
Rationale and Architecture

J.S. van der Ven, A.G. J. Jansen, J.A. G. Nidd ji huis, J. Bosch

Abstract: Software architecture can be seen as a decision making process;

it involves making the right decisions at the right time. Typically, these de-

sign decisions are not explicitly represented in the artifacts describing the

design. They reside in the minds of the designers and are td herefore easily

lost. Rationale management is often proposed as a solution, but lacks a

close relationship with software architecture artifacts. Explicit modeling of

design decisions in the software architecture bridges this gap, as it allows

for a close integration of rationale management with software architecture.

This improves the understandabilitytt of the software architecture. Conse-

quently, the software architecture becomes easier to communicate, main-

tain, and evod lve. Furthermore, it allows for analysis, improvement, and red -

use of design decisions in the design process.

Keywords: software architecture; architectural design decisions

Software design is currently seen as an iterative process. Often used phases

in this process include: requirements discussions, requirements specififf ca-

tion, software architecting, implementation, and testing. The Rationale

Unified Process (RUP) is an example of an iterative design process split

into several phases. In such an iterative design process, the software archi-

tecture has a vital role [19].

Architects describe the bare bones of the system by making high-level

design decisions. Errors made in the design of the architecture generally

have a huge impact on the fiff nal result. A lot of effort is spent on making

the right design decisions in the initial design of the architecture. However,

the argumentation underlying the architecture is usually not documented,

because the focus is only on the results of the decisions (the architectural

artifacts). Therefore the evaluated ad lternatives, made tradeoffs and ratd ion-

ale aboua t the made decision remain in the heads of the designers. This tacit

knowledge is easily lost. The lost architecture knowledge leads to evolu-

tion problems [8], increases the compmm lexity of the design [5], and obstructs

the reuse of design experience [14].

To solve the problem of lost architectural knowledge, often techniques

for managing rationale are proposed. Experiments show that maintaining

rationale in the architecture phase increases the understandability of the

16.1 Introduction

16 Design Decisions: The Bridge between

330 J.S. van der Ven, A.G. J. Jansen, J.A. G. Nijhuis, J. Bosch

design [6]. However, creating and maintaining this rationale is very

time-consuming. The connection to the architectural and design artifacts is

usually very loose, making the rationale hard to use and d keep up-to-date

during the evolution of the system. Consequently, there seems to be a gap

between rationale management and software architecture.

To bridge this gap, we unite rationale and architectural artifacts into the

concept of a design decision, which couples rationale with software archi-

tecture. Design decisions are integrated with the software architecture

design. By doing this, the rationale stays in the architecture, making it eas-

ier to understand, communicate, change, maintain, and evolve the design.

Section 16.2 of this chapter introduces software arcdd hitectures. Section

16.3 discusses how rationale is used in software architectures. Section 16.4

introduces the concept of design decisions. Section 16.5 presents a con-

crete appa roach that uses this concept. After this, related and future work is

discussed, followed by a summaryrr , which concludes this chapter.

This section focuses on the knowledge aspects of software architectures. In

different ways are presented to describe software architectural knowledge

architecture is discussed in Sect. 16.2.3.

A software architecture is based on td he requirements for the system.

Requirements define what the system should do, whereas the software ar-t

chitecture describes how this is achieved. Many software architecture

design methods exist (e.g., [2] and [4]). They all use different methodolo-

gies for designing software architectures. However, they can all be summa-

rized in the same absa tract software architecture design process.

Figure 16.1 provides a view of this abstract software design process and

its associated artifacts. The main input for a software architecture design t

process is the requirements documentdd . During the initial desidd gi n the sofo tff -

ware architecture is created, which satisfiff es (parts of)ff the requirements

stated in the requirement document. After this initial design phase, the

quality of the software architecture is assesseaa d. When the quality of the

architecture is not suffiff cient, it is modififf ed (architectural modidd fi icationff)n .

16.2.1 The Software Architecture Design Processff

16.2 Software Architecture

Sect. 16.2.1, the software architecture design process is discussed. Next,

in Sect. 16.2.2. Subsequently, the issue of knowledge vaporization in software

Design Decisions: The Bridge between Rationale and Architecture 331

Requirement

Analysis

Initial

Design

Requi rements

Document

Software oftware

Architecture

Assessment
Architectural

Modification
ttttInsufficientttttt

Done

tSufficienttt

Legend

Process

Artifact

Decision

Fig. 16.1. An abstract view on the software architecture design process

Describing Software To modify the architecture, the architect can

among others employ a number of tactics [2] or adopt one or more archi-

tectural styles or patterns [20] to improve the design. This is repeated, until

the quality of the architecture is assessed suffd iff cient.

