16 Design Decisions: The Bridge between
Rationale and Architecture

J.S. van der Ven, A.G. J. Jansen, J.A. G. Nijhuis, J. Bosch

Abstract: Software architecture can be seen as a decision making process;
it involves making the right decisions at the right time. Typically, these de-
sign decisions are not explicitly represented in the artifacts describing the
design. They reside in the minds of the designers and are therefore easily
lost. Rationale management is often proposed as a solution, but lacks a
close relationship with software architecture artifacts. Explicit modeling of
design decisions in the software architecture bridges this gap, as it allows
for a close integration of rationale management with software architecture.
This improves the understandability of the software architecture. Conse-
quently, the software architecture becomes easier to communicate, main-
tain, and evolve. Furthermore, it allows for analysis, improvement, and re-
use of design decisions in the design process.

Keywords: software architecture; architectural design decisions

16.1 Introduction

Software design is currently seen as an iterative process. Often used phases
in this process include: requirements discussions, requirements specifica-
tion, software architecting, implementation, and testing. The Rationale
Unified Process (RUP) is an example of an iterative design process split
into several phases. In such an iterative design process, the software archi-
tecture has a vital role [19].

Architects describe the bare bones of the system by making high-level
design decisions. Errors made in the design of the architecture generally
have a huge impact on the final result. A lot of effort is spent on making
the right design decisions in the initial design of the architecture. However,
the argumentation underlying the architecture is usually not documented,
because the focus is only on the results of the decisions (the architectural
artifacts). Therefore the evaluated alternatives, made tradeoffs and ration-
ale about the made decision remain in the heads of the designers. This tacit
knowledge is easily lost. The lost architecture knowledge leads to evolu-
tion problems [8], increases the complexity of the design [5], and obstructs
the reuse of design experience [14].

To solve the problem of lost architectural knowledge, often techniques
for managing rationale are proposed. Experiments show that maintaining
rationale in the architecture phase increases the understandability of the

330 J.S.vander Ven, A.G. J. Jansen, J.A. G. Nijhuis, J. Bosch

design [6]. However, creating and maintaining this rationale is very
time-consuming. The connection to the architectural and design artifacts is
usually very loose, making the rationale hard to use and keep up-to-date
during the evolution of the system. Consequently, there seems to be a gap
between rationale management and software architecture.

To bridge this gap, we unite rationale and architectural artifacts into the
concept of a design decision, which couples rationale with software archi-
tecture. Design decisions are integrated with the software architecture
design. By doing this, the rationale stays in the architecture, making it eas-
ier to understand, communicate, change, maintain, and evolve the design.

Section 16.2 of this chapter introduces software architectures. Section
16.3 discusses how rationale is used in software architectures. Section 16.4
introduces the concept of design decisions. Section 16.5 presents a con-
crete approach that uses this concept. After this, related and future work is
discussed, followed by a summary, which concludes this chapter.

16.2 Software Architecture

This section focuses on the knowledge aspects of software architectures. In
Sect. 16.2.1, the software architecture design process is discussed. Next,
different ways are presented to describe software architectural knowledge
in Sect. 16.2.2. Subsequently, the issue of knowledge vaporization in software
architecture is discussed in Sect. 16.2.3.

16.2.1 The Software Architecture Design Process

A software architecture is based on the requirements for the system.
Requirements define what the system should do, whereas the software ar-
chitecture describes sow this is achieved. Many software architecture
design methods exist (e.g., [2] and [4]). They all use different methodolo-
gies for designing software architectures. However, they can all be summa-
rized in the same abstract software architecture design process.

Figure 16.1 provides a view of this abstract software design process and
its associated artifacts. The main input for a software architecture design
process is the requirements document. During the initial design the sofi-
ware architecture is created, which satisfies (parts of) the requirements
stated in the requirement document. After this initial design phase, the
quality of the software architecture is assessed. When the quality of the
architecture is not sufficient, it is modified (architectural modification).

Design Decisions: The Bridge between Rationale and Architecture 331

Sufficient Process

Architectural
Modification

Artifact

q Requirements s Software
Requirement Initial .
. Document A Architecture
Analysis Design

J\

Fig. 16.1. An abstract view on the software architecture design process

Describing Software To modify the architecture, the architect can
among others employ a number of tactics [2] or adopt one or more archi-
tectural styles or patterns [20] to improve the design. This is repeated, until
the quality of the architecture is assessed sufficient.

16.2.2 Architectures

There is no general agreement of what a software architecture is and what
it is not. This is mainly due to the fact that software architecture has many
different aspects, which are either technically, process, organization, or
business oriented [4]. Consequently, people perceive and express software
architectures in many different ways.

