values of the
unknown function. The first example illustrated only one of the key aspects
of Galerkin methods – the test functions are the same as the trial functions.
The other important aspect is that the trial functions must individually sat-
isfy all or part of the boundary conditions (the remaining ones are enforced
weakly within the integral conditions). In the case of periodic boundary condi-
tions the trigonometric polynomials automatically satisfy these requirements.
Otherwise, simple linear combinations of the orthogonal polynomials will usu-
ally suffice. For example, an obvious choice of trial functions for a Chebyshev
Galerkin approximation to the fourth example is

φk(x) =

{
T0(x) − Tk(x) , k even ≥ 2 ,

T1(x) − Tk(x) , k odd ≥ 3 ;

a computationally more efficient choice (see Sect. 2.3.3) is provided by

φk(x) = Tk−2(x) − Tk(x) , k ≥ 2 .

On the other hand, for the tau method the trial functions do not individ-
ually satisfy the boundary conditions. Thus, some equations are needed to
ensure that the global expansion satisfies the boundary conditions. Some of
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the integral equations corresponding to the highest order test functions are
dropped in favor of these boundary condition equations.

The collocation method uses the values of the function at certain phys-
ical points as the fundamental representation; the expansion functions are
employed solely for evaluating derivatives (and only when a fast transform
is available and convenient). The collocation points for both the differential
equations and the boundary conditions are usually the same as the physi-
cal grid points. The most effective choice for the grid points are those that
correspond to quadrature formulas of maximum precision.

The Galerkin with numerical integration (G-NI) method aims at preserv-
ing the advantages of both Galerkin and collocation methods. Integrals ap-
pearing in the weak formulation of the problem are efficiently approximated
by the quadrature formulas mentioned above. Usually, the solution is again
represented in physical space through its values at a selected set of nodes. In
most cases, as in the example in Sect. 1.2.3, the nodes that serve to repre-
sent the solution coincide with the nodes that are used for quadrature. Some
exceptions are discussed in later chapters. Certain boundary conditions (for
instance, those involving derivatives for second-order operators) are imposed
weakly, through a penalty approach that naturally stems from the weak for-
mulation of the problem.

1.3 Three-Dimensional Applications in Fluids:
A Look Ahead

Chapters 2–4 of CHQZ3 are devoted to the details of spectral algorithms
for investigations of instability, transition and turbulence in fluid flows. The
simplest class of flows, termed laminar flow , comprises those flows in which
the motion is quite regular and predictable, even though possibly unsteady.
(Plane Poiseuille flow, discussed in CHQZ3, Sects. 1.3, 2.3 and 3.4, is one
example of a laminar flow.) Laminar flows are either stable or unstable. In
somewhat oversimplified terms, linearly stable flows are those in which all
sufficiently small perturbations to the mean flow decay, whereas unstable
flows are those in which some small perturbations grow. Many flows start
out as laminar, become unstable (in space or time), and eventually undergo
a transition to turbulent flow. The complex category of turbulent flow is
described by Hinze (1975) as

“Turbulent fluid motion is an irregular condition of flow in which
the various quantities show a random variation with time and space
coordinates, so that statistically distinct average values can be dis-
cerned.”

In this section we illustrate some representative flow physics results from
many of the principal fully spectral algorithms that we discuss in Chaps.
2–4.
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Turbulent flows contain a wide range of length scales, bounded above by
the geometric dimension of the flow field and bounded below by the dissipa-
tive action of the molecular viscosity (see, for instance, Tennekes and Lumley
(1972, Chap. 3)). The ratio of the macroscopic (largest) integral length scale
L to the microscopic (smallest) length η (usually known as the Kolmogorov
length scale) is

L

η
= Re3/4 ,

where the Reynolds number Re is

Re =
uL

ν
, (1.3.1)

with ν denoting the kinematic viscosity and u =
(
u′2/3

)1/2

, where u′ is the
fluctuating velocity, and the bar denotes time averaging. To resolve these
scales, N mesh points would be needed in each direction, where

N = c1
L

η
.