There is no general agreement of what a software architecture is and what

it is not. This is mainly due to the fact that software architecture has many

different aspects, which are either technically, process, organization, or

business oriented [4]. Consequentd ly, people perceive and express softwared

architectures in many different ways.

Due to the many different notions of software architectures, a combina-

tion of different levels of knowledge is needed for its description. Roughly,

the following three levels are usually discerned:

− Tacit/implicit knowledge. In many cases, (parts of) software architec-

tures are not explicitly described or mod deled, but remain as tacit infor-

mation inside the head(s) of the designer(s). Making this implicit

knowledge explicit is expensive, and some d knowledge is not supposed

to be written down, for example for political reasons. Consequently,

(parts of)ff software architectures of many systems remain implicit.

− Documented knowledge. Documentation approaches provide guidelines

on which aspects of the architecture should be documented and d how this

can be achieved. Typically, these approaches defiff ne multiple views on

an architecture for different stakeholders [11]. Exampmm les include:

the Siemens four view [10], and the work of the Software Engineering

Institute [7].

16.2.2 Architectures

332 J.S. van der Ven, et al.

− Formalized knowled dge. Formalized knowledge is a specialized form od f

documented knowledge. Architecture Description Languages (ADL)

[18], formulas and calculations concerning the system are examples of

formalized knowledge. An ADL provides a clear and concise descrip-

tion of the used arcd hitectural concepts, which can be communicated, re-

lated, and reasoned about. The advantage of formalized knowledge is

that it can be processed by computers.

Often, the different kinds of knowkk ledge are used sd imultaneously. For

example, despite that UML was not invented for d it UML is often used tod

model certain architectural concepts [7]. The model structure of UML con-

tains formalized knowledge, which needs explanation in the form of

documented knowledge. However, the use of the models is not unambigu-

ous, and it is often found td hat UML is used in different ways. This implies

the use of tacit knowledge to be able to understand and interprr ret the UML

models in diffeff rent contexts.

There are several maja or problems with software architecture design

[5,12,14]. These problems come from the large amount of tacit architec-

tural knowledge. Currently, none of the existing approaches to describe

only exist in the heads of the designers, which leads to the following prob-

lems:

− Desigi n gg decisions are cross cuttindd g ang d intertwined d.dd Typical design

decisions affect multiple parts of the design. However, these design de-

cisions are not explicitly represented in the architecture. So, the associ-

ated arcd hitectural knowledge is fragmented across vard ious parts of the

design, making it hard to fd iff nd and d cd hange the decisions.

− Design rules and constraints are violated. During the evolution of the dd.d

system, designers can easily violate design rules and constrad ints arising

from previously taken design decisions. Violations of these rules and

constraints lead to architectural drift [19], and its associated problems

(e.g. increased maintenance costs).

− Obsolete design decisions are not removed. When obsolete design deci-ddd.d

sions are not removed, the system has the tendency to erode more rap-

idly. In the current design practice removing design decisions is

avoided, because of the effort needed, and td he unexpected effects td his

removing can have on the system.

16.2.3 Problems in Softff ware Architecture

software architectures (see Sect. 16.2.2) gives guidelines for describing the

design decisions underlying tht e architecture. Consequently, design decisions

Design Decisions: The Bridge between Rationale and Architecture 333

change, and td hey tend tod erode quickldd yll . Also, the reusabilitytt of the archi-

tectural artifacts is limited if design decision knowledge vaporizes into the

design. These problems are caused by the focusff in the software architec-

ture design process on the resulting artifacts (e.g., components and

connectors), instead of the decisions that lead to them. Clearly, design de-

cisions currently lack a fk iff rst-class representation in software architecture

designs.

Rationale in Software Architecture

To tackle the problems described in the previous section, the use of ration-

ale is often proposed. Rationale in the context of architectures describes

and explains the used concepts, considered alternatives, and structures of

systems [11]. This section describes the use of rationale in software archi-

tectures. First, an abstract rationale construction process is introduced in

Sect. 16.3.1. Then, the reasons for rationale use in software architectutt re are

described in Sect. 16.3.2. The section is concluded with a summary of

problems for current rationale use in software architecture.

A general process for creating rationale is visualized in Fig. 16.2. First, the

problems are identified (problem identification(p() and described in a prob-

lem statement. Then, the problems are evaluated (problems remaining(p() one

by one, and solutions are created (create solutions) for a problem. These

solutions are evaluated and d wed ighted for d their suitabilia ty of solving the

problem at hand (decision making). The best solution (for that situation) isg)

chosen, and the choice is documented together with its rationale

(Choice + Rationale). If new problems emerge from the decision made,

they have to be written down and be solved wd ithin the same process.