Due to the many different notions of software architectures, a combina-
tion of different levels of knowledge is needed for its description. Roughly,
the following three levels are usually discerned:

— Tacit/implicit knowledge. In many cases, (parts of) software architec-
tures are not explicitly described or modeled, but remain as tacit infor-
mation inside the head(s) of the designer(s). Making this implicit
knowledge explicit is expensive, and some knowledge is not supposed
to be written down, for example for political reasons. Consequently,
(parts of) software architectures of many systems remain implicit.

— Documented knowledge. Documentation approaches provide guidelines
on which aspects of the architecture should be documented and how this
can be achieved. Typically, these approaches define multiple views on
an architecture for different stakeholders [11]. Examples include:
the Siemens four view [10], and the work of the Software Engineering
Institute [7].

332 J.S.vander Ven, ef al.

— Formalized knowledge. Formalized knowledge is a specialized form of
documented knowledge. Architecture Description Languages (ADL)
[18], formulas and calculations concerning the system are examples of
formalized knowledge. An ADL provides a clear and concise descrip-
tion of the used architectural concepts, which can be communicated, re-
lated, and reasoned about. The advantage of formalized knowledge is
that it can be processed by computers.

Often, the different kinds of knowledge are used simultaneously. For
example, despite that UML was not invented for it UML is often used to
model certain architectural concepts [7]. The model structure of UML con-
tains formalized knowledge, which needs explanation in the form of
documented knowledge. However, the use of the models is not unambigu-
ous, and it is often found that UML is used in different ways. This implies
the use of tacit knowledge to be able to understand and interpret the UML
models in different contexts.

16.2.3 Problems in Software Architecture

There are several major problems with software architecture design
[5,12,14]. These problems come from the large amount of tacit architec-
tural knowledge. Currently, none of the existing approaches to describe
software architectures (see Sect. 16.2.2) gives guidelines for describing the
design decisions underlying the architecture. Consequently, design decisions
only exist in the heads of the designers, which leads to the following prob-
lems:

— Design decisions are cross cutting and intertwined. Typical design
decisions affect multiple parts of the design. However, these design de-
cisions are not explicitly represented in the architecture. So, the associ-
ated architectural knowledge is fragmented across various parts of the
design, making it hard to find and change the decisions.

— Design rules and constraints are violated. During the evolution of the
system, designers can easily violate design rules and constraints arising
from previously taken design decisions. Violations of these rules and
constraints lead to architectural drift [19], and its associated problems
(e.g. increased maintenance costs).

— Obsolete design decisions are not removed. When obsolete design deci-
sions are not removed, the system has the tendency to erode more rap-
idly. In the current design practice removing design decisions is
avoided, because of the effort needed, and the unexpected effects this
removing can have on the system.

Design Decisions: The Bridge between Rationale and Architecture 333

As a result of these problems, developed systems have a high cost of
change, and they tend to erode quickly. Also, the reusability of the archi-
tectural artifacts is limited if design decision knowledge vaporizes into the
design. These problems are caused by the focus in the software architec-
ture design process on the resulting artifacts (e.g., components and
connectors), instead of the decisions that lead to them. Clearly, design de-
cisions currently lack a first-class representation in software architecture
designs.

16.3 Rationale in Software Architecture

To tackle the problems described in the previous section, the use of ration-
ale is often proposed. Rationale in the context of architectures describes
and explains the used concepts, considered alternatives, and structures of
systems [11]. This section describes the use of rationale in software archi-
tectures. First, an abstract rationale construction process is introduced in
Sect. 16.3.1. Then, the reasons for rationale use in software architecture are
described in Sect. 16.3.2. The section is concluded with a summary of
problems for current rationale use in software architecture.

16.3.1 The Rationale Construction Process

A general process for creating rationale is visualized in Fig. 16.2. First, the
problems are identified (problem identification) and described in a prob-
lem statement. Then, the problems are evaluated (problems remaining) one
by one, and solutions are created (create solutions) for a problem. These
solutions are evaluated and weighted for their suitability of solving the
problem at hand (decision making). The best solution (for that situation) is
chosen, and the choice is documented together with its rationale
(Choice + Rationale). 1If new problems emerge from the decision made,
they have to be written down and be solved within the same process.

This process is a generalized view from different rationale based ap-
proaches (like the ones described in Sect. 1.3). Take for example QOC,
and the scenario described in [17]. The design of a scroll bar for a user in-
terface is discussed. There are several questions (problems), like “Q1: How
to display?” For this question, there are two options (solutions) described,
“Ol: permanent” and “O2: appearing”. In the described example, the
second option is considered as the best one, and selected. However, this
option generated a new question (problem), “Q2: How to make it appear?”’.
This new question needs to be solved in the same way. Other rationale
management methods can be mapped on this process view too.

