6

Data Management

C. Bolchini, F.A. Schreiber, and L. Tanca

A multichannel mobile environment offers very interesting challenges for re-
search on effective and efficient data management; indeed, the variety of device
storage capabilities, together with the availability of huge amounts of data,
only parts of which are interesting to the device user, open up completely
new research issues. It is important to be able to select which part of the
entire data must be readily available to the user, depending on his/her inter-
ests and, more generally the context, and to access/manage such data in an
efficient way with respect to the device’s technical features and limitations
(memory, power, performance, and so on).

Within the MAIS project, the Very Small DataBase (VSDB) project [73]
is aimed at providing both ends of the solution: a design methodology for
determining the portion of data to be held on the portable device, and a
Data Base Management System (DBMS) for accessing such data in the most
convenient way.

The main difference from the traditional design methodologies is the focus
on ambient awareness, which allows the specification of the “VSDB ambient”,
i.e., the set of personal and environmental characteristics determining the
portion of data that must be stored on the portable device.

On the other hand, the DBMS must integrate logical and physical data
structures defined to exploit the technological characteristics that are common
to portable devices, and provide the classical features of DBMSs that are
necessary in the current scenario. As a result, the architecture of these devices
has an impact on the data management policies. Fig. 6.1 depicts the project
scenario.

Here we assume the existence of a (possibly distributed) database, for
which a global schema has been defined and which is located on fixed devices.
This means that VSDB’s are defined as (collections of) materialized views on
this database (Fig. 6.2). Future work is aimed at generalizing our research to
the case where a mobile device forms part of a complex information system
where no global schema is known.

C. Bolchini, F.A. Schreiber, and L. Tanca

156

AqAwwnp
1GTPaIIP «

euonipesy «

39 Awwnp - papos - 13y

g~ palelep - deay - |13y

E ()
d3AINa

Wids

(1oeinuig saiquessy)

1

=
g

uINoIS30 8Q

§

~ B
AAA OQ M3IA 31VIHO

{SdO 3L14M/QVIy} peopiom pardadxa «

aoeds/awn uo [ONISIA] (s)P1aLs Suapao « T INVED

¥INOIS30 80

¥

Uoisuswip B 2df; .)« XXX On_l>”/w<_> mk(mwo mw“%m”
[yeuondo | e3uawepuny] uoejas « ANOIS3a 80 ZIBUmo«
L1oumo«

JBUMO™ BlEQ«

(9€4 ‘ges 'ved

(€2 ‘ze ‘12

|X> Bewayos [eo1bo

3LYNINITI T AJIQON

<> HOYV3S | = HOYV3S | NvOS

laav

4/// t \
orein
L'

A

. NENGE T}

N~ N NN NN
H3ANa

N
D

&

%]

D

& .

i

vewszgquis

(uonejuswaldwi [eaisAyd
/leaiBol 1saq T3y Yoealoy)
uopelojdx3 soedg uonnjos

siaasigepod

f
)

)

Y3syvd 10S

B

1134 WO
v L1038

zuonoy juoney

HOLYMISININGY 80

PpUR-ju0I4

-

LIOPIOH«

<uonenys ‘oidoy jsaJajul ‘Japjoy>

¥INOIS3a 50

=

NOILYOITddVY

Fig. 6.1. The VSDB project: portable-database design and DBMS

6.1 Architectural Features for Data Management

Out of the several families of portable devices, we focus our attention on

smart cards, smart phones, and PDAs. The presence of a variable degree of

and the presence

NVM), usually EEPROM flash

computational capability, provided by the presence of a microcontroller, the
ability to interact with other devices through their interfaces,

of a limited amount of NonVolatile Memory (

memory, are common to all these devices. The microcontroller’s performance,
the types of interfaces provided by the environment/devices, and the amount

6 Data Management 157

_— baia
Source 2 ata
Data - Source n
Source 1

GLOBAL
SCHEMA

Fig. 6.2. The overall architecture for data management

of available memory vary from device to device; nevertheless, it is possible to
say that, altogether, the resources of portable devices are limited, compared
with typical full-size computers. Furthermore, the nature of the nonvolatile
memory impacts significantly on the overall performance achievable with these
microdevices, as discussed in the next subsection.

6.1.1 Memory Types

In general, two kinds of flash memory implementation can be employed for
storage in portable devices: NOR and NAND. Owing to density, cost, and
speed reasons, embedded and mobile systems are increasingly using NAND
flash EEPROM for storage. The most common consumer usage of NAND flash
is in the form of SmartMedia cards, which are simply NAND chips bonded to
a carrier card. Consumer use of SmartMedia is driving down NAND prices,
while driving up densities. As always, though, life is made of compromises,
and those advantages come with some limitations that need to be addressed
to provide robust data access. Table 6.1 reports the typical characteristics of
NOR and NAND EEPROM flash memories.

Program and erasure operations require particular effort compared with
classical magnetic-disk or RAM support, since a memory location, indepen-
dently of the granularity allowed by the specific type of memory, needs to be
erased before it can be programmed. More precisely, write operations can only
modify 1s to 0s. Changing 0Os to 1s requires an erasure; furthermore, in NAND
memories, a page may be programmed only a certain maximum number of
times.