This process is a generalized vd iew from different rationale based apd -

proaches (like the ones described in Sect. 1.3). Take for exampmm le QOC,

and td he scenario described in [17]. The design of a scroll bar for a user in-

terface is discussed. There are several questions (problems), like “Q1: How

to display?” For this question, there are two options (solutions) described,

“O1: permanent” and “Od 2: appearing”. In the described examd plmm e, the

second option is considered as the best one, and selected. However, this

option generated a new questd ion (problem), “Q2: How to make it appear?”.

16.3.1 The Rationale Construction Process

16.3

This new question needs to be solved in the same way. Other rationale

management methods can be mapped on td his process view too.

As a result of these problems, developed systems have a high cost ofo

334

Problem

Identification

Create

Solutions

Problem

Statement

Choice +

Rationale

Problems

gRemainingg

Decision

Making

Solu

sYesss

Done

oNooo

Legend

Process

Artifact

Decision

Fig. 16.2. An aba stract view on the rationale management process

As is discussed in Sect. 1.4, there are many reasons for using rationale in

software projects. Here, the most important reasons are discussed, and re-

lated to the problems existing in software architecture.

− Supporting reusSS e and change (see Sect. 1.4.2). During the evolution of a

system and its architecture, often the rules and constrad ints from previous

decisions are violated. Rationale needs to be used to d give the architects

insight in previous decisions.

− Improving quag litytt (see Sect. 1.4.3). As posed in the previous section,

design decisions tend to get cross-cut and d intertwined. Rationale based

solutions are used to check consistency between decisions. This helps in

managing the cross-cussing concerns.

− Supporting knowledge transfer (see Sect. 1.4.4). When using rationale r

for communication of the design. Transfer of knowledge can be done

over two dimensions: location (different departments or compmm anies

across the world) and td ime (evolution, maintenance). Transferring

knowledge is one of the most important goals of architecture.mppm

As described in this section, rationale could be beneficial in architecture

design. However, most methods developed for capturing rationale in archi-

tecture design suffer from the following problems:

 J.S. van der Ven, et al.

16.3.3 Problems of Rationale Use in f Software Architecture ff

16.3.2 Reasons for Using Rationale in Software Architectureff

Design Decisions: The Bridge between Rationale and Architecture 335

− Capture overhead. Despite the attempt to automate the rationale captureddd.

process, both durdd ing and after td he design, it is still a laborious process

(see Sect. 1.5.1).

− For the designers, it is hard to see the clear benefit of documenting ra-t

tionale aba out the architecture. Usually most of the rationale capa tured is

not used by the designer itself, and therefore capturing rationale is gen-

erally seen as boring and useless work.

− The rationale typically loses the context in which it was created. When t

rationale is communicated in documented or formalized form, additional

tacit infoff rmation about the context is lost.

− There is no clear connection from the architectural artifacts to the ra-

tionale. Because the rationale and the architectural artifacts are usually

kept separated, it is very hard to d keep them synchronized. Especially

when the system is evolving, the design artifacts are updated, while the

rationale documentation tends to deteriorate.

As a consequence of these problems, rationale-based approacd hes are not

often used in architecture design. However, as described in Sect. 16.2,

there is a need for documenting the reasons behind the design. The follow-

ing section describes an approach which couples rationale to architecture.

Design Decisions: The Bridge Between Rationale
and Architecture

The problems from Sects. 16.2.3 and 16.3.3 can be addressed by the same

solution. This is done by including rationale and architectural artifacts into

one concept: the design decision. In the following section, the two proc-

esses from Sects. 16.2.1 and 16.3.1 are compared. In Sect. 16.4.2, design

decisions are introduced by example and a definition is presented in

Sect. 16.4.3. The last section discusses designing with design decisions.

The processes described in Sects. 16.2.1 and 16.3.1 have some clear

resemblm ances. Problems (requirements) are handled by Solutions (software

architectures/modifications), and the assessment determines if all the

problems are solved adequately. The artifacts created in both processes

tend to describe the same things (see Fig. 16.3). However, the software

architecture design process focuses on the results of the decision process,

while the rationale management focuses on the path to the decision.

16.4.1 Enriching Architecture with Rationale

16.4

336

Problem

Identification

Create

Solutions

nt

Choice +

Rationale

Problems

gRemainingg

Decision

Making

So

Yes

Done

No

Legend

Process
Artifact

Decision

Requirement

Analysis

Initial

Design

Requirements

Document

Software

Architecture

Assessment
Architectural

Modification
tttInsufficienttttt

Done

tSufficienttt

Unrepresented

Design

Knowledge
Corresponding Artifacts

Software architecture

design

Rationale management

Fig. 16.3. Similarities between software architecture design process and the ra-

tionale management process

Some knowledge which is captured in the rationale management process

is missing in the architecture design process (depicted as d black boxes in

Fig. 16.3). There are two artifacts which contain knowledge that is not

available in the software architecture artifact: not selected solutions and

choice + rationale. On the other hand, the results of the design process (the

architecture and arcd hitectural modififf cations), are missing in the rationale

management process. t

The concept of first-class represented design decisions, composed of

rationale, architectural modifications, and alternatives, is used to bring the

J.S. van der Ven, et al.