334 J.S.van der Ven, ef al.

Legend

Create Solution

Solutions
—
~— Process
Problem -

Problem Decision Artifact

Identification Sz Making

Choice +
Rationale

\/I/\

Fig. 16.2. An abstract view on the rationale management process

16.3.2 Reasons for Using Rationale in Software Architecture

As is discussed in Sect. 1.4, there are many reasons for using rationale in
software projects. Here, the most important reasons are discussed, and re-
lated to the problems existing in software architecture.

— Supporting reuse and change (see Sect. 1.4.2). During the evolution of a
system and its architecture, often the rules and constraints from previous
decisions are violated. Rationale needs to be used to give the architects
insight in previous decisions.

— Improving quality (see Sect. 1.4.3). As posed in the previous section,
design decisions tend to get cross-cut and intertwined. Rationale based
solutions are used to check consistency between decisions. This helps in
managing the cross-cussing concerns.

— Supporting knowledge transfer (see Sect. 1.4.4). When using rationale
for communication of the design. Transfer of knowledge can be done
over two dimensions: location (different departments or companies
across the world) and time (evolution, maintenance). Transferring
knowledge is one of the most important goals of architecture.

16.3.3 Problems of Rationale Use in Software Architecture

As described in this section, rationale could be beneficial in architecture
design. However, most methods developed for capturing rationale in archi-
tecture design suffer from the following problems:

Design Decisions: The Bridge between Rationale and Architecture 335

— Capture overhead. Despite the attempt to automate the rationale capture
process, both during and after the design, it is still a laborious process
(see Sect. 1.5.1).

— For the designers, it is hard to see the clear benefit of documenting ra-
tionale about the architecture. Usually most of the rationale captured is
not used by the designer itself, and therefore capturing rationale is gen-
erally seen as boring and useless work.

— The rationale typically loses the context in which it was created. When
rationale is communicated in documented or formalized form, additional
tacit information about the context is lost.

— There is no clear connection from the architectural artifacts to the ra-
tionale. Because the rationale and the architectural artifacts are usually
kept separated, it is very hard to keep them synchronized. Especially
when the system is evolving, the design artifacts are updated, while the
rationale documentation tends to deteriorate.

As a consequence of these problems, rationale-based approaches are not
often used in architecture design. However, as described in Sect. 16.2,
there is a need for documenting the reasons behind the design. The follow-
ing section describes an approach which couples rationale to architecture.

16.4 Design Decisions: The Bridge Between Rationale
and Architecture

The problems from Sects. 16.2.3 and 16.3.3 can be addressed by the same
solution. This is done by including rationale and architectural artifacts into
one concept: the design decision. In the following section, the two proc-
esses from Sects. 16.2.1 and 16.3.1 are compared. In Sect. 16.4.2, design
decisions are introduced by example and a definition is presented in
Sect. 16.4.3. The last section discusses designing with design decisions.

16.4.1 Enriching Architecture with Rationale

The processes described in Sects. 16.2.1 and 16.3.1 have some clear
resemblances. Problems (requirements) are handled by Solutions (software
architectures/modifications), and the assessment determines if all the
problems are solved adequately. The artifacts created in both processes
tend to describe the same things (see Fig. 16.3). However, the software
architecture design process focuses on the results of the decision process,
while the rationale management focuses on the path to the decision.

336 J.S.van der Ven, ef al.

Software architecture

Sufficient

Architectural
Modification

. Requirements . Software
Requirement Initial p
A Document A Architecture
Analysis Design

=

Rationale management

Create
Solutions

% % Yes

Problem
Statement

\/\

Solution

Decision
Making

Problem
Identification

Problems
Remainin

Choice +

Rationale

Legend

Unrepresented
Artifact Design c ding Artifact
Process Knowledge

Fig. 16.3. Similarities between software architecture design process and the ra-
tionale management process

Some knowledge which is captured in the rationale management process
is missing in the architecture design process (depicted as black boxes in
Fig. 16.3). There are two artifacts which contain knowledge that is not
available in the software architecture artifact: not selected solutions and
choice + rationale. On the other hand, the results of the design process (the
architecture and architectural modifications), are missing in the rationale
management process.

The concept of first-class represented design decisions, composed of
rationale, architectural modifications, and alternatives, is used to bring the

Design Decisions: The Bridge between Rationale and Architecture 337

two processes together. A software architecture design process no longer
results in a static design description of a system, but in a set of design deci-
sions leading up to the system. The design decisions reflect the rationale
used for the decision making process, and form the natural bridge between
rationale and the resulting architecture.

16.4.2 CD Player: A Design Decision Example

This section presents a simple case, which shows the impact of designing
architecture with design decisions. The example is based on the design of a
compact disc (CD) player. Changing customers’ needs have made the
software architecture of the CD player insufficient. Consequently, the ar-
chitecture needs to evolve.