(A summary of nondimensionalization in general and Reynolds numbers in
particular is provided in CHQZ3, Sect. 1.1.4.)

Two simple classes of turbulent flows are homogeneous turbulence, for
which the flow properties are invariant with respect to translations, and
isotropic turbulence, for which the flow properties everywhere are invariant
with respect to rotations. (Isotropic turbulence is necessarily homogeneous.)
For the simulation of homogeneous turbulence with a spectral method, it is
appropriate to take c1 = 2; for a fourth-order scheme c1 would be about 6 and
for a second-order scheme about 24. (These estimates are based on the typi-
cal requirement of 0.1% or better accuracy per period, using estimates such
as those by Kreiss and Oliger (1972), and conclusions from the channel flow
computations presented in CHQZ3, Sect. 1.3.) The ratio of the time scales of
the macroscopic and microscopic motions is T/t =

√
Re. Consequently, the

number of time-steps required to describe the flow during the characteristic
period (or temporal scale) of the physically significant events is

NTs = c0
√

Re , (1.3.2)

where the multiplicative factor, c0, is between 100 and 1000 depending on the
time-stepping algorithm and the time interval needed to obtain reasonable
statistics for the flow. Now, the number of operations required to update the
solution per time-step of a multistep scheme such as Adams-Bashforth or per
stage of a multistage scheme such as Runge-Kutta is

c2N
3 log2N + c3N

3 ,
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where, for the spectral method, c2 = 45, c3 = 35, for the fourth-order spatial
method, c2 = 17, c3 = 120, and for the second-order spatial method, c2 = 17,
c3 = 60. (For the finite-difference methods, this assumes that the convection
term is treated explicitly, the diffusion term is treated implicitly, a Poisson
equation is solved for the pressure, and that the implicit equations for the
finite-difference method are solved exactly using FFTs. See CHQZ3, Sect. 3.3
for the details of the spectral algorithm.) Thus, for homogeneous turbulence
simulations, the storage requirement is roughly proportional to

4c31Re9/4 , (1.3.3)

and the total number of operations is approximately

c0 c
3
1Re11/4

[
c2 log2(c1Re3/4) + c3

]
. (1.3.4)

The estimates above provide the resolution requirements for computations in
which all the scales of the flow are resolved numerically. Such a computation
is known as a direct numerical simulation (DNS). Many of the examples that
follow are from DNS computations.

The original Orszag and Patterson (1972) computations were performed
in an era in which the fastest supercomputer had a speed of roughly 1 MFlop
(106 floating point operations per second). Using a typical value of c0 = 500,
the computer time required then for one realization of homogeneous turbu-
lence by a spectral method was, according to (1.3.4), about 10 hours for their
Re = 45 cases. (Their computations used N = 32 modes in each direction.)
For sustained performances typical of the fastest supercomputers circa 1980
(100 MFlop), the computer time required for one realization of homogeneous
turbulence by a spectral method is 6 minutes for Re = 45 and 2 years for
Re = 3000 (for the Brachet et al. (1983) case mentioned below, although they
were able to save a factor of 64 by exploiting symmetries). Assuming a sus-
tained performance of 1 TFlop (1012 floating point operations per second,
typical of the very fastest supercomputers circa 2000), the computer time
required for one realization of homogeneous turbulence by a spectral method
is about 10 hours for Re = 3000, and about 4 months for Re = 40, 000 (for
the Kaneda and Ishihara (2006) results mentioned below).