Design Decisions: The Bridge between Rationale and Architecture 337

two processes together. A software architecture design process no longer

results in a static design description of a sf ystem, but in a set of design deci-

sions leading up to the system. The design decisions reflff ect the rationale

used for the decision making process, and form the natural bridge between

rationale and the resulting architecture.

This section presents a simple case, which shows the impact of designing

architecture with design decisions. The example is based on td he design of a

compact disc (CD) player. Changing customers’ needs have made the

software architecture of the CD player insufficient. Consequently, the ar-r

chitecture needs to evolve.

The software architecture of the CD player is presented in the top of

Fig. 16.4, tht e current design. The design decisions leading to the current

design are not shown in Fig. 16.4 and are instead represented as one design

decision.

The CD players’ architecture is visualized in a component and connecd -

tor view [7]. The components are the principal computational elements that

execute at run-time in the CD player. The connectors represent which

component has a run-time pathway of interaction with another component.

Two functional additions to the softff ware architecture are described.

First, a software-update mechanism is added. This is used to upd date the CD

player, to make easier to fiff x bugs and ad dd new functd ionality in the future.

Second, the Internet connection is used to download song information for

the played CD, like song texts, additional artist information, etc.

As shown in Fig. 16.4, design decisions are taken to add td he described

functionality. The design decisions contain the rationale and td he functional

solution, represented as documentation and an architectural compmm onent and

connector view. Note that the rationale in the picture is shortened very

mucmm h because of space limitations. The added functd ionality is directly rep-

resented by two design decisions, Updater andr SongDatagg base.

The first idea for solving the Internet connectivity was to add a compo-

nent which handled thd e communication to the Patcher. This idea was

reje ected, and another alternative was considered, to create a change to the

Hardware Controller. This change enaba led td he Internet connectivitytt for the

Internet song db too, and was consd idered better because it could rd euse a lot

of the functionality of the existing Hardware Controller. Note that the viewdww

on the current design shows a complete architecture, while it is also a set

of design decisions. The resulting design (Fig. 16.5) is visualized wd ith the

two design decisions taken: the Updater and td her SongDataSS base.

16.4.2 CD Player: A Design Decision Example

338

F
ig

.
1
6
.4

.
T

h
e

ar
ch

it
ec

tu
re

 o
f

a
C

D
 p

la
y

er
 w

it
h
 e

x
te

n
d
ed

 f
u
n
ct

io
n
al

it
y

 J.S. van der Ven, et al.

Design Decisions: The Bridge between Rationale and Architecture 339

New design

(the old system plus the new design decisions)

Updater

I S

User Interface

Music

controller

Patcher

Internet song

db

New systemNew systemsystemsystem.y

The design decisionsThe design decisionsThe design decisionsThe design decisionsThe design decisionsdecisionsdecisions

have been applied tohave been applied tohave been applied tohave been applied tohave been applied tototopp

th ld t tth ld t tth ld t tthe old system tothe old system tothe old system tothe old system tothe old system tototo

create a system withcreate a system withcreate a system withcreate a system withcreate a system withwithwithy

th i d f ti litth i d f ti litth i d f ti litthe required functionalitythe required functionalityfunctionalityfunctionality

SongDatabase

I C

E C

Hardware

controller

Legend

Design Decision Component

Change
Component rrrConnectorrrrrr

R ti lR ti lR ti lRationaleRationaleRationaleRationaleRationaleRationaleRationaleRationaleRationaleRationaleRationaleRationaleRationale

Fig. 16.5. The result of the design decisions of Fig. 16.4

In the exampmm le of Sect. 16.4.2, the software architecture of the CD player

is the set of design decisions leading to a particular design, as depicted in

Fig. 16.4. In the classical notion of system design only the result depicted

in Fig. 16.5 is visible while not capturing the design decisions leading up

to a particular design.

Although the term architectural design decision is often used [2, 7, 10],

a precise defiff nition is hard to fd iff nd. Therefore, we defiff ne an architectural

design decision as:

We detail this defiff nition by describing the used ed lements:

− The consideredd d alternatived s are potential solutions to the requirement

the design decision addresses. The choice is the decision part of an

architectural design decision; it selects one of the considered altd erna-

tives. For example, Fig. 16.4 contains two considered ad lternatives for the

connectivity design decisions. The Ethernet Object alternative is not

selected. Instead, the Internet Connectivity is selected.

