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Optimal Control of Evolution Systems
in Banach Spaces

The next two chapters are on optimal control, which is among the most impor-
tant motivations and fruitful applications of modern methods of variational
analysis and generalized differentiation. It is not accidental that the very con-
cepts of basic normals, subgradients, and coderivatives used in this book were
introduced and applied by the author in connection with problems of optimal
control. In fact, already the simplest and historically first problems of optimal
control are intrinsically nonsmooth, even in the case of smooth functional data
describing dynamics and constraints on feasible arcs. The crux of the mat-
ter is that a characteristic feature of optimal control problems, in contrast to
the classical calculus of variations, is the presence of pointwise constraints on
control functions, which may be (and often are) defined by highly irregular
sets consisting, e.g., of finitely many points. In particular, this is the case of
typical problems in automatic control that provided the primary motivation
for developing optimal control theory.

The principal goal of the following developments is to derive necessary op-
timality conditions in a range of optimal control problems for evolution sys-
tems by using methods of variational analysis and generalized differentiation.
This chapter concerns dynamical systems governed by ordinary differential
equations and inclusions in Banach spaces; control problems for systems with
distributed parameters governed by functional-differential and partial differ-
ential relations will be mostly considered in Chap. 7.

The main attention is paid in this chapter to optimal control/dynamic
optimization problems of the Bolza and Mayer types governed by infinite-
dimensional evolution inclusions and control systems with both discrete-time
and continuous-time dynamics in the presence of endpoint constraints. Along
with the variational principles in infinite dimensions and tools of general-
ized differentiation developed above, we employ special techniques of dy-
namic optimization and optimal control. The basic approach developed below
is the method of discrete approximations, which allows us to approximate
continuous-time control problems by those involving discrete dynamics. The
relationship between continuous-time and discrete-time control systems is one
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of the central topics of this chapter. The results obtained in this direction shed
new light upon both qualitative and numerical aspects of optimal control from
the viewpoint of the theory and applications.

6.1 Optimal Control of Discrete-Time
and Continuous-time Evolution Inclusions

This section concerns optimal control problems for dynamic/evolution systems
governed by differential inclusions and their finite-difference approzimations
in appropriate (quite general) Banach spaces. The models under consideration
capture more conventional problems of optimal control described by parame-
terized differential equations. Our primary method to study continuous-time
control systems is to construct well-posed discrete approzimations and to es-
tablish their variational stability with respect to the value convergence as well
as a suitable strong convergence of their optimal solutions. Then we derive nec-
essary optimality conditions for discrete-time optimal control problems gov-
erned by finite-difference inclusions. The latter problems can be reduced to
non-dynamic optimization problems considered in the previous chapter in the
presence of many geometric constraints. On the other hand, they have specific
structural features exploited in what follows. In this way, applying general-
ized differential and SNC calculi from Chap. 3, we obtain necessary optimality
conditions for discrete approximations in both fuzzy and exact forms under
fairly general assumptions on the initial data. Passing to the limit with the use
of coderivative characterizations of Lipschitzian stability from Chap. 4 allows
us to derive necessary optimality conditions for intermediate local minimizers
(that provide a local minimum lying between the classical weak and strong
ones) in the extended Euler-Lagrange form for continuous-time systems under
certain relaxation/convexification with respect to velocity variables. To avoid
such a relaxation under appropriate assumptions, we develop an additional
approximation procedure in the next section.

6.1.1 Differential Inclusions and Their Discrete Approximations

Let X be a Banach space (called the state space in what follows), and let
T := [a, b] be a time interval of the real line. Consider a set-valued mapping
F:X x T = X and define the differential/evolution inclusion

x(t) € F(x(t),t) a.e. t € la,b] (6.1)

generated by F, where x(¢) stands for the time derivative of x(¢), and where
a.e. (almost everywhere) means as usual that the relation holds up to the
Lebesgue measure zero on IR. Let us give the precise definition of solutions to
the differential inclusion (6.1), which is used in this chapter.
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Definition 6.1 (solutions to differential inclusions). By a SOLUTION to
inclusion (6.1) we understand a mapping x: T — X, which is Fréchet differen-
tiable for a.e. t € T and satisfies (6.1) and the NEWTON-LEIBNIZ FORMULA

x(t) =x(a) + /t)'c(s)ds forall t €T,

where the integral is taken in the BOCHNER SENSE.