The software architecture of the CD player is presented in the top of
Fig. 16.4, the current design. The design decisions leading to the current
design are not shown in Fig. 16.4 and are instead represented as one design
decision.

The CD players’ architecture is visualized in a component and connec-
tor view [7]. The components are the principal computational elements that
execute at run-time in the CD player. The connectors represent which
component has a run-time pathway of interaction with another component.

Two functional additions to the software architecture are described.
First, a software-update mechanism is added. This is used to update the CD
player, to make easier to fix bugs and add new functionality in the future.
Second, the Internet connection is used to download song information for
the played CD, like song texts, additional artist information, etc.

As shown in Fig. 16.4, design decisions are taken to add the described
functionality. The design decisions contain the rationale and the functional
solution, represented as documentation and an architectural component and
connector view. Note that the rationale in the picture is shortened very
much because of space limitations. The added functionality is directly rep-
resented by two design decisions, Updater and SongDatabase.

The first idea for solving the Internet connectivity was to add a compo-
nent which handled the communication to the Patcher. This idea was
rejected, and another alternative was considered, to create a change to the
Hardware Controller. This change enabled the Internet connectivity for the
Internet song db too, and was considered better because it could reuse a lot
of the functionality of the existing Hardware Controller. Note that the view
on the current design shows a complete architecture, while it is also a set
of design decisions. The resulting design (Fig. 16.5) is visualized with the
two design decisions taken: the Updater and the SongDatabase.

J.S. van der Ven, et al.

338

Aeuonouny papuaxe yum Jokerd (1D © JO 2Im0dIyoIe oY $°9] "SI

“uekeid @ |

8y} Jo Aeidsip syj uo gp buos |
18We)u) OL) WOy uohewojuI |
8y} Moys o} eqe eq o} |

$pasu J| "e0ByAIU| JOSN Y O} |
Pappe S| 8joy JaMoys o] uy |

-10}08UU0D)!

abueyd
Juauodwio)

Aouspuadaq

puaban

annewss)e pajoafey

—e e

- RN
. perpRU)

UoIspaq ubisea

*UOIIBUUO |

J8WBYI8 UE LM aseqeleqbuos |
pue Jsjepdn ey} Aiddns o) ‘s |
s14} Aq payipow si JajionuoD |
81empieH 8y esodind asnas 104 |
TeloAUOD 18U :0Q |

19UIB)U| BUIUO B} JOBULIO;

40]102u00 |
aiempiey 8y} 0} 8dBLIB| |
185N U} 08UUDD |

0} pasn s| po & Buikerd |
uaym Ajjeanewoine we)sAs |
sy 0} aseqejep Buos |

55EqeIegBuos :ad |

MBU SIU JONLJSUOD |

0} PBPaBU S| LOYS 010 v |

‘19A9MOH "UBISap 8y} Jo 18l ¢

ay) woy pajesedss Apesp |

$1 Ayjeuooung ‘pappe s |

108(qO 48110400 JeueyI] UY |
18I0 1ewsua :aa |

Jayded

“18ji05u0D 1ewaug |
woy Ayjeuonound

9831 YoIuM) |
80y uof D}

(Aweuonoun; mau) |
suodwo) Jayoled |

jJowsely| € pue |

€ onsuog ¢
TEpdN (00 |

Jsjjoquco
asempieH

QIsni

0} sjusuodwod sa.y) |
eoeyielu| 18sn)

'SWIBOU0D 8IempIeY |

pue Buipooep |
pue Bunsi drsnw I |
ejeledes o) ejqe oq |

40 sysisu00 Jakerd |
PO 81 "SUOISIORp |
uBjsep uayje) Joijiea |
ay) ur paureidxe |

S| Aeuonouny ay) ¢
:ubisap we)sAs uiepy |
—

(suoisioap ubisap uae) Ajsnoiraid Jo 1onAsuod ay) s)

ubisap yuauny

Design Decisions: The Bridge between Rationale and Architecture 339

New design
(the old system plus the new design decisions)

SongDatabase

Internet song
db

Updater

s

New system.
The design decisions
have been applied to
the old system to

create a system with

the required functionality

User Interface Hardware

controller

Music
controller

Legend

- ; t
Design Decision Rationale Component
Design Decision Component Change

Fig. 16.5. The result of the design decisions of Fig. 16.4

Connector-

16.4.3 Design Decisions

In the example of Sect. 16.4.2, the software architecture of the CD player
is the set of design decisions leading to a particular design, as depicted in
Fig. 16.4. In the classical notion of system design only the result depicted
in Fig. 16.5 is visible while not capturing the design decisions leading up
to a particular design.