Spectral methods have been singularly successful for this problem since
the corresponding requirements for a fourth-order finite-difference method
are typically a factor of 10 longer in time and a factor of 20 larger in stor-
age. Second-order finite-difference methods require more than 3 orders of
magnitude more resources than spectral methods on this problem. Moreover,
Fourier functions arise naturally in the theoretical analysis of homogeneous
turbulence, and they are the natural choice of trial functions for spectral
methods. Thus, the spectral methods, apart from their computational effi-
ciency, have the added advantage of readily permitting one to monitor and
diagnose nonlinear interactions which contribute to resonance effects, energy
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transfer, dissipation and other dynamic features. Furthermore, if there are
any symmetries underlying a problem, and symmetry-breaking phenomena
are precluded, spectral methods permit unique exploitation of these symme-
tries. (Since the finite-difference methods cannot benefit from the symmetries
exploited by Brachet et al. (1983), even the fourth-order method is nearly
a thousand times less efficient than the spectral method in this case.) These
advantages in computational efficiency are so compelling that they have mo-
tivated many flow physics research groups to adopt spectral methods despite
their additional complexity rather than simply waiting for increased compu-
tational power to make their desired computations feasible. These advantages
have also inspired many numerical analysts to develop more efficient spectral
methods and to provide their firm theoretical foundation.

Much theoretical work on homogeneous turbulence has focused on the de-
tails of the inertial range, which is the range of scales of motion (well observed
experimentally) that are not directly affected by the energy maintenance and
dissipation mechanisms (Mestayer et al. (1970)) and that possess an energy
spectrum exhibiting a scaling behavior (Grant, Stewart, and Moilliet (1962)):

E(k, t) = k−m

where k is the magnitude of the wavenumber vector and m is close to 5/3.
The spectrum with m = 5/3 is the famous Kolmogorov spectrum. The huge
Reynolds numbers required to produce an extended inertial range are ex-
perimentally accessible only in geophysical flows such as planetary boundary
layers and tidal channels.

The pioneering simulations of isotropic turbulence by Orszag and Pat-
terson (1972) evolved over the subsequent decade-and-a-half to the first nu-
merically computed three-dimensional inertial range by Brachet et al. (1983).
(See CHQZ3, Sects. 3.3.1 and 3.3.2 for details on this Fourier Galerkin al-
gorithm.) The Reynolds number was 3000 and, of course, crude by experi-
mental standards. This calculation of the Taylor-Green vortex was feasible
only because the symmetries of the problem were fully exploitable with the
spectral method to obtain an effective resolution of 2563, i.e., the equivalent
of N = 256 modes in each spatial direction. Among the salient results of
this study is the physical insight gained into the behavior of turbulence at
high Reynolds number, including the formation of an inertial range and the
geometry of the regions of high vorticity.

Two decades later Kaneda and Ishihara (2006) (see also Yokokawa et
al. (2002)) exploited 512 nodes of the Earth Simulator (then the world’s
fastest computer) to perform isotropic turbulence simulations using a very
similar, Fourier spectral algorithm on grids as large as 40963. (The sustained
speed was as fast as 16 TFlop.) Figure 1.6 illustrates the regions of intense
vorticity in 1/64 of the volume of their 20483 simulation for Re = 16, 135.
The macroscopic scale L is approximately 80% the size of one edge of the
figure, and the microscopic scale η is 0.06% of the edge length. Among the
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many results obtained from their high-resolution simulations was convincing
evidence that the scaled energy spectrum (where the wavenumber is scaled by
the inverse of the Kolmogorov length scale η = (ν3/ε̄)1/4, with ν the viscosity
and ε̄ the average dissipation rate) is not the classical Kolmogorov result of
k−5/3, but rather k−m with m � 5/3 − 0.10.

Fig. 1.6. Direct numerical simulation of incompressible isotropic turbulence by
Kaneda and Ishihara (2006) on a 20483 grid. The figure shows the regions of intense
vorticity in a subdomain with 1/4 the length in each coordinate direction of the
full domain [Reprinted with kind permission by the authors]

Rogallo (1977) developed a transformation that permits Fourier spectral
methods to be used for homogeneous turbulence flows, such as flows with uni-
form shear. Blaisdell, Mansour and Reynolds (1993) used the extension of this
transformation to the compressible case to simulate compressible, homoge-
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neous turbulence in uniform shear on 1923 grids (N = 192 grid points in each
spatial direction) using a Fourier collocation method. (In this example, as in
all the examples cited in this section for inhomogeneous flows, the y direc-
tion is the direction of inhomogeneity.) Figure 1.7 illustrates the coalescence
of sound waves that is responsible for enhanced turbulence production in com-
pressible flows. The Rogallo transformation is described in CHQZ3, Sect. 3.3.3
for incompressible flow and in CHQZ3, Sect. 4.3 for compressible flow.