The amount of data storage available in a flash memory ranges from 64
Mbit to 8 Gbit. Power requirements vary depending on the operation that has
to be performed. A read operation requires an average of about 10 mA (12

158 C. Bolchini, F.A. Schreiber, and L. Tanca

Table 6.1. Characteristics of NAND and NOR EEPROM flash memory [354]

NOR NAND
Density Up to 32 MB chips From 128 Mbit to 8 GBit.
Cost per MB $2 $0.5
Linear random access Sector read/write:
Access Page-oriented with spare area in page
Sequential access within a page
Organization Erasable blocks Erasable blocks of 32 x 512-byte pages
of 8 kB to 128 kB typical 16 bytes of extra management data
Target ROM replacement Mass storage

Programmability Byte-by-byte allowing Page or partial-page programming.
single-bit modification.

Endurance 100 k to 1 M erasures 100 k to 1 M erasures

Read speed 50-100 ns 10 us page seek + 50 ns per byte
Program time 5 us per byte 200 ps per page

Erasure time 1 s per erasable block 2 m per erasable block

mA maximum), whereas program and erase operations require an average of
about 20 mA (35 mA maximum). Access time depends on both the type and
the mode of operation.

6.1.2 Endurance, Power Consumption and Performance

Using this technology, write operations can be performed only if the target
location either has never been written before or has been previously erased.
Erasure can only be done at block level, whereas read and write operations
work at single-word granularity. Endurance is a critical factor as well; each
erasure has an impact on the life of the device, whose reliability can be jeop-
ardized.

More precisely, every modification on the data affects the endurance of the
device, impacts on power consumption, and, depending on which microoper-
ations need to be performed, determines the performance level that can be
achieved: the main difference compared with classical storage support consists
of the necessity to delete a location before being able to rewrite it, and to erase
an entire block even if a single piece of information is modified. In fact, when
a block needs to be erased for a single modification, all the information in it
must be saved, the block must be erased, and then all data except the part
that has been modified must be copied back to the block.

As a consequence, a DBMS using a flash memory must take into account all
of these aspects, by trying to reduce the number of data modifications required
by data access. Ad hoc physical data structures and data access, storage, and
management procedures have been investigated, evaluating endurance, power
consumption, and performance levels, in order to select the most promising
policies to be adopted in the lowest layer of a DBMS for portable devices.

6 Data Management 159

6.2 DBMSs for Small Devices

The resources of portable devices, although limited, allow the user to carry
around a useful portion of data, to be read as well as modified. Such data
may be part of a larger system (such as a person’s medical records) or may
be the unique copy of a user’s information (such as a person’s Internet access
data): in both cases a portable DBMS is desirable as a backend for accessing
and managing data.

6.2.1 Commercial Tools

In this subsection, we present a short survey of the available commercial tools
that implement relational-database management systems for portable devices,
focusing our attention on their synchronization policies. We consider the fol-
lowing systems:

Oracle Database Lite 10g [293]

TAnywhere UltraLite database [192]

IBM DB2 Everyplace [193]

Microsoft SQL Server Mobile Edition [267]

Oracle Database Lite 10g

Oracle Database Lite is an addition to the Oracle DBMS and is used for
mobile and small-footprint devices. Oracle Database Lite uses data synchro-
nization to exchange data between an Oracle database and a remote envi-
ronment. More precisely, the DBMS includes a bidirectional synchronization
server with a publication and subscription-based model that allows data to
be synchronized between mobile users and the Oracle database. When con-
current data modifications occur on the remote database and on the server,
conflicts are resolved by means of configurable standard resolution rules.

The following synchronization and network protocols are supported:
TCP/IP, HTTP, 802.11b, PPP12, GPRS, HotSync, and ActiveSync.

IAnywhere UltraLite Database

The UltraLite database provides mobile users with access to local and remote
data when a connection is available, and queues up transactions when offline.
A synchronization server provides database-to-database synchronization, of-
fering bidirectional exchange of information between remote databases and an
enterprise data source, via a priority approach. Remote devices connect via
standard internet protocols, such as TCP/IP, HTTP or HTTPS.

Developers can create complex rules to subset data, by partitioning both
horizontally and vertically, in order to select the portion of data that the end
users have access to.

160 C. Bolchini, F.A. Schreiber, and L. Tanca

IBM DB2 Everyplace

DB2 Everyplace can be used as an independent database, local to the mobile
device, or to query information on remote servers when a connection is avail-
able. Data can be synchronized between DB2 Everyplace client devices and
enterprise data sources using a synchronization server. Synchronization can
be bidirectional or unidirectional; conflict resolution and data partitioning are
supported.

Microsoft SQL Server Mobile Edition

The Microsoft SQL Server Mobile Edition engine exposes an essential set of
Relational-database features. Remote data access and merge replication en-
sure that data from SQL Server databases can be manipulated off line, and
be synchronized later on to the server. No further details are available.

The common factor in all these light DBMSs is the underlying client—
server architecture, where the portable device hosting the light DBMS is a
client, and a full-featured server is the center of the architecture. The aim of
these light DBMSs is to scale down an existing tool, to make it fit the reduced
computational power, battery life, and memory of portable devices, but to
continue to provide a traditional database management system.

6.2.2 PoLiDBMS: System Features

When such reduced resources are considered, not all of the classical features
of a DBMS are necessary, especially when one takes into account the limited
amount of data held on the device and the fact that the SQL engine will
serve the purpose of data access/manipulation rather than database creation
or administration. Furthermore, the particular technological characteristics of
the storage medium suggest that we need careful manipulation of the stored
information to limit endurance degradation and power consumption, and to
achieve good performance.