It is well known that for X = IR", x(¢) is a.e. differentiable on T and
satisfies the Newton-Leibniz formula if and only if it is absolutely continuous
on T in the standard sense, i.e., for any & > 0 there is § such that

1 l

D lx(t41) = x(1)) < & whenever Y41 —1;] <8
j=1 j=1

for the disjoint intervals (¢;,7;41] C T. However, for infinite-dimensional
spaces X even the Lipschitz continuity may not imply the a.e. differentiabil-
ity. On the other hand, there is a complete characterization of Banach spaces
X, where the absolute continuity of every x: T — X is equivalent to its a.e.
differentiability and the fulfillment of the Newton-Leibniz formula. This is the
class of spaces with the so-called Radon-Nikodym property (RNP).

Definition 6.2 (Radon-Nikodym property). A Banach space X has the
RADON-NIKODYM PROPERTY if for every finite measure space (£, X, u) and
for each p-continuous vector measure m: X — X of bounded variation there
is g € L*(u; E) such that

m(E):/Eng for E€ X .

This fundamental property is well investigated in the general vector mea-
sure theorem and the geometric theory of Banach spaces; we refer the reader to
the classical texts by Diestel and Uhl [334] and Bourgin [169] for the compre-
hensive study of the RNP and its applications. In particular, in [334, pp. 217—
219] one can find the summary of equivalent formulations/characterizations
of the RNP and the list of specific Banach spaces for which the RNP auto-
matically holds. It is important to observe that the latter list contains every
reflexive space and every weakly compactly generated dual space, hence all sep-
arable duals. On the other hand, the classical spaces ¢, ¢, [*°, L]0, 1], and
L>°[0, 1] don’t have the RNP. Let us mention a nice relationship between the
RNP and Asplund spaces used in what follows: given a Banach space X, the
dual space X* has the RNP if and only if X is Asplund.

Thus for Banach spaces with the RNP (and only for such spaces) the
solution concept of Definition 6.1 agrees with the standard definition of
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Carathéodory solutions dealing with absolutely continuous mappings. In gen-
eral, Definition 6.1 postulates what we actually need for our purposes without
appealing to Carathéodory solutions and the RNP. However, the RNP along
with the Asplund property of X are essentially used for deriving major results
in this chapter (but not all of them) from somewhat different prospectives not
directly related to the adopted concept of solutions to differential inclusions.

It has been well recognized that differential inclusions, which are certainly
of their own interest, provide a useful generalization of control systems gov-
erned by differential/evolution equations with control parameters:

x=f(x,u,t), uelU(t), (6.2)

where the control sets U(-) may also depend on the state variable x via
F(x,t) = f(x,U(x,t),t). In some cases, especially when the sets F(x,t) are
convex, the differential inclusions (6.1) admit parametric representations of
type (6.2), but in general they cannot be reduced to parametric control sys-
tems and should be studied for their own sake. Note also that the ODE form
(6.2) in Banach spaces is strongly related to various control problems for evo-
lution partial differential equations of parabolic and hyperbolic types, where
solutions may be understood in some other appropriate senses; see, e.g., the
books by Fattorini [432] and by Li and Yong [789] as well as the results and
discussions presented in Remark 6.26 and Chap. 7 below.

Our principal method to study differential inclusions involves finite-diff-
erence replacements of the derivative

fc(t)zw, h—>0,

where the uniform FEuler scheme is considered for simplicity. To formalize
this process, we take any natural number N € IN and consider the discrete
grid/mesh on T defined by

Ty = {a,a—i—hN,...,b—hN,b}, hy :=(b—a)/N ,

with the stepsize of discretization hy and the mesh points tj == a + jhy as
j=0,...,N, where to = a and 7y = b. Then the differential inclusion (6.1)
is replaced by a sequence of its finite-difference/discrete approximations

XN(lj+1) S .XN(lj) +hNF(xN(tj),tj), j=0,...,N—1. (63)

Given a discrete trajectory xy(t;) satisfying (6.3), we consider its piecewise
linear extension xy(t) to the continuous-time interval T, i.e., the Fuler broken
lines. We also define the piecewise constant extensionto T of the corresponding
discrete velocity by

xn(tjr1) — xn(t))
hy ’

oy (t) := teftjtiy1), j=0,...,N—1.
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It follows from the very definition of the Bochner integral that

xy(t) =xy(a) + /t vy(s)ds for t €T .