Fig. 1.7. Two-dimensional slice illustrating contours of the pressure field from
a compressible homogeneous turbulence DNS by Blaisdell and Zeman (1992)
[Reprinted with permission from G.A. Blaisdell, O. Zeman (1992); Center for Tur-
bulence Research, Stanford University/NASA Ames Research Center]

The applications cited above were all for problems with no physical bound-
aries. Spectral algorithms for problems with solid boundaries are more subtle,
largely because a pure Fourier method is no longer appropriate. It was not
until the late 1970’s that reliable Fourier-Chebyshev algorithms were applied
to the simplest wall-bounded flows (Orszag and Kells (1980), Kleiser and
Schumann (1980)). The principal advantage of such spectral methods over
finite-difference methods is their minimal phase errors (Sect. 1.2.1). This is
especially important in numerical simulations of instability and transition to
turbulence, because such simulations must follow the evolution and nonlinear
interaction of waves through several characteristic periods. Since phase errors
are cumulative, a method that admits phase errors of even a few percent per
period is unacceptable.

Kleiser and Schumann (1984) devised an influential algorithm for plane
channel flow using two Fourier directions and one Chebyshev direction. This
algorithm was later used by Gilbert and Kleiser (1990) for the first simula-
tion of the complete transition to turbulence process in a wall-bounded flow
using a 1283 grid. Figure 1.8 illustrates the evolution of one of the principal
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diagnostics of a transitional flow – the wall-normal shear of the streamwise
velocity ∂u/∂y. The ordinate in the top part of the figure is the Reynolds

number based on the wall shear velocity; it is given by Reτ =
√

1
ν

∂ū
∂y h,

where h is the channel half-width and ū(y, t) is the average over x and z of
the streamwise velocity. The bottom part of the figure illustrates the evolu-
tion of the vertical shear at the spanwise station containing the peak shear.
These detailed results compared very favorably with the vibrating ribbon
experiments of Nishioka, Asai and Iida (1980). The t = 136 frame was al-
ready computed by Kleiser and Schumann (1984) at lower resolution. (The
Kleiser-Schumann algorithm is given in detail in CHQZ3, Sect. 3.4.1.)

Fig. 1.8. DNS of transition to turbulence in plane channel flow by Gilbert and
Kleiser (1990). The top figure illustrates the evolution in time of the Reynolds
number based on wall friction velocity. The remaining frames illustrate the shear,
∂u/∂y, in the bottom half of the channel in a two-dimensional slice at the span-
wise (z) location containing the maximum shear [Reprinted with permission from
N. Gilbert, L. Kleiser (1990); c© 1990, Taylor and Francis Group]
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Another widely-used algorithm, this one based on the vorticity-velocity
equations, was originally developed by Kim, Moin and Moser (1987) for plane
channel flow (see CHQZ3, Sect. 3.4.1). Figure 1.9 shows results from Rogers
and Moser (1992) using the adaptation of this algorithm to incompressible,
free shear layers; Fourier series are employed in the two homogeneous direc-
tions (x and z) and Jacobi polynomials (see Sect. 2.5) in the y direction.
This figure, based on computations on a 64 × 128 × 64 grid, illustrates sev-
eral aspects of the vorticity from a simulation that is most representative
of experiments on vortex roll-up in mixing layers. The thin, shaded surfaces
correspond to the rib vortices (large component of vorticity normal to the
spanwise direction), the cross-hatched surfaces denote the “cups” (regions of
strong spanwise vorticity) that are critical to free shear layer transition, and
the lines are vortex lines that comprise the rib vortices.