Although the term architectural design decision is often used [2, 7, 10],

a precise definition is hard to find. Therefore, we define an architectural
design decision as:

“A description of the choice and considered alternatives that (partially)
realize one or more requirements. Alternatives consist of a set of archi-
tectural additions, subtractions and modifications to the software
architecture, the rationale, and the design rules, design constraints and
additional requirements.”

We detail this definition by describing the used elements:

— The considered alternatives are potential solutions to the requirement
the design decision addresses. The choice is the decision part of an
architectural design decision; it selects one of the considered alterna-
tives. For example, Fig. 16.4 contains two considered alternatives for the
connectivity design decisions. The Ethernet Object alternative is not
selected. Instead, the Internet Connectivity is selected.

340 J.S.van der Ven, ef al.

— The architectural additions, subtractions, and modifications are the
changes to the given architecture that the design decision makes. For ex-
ample, in Fig. 16.4 the Song Database design decision has one addition
in the form of a new component (the Internet Song Database), and intro-
duces two modifications to components (Info Shower and Internet
Connection).

— The rationale represents the reasons behind an architectural design
decision. In Fig. 16.4 the rationale is shortly described within the design
decisions.

— The design rules and constraints are prescriptions for further design
decisions. As an example of a rule, consider a design decision that is
taken to use an object-oriented database. All components and objects
that require persistence need to support the interface demanded by this
database management system, which is a rule. However, this design de-
cision may require that the complete state of the system is saved in this
object-oriented database, which is a constraint.

— Timely fulfillment of requirements drives the design decision process.
The requirements not only include the current requirements, but also in-
clude requirements expected in the future. They can either be explicit,
e.g., mentioned in a requirements document, or implicit.

— A design decision may result in additional requirements to be satisfied
by the architecture. Once a design decision is taken, new insights can
lead to previous undiscovered requirements. For instance, the design de-
cision to use the Internet as an interface to a system will cause security
requirements like logins, secure transfer, etc.

The given architecture is a set of earlier made design decisions, which
represent the architectural design at the moment the design decision is
taken.

Architecture design decisions may be concerned with the application
domain of the system, the architectural styles and patterns used in the
system, COTS components and other infrastructure selections as well as
other aspects described in classical architecture design. Consequently, ar-
chitectural design decisions can have many different levels of abstraction.
Furthermore, they involve a wide range of issues, from pure technical ones
to organizational, business, political, and social ones.

Design Decisions: The Bridge between Rationale and Architecture 341

16.4.4 Designing with Design Decisions

Existing design methods (e.g., [2,4]) describe ways in which alternatives
are elicited and trade-offs are made. An architect designing with design
decisions still uses these design methods. The main difference lies in the

awareness of the architect, to explicitly capture the design decisions made
and the associated design knowledge.

Section 16.2.3 presented key problems in software architecture. Design-
ing with design decisions helps in handling these problems in the follow-
ing way:

— Design decisions are cross cutting and intertwined. When designing
with design decisions the architect explicitly defines design decisions,
and the relationships between them. The architect is made aware of the
cross cutting and intertwining of design decisions. In the short term, if
the identified intertwining and cross cutting is not desirable, the in-
volved design decisions can be reevaluated and alternative solutions can
be considered before the design is further developed. In the long term,
the architect can (re)learn which design decisions are closely intertwined
with each other and what kind of problems are associated with this.

— Design rules and constraints are violated. Design decisions explicitly
contain knowledge about the rules and constraints they impose on the
architecture. Adequate tool support can make the architect aware about
these rules and constraints and provide their associated rationale. This is
mostly a long term benefit to the architect, as this knowledge is often
forgotten and no longer available during evolution or maintenance of the
system.

— Obsolete design decisions are not removed. In evolution and mainte-
nance, explicit design decisions enable identification and removal of ob-
solete design decisions. The architect can predict the impact of the deci-
sion and the effort required for removal.

Designing with design decisions requires more effort from the architect,
as the design decisions have to be documented along with their rationale.
In traditional design, the architect forms the bridge between architecture
and rationale. In designing with design decisions, this role is partially
taken up by the design decisions.

Capturing the rationale of design decisions is a resource intensive proc-
ess (see Sect. 1.5.1). To minimize the capture overhead, close integration
between software architecture design, rationale, and design decisions is re-
quired. The following section presents an example of an approach that
demonstrates this close integration.

342 J.S.van der Ven, ef al.

16.5 Archium

Section 16.4 presented a general notion of architectural design decisions.
In this section, a concrete example realization of this notion is presented:
Archium [13]. First, the basic concepts of Archium are presented, after
which this approach is illustrated with an example.

16.5.1 Basic Concepts of Archium

Archium is an extension of Java, consisting of a compiler and run-time
platform. Archium consists of three different elements, which are inte-
grated with each other. The first element is the architectural model, which
formally defines the software architecture using ADL concepts [18].
Second, Archium incorporates a decision model, which models design de-
cisions along with its rationale. Third, Archium includes a composition
model, which describes how the different concepts are composed together.