Our first goal is to show that ewvery solution to the differential inclusion
(6.1) can be strongly approzimated, under reasonable assumptions, by ex-
tended trajectories to the discrete inclusions (6.3). By strong approximation
we understand the convergence in the norm topology of the classical Sobolev
space W2 ([a, b]; X) with the norm

b ) 1/2
I Ollwea = mass o)) + ([ e Par)

where the norm on the right-hand side is taken in the space X. Note that
the convergence in W'2([a, b]; X) implies the (uniform) convergence of the
trajectories on [a, b] and the pointwise (a.e. t € [a, b]) convergence of (some
subsequence of) their derivatives. The latter is crucial for our purposes, espe-
cially in the case of nonconver values F(x,t).

Let us formulate the basic assumptions for our study that apply not only to
the next theorem but also to the subsequent results on differential inclusions
via discrete approximations. Nevertheless, these assumptions can be relaxed
in some settings; see the remarks and discussions below. Roughly speaking,
we assume that the set-valued mapping F: X x [a, b] = X is compact-valued,
locally Lipschitzian in x, and Hausdorff continuous in ¢ a.e. on [a, b]. More
precisely, the following hypotheses are imposed along a given trajectory x(-)
to (6.1), which is arbitrary in the next theorem but then will be a reference
optimal solution to the variational problem under consideration.

(H1) There are an open set U C X and positive numbers mr and £r such
that x(¢) € U for all ¢ € [a, b], the sets F(x, t) are nonempty and compact for
all (x,¢) € U x [a, b], and one has the inclusions

F(x,t) CmpB forall (x,t) €U X [a,b], (6.4)

F(x1,t) C F(xo,t) 4+ £p|x1 — x2||BB for all x1,x3 € U, t €a,b]. (6.5)

(H2) F(x,-) is Hausdorff continuous for a.e. t € [a, b] uniformly in x € U.

Note that inclusion (6.5) is equivalent to the uniform Lipschitz continuity

haus(F (x, 1), F(u, 1)) < Lpllx —u

, x,uelU,

of F(-, t) with respect to the Pompieu-Hausdorff metric haus(-, -) on the space
of nonempty and compact subsets of X; see Subsect. 1.2.2.
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To handle efficiently the Hausdorff continuity of F(x, -) for a.e. t € [a, b],
define the averaged modulus of continuity for F in t € [a, b] while x € U by

b
©(F;h) ::/ o(F;t, h)dt, (6.6)
where o (F;1, h) := sup {w(F;x, 1, h)| x € U} with
w(F;x,t,h):=sup {haus(F(x,tl), F(x, tg))‘ H,ta € [t - %, t+ %] N [a,b]} .

The following observation is easily implied by the definitions.

Proposition 6.3 (averaged modulus of continuity). Property (H2) holds
if and only if t(F;h) — 0 as h — 0.

Note that for single-valued mapping f:[a, b] — X the property t(f;h) —
0 as h — 0 is equivalent to the Riemann integrability of f on [a, b]; see Sendov
and Popov [1201]. The latter holds, as well known, if and only if f is continuous
at almost all 7 € [a, D].

The following strong approzimation theorem plays a crucial role in further
results based on discrete approximations.

Theorem 6.4 (strong approximation by discrete trajectories). Let
x(-) be a solution to the differential inclusion (6.1) under assumptions (H1)
and (H2), where X is an arbitrary Banach space. Then there is a sequence of
solutions Xy (t;) to the discrete inclusions (6.3) such that

~

Xy(a) =x(a) forall N € IN

and the extensions Xy (t), a < t < b, converge to X(t) strongly in the space
Wh2([a,b]; X) as N — oo.