Fig. 1.9. DNS of vortex rollup in an incompressible free shear layer by Rogers and
Moser (1992). The surfaces denote two types of regions of strong vorticity and the
lines are vortex lines [Reprinted with permission from M.M. Rogers, R.D. Moser
(1992); c© 1992, Cambridge University Press]

Orszag and Kells (1980) and Orszag and Patera (1983) pioneered the use
of splitting methods for wall-bounded flows. Figure 1.10 illustrates results
from a later version of a splitting method, due to Zang and Hussaini (1986),
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Fig. 1.10. Comparison of hydrogen bubble flow visualizations (left) of incom-
pressible flat plate boundary-layer transition with DNS results of Zang, Hussaini
and Erlebacher (right) [Reprinted with permission from T.A. Zang, M.Y. Hussaini
(1987); c© 1987 ASME]

applied to transition in a simplified version of flow past a flat plate. (The
simplification invokes the parallel flow approximation that is discussed in
CHQZ3, Sects. 2.3.2 and 3.4.5.) The left half of the figure is taken from the
experiments of Hama and Nutant (1963) who used a hydrogen bubble flow
visualization technique to illustrate the strongly nonlinear stage of transition.
The right half of the figure, from Zang, Hussaini and Erlebacher (see Zang,
Krist, Erlebacher and Hussaini (1987) and Zang and Hussaini (1987)), shows
how well this phenomena was reproduced in the numerical computations
using a 128×144×288 grid. These authors demonstrated that the fine details
of the vortex roll-ups were not present in the streamwise symmetry plane
but only appeared in a streamwise plane displaced by a small fraction of
the spanwise wavelength from the symmetric plane. (Details of the splitting
algorithms are provided in CHQZ3, Sect. 3.4.2.)

This same splitting algorithm – the Zang-Hussaini version – was used by
Scotti and Piomelli (2001) in their 643 large-eddy simulations of pulsating
channel flow. Large-eddy simulation (LES) is one method of accounting for the
effects of turbulence by solving an augmented set of equations on a grid much
coarser than for a DNS. (See CHQZ3, Sect. 1.1.3 for a summary of LES and
Sagaut (2005) for a thorough discussion of the subject.) Figure 1.11 illustrates
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Fig. 1.11. Turbulent fluctuations near the bottom wall in incompressible pulsating
channel flow from the LES computations of Scotti and Piomelli (2001). The left
frame is near the end of the acceleration phase and the right frame is at the middle
of the deceleration phase of the cycle [Reprinted with permission from A. Scotti,
U. Piomelli (2001); c© 2001, American Institute of Physics]

the flow structures at a fully turbulent phase of the oscillation (left half of
the figure) and at a relaminarization phase (right half). The solid surface
is a contour of the fluctuating streamwise velocity. The small-scale surfaces
are contours of a measure of the coherent vorticity due to rotational motions.
Note that the grid used for this large-eddy simulation was significantly coarser
than that used in many of the examples above for transitional and turbulent
flows. This illustrates a major attraction of the LES approach. The smaller
grid permits wide parameter studies to be performed as opposed to the one-
of-a-kind simulations typical of direct numerical simulations for such flows.
Scotti and Piomelli did parametric studies using LES to characterize the
detailed physics of such pulsating flows.

Figure 1.12 illustrates results from three additional classes of spectral al-
gorithms. The physical problem is the study of the instability of flow past
a flat plate. Unlike the computation of Zang, Hussaini and Erlebacher, shown
above in Fig. 1.10, where the parallel flow approximation was used to study
the temporal instability of this important physical problem, the results in
Fig. 1.12 were for the unadulterated, spatial instability of the nonparallel
flow past a flat plate. This problem requires the resolution of 10’s or 100’s of
wavelengths in the streamwise direction (and has challenging outflow bound-
ary conditions) rather than the mere 1 or 2 wavelengths in x that are needed
in the parallel flow approximation. The direct numerical simulation results
used Spalart’s (1988) ingenious fringe method, which permits a highly accu-
rate approximation to be obtained with a Fourier approximation in x. (See
CHQZ3, Sect. 3.6.1 for the details.) These two-dimensional DNS computa-
tions required approximately 4 points per wavelength in x and no more than
40 Jacobi polynomials in y. The parabolized stability equations (PSE) method
solve a much more economical set of equations using a marching method in
x, a low-order Fourier expansion in z and a Chebyshev collocation method
in y with N ≤ 40. (See CHQZ3, Sects. 2.4.1 and 2.5.2 for PSE algorithms.)