The focus in this section is on the design decision model. For the com-
position and architectural model see [13]. The decision model (see
Fig. 16.6) uses an issue-based approach [16]. The issues are problems,
which the solutions of the architectural design decisions (partially) solve.
The rationale part of the decision model focuses on design decision ration-
ale and not design rationale in general (see section ‘DRL’ in Chap. 1).

Archium captures rationale in customizable rationale elements. They are
described in natural text within the scope of a design decision. Rationale
elements can explicitly refer to elements within this context, thereby creat-
ing a close relationship between rationale and design elements.

The motivation and cause elements provide rationale about the problem.
The choice element chooses the right solution and makes a trade-off
between the solutions. The choice results in an architectural modification.

To realize the chosen solution in an architectural design decision, the
components and connectors of the architectural model can be altered. In
this process, new elements might be required and existing elements of the
design might be modified or removed. The architectural modification
describes these changes, and thereby the history of the design. These archi-
tectural modifications are explicitly part of design decisions, which are
first-class entities in Archium. This makes Archium capable of describing
a software architecture as a set of design decisions [13].

Rationale acquisition (see Sect. 1.7.1) is a manual task in Archium. The
approach tries to minimize the intrusiveness of the capturing process by
letting the rationale elements of the design decisions be optional. The only
intrusive factor is the identification and naming of design decisions.

Design Decisions: The Bridge between Rationale and Architecture 343

Architectural Design Decision
/ ’\/“\ ~ /—\/_\\
(. L ()
/\ Motivation) Choice —Makes%?\ Trade-off
N J \
N N
Motivates
e - /f—\&/—\ Results in
(N f
’ Cause | Causes= Problem ¢ Solve Selects Architectural
< J N J Modification
N N / *’\ ,7,/\—/j
Legend
TN Disapproves . L
>/ Rationale \& Solution1 = Advocates
(element J I
SN~ Leads to
- Y —
Formal ‘/"/ e \\4 /"/ N ‘/"/ \\<
element 0 \ 0 \ ;
C Con) \Consequencta/ C Pro)
\"'\,“/"-// \;_,\» P \'-'\, ~

Fig. 16.6. The Archium design decision model

The rationale elements are to a certain extend similar to that of DRL
[16] (see section ‘DRL’ in Chap. 1). The Problem element is comparable
to a Decision Problem in DRL. A Solution solves a Problem, likewise
Alternatives do in DRL. The Motivation element gives more rationale
about the Problem and is comparable to a supportive Claim in DRL. A
Cause can be seen as a special instance of a Goal in DRL. The Conse-
quence element is like a DRL Claim about the expected impact of a
Solution. The Pro and Con elements are comparable to supporting and
denying DRL Claims of a Solution (i.e., a DRL Alternative).

16.5.2 Example in Archium

An example of a design decision and the associated rationale in Archium is
presented in Fig. 16.7. It describes the Updater design decision of
Fig. 16.4. Rationale elements in Archium start with an @, which expresses
rationale in natural text. In the rationale, any design element or require-
ment in the scope of the design decision can be referred to using square
brackets (e.g., [iuc:patcher]). In this way, Archium allows architects to
relate their rationale with their design in a natural way.

A design decision can contain multiple solutions. Each solution has a
realization part, which contains programming code that realizes the
solution. A realization can use other design decisions or change existing

344 J.S.van der Ven, ef al.

components. In the InternetUpdate solution the realization contains the
InternetUpdateChange, which defines the Patcher component and the
component modifications for the Infernet Connection (see Fig. 16.4).
The IUCMapping defines how the InternetUpdateChange is mapped onto
the current design, which is an argument of the design decision.

design decision Updater(CurrentDesign design) {
(@problem {# The CD player should be updatable.[R4] #}
(@motivation {# The system can have unexpected bugs or require
additional functionality once it is deployed. #}
(@cause {#Currently this functionality is not present in the [design],
as the market did not require this functionality before. #}
(@context {# The original [design]. #}

potential solutions {
solution InternetUpdate {
architectural entities {
InternetUpdateChange iuc;
TUCMapping iucMapping;
}
(@description {# The system updates itself using a patch, which is downloaded from
the internet. #}
realization {
iuc = new InternetUpdateChange();
iucMapping = new IUCMapping(design,iuc);
return design composed with iuc using iucMapping;
}
(@design rules {# When the [iuc:patcher] fails to update, the system needs to
revert back to the previous state. #}
(@design constraints {# #}
(@consequences {# The solution requires the system to have a [iuc:internetConnection]
to work. #}
pros { @pro {# Distribution of new patches is cheap, easy, and fast #} }
cons { @con {# The solution requires a connection to the internet to work. #} }

}

/* Other alternative solutions can be defined here */
h
choice {
choice InternetUpdate;
(@tradeoff {# No economical other alternatives exist #}

}
H

Fig. 16.7. The updater design decision in Archium

To summarize, the architectural design decisions contain specific rationale
elements of the architecture, thereby not only describing how the architec-
ture has become what it is, but also the reasons behind the architecture.
Consequently, design decisions can be used as a bridge between the soft-
ware architecture and its rationale. The Archium environment shows that it
is feasible to create architectures with design decisions.