As a consequence, a new DBMS has been developed [71]. We have named
it PoLiDBMS from Portable Light DBMS (and also Politecnico di Milano
DBMS). In it, a bottom-up approach is adopted, in order to exploit ad-
hoc physical data structures, designed to meet the challenges of the storage
medium and to fulfill the requirements of efficiently managing small amounts
of data. PoLiDBMS is part of the VSDB project and provides an SQL engine
for managing the portion of data stored on the portable mobile device.

Although devices are advancing rapidly, system resources, such as available
memory, are often scarce, so it is critical that a relational database system
is as compact as possible while still providing the essential functionality. The
DBMS architecture that we propose has been specifically designed to cope

6 Data Management 161

with the requirements and constraints of small devices characterized by re-
duced resources [73]. A flexible, modular solution has been adopted with the
aim of allowing the development of a feature-customizable system, depending
on the functionality needed and the processing power available. The first pro-
totype implementation provides all the elementary functionality of a DBMS,
supporting a reduced set of the SQL language that we consider to be of in-
terest in such a limited environment. The following paragraphs describe the
physical-design and query-processing policies implemented in our prototype.
Transaction handling and synchronization strategies, which have been inves-
tigated but only partially implemented, are described in Sect. 6.3.2.

Data Storage Policies

Classical, indexed data structures are often inappropriate for VSDBs; indeed,
our search needs and the fact that searches are conducted within small tables is
often not worth the overhead required for managing and maintaining indexes,
which have been proposed only in the case of tables with large cardinality
and special needs for multikey searches [69]. Instead, we propose what we call
logistic data structures, i.e., intermediate data structures that are chosen to
implement each database relation.

A heap relation is used to store a small number of records (generally
less than 10), unsorted, typically accessed by scanning all records when one is
looking for a specific record; in the case of a personal-assistant device database,
with telephone/Internet access data, an example could be a relation that stores
data on the telephone/mail accounts that the owner has.

Sorted relations, characterized by a medium cardinality (2100 to 21000
records), are used to store information typically accessed by the sort key.
The idea is to impose an upper bound on the number of records that can be
inserted based on the complete size of the (fragment of the) table. Once the
upper bound is reached, the user will have to delete (or store externally) a
record before adding a new one. The address book of the owner’s contacts is
a relation well suited to this kind of data structure.

Circular-list relations, characterized by a medium cardinality as well, are
again suitable for managing a fixed amount of log data, for example sorted by
date/time; in this case, once the maximum number of records is reached, the
next new record will replace the oldest one. The list of the last n calls can be
stored by means of circular lists.

Multi-index relations are used to manage generic data, typically when
the need is to efficiently access large relations by multiple keys. This is the only
data structure that we propose which resembles the classical data structures
used in DBMSs, and we shall not elaborate further on this type of structure.

Our methodology requires the designer to tag each table to be included in
the VSDB with the following information:

e the tuple length (in bytes) and the expected relation cardinality; it is also
possible to specify an upper bound on the number of records to be allowed;

162 C. Bolchini, F.A. Schreiber, and L. Tanca

e the presence of a sorting field, specifying whether the field is a time field
leading to a log-like file;

e the expected composition of the set of operations on the data: insert/
delete/ update/ select, the last one classified further into full select (scan),
select with equality (equal), and select with range (range).

The expected composition refers to the relative frequency of operations.
For instance, consider a relation storing a list of bookmarks in the above
PDA scenario; the user can say that the dominant operation will be insert
there will usually be no deletes and very few updates. The other common
operation is select, assuming an equal distribution among the three selection
schemas identified . A simulator has been built [71], to give an indication of
the data structures that the DBMS must employ for the required relations.
The implementation of the data structures is discussed below.

Physical Design

The goal of the data structures implemented by the proposed DBMS is to
optimize performance and to minimize power consumption and degradation of
the flash memory, while limiting memory and computational overheads. Note
that these aspects are strongly related, and that block erasure significantly
affects all of these parameters.

To our knowledge, other DBMSs for small devices propose physical data
structures which are small sized copies of the ones used for classical, magnetic
storage devices, and do not take into account the main physical features of
flash memories.

In accordance with the technical features of the storage used in mobile
devices, i.e., flash memory, we propose an implementation of the physical
data model previously discussed, based on the introduction of two elements:

e Use of a deleted bit to carry out a logical rather than physical deletion
of a record, in order to minimize response time, power consumption, and
the device degradation implied by the physical block erasure required by
a delete/update operation.

e Introduction of a number of dummyrecords perblock, allowing the control
of the filling of a block and the organization of the records within the block.
Such techniques are already widely used in the management of several
other data structures; notable examples can be found in B-trees of order
n, where each node can host a number of items varying from n/2 to n,
and in static hash tables, where the filling of pages is controlled in order
to avoid too many collisions [151, 384]. The technique uses a valid bit to
indicate if the record has been programmed or not.

These two additional bits associated with each record allow one to reduce
the number of modifications requiring erasure of flash memory; in fact, when
the stored data need to be modified, at least one memory block (and possibly

6 Data Management 163

many) needs to be rewritten, implicitly requiring a copy of its contents in the
RAM, an erasure of the flash block, and a write-back, from RAM to flash, of
the modified contents (a dump/erase/restore, or DER, sequence). Note that
the DER sequence greatly affects performance (owing to the time required for
the data “dump”), power consumption, and storage endurance.