16.4.3 Design Decisions

A description of the choice and considered alternatives that (partially)
realize one or more requirements. Alternatives consist of a set of archi-
tectural additions, subtractions and modififf cations to the software
architecture, the rationale, and the design rules, design constraints and
additional requirements.

“AAA

”

340

− The architectural additionsdd , subtractions, and modificationst are the

changes to the given architecture that the design decision makes. For ex-

ample, in Fig. 16.4 the Song Database design decision has one addition

in the form of a new compmm onent (the Internet Song Database), and intro-

− The rationale represents the reasons behind an architectural design

decision. In Fig. 16.4 the rationale is shortly described wd ithin the design

decisions.

− The design rules and constraints are prescriptions for further design

decisions. As an example of a rule, consider a design decision that is

taken to use an object-oriented database. All components and objects

that require persistence need to support the interface demanded by this

database management system, which is a rule. However, this design de-

cision may require that the complete state of the system is saved in this

object-oriented database, which is a constraint.

− Timely fulfillment of requirements drives the design decision process.

The requirements not only include the current requirements, but also in-

clude requirements expected in the fuff ture. They can either be explicit,

e.g., mentioned in a requirements document, or implicit.

− A design decision may result in additional requirementsdd to be satisfiedff

by the architecture. Once a design decision is taken, new insights can

lead to prevd ious undiscovered requd irements. For instance, the design de-

cision to use the Internet as an interface to a system will cause security

requirements like logins, secure transfer, etc.

The given architecture is a set of earlier made design decisions, which

represent the architectural design at the moment the design decision is

taken.

Architecture design decisions may be concerned with the application

domain of the system, the architectural styles and patterns used in the

system, COTS components and otd her infrastructure selections as well as

other aspects described in classical architecture design. Consequently, ar-

chitectural design decisions can have many different levels of abstraction.ann

Furthermore, they involve a wide range of issues, from pure technical ones

to organizational, business, political, and social ones.

 J.S. van der Ven, et al.

duces two modd dififf cations to components (Info Shower and Internet d

Connection).

Design Decisions: The Bridge between Rationale and Architecture 341

decisions still uses these design methods. The main difference lies in the

awareness of the architect, to explicitly capture the design decisions made

and the associated design knowledge.

Section 16.2.3 presented key problems in software architecture. Design-

ing with design decisions helps in handling these problems in the follow-

ing way:

− Design decisions are cross cutting and intertwined. When designingddd.d

with design decisions the architect explicitly defines design decisions,

and the relationships between them. The architect is made aware of the

cross cutting and intertwining of design decisions. In the short term, if

the identififf ed intertwining and crd oss cutting is not desirabla e, the in-

volved design decisions can be reevaluated and d ad lternative solutions can

be considered before the design is fuff rther developed. In the long term,

the architect can (re)learn which design decisions are closely intertwined

with each other and what kind of problems are associated with this.

− Design rules and constraints are violated. Design decisions explicitly ddd.d

contain knowledge about the rules and constrad ints they impose on the

architecture. Adequate tool support can make the architect aware about

these rules and constrad ints and provd ide their associated rationale. This is

mostly a long term benefit to the architect, as this knowledge is often

forgotten and no d longer available durdd ing evolution or maintenance of the

system.

− Obsolete design decisions are not removed.dd In evolution and mainte-

nance, explicit design decisions enable identififf cation and removad l of ob-

solete design decisions. The architect can predict the impact of the deci-

sion and the effort required for removal.

Designing with design decisions requires more effort from the architect,

as the design decisions have to be documented ad long with their rationale.

In traditional design, the architect foff rms the bridge between architecture

and rationale. In designing with design decisions, this role is partially

taken up by the design decisions.

Capturing the rationale of design decisions is a resource intensive proc-

ess (see Sect. 1.5.1). To minimize the capture overhead, close integration

between software architecture design, rationale, and design decisions is re-

quired. The following section presents an example of an approach that

demonstrates this close integration.

Existing design methods (e.g., [2,4]) describe ways in which alternatives

are elicited and d trad de-offs are made. An architect designing with design

16.4.4 Designing with Design Decisions

342

Section 16.4 presented a generad l notion of architectural design decisions.

In this section, a concrete exampmm le realization of this notion is presented:

Archium [13]. First, the basic concepts of Archium are presented, after

which this approach is illustrated wd ith an example.

Archium is an extension of Java, consisting of a compiler and run-td ime

platform. Archium consists of three different elements, which are inte-

grated with each other. The first element is the architectural model, which

formally defines the software architecture using ADL concepts [18].