Design Decisions: The Bridge between Rationale and Architecture 345

16.6 Related Work and Further Developments

This section describes related and future work. The related work focuses
on software architecture, as the related work about rationale management
is explained in more depth in previous chapters of this book. After this,
Sect. 16.6.2 describes future work on design decisions.

16.6.1 Related Work

Software architecture design methods [2,4] focus on describing how the
right design decisions can be made, as opposed to our approach which fo-
cuses on capturing these design decisions. Assessment methods, like
ATAM |[2], asses the quality attributes of a software architecture, and the
outcome of such an assessment steers the direction of the design decision
process.

Software documentation approaches [7,10] provide guidelines for the
documentation of software architectures. However, these approaches do
not explicitly capture the way to and the reasons behind the software archi-
tecture.

Architectural Description Languages (ADLs) [18] do not capture
the road leading up to the design either. An exception is formed by the
architectural change management tool Mae [9], which tracks changes of
elements in an architectural model using a revision management system.
However, this approach lacks the notion of design decisions and does not
capture considered alternatives or rationale about the design.

Architectural styles and patterns [20] describe common (collections of)
architectural design decisions, with known benefits and drawbacks. Tactics
[2] are strategies for design decision making. They provide clues and hints
about what kind of design decisions can help in certain situations. How-
ever, they do not provide a complete design decision perspective.

Currently, there is more attention in the software architecture commu-
nity for the decisions behind the architectural design. Kruchten [14],
stresses the importance of design decisions, and creates classifications of
design decisions and the relationship between them. Tyree and Akerman
[21] provide a first approach on documenting design decisions for software
architectures. Both approaches model design decisions separately and do
not integrate them with design. Closely related to this is the work of Lago
[15], who models assumptions on which design decisions are often based,
but not the design decisions themselves.

Integration of rationale with the design is also done in the design ration-
ale field. With the SEURAT [3] system, rationale can be maintained in a

346 J.S.van der Ven, ef al.

RationaleExplorer, which is loosely coupled to the source code. This ra-
tionale has to be added to the design tool, to let the rationale of the archi-
tecture and the implementation be maintained correctly. DRPG [1] couples
rationale of well-known design patterns with elements in a Java implemen-
tation. Likewise SEURAT, DRPG also depends on the fact that the
rationale of the design patterns is added to the system in advance.

16.6.2 Future Work

The notion of design decisions as first-class entities in a software architec-
ture design raises a couple of research issues. Rationale capture is very ex-
pensive, so how can we determine which design decisions are economical
worth capturing? So far, we have assumed that all the design decisions can
be captured in practice this would often not be possible or feasible. How
do we deal with the completeness and uncertainty of design decisions?
How can we support addition, change, and removal of design decisions
during evolution?

First, design decisions need to be adapted into commonly used design
processes. Based on this, design decisions can be formalized and catego-
rized. This will result in a thorough analysis of the types of design deci-
sions. Also, dependencies need to be described between the requirements
and design decisions, between the implementation and design decisions,
and between design decisions among themselves.

Experiments by others have already proven that rationale management
helps in improving maintenance tasks. Whether the desired effects out-
weigh the costs of rationale capturing is still largely unproven. The fact
that most of the benefits of design decisions will be measurable after a
longer period when maintenance and evolution takes place complicates the
validation process. We are currently working on a case study which fo-
cuses on a sequence of architectural design decisions taken during evolu-
tion. Additional industrial studies in different domains are planned in the
context of an ongoing industrial research project, which will address some
of the aforementioned questions.

16.7 Summary

This chapter presented the position of rationale management in software
architecture design. Rationale is widely accepted as an important part of
the software architecture. However, no strict guidelines or methods exist to
structure this rationale. This leaves the rationale management task in the

Design Decisions: The Bridge between Rationale and Architecture 347

hands of the individual software architect, which makes it hard to reuse
and communicate this knowledge. Furthermore, rationale is typically kept
separate from architectural artifacts. This makes it hard to see the benefit
of rationale and maintaining it.