More precisely, the use of the valid bit is essential when memory is man-
aged in a nonsequential fashion; in particular, the valid bit implements a
“distributed” control, since each valid record is directly distinguishable from
the others, whereas an end address (register) implements a “concentrated”
control, since it unambiguously identifies the end of the record list. This con-
centrated control is a space-aware but energy- and time-consuming approach,
since the end-address value needs to be updated every time the list is modified
by a DER sequence.

The deleted bit is used to allow the system to reduce the number of flash
memory erasures by marking the corresponding record and deferring physical
expunging to a later time. The deleted bit, coupled with a nonsequential man-
agement of the physical memory, reduces the necessity to erase blocks, at the
cost of an increase in the amount of memory required and a more complex
management policy, as discussed in the following.

When one is dealing with data sorted with respect to a field, insert and
delete operations have a significant overhead owing to the necessity to main-
tain the data in an ordered state; furthermore, if the relation data is dis-
tributed over several blocks, the operation might affect multiple blocks. The
proposed data structure [73] is aimed at (a) confining the involvement of
the blocks in data manipulation and (b) minimizing block erasure. These
goals are achieved by introducing a number of dummy records in each block
(Fig. 6.3a); such records may be either localized at the end of the block or
distributed throughout it by means of a hashing function, so that future in-
sertions do not always cause a reorganization of previously introduced records
(Fig. 6.3b). The hashing function may be implemented either in software or in
hardware; in this case a wvalid bit is mandatory for determining which records
are programmed and which are not. The use of concentrated dummy records
is aimed at preventing the involvement of multiple blocks when records need
to be shifted up or down following a delete or insert operation (intrablock
erasures). The solution of distributed dummy records also limits interblock
erasures. The deleted bit has the same functionality as described above here
(Fig. 6.3c).

The combined use of dummy records and the deleted-bit technique is use-
ful in the case of sorted relations, whereas the use of the deleted bit alone is
suitable for circular lists and possibly heap relations, at the cost of an ad-
ditional space requirement compared with the minimum possible amount of
memory. Tab. 6.2 reports experimental results for the proposed physical data
management techniques.

164 C. Bolchini, F.A. Schreiber, and L. Tanca

VALID

abbot

coconut

drake

mug

power

tower

zebra

Fig. 6.3. Use of dummy records (a) concentrated at the end of the block (white
elements) or (b) distributed throughout the block. (c) Use of distributed dummy

records and

Table 6.2. Simulation results: block erasures performed and bytes transmitted on
the system bus compared with the “the simple” solution with no deleted bit and no

(a) (b)

the deleted bit

dummy records

<

abbot

drake

power

tower

zebra

ALL

(c

~

D
D

m

LETED

Data Block erasures Bits transmitted on bus
structure|Strategy 10-30% 40-60% 70-90%|10-30% 40-60% 70-90%
Heap Simple 1 1 1 1 1 1
Deleted bit 0 038 098 0.38 0.54 1.00
Sorted |Simple 1 1 1 1 1 1
Deleted bit 0.83 068 0.79] 0.74 0.71 0.77
Dummy adjacent 0.83 0.51 0.44 0.74 0.57 0.45
Dummy distributed| 0.10 0.12 0.24 0.03 0.06 0.22
Circular |Simple 1 1 1 1 1 1
list Deleted bit 0 0 0.05 0.07 0.07 0.15

6 Data Management 165

Querying

PoLiDBMS provides a basic query-processing feature, similar to those of clas-
sical DBMSs. SQL statements are parsed by SQLParser and an internal rep-
resentation of the query is created. The output is a stack of elementary op-
erations executable by a single module (the Core), which can be optimized
by reorganizing or modifying the elementary operations in order to improve
query-processing performance. Such optimizations take information about the
logical data structure into account to exploit the peculiarities of the data be-
ing manipulated. The last module invoked in the operation sequence is the
Presenter, which returns the result of the execution of the statement to the
caller.

Interface

A standard API for accessing the DBMS has been developed, to provide a
unified, almost classical method of access to the DBMS. Thanks to its highly
modular architecture, PoLiJDBC, a JDBC™ driver, fits the environment of
PoLiDBMS perfectly; it is small, it supports local transactions, it is extensi-
ble, and has been written from scratch following a “scaling-down approach”
[69]. This new-generation driver not only provides the standard JDBC APIs
but also enforces the particular features of PoLiDBMS. The standard API
has been extended to accomodate PoLiDBMS so that its particular features,
such as transaction boundaries and data types, are fully supported and exist-
ing applications can be compliant with both JDBC and PoLiDBMS, without
expensive code modifications.

6.3 Design of Very Small Databases for Mobility

Database design methodologies for small, mobile devices concentrate on defin-
ing the notion of an ambient, which drives the tailoring of the portion of data
to be stored locally. As a matter of fact, this must also regulate the way de-
vice data are acquired at synchronization time, i.e. the synchronization issues
concerning data semantics, discussed in Sect. 6.3.2.

The notion of an ambient that we use in this chapter is only loosely related
to the general notion of a context in MAIS (see Chap. 2). The ambient of a
device is a strongly data-centric concept, which analyzes the device users’
needs in terms of their information needs; in contrast, the notion of a context
in MAIS has the twofold objective of configuring the software on board the
device (a) on the basis of the needs of the user, in terms of presentation, and
(b) on the basis of the characteristics of the device, in terms of the available
channels. An example of such a difference can be seen in the concept of time:
in the model of the MAIS context it means capturing the moment in time that
the user is currently experiencing, while in the case of the ambient array, time

166 C. Bolchini, F.A. Schreiber, and L. Tanca

is coupled to the further specification of an interval of interest, and used to
filter the information pertaining to that interval (e.g., a patient’s prescriptions
for the last month, or a doctor’s visits this week).