Second, Archium incorporates a decision model, which models design de-

cisions along with its rationale. Third, Archium includes a composition

model, which describes how the different concepts are composed together. t

The focus in this section is on the design decision model. For the com-

position and architectural model see [13]. The decision model (see

Fig. 16.6) uses an issue-based appd roach [16]. The issues are problems,

which the solutions of the architectural design decisions (partially) solve.

The rationale part of the decision model focuses on design decision ration-dd

ale and not d desidd gi n rationale in general (see section ‘DRL’ in Chap. 1).

Archium captures rationale in customizable rationale elements. They are

described in natural text within the scope of a design decision. Rationale

elements can explicitly refer to elements within this context, thereby creat-

ing a close relationship between rationale and design elements.

The motivation and cause ed lements provide rationale about the problem.

The choice element chooses the right solution and mad kes a trade-off

between the solutions. The choice results in an architectural modification.

To realize the chosen solution in an architectural design decision, the

components and connectors of td he architectural model can be altered. In

this process, new elements might be required and existing elements of the

design might be modified or removed. The architectural modification

describes these changes, and thereby the historyrr of the design. These archi-

tectural modifications are explicitly part of design decisions, which are

fiff rst-class entities in Archium. This makes Archium capable of describing

a software architecture as a set of design decisions [13].

Rationale acquisition (see Sect. 1.7.1) is a manual task in Archium. The

approaca h tries to minimize the intrusiveness of the capturing process by

letting the rationale elements of the design decisions be optional. The only

intrusive factor is the identififf cation and namd ing of design decisions.

 J.S. van der Ven, et al.

16.5.1 Basic Concepts of Archium f

16.5 Archium

Design Decisions: The Bridge between Rationale and Architecture 343

Fig. 16.6. The Archium design decision model

The rationale elements are to a certain extend sd imilar to that of DRL

[16] (see section ‘DRL’ in Chap. 1). The Problem element is comparabla e

to a Decision Problem in DRL. A SolutioSS n solves a Problem, likewise

Alternatives do in DRL. The Motivation element gives more rationale

about the Problem and is compmm arable to a suppuu ortive Claim in DRL. A

Cause can be seen as a special instance of a Goal in DRL. The l Conse-

quence element is like a DRL Claim about the expected impmm act of a

Solution. The Pro and CoCC n elements are comparable to supporting and

denying DRL Claims of a Solution SS (i.e., a DRL Alternative).

An example of a design decision and td he associated ratd ionale in Archium is

presented in Fig. 16.7. It describes the Updater design decision of r

Fig. 16.4. Rationale elements in Archium start with an @, which expresses

rationale in natural text. In the rationale, any design element or require-

ment in the scope of the design decision can be referred to usd ing square

brackets (e.g., [iuc:patcher]). In this way, Archium allows architects to

relate their rationale with their design in a natural way.

A design decision can contain multiple solutions. Each solution has a

realization part, which contains programming code that realizes the

solution. A realization can use other design decisions or change existing

16.5.2 Example in Archium

344

compmm onents. In the InternetUII pUU date solution the realization contains the

InternetUpdateChandd ge, which defiff nes the Patcher component and td he

component modififf cations for the Internet ConnectioCC n (see Fig. 16.4).

The IUCMapping defines how theg InternetUpdateChangII e is mappa ed onto

the current designdd , which is an argument of the design decision.

Fig. 16.7. The updater design decision in Archium

To summarize, the architectural design decisions contain specific rationale

elements of the architecture, thereby not only describing how the architec-

ture has become what it is, but also the reasons behind td he architecture.

Consequently, design decisions can be used as a bridge between the soft-

ware architecture and its rationale. The Archium environment shows that it

is feasible to create architectures with design decisions.

design decision Updater(CurrentDesign design) {

 @problem {# The CD player should be updatable.[R4] #} r

@motivation {# The system can have unexpected bugs or require

 additional functionality once it is deployed. #}

@cause {#Currently this functionality is not present in the [design],

 as the market did not require this functionality before. #}

 @context {# The original [design]. #}

 potential solutions {

 solution InternetUpdate {

 architectural entities {

 InternetUpdateChange iuc;

 IUCMapping iucMapping;

 }

 @description {# The system updates itself using a patch, which is downloaded from d

 the internet. #}

 realization {

iuc = new InternetUpdateChange();

iucMapping = new IUCMapping(design,iuc);

 return design composed wd ith iuc using iucMapping;

}

@design rules {# When the [iuc:patcher] fails to update, the system needs to

 revert back to tk he previous state. #}

 @design constraints {# #}

 @consequences {# The solution requires the system to have a [iuc:internetConnection]

 to work. #}

 pros { @pro {# Distribution of new patches is cheap, easy, and fast #d } }

 cons { @con {# The solution requires a connection to the internet to work. #} }

 }

 /* Other alternative solutions can be defined here */

}

 choice {

 choice InternetUpdate;

 @tradeoff {# No economical other alternatives exist #}

 }

}

 J.S. van der Ven, et al.