Proof. By Definition 6.1 involving the Bochner integral, the derivative map-
ping x(-) is strongly measurable on [a, b], and hence we can find (rearranging
the mesh points #; if necessary) a sequence of simple/step mappings wy(-)
on T such that wy(¢) are constant on [tj,#;41) for every j = 0,...,N —1
and wy(+) converge to x(-) in the norm topology of L*([a, b]; X) as N — ooc.
Combining this convergence with (6.1) and (6.4), we get

b N-1
/ lwn @Ol de =Y~ wn (@)l (41 = 1) < (mp +1)(b—a)  (6.7)
a _]:0
for all large N. In the estimates below we use the numerical sequence
b .
Ey = / |x(t) —wn(r)||dt =0 as N — oo .

Let us define the discrete functions uy(z;) by
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MN(tj+1):MN([J')-l-hNU)N(lj), jZO,...,N—l, MN(t()) ::X(a)

and observe that the functions
1
uy(t) :=x(a) +/ wy(s)ds, a<t<b,

are piecewise linear extensions of uy(¢;) to the interval [a, b] and that

() = ()] < / lwn(s) —&(s)llds < &y for 1€ fab].  (68)

Therefore uy(t) € U for all t € [a, b] whenever N is sufficiently large.
Taking the distance function dist(-;§2) to a set in X, one can check that
the Lipschitz condition (6.5) is equivalent to

dist (w; F(x1,1)) < dist(w; F(xa, 1)) + €p|lx1 — x2|

whenever w € X, x1,x2 € U, and t € [a, b]; cf. the proof of Theorem 1.41. By
the construction of T(F;h) in (6.6) and the obvious relation

dist(w; F(x, 1)) < dist(w; F(x, t2)) + haus(F(x, 1), F(x, t2))

one has the estimate
N—1

tvi=> hydist(wy (1)) Flun (1), 1))
=0
N-—1

— Z /t;+1 dist(wzv(tj); Fun(t;). ;)) dt

Lj+1
< Z/ dist (wy (1;); F(un(t), 1)) dt + t(F;2hy) .
The Lipschitz property of F and the construction of wy(-) imply
dist(wN(tj); F(MN(lj), l)) < dist(wN(t); F(MN(I), l))
+ Lp(mp + Dwy(t)(r = 1)
whenever 1 € [t;,1;41), and then

dist (wy (1): Flun (1), 1)) < dist(wy (1): F(2(0). 1)) + Eellun (1) — 2(0)]

< |lwy(t) — x(t)|| + €rén ae. t € a,b].
Employing further (6.7) and (6.8), we arrive at the estimate
tv <yn=(L+Lp(b—a))éy + Lrhy (b —a)(mp + 1)/2+ T(F;2hy) . (6.9)

Observe that the functions uy(z;) built above are not trajectories for the
discrete inclusions (6.3), since one doesn’t have wy(t;) € F(uy(t;), ;). Now



166 6 Optimal Control of Evolution Systems in Banach Spaces

we use wy(t;) to construct actual trajectories Xy(t;) for (6.3) that are close
to uy(t;) and enjoy the convergence property stated in the theorem.

Let us define Xy (¢;) recurrently by the following prozimal algorithm, which
is realized due to the compactness assumption on the values of F:

fN(to):f(a), 5C\N(lj+1)ZEC\N(IJ')ﬁ*hNUN(Zj), j=0,...,N—1,
where vy (t;) € F(xn(tj),t;) with (6.10)

o (t;) — wy (1;)[| = dist (wn (2;); F(Xn (2)), 1)) -

First we prove that algorithm (6.10) keeps xy(¢;) inside the neighborhood
U from (H1) whenever N is sufficiently large. Indeed, let us consider any
number N € IN satisfying x(¢) + nyIB C U for all t € [a, b], where

ny = ynexp (Lr(b—a)) +&n

with &y and yy defined above. We have ny — 0 as N — oo, since &y — 0 by
the construction of &y and since yy — 0 due to assumption (H2) is equivalent
to t(F;hy) — 0 by Proposition 6.3. Arguing by induction, we suppose that
xn(t) € U for alli = 0,...,j and show that this also holds for i = j + 1.
Using (6.5), (6.9), and (6.10), one gets