6.3.1 VSDB Design Methodology

The VSDB design process consists of three main phases [74, 75]: conceptual
design, logical design, and logistic design, which are discussed below.

The conceptual design phase can, in turn, be decomposed into the following
four steps.

1. Application information modeling. This is done using the usual tech-
niques for conceptual database design, taking into account all the information
relevant to the application at hand, regardless of the target storage media. In
fact, the design of the VSDB must be merged with the design of the distrib-
uted database that it belongs to.

2. Choice of the analysis dimensions. Analysis dimensions provide the
various perspectives that the mobile device is viewed from, and are used to
set out the ambient of the VSDB. Here we consider some intuitive dimensions,
which can be integrated with additional ones or omitted where not appropri-
ate:

e The holder dimension refers to the type of users carrying the microdevice,
whose views over the whole information system can be quite different. For
example, in a medical application, doctors will hold information about
all their patients, whereas patients will only hold information related to
themselves, maybe at a finer level of detail.

e The interest topic dimension refers to the particular aspect/subject that
the user might be interested in, at a certain moment. In the case of med-
ical care, topics might include prescriptions and chronic diseases.
In a tourist guide application this dimension might refer to the choice of
information about entertainment in a city, or about restaurants, etc.

e The situation dimension refers to the fact that during the life of the de-
vice the user may wish to access different views of the data for performing
different operations. For instance, in a personal medical-information sys-
tem, an example of a situation is the regular situation, i.e., a patient’s
ordinary state, as opposed to a temporary hospitalized situation.

e The interface dimension refers to the kind of access to the contents of
the database: access may be required by a human actor or by a machine
system. This dimension suggests that different types of interacting enti-
ties may need different data presentation profiles; i.e., for a human profile,
internal IDs are not necessary, and may be confusing, but for a machine
profile, internal IDs are necessary, whereas more expressive textual or vi-
sual descriptions are useless.

6 Data Management 167

e The time dimension refers to the life span of the information that the
VSDB tables must store: for example, one could save the whole medical
history of patients in a fixed machine belonging to their doctor, keeping
only the last month’s data on the device itself.

e The space dimension concerns the physical area of interest. For example, a
patient resident in Milan may be interested, during a work trip to Genoa,
in all medical facilities in that city, and information about other such
facilities located in other cities is to be disregarded.

Note that the time and space dimensions determine further tailoring of the
data aggregations that have been allocated to a device, by means of logical
views that limit the information to that pertaining to the current ambient.

As the output of this step, the dimensions identified are collected to form
the ambient array model, which drives the actual choice of the information
to be kept on the microdevice. As an example, we can form the following
four-position array model below:

<holder, interest_topic, situation, time>.

For simplicity, we have not used the space and interface dimensions here.

3. Conceptual chunk derivation. Here, the array schemata, or chunks, are
derived from the array model by instantiating the dimensions; some examples
of chunks in the case of the medical-care database (MCDB) considered above
are the following;:

<patient, chronic_diseases, hospital, past year>.

This chunk contains all the information needed by a patient in a hospital with
respect to his/her chronic diseases (if any) during the whole past year.

<patient, prescriptions, regular, this month>.

This chunk contains all the information needed by a patient in a normal sit-
uation with respect to his/her prescriptions (if any) during the whole current
month.

<doctor, prescriptions, regular, today>.

This chunk contains all the information needed by a doctor with respect to
all his/her regular patients’ prescriptions today.

The derivation of chunks must be done taking into account their signifi-
cance: only some of the possible combinations of dimension values make sense.
For example, the chunk

<doctor, accounting, hospital, past year>

168 C. Bolchini, F.A. Schreiber, and L. Tanca

makes little sense in view of the application semantics.

As the conclusion of this step we assemble chunks in order to define infor-
mation that must be stored on one individual device. However, final decisions
may be made only at logistic-design time, i.e., in a phase when the amount
of memory required for the tables can be evaluated. For example, normally
a patient’s smart card will contain all of the chunks related to the patient’s
(regular) situation plus those related to his/her chronic diseases (such as aller-
gies) and prescriptions. When the patient is in hospital, the “regular” chunks
will be removed to make room for the “hospital” ones. However, if the device
has more resources (for example in the case of a PDA), the designer might
decide to leave all the chunks related to different situations at all times.

4. Choice of the driving dimension. The designer needs to decide which
dimension is central to the whole analysis process; this depends on the ap-
plication. The driving dimension’s views will be built at conceptual-design
time, whereas all the other dimensions’ views will be derived at logical-design
time. In the application considered here, as is usually the case, we have cho-
sen holder as the driving dimension; one conceptual schema must be built for
each value of holder, i.e., we build one conceptual view for the patient, one
for the doctor, and one for each of the possible other values of this dimen-
sion (e.g., the hospital administrator). Here, some reconciliation work must
be done; the conceptual schemata produced by analyzing the application from
the viewpoints of the various dimension values must be reconciled with the
global conceptual schema, in order for the former to be perceived as views
over the latter.