Design Decisions: The Bridge between Rationale and Architecture 345

Related Work and Further Developments

This section describes related and future work. The related work focusesurr

on software architecture, as the related work about rationale management

is explained in more depth in previous chapa ters of this book. After this,

Sect. 16.6.2 describes future work onk design decisions.

Software architecture design methods [2,4] focus on describing how the

right design decisions can be made, as opposed to our approach which fo-

cuses on capturing these design decisions. Assessment methods, like

ATAM [2], asses the quality attributes of a software architecture, and the

outcome of such an assessment steers the direction of the design decision

process.

Software documentation approaches [7,10] provide guidelines for the

documentation of software architectures. However, these appaa roaches do

not explicitly capture the way to and the reasons behind the software archi-

tecture.

Architectural Description Languages (ADLs) [18] do not capture

the road leading up to the design either. An exception is formed by the

architectural change management tool Mae [9], which tracks changes of

elements in an architectural model using a revision management system.

However, this approach lacks the notion of design decisions and does not

capaa ture considered alternatives or rationale about the design.

Architectural styles and patterns [d 20] describe common (collections of)ff

architectural design decisions, with known benefiff ts and drawbacks. Tactics

[2] are strategies for design decision making. They provide clues and hints

about what kind of design decisions can help in certain situations. How-

ever, they do not provide a complete design decision perspective.

Currently, there is more attention in the software architecture commu-

nity for the decisions behind the architectural design. Kruchten [14],

stresses the importance of design decisions, and creates classifications of

design decisions and the relationship between them. Tyree and Akerman

[21] provide a first approach on documenting design decisions for software

architectures. Both approaches model design decisions separately and do

not integrate them with design. Closely related to this is the work of Lago

[15], who models assumptions on which design decisions are often based,

but not the design decisions themselves.

Integration of rationale with the design is also done in the design ration-

ale fiff eld. With the SEURAT [3] system, rationale can be maintained in a

16.6.1 Related Work

16.6

346

RationaleExplorer, which is loosely coupuu led to the source code. This ra-

tionale has to be added to td he design tool, to let the rationale of the archi-

tecture and td he implementation be maintained correctd ly. DRPG [1] couples

rationale of well-known design patterns with elements in a Java implemen-

tation. Likewise SEURAT, DRPG also depends on the fact that the

rationale of the design patterns is added to the system in advance.

The notion of design decisions as fiff rst-class entities in a software architec-

ture design raises a couple of research issues. Rationale capture is very ex-

pensive, so how can we determine which design decisions are economical

worth capturing? So far, we have assumed that all the design decisions can

be capa tured in practice this would often not be possible or feasible. How

do we deal with the completeness and uncertad inty of design decisions?

How can we support addition, change, and removal of design decisions

during evolution?

First, design decisions need tod be adapted into commonly used design

processes. Based on td his, design decisions can be formalized and d cated go-

rized. This will result in a thorough analysis of the types of design deci-

sions. Also, dependencies need to be described between the requirements

and design decisions, between the implementation and design decisions,

and between design decisions among themselves.

Experiments by others have already proven that rationale management

helps in improving maintenance tasks. Whether the desired effects out-

weigh the costs of rationale capturing is still largely unproven. The fact

that most of the benefiff ts of design decisions will be measurabla e after a

longer period wd hen maintenance and evod lution takes place complicates the

validation process. We are currently working on a case study which fo-

cuses on a sequence of architectural design decisions taken during evolu-

tion. Additional industrdd ial studies in different domains are planned in the

context of an ongoing industrdd ial research projo ect, which will address some

of the aforementioned questions.

This chapter presented td he position of rationale management in software

architecture design. Rationale is widely accepted as and important part of

the software architecture. However, no strict guidelines or methods exist to

structure this rationale. This leaves the rationale management task in the

 J.S. van der Ven, et al.

16.7 Summary

16.6.2 Future Work

Design Decisions: The Bridge between Rationale and Architecture 347

hands of the individual software architect, which makes it hard to reuse

and commund icate this knowledge. Furthermore, rationale is typically kept

separate from architectural artifacts. This makes it hard to see td he benefiff t

of rationale and maintaining it.