1.3 Three-Dimensional Applications in Fluids: A Look Ahead 35

600 700 800 900 1000 1100 1200 1300

0

1

2

3

4

5

6

Re

ln
(A

/A
0)

LST
PSE
DNS

Fig. 1.12. Evolution of the spatial instability of an incompressible flat-plate bound-
ary layer by Bertolotti, Herbert and Spalart (1992). Results are shown for direct
numerical simulation (DNS), parabolized stability equations (PSE) and linear sta-
bility theory (LST) using the parallel flow approximation [Adapted with permission
from F.P. Bertolotti, Th. Herbert, P.R. Spalart (1992); c© 1992, Cambridge Univer-
sity Press]

The figure compares the spatial development of the maximum streamwise
velocity perturbation as computed by the DNS and by the PSE; also shown
for comparison are results of linear stability theory (LST) using the parallel
flow approximation. (Spectral algorithms for linear stability are discussed in
CHQZ3, Sect. 2.3.) The results of the PSE method agree well with the DNS
results and are far cheaper. Hence, the PSE is far better suited to parametric
studies.

Simulations of much later stages of transition in spatially developing flows
have also been performed with both PSE and DNS techniques utilizing spec-
tral methods. The spatial simulation of oblique transition in a boundary layer
on a 1200× 64× 96 grid by Berlin, Wiegel and Henningson (1999) is a prime
example of a high-resolution DNS using the fringe method with a Fourier-
Chebyshev algorithm. Figure 1.13 illustrates a comparison of their numerical
results with flow visualizations of their experiment on transition in a bound-
ary layer. (The algorithm uses components discussed in CHQZ3, Sects. 3.4.1,
3.4.4 and 3.6.1.)

In addition to the DNS, LES and PSE computations emphasized in the
examples so far, spectral methods have also excelled in computations of
eigenvalue problems. Indeed, Orszag’s (1971b) demonstration of the power
of Chebyshev spectral methods for discretizing the eigenvalue problems aris-
ing in linear stability analyses inspired many subsequent workers to adopt
spectral methods for such problems in both incompressible and compressible
flows. Eventually, in the 1990’s computer resources were adequate for solving
such problems with two or even three directions treated as inhomogeneous.
An example of a large-scale eigenvalue problem solved by Theofilis (2000),
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Fig. 1.13. Streamwise velocity flow visualizations of incompressible boundary-layer
transition by Berlin, Wiegel and Henningson (1999): experiment (a) and spatial
computation (b) [Reprinted with permission from S. Berlin, M. Wiegel, D.S. Hen-
nigson (1999); c© 1999, Cambridge University Press]

Fig. 1.14. Isosurface of disturbance vorticity of the primary instability of an in-
compressible separation bubble by Theofilis (2000)
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who used two Chebyshev directions and one Fourier direction, is given in
Fig. 1.14. Spectral algorithms for discretizing the eigenvalue problems of fluid
dynamical linear stability are described in much of CHQZ3, Chap. 2.

This list is by no means exhaustive and certainly neglects applications
in related disciplines such as meteorology, oceanography, plasma physics and
general relativity. Many of the components of algorithms mentioned above
have been analyzed theoretically. The essential elements of the numerical
analysis are provided in Chap. 7. Rigorous error estimates for some incom-
pressible Navier-Stokes algorithms are reviewed in CHQZ3, Chap. 3.

The examples in this section have been confined to those using classical
spectral methods. We noted earlier in this section that fourth-order methods
require a factor of 10 more computational resources than spectral methods.
The desire to handle problems in complex domains with greater than fourth-
order accuracy has motivated the development of higher order methods using
domain decomposition. Chapters 5 and 6 of the companion book (CHQZ3)
survey spectral methods in complex domains. Chapters 2–7 of this book and
Chaps. 1–4 of CHQZ3 are devoted to classical spectral methods.
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