In the logical design phase, various activities are carried out:

e Logical design of the global database: some examples of tables for the

MCDB are

— PATIENT(SSN, FName, LName, Sex, BirthD, DeathD, Address, City,
State, Zip, Phone, BloodType, Notes, MCUID, Booklet, DocID)

— MEDICAL_CARE UNIT(ID, Name, Address, City, State, Zip, Phone,
Type)

— SERVICE(ID, Name, Tipology, Difficulty, Period)

— USES(MCUID, SERVICEID)

— PRESCRIPTION(SSN, DRUGID, Mode, Dosage, Administration,
StartDate, EndDate, Comments)

— DRUG(ID, Name, Posology, Ingredients, SideEffects, Manufacturer,
Comments)

— DRUG_IN_PHARMACY (DRUGID, PHARID)

— PHARMACY(ID, Name, Address, City, State, Zip, Phone, OpeningHrs)

e Logical chunk production: the chunks are defined as logical views over the
global logical database produced above. For example, the chunk

<patient, prescriptions, hospital, this month>.

6 Data Management 169

is defined as:

CREATE VIEW PAT-PRESC-HOSP-THISMONTH AS

SELECT P.SSN, P.FName, P.LName, DRUG.Name AS DrugName,
Posology, SideEffects, Mode, Dosage, Administration,
StartDate, EndDate, Comments, MCU.Name, MCU.Address,
MCU.City, MCU.State,

MCU.Zip, MCU.Phone, MCU.Type

FROM PATIENT P, DRUG, PRESCRIPTION PR, MEDICAL_CARE_UNIT
MCU

WHERE P.SSN = PR.SSN AND PR.DRUGID = DRUG.ID AND
P.MCUID = MCU.ID AND MCU.Type = ‘‘hospital’’ AND
PR.ENDDATE >= now() - 30,

where now() is a system function returning today’s date.

o Chunk instantiation: here, the views for the chunk instances are produced.
A chunk instance relates to one specific instance of a dimension value. This
is an example of a view instantiation:

SELECT * FROM PAT-PRESC-HOSP-THISMONTH
WHERE SSN = $/D AND COMMENTS like ©‘$prescription’’

Such a view contains the parameters $1D and $prescription, which will be
actualized at run time with the specific user’s SSN and one of the values
of prescriptions in the interest topic dimension, e.g., “Antibiotics”.

e Introduction of the logistic dimensions, i.e., dimensions which do not influ-
ence the actual design of the database, but only the logistic phase. We in-
troduce here only the data ownership dimension, concerning read, update,
delete, and insert access rights to the VSDB information, which might
be different depending on the category of user. Note that access rights
must be analyzed with respect to actors, that, in general, are different
from the device holders: in the MCDB example, a patient’s doctor has the
right to modify the patient’s prescriptions; the patient, in turn, may read
his/her prescribed drugs, but cannot modify them. The data ownership
dimension does not delimit the boundaries of the available information;
thus it is used to identify permission views but not for identification of the
ambient.

In the logistic design phase, in accordance with what has been said in
Sect. 6.2.2, the designer has to tag each table in the chunks to be included in
the VSDB with information about the tuple length, the expected cardinality
(e.g., five records for the PREGNANCY relation for the holder “PATIENT”),
the presence of a sorting field, and the expected relative frequency of each type
of operation on data, i.e., insert/delete/update/select. For instance, consider
the DRUG relation; the user can say that the dominant operation will be
insert, ant here will usually be no deletes and very few updates. The other
common operation is select, assuming an equal distribution among the three
selection schemas identified (Fig. 6.4).

170 C. Bolchini, F.A. Schreiber, and L. Tanca

- E 2 2 ACCESS TYPE FREQUENCY
> -4
g E= 4 8 SELECT DATA
S|z |3 & | INSERT | DELETE | UPDATE STRUCTHIRE
3 scan equal search

P_Personallnfo 287] 1| YES [SSN NO | NEVER | NEVER | LOW | HIGH | HIGH | HIGH H
P_DoctorInfo 83| 1| YES [N/A NO | LOW | LOW | LOW | MEDIUM|MEDIUM|MEDIUM H
P_Pregnancy 20/ 1] vEs [ssN NO | LOW | LOW | LOW | HIGH | HIGH | HIGH H
P_Intollerace 30| __80[NO [DrugiD YES | LOW | LOW | LOW | HIGH | HIGH | HIGH s
P_RegolarUse 150] 30| NO |DrugiD YES | LOW | LOW | LOW | HIGH | HIGH | HIGH s
3 I 50 20| YES [TreatID, EndID_| YES | HIGH | NEVER | LOW | HIGH | Low | Low cL
P_Pathologies 90| 20| YES [TreatiD, EndID_| YES | MEDIUM | NEVER | LOW | MEDIUM| LOW | Low cL
P_Traumalnjuries | 120 20| YES [TreatID, EndID | YES | MEDIUM | NEVER | LOW | MEDIUM| Low | Low cL
P_Allergies 100 20| YES [TreatlD, EndID | YES | MEDIUM | NEVER | LOW | MEDIUM| Low | Low cL
P_UsefulCenters 167] 20[YES [TreatiD YES | HIGH | HIGH | LOW | MEDIUM|MEDIUM| MEDIUM s

*** H = heap, S = Sorted, CL = Circular List

Fig. 6.4. The result of the logistic phase

6.3.2 Data Synchronization and Transactions

Data synchronization can be discussed at two levels of abstraction, one con-
cerning the transactional problems related to distributed databases, and the
other concerning the aspects related to data semantics.