Giving design decisions a first-class representation in the architectural
design creates the possibility to include problems, their solutions and the
rationale of these decisions into one unified concept. This chapter de-
scribed an approach in which decisions behind the architecture are seen as
the new building blocks of the architecture. A first step is made by the
Archium approach, which illustrated that designing an architecture with
design decisions is possible. In the future, we think that rationale and ar-
chitecture will be used together in design decision like concepts, bridging
the gap between the rationale and the architecture.

Acknowledgments. This research has partially been sponsored by the
Dutch Joint Academic and Commercial Quality Research and Develop-
ment (Jacquard) program on Software Engineering Research via contract
638.001.406 GRIFFIN: a GRId For inFormatloN about architectural
knowledge.

References

[1] Baniassad ELA, Murphy GC, Schwanninger C (2003) Design pattern ration-
ale graphs: Linking design to source. In: Proceedings of the 25th Interna-
tional Conference on Software Engineering (ICSE 2005), May 3-10, pp.
352-362

[2] Bass L, Clements P, Kazman R (2003) Software architecture in practice, 2nd
edition. Addison-Wesley, Reading, MA

[3] Burge J, Brown DC (2004) An integrated approach for software design
checking using rationale. In: Design Computing and Cognition ‘04, July
19-21, pp. 557-576

[4] Bosch J (2000) Design and use of software architectures. Addison-Wesley,
Reading, MA

[5] Bosch J (2004) Software architecture: The next step. In: Proceedings of the
first European Workshop on Software Architecture (EWSA 2004) LNCS
3047, May 21-22, pp. 194-199

[6] Bratthall L, Johansson E, Regnell B (2000) Is a design rationale vital when
predicting change impact? — A controlled experiment on software architec-
ture evolution. In: Proceedings of the Second International Conference on
Product Focused Software Process Improvement (Profes 2000), June 20-22,
pp. 126-139

348 J.S.van der Ven, ef al.

[7] Clements P, Bachmann F, Bass L, Garlan D, Ivers J, Little R, Nord R, Staf-
ford J (2002) Documenting software architectures: Views and beyond. Addi-
son-Wesley, Reading, MA

[8] wvan Gurp J, Bosch J (2002) Design erosion: Problems and causes. Journal of
Systems & Software 61(2): 105-119

[9] van der Hoek A, Mikic-Rakic M, Roshandel R, Medvidovic N (2001)
Taming architectural evolution. In: Proceedings of the 8th European software
engineering conference, September 10-14, pp. 1-10

[10] Hofmeister C, Nord R, Soni D (2000) Applied Software Architecture. Addi-
son-Wesley, Reading, MA

[11] IEEE (2000) Recommended Practices for Architectural Description of
Software-Intensive Systems. IEEE Standard No. 1471

[12] Jansen AGJ, Bosch J (2004) Evaluation of tool support for architectural evo-
lution. In: Proceedings 19th IEEE International Conference Automated
Software Engineering (ASE 2004), September 20-24, pp. 375-378

[13] Jansen AGJ, Bosch J (2005) Software architecture as a set of architectural
design decisions. Accepted for the Fifth Working IEEE/IFIP Conference on
Software Architecture (WICSA 5), November 6-9

[14] Kruchten P (2004) A taxonomy of architectural design decisions in software-
intensive systems. In: Proceedings of the 2nd Groningen Workshop on Soft-
ware Variability Management (SVM 2004), December 23, pp. 5461

[15] Lago P, van Vliet H (2005) Explicit assumptions enrich architectural models.
In: Proceedings of the 27th International Conference on Software engineer-
ing (ICSE 2005), May 15-21, pp. 206-214

[16] Lee J (1991) Extending the Potts and Bruns model for recording design ra-
tionale. In: Proceedings of the 13th International Conference on Software
Engineering (ICSE 1991), May 13-17, pp. 114-125

[17] MacLean A, Young RM, Bellotti VME, Moran TP (1991) Questions, Op-
tions, and Criteria: Elements of design space analysis. Human—Computer In-
teraction 6(3&4): 201-250

[18] Medvidovic N, Taylor RN (2000) A classification and comparison frame-
work for software architecture description languages. IEEE Transactions on
Software Engineering, 26(1): 70-93

[19] Perry DE, Wolf AL (1992) Foundations for the study of software architec-
ture. ACM SIGSOFT Software Engineering Notes 17(4): 40-52

[20] Shaw M, Garlan D (1996) Software architecture: perspectives on an
emerging discipline. Prentice-Hall, Englewood Cliffs, NJ

[21] Tyree J, Akerman A (2005) Architecture decisions: Demystifying architec-
ture. IEEE Software 22(2): 19-27

2 Springer
http://www.springer.com/978-3-540-30997-0

Rationale Management in Software Engineering
Dutoit, A.H.; McCall, R.; Mistrik, |.; Paech, B. (Eds.)
20086, XX, 434 p., Hardcowver

ISBEM: 978-3-540-30997-0