Giving design decisions a first-class representation in the architectural

design creates the possibility to include problems, their solutions and the

rationale of these decisions into one unififf ed concept. d This chapter de-

scribed an appa roach in which decisions behind thd e architecture are seen as

the new building blocks of the architecture. A first step is made by the

Archium approach, which illustrated that designing an architecture with

design decisions is possible. In the future, we think tk hat rationale and ar-d

chitecture will be used tod gether in design decision like concepts, bridging

the gap between the rationale and the architecture.

Acknowledgments. This research has partially been sponsored by the

Dutch Joint Academic and Commercd ial Quality Research and Deved lop-

ment (Jacquard) program on Software Engineering Research via contract

638.001.406 GRIFFIN: a GRId For inFormatIoN about architectural

knowledge.

References

[1] Baniassad ELA, Murphy GC, Schwanninger C (2003) Design pattern ration-

ale graphs: Linking design to source. In: Proceedings of the 25tht Interna-

tional Conference on Software Engineering (ICSE 2005), May 3–10, pp.

352–362
[2] Bass L, Clements P, Kazman R (2003) Software architecture in practice, 2nd

edition. Addison-Wesley, Reading, MA

[3] Burge J, Brown DC (2004) An integrated approach for software design

checking using rationale. In: Design Computing and Cognition ‘04, July

19–21, pp. 557–576

[4] Bosch J (2000) Design and use of software architectures. Addison-Wesley,

Reading, MA

[5] Bosch J (2004) Software architecture: The next step. In: Proceedings of the

fiff rst European Workshop on Software Architecture (EWSA 2004) LNCS

3047, May 21–22, pp. 194–199
[6] Bratthall L, Johansson E, Regnell B (2000) Is a design rationale vital when

predicting change impact? – A controlled experd iment on software architec-

ture evolution. In: Proceedings of the Second International Conference on

Product Focused Software Process Impmm rovement (Profes 2000), June 20–22,
pp. 126–139

348

[7] Clements P, Bachmann F, Bass L, Garlan D, Ivers J, Little R, Nord R, Staf-

ford J d (2002) Documenting software architectures: Views and beyond. Addi-

son-Wesley, Reading, MA

[8] van Gurp J, Bosch J (2002) Design erosion: Problems and causes. Journal of

Systems & Software 61(2): 105–119
[9] van der Hoek A, Mikic-Rakic M, Roshandel R, Medvidovic N (2001)

Taming architectural evolution. In: Proceedings of thtt e 8th European software

engineering conference, Septembm er 10–14, pp. 1–10
[10] Hofmeister C, Nord R, Soni D (2000) Applied Software Architecture. Addi-

son-Wesley, Reading, MA

[11] IEEE (2000) Recommended Practices for Architectural Description of

Software-Intensive Systems. IEEE Standard No.d 1471
[12] Jansen AGJ, Bosch J (2004) Evaluation of tool support for architectural evo-

lution. In: Proceedings 19th IEEE International Conference Automated

Software Engineering (ASE 2004), September 20–24, pp. 375–378
[13] Jansen AGJ, Bosch J (2005) Software architecture as a set of architectural

design decisions. Accepted for the Fifth Working IEEE/IFIP Conference on

Software Architecture (WICSA 5), Novembm er 6–9
[14] Kruchten P (KK 2004) A taxonomy of architectural design decisions in software-

intensive systems. In: Proceedings of the 2nd Groningen Workshop on Soft-

ware Variability Management (SVM 2004), Decembem r 2–3, pp. 54–61
[15] Lago P, van Vliet H (2005) Explicit assumptions enrich architectural models.

In: Proceedings of the 27th International Conference on Software engineer-

ing (ICSE 2005), May 15–21, pp. 206–214
[16] Lee J (1991) Extending the Potts and Bruns model for recording design ra-

tionale. In: Proceedings of the 13th Internationalf Conference on Soff ftwareff

Engineering (ICSE 1991), May 13–17, pp. 114–125

[17] MacLean A, Young RM, Bellotti VME, Moran TP (1991) Questions, Op-

tions, and Criteria: Elements of design space analysis. Human–Computer In-

teraction 6(3&4): 201–250

[18] Medvidovic N, Taylor RN (2000) A classification and comparison frame-

work for software architecture description languages. IEEE Transactions on

Software Engineering, 26(1): 70–93
[19] Perry DE, Wolf AL (1992) Foundations for the study of software architec-

ture. ACM SIGSOFT Software Engineering Notes 17(4): 40–52
[20] Shaw M, Garlan D (1996) Software architecture: perspectives on an

emerging discipline. Prentice-Hall, Englewood Cliffs, NJ

[21] Tyree J, Akerman A (2005) Architecture decisions: Demystifying architec-tt

ture. IEEE Software 22(2): 19–27

 J.S. van der Ven, et al.

http://www.springer.com/978-3-540-30997-0