Distributed Commit Protocols

A transaction is a set of operations starting with a BEGIN TRANSACTION state-
ment, and concluded with either a COMMIT or a ROLLBACK statement. The whole
sequence of data operations included between these statements must be con-
sidered as one atomic entity, i.e., either the transaction does its work and thus
brings the database from a correct state to a new correct state, leaving a per-
manent result in secondary storage (COMMIT case), or it leaves the database
unchanged, possibly undoing all the operations performed in the meanwhile
(ABORT case).

To preserve transaction atomicity, in the distributed case, several protocols
have been designed and implemented; the most popular is the family of Two
Phase Commit (2PC) protocols [32].

The basic 2PC protocol, often called the Presumed Nothing (PrN) proto-
col [2], requires the participants to explicitly exchange information, and log
whether the transaction is to be committed or aborted. At the end of the
transaction, the coordinator invites all the participants to commit, and each
of them votes to commit or abort its local part, on the basis of local condi-
tions. For the transaction to be committed, the coordinator must collect a
unanimous consensus; otherwise, it orders the abort and rollback of all of the
local actions and, therefore, of the entire transaction. Several optimizations
of the 2PC protocol that make presumptions about missing information have
been proposed, in particular, the One Phase Commit (1PC) protocols, which
rely on the idea of eliminating the voting phase of the 2PC protocol by en-
forcing some properties of the behavior of participants during the execution
of the transaction.

6 Data Management 171

The basic assumption underlying the 1PC protocol, several variations of
which have been studied [14, 351], is that a participant does not need to vote.
To implement transaction atomicity in PoLiDBMS we chose a 1PC protocol,
the Unilateral Commit Protocol (UCP) [70, 72], which has been explicitly
designed for mobile distributed, disconnected computing applications (e.g.,
those stored on devices such as smart cards). In this protocol, the coordinator
acts as a dictator that imposes its decision on all of the partners. If a crash
precludes a participant from conforming to this decision, the coordinator sim-
ply forward-recovers the corresponding transaction branch. The gain in terms
of performance (blocking I/0, latency, and messages) is obvious and can be
exploited greatly in a wireless communication network.

The UCP exhibits the following properties, which are useful in a mobile
environment:

e A transaction executed off line can commit as soon as its log has been
transferred to the fixed network, without waiting for acknowledgment from
the fixed servers.

e The protocol does not require the presence of all servers at commitment
time.

e The protocol is composed of a single message round, thereby saving costly
wireless communications.

e The protocol does not require a prepare state nor a corresponding interface
on the server side.

The UCP distinguishes among five types of components which interact during
the execution and termination of a transaction:

1. The Application asks for the execution of a sequence of operations.

. The LogAgent logs each operation before execution.

. The Participants execute these operations.

. The Coordinator pilots the termination protocol.

. The PAgents (one per Participant) represent the participants in the termi-
nation protocol and play an active role during recovery. These also mask
the heterogeneity of the participants from the Coordinator, enable the
participation of any kind of server (2PC-compliant or not) in the UCP,
and acknowledge the Application.

Tt W N

These components may be co-located or not, depending on the hardware
and software configuration. Note that the Coordinator is still located on the
fixed network, while the other components can potentially be hosted by a
mobile partner [70]. Typically the Application, the LogAgent and the Coordi-
nator are located on one site of the fixed network, while the Participants are
mobile and their PAgents are located on mobile support stations. The com-
mit scenario produced by the UCP is depicted in Fig. 6.5, where T;; denotes
the local branch of transaction T; executed at participant Pj. Assuming one
coordinator and n participants, the transaction execution protocol based on
the UCP is as follows [14]:

172 C. Bolchini, F.A. Schreiber, and L. Tanca

| Application | | Log Agent | |Coordinator| | Pagent | | Partecipant |
: Op :
iNon-force write bn Tik Log
Step 1 Op)
'|_|T|k executes Op
i Ack [e—
Ack
Comrhit (Tik)
Force-write Tilog recor
Force-write Commit Log decision
Step 2
Commit (Tik) i
Write record Commiti
Tik executes the write
Ack
Commit(Ti)
LITik executes the commit
T
Ack .
Ack
Non-force write Commi
Step 3 H
| : | s
H iOnce received all the Acks, non-force write End Ti
: Atk H H
I:l. i i

Fig. 6.5. The Unilateral Commit Protocol

1. The Application forwards the transaction branch to be performed to the
LogAgent.

2. The LogAgent registers each operation that is to be executed by a non-
forced write in its log.

3. Operations are then sent to Py, where they are locally executed (n mes-
sages).

4. Participant Py acknowledges up to the Application through the LogAgent
(n messages).

5. The Application issues a commit request.

6. The Coordinator takes the commit decision and forces T;’s log records
and a log commit record, by means of a single blocking I/O (one force).
It then broadcasts the commit decision to all participants and waits for
their acknowledgments (n messages).

7. The PAgent asks Participant Pj to write the commit record.

8. Participant P, executes the write and acknowledges up to the PAgent (n
force).

9. The PAgent asks Participant Py to actually commit the transaction Tj.

6 Data Management 173

10. Participant Py executes the commit and acknowledges up to its corre-
sponding PAgenty.

11. PAgent;, acknowledges up to the Coordinator (n messages).

12. The Coordinator performs a nonforced write of Py’s acknowledgment re-
lated to the commit of transaction T;. Then, once all the acknowledgments
have been received, a nonforced write is performed and the Coordinator
discards all of T;’s log records.

In the absence of failures, the entire execution requires only four messages
between the Coordinator, the LogAgents, and each of Participant P and
PAgenty, (that is, a total of 4n messages), and n + 1 log forces. Note that if
transaction 7} is to be aborted, the Coordinator discards all of T;’s log records
and broadcasts an Abort decision message to all Participants. A presumed-
abort protocol is assumed. This way, abort messages are not acknowledged
and the Abort decision is not recorded in the Coordinator log.

Thus, the UCP exploits a logical logging mechanism (at the Coordina-
tor site), which ensures correct recovery. It also preserves site autonomy and
can be applied to heterogeneous transactional systems using different local
recovery schemes. The UCP does not require a prepare state nor a corre-
sponding interface on the server side, and it does not require the presence of
all servers at commitment time, because of the dictatorial approach used to
commit or roll back the transaction. Moreover the UCP is composed of a sin-
gle message round thereby saving costly wireless communications and it does
not increase the communication cost during normal processing (since redo log
records are not piggybacked in the messages). It also supports disconnection,
since a transaction executed off line can commit as soon as its log has been
transferred on the fixed network, and without waiting for acknowledgment
from the fixed servers. Details of the choices made in the implementation of
the UCP in PoLiDBMS can be found in [72], which can be downloaded from
the MAIS Web site [255].

As far as concurrency control is concerned, the standard methods adopted
for distributed databases apply here also.

Semantic Synchronization

Two levels of synchronization need be taken into account in our scenario:

e schema-level synchronization, needed because the database schema avail-
able on the portable device must change with changes in the ambient,
and

e instance-level synchronization, needed because of data modifications oc-
curring either on the portable device or on the central server.

Let us consider schema-level synchronization first: this situation may arise
when another chunk is requested, or when the ambient (here() now(), ...)
changes and the portable database has to change accordingly.

174 C. Bolchini, F.A. Schreiber, and L. Tanca

In the most general case, if there are no storage constraints, a clean copy
of the desired chunk instance may be copied to the portable device, after
the data has been synchronized between the local and the global database
— recall that the global database is formed by the set of all local (fixed or
mobile) databases present in the system, whose global schema is assumed to
exist and be known. In this case the operation is similar to an initialization of
the database on the portable device, and is subject to the same permissions
control to verify whether the user is entitled to hold the desired new chunk
instance. Of course, optimizations of various kinds can be devised for this
situation.

A more complicated and very likely scenario arises when storage con-
straints are present, as for instance when the microdevice is a smart card.
In this case, the system should always take into account the possibility that
some data — for example emergency information — might have higher priority
over other data to be kept on the microdevice. The problem is solved by intro-
ducing the concept of permanence priority, meaning that, at design time, we
establish that a certain owner is given a certain priority level with respect to
a certain chunk to enforce persistency of that chunk in the device’s memory.
Accordingly, the database schema is associated with a table

PERMANENCE_PRIORITY(OWNER,CHUNK,LEVEL)

which is used whenever a new chunk is required and the available space is
not sufficient.

Thus, the protocol for schema-level synchronization consists of the follow-
ing operations:

verify the storage space available on the device;
if that space is not enough, discard chunks whose priority (with respect to
the information owner) is lower than that of the chunks currently on the
device;

e upload the required chunk(s).

However, this situation also lends itself to different policies, with respect to
the decision about which of the information at the same priority level should
be kept, and which should be discarded. Here, the notion of semantic distance
[113, 135] may be used to select information which is semantically close to
the information held on the device.

Intuitively, the semantic distance is the length of the shortest path con-
necting two concepts in a conceptual diagram, such as an ER or UML class
diagram. For instance, if in an ER diagram patients are related to prescrip-
tions through the concept of a disease, the semantic distance between a patient
and a disease is smaller than that between a patient and a prescription; thus,
in a situation of storage space shortage, prescriptions might be discarded.

A different scenario occurs when instance-level synchronization is con-
cerned. While at the transaction-related abstraction level we adopted the
Unilateral Commit Protocol, at the semantics-related abstraction level we

6 Data Management 175

have to consider priority and rights problems that arise when a user updates
the data on a portable device and wants to propagate such an update to other
(fixed or mobile) devices(s). This problem has already been examined in the
framework of distributed databases, where updated replicas or materialized
views can conflict with each other [113, 135], but it becomes more critical
when small, mobile devices are involved, since the semantic relationships and
dependencies among pieces of information in chunks may again present diffi-
culties.

For example, consider the case where a doctor keeps the set of all pa-
tients’ prescriptions on his/her device, and where the patients’ devices or
smart cards also contain their prescription information. Suppose a patient’s
situation changes from regular to hospital, and the patient’s prescriptions
are changed by the hospital staff. The doctor’s information remains the same
until the two devices are connected again, but in this case, at synchronization
time, which is the dominant prescription? One might think that the doctor’s
word should be taken as the most reliable (and thus the doctor should have the
highest priority on the relevant chunk), and this is indeed the general case, but
it is not so in the hospitalized situation. Thus, here, semantic dependencies
among values of dimensions may affect priority levels between data owners,
even in the “simpler” case of instance-level synchronization. Such issues can
be resolved again by semantic synchronization protocols strongly based on
ownership, or by designing more sophisticated mechanisms, where each up-
date is recorded together with the identity of the actor that performed it, or
with the transaction time [360].

2 Springer
http://www.springer.com/978-3-540-31006-8

Mobile Information Systems

Infrastructure and Design for Adaptivity and Flexibility
Pernici, B. (Ed.)

20086, XV, 354 p., Hardcover

ISBEN: 978-3-540-21006-8