%5 (1) —un(tj+)ll < [[Xn(t;) —un ()] + hnllov(t;) —wa(t;)]
< |Nxn (1) — un ()| + hndist (wa (;); F(un (). 1))
FHerhy|lxn (1) —un(t;)] < ...
< hN i(l + thN)j*idist(wN(t,-); F(MN(ti), ti))

i=0 .
J

< hy exp [Zp(b — a)] Zdist(wN(t,-); F(uy(t), t,-))

i=0
<yvexp (Cr(b—a)).
Due to (6.8) the latter implies that
Xn (tj+1) = X(15400) ]| < yaexp (Lr(b —a)) +&v =t v (6.11)

which proves that xy(¢;) € U for all j = 0, ..., N. Taking this into account,
we have by the previous arguments that

N—-1

an,v t))—un ()| < (b —a)exp (Lr(b —a)) > dist(wy(t)); F(un(t)). 1)) -

j=0
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Now let us estimate the quantity

b
Iy ::/ En(t) — wy(t)]|dr as N — oo .

Using the last estimate above together with (6.9) and (6.11), we have

N—-1 N-1
I =Y hyllXn () —wy ()]l =D hydist(wy (1;); F(Rn(1)). 1))
=0 =0
< st (ww(t); Flun(ty), 1)) + €6 3 bR (1)) — ()]
=0 i=0

<yn(1+Lp(b—a)exp (Lp(b—a))) .
Thus one finally gets
b . . b b .
[ v =ldr < [ v = wn@)ldi+ [ lunto) - 2] o
<yw(l+€r(b—a)exp (Lp(b—a))) +&y :=ay .

Since ay — 0 as N — oo, this obviously implies the desired convergence
xn(+) = x(-) in the norm of W2 ([a, b]; X) due to the Newton-Leibniz formula
for xy(#) and x(r) and due to the boundedness assumption (6.4). A

Remark 6.5 (numerical efficiency of discrete approximations). It fol-
lows from (6.12) by the Newton-Leibniz formula that

b .
lxn(2) — x(2)|| S/ Ixn(s) — x(s)||ds < ay forall t € [a,b].

Thus the error estimate and numerical efficiency of the discrete approxima-
tion in Theorem 6.4 depend on the evaluation of the averaged modulus of
continuity 7(F;h) from (6.6) and the approximating quantity &y defined in
the proof of Theorem 6.4. Denoting

k—1
v(F):=sup { Zsup [haus(F(x, fiv1), F(x, t,-)), x € U],a <n<..<x < b} ,
k i—1 "
it is not hard to check that
T(F;h) <v(F)h = 0(h)

whenever F(x, -) has a bounded variation v(F) < oo uniformly in x € U; see
Dontchev and Farkhi [354]. Furthermore, one has the estimate
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EN S 2T (i, /’ZN)

by taking wy(f) = xn(1) = x(t;) for t € [tj,t; + hy) if X(-) is Riemann
integrable on [a, b].

Remark 6.6 (discrete approximations of one-sided Lipschitzian dif-
ferential inclusions). The Lipschitz continuity and compact-valuedness as-
sumptions on F in Theorem 6.4 can be relaxed under additional require-
ments on the state space X in question. In particular, some counterparts of
the C ([a, bl; X)-approximation and Wl’Q([a, b; X)—approximation results in
the above theorem are obtained by Donchev and Mordukhovich [346] for the
Hilbert pace setting with replacing the classical Lipschitz continuity in (H1)
by the following one-sided Lipschitzian property of F in x: there is a constant
£ € IR (not necessarily positive) such that

o (x1 — x5 F(x1,1) — F(x2,1)) < €]Jxy — xo?

whenever x;,x, € U, a.e. t € la,b],

where o (x; Q) := sup,cq(x,q) stands for the support function of Q C X.
Moreover, the compact-valuedness assumption on the mapping F(-,7) may
be replaced by imposing its boundedness on bounded sets: see the mentioned
paper for more details and discussions.

6.1.2 Bolza Problem for Differential Inclusions
and Relaxation Stability

In this subsection we start considering the following problem of dynamic opti-
mization over solutions (in the sense of Definition 6.1) to differential inclusions
in Banach spaces: minimize the Bolza functional

b
Jhkz¢@@)ﬂw)+/1ﬂﬂﬂjﬁxﬁdt (6.13)

over trajectories x:[a,b] — X for the differential inclusion (6.1) such that
9 (x(¢), %(¢), 1) is Bochner integrable on the fixed time interval T := [a, b]
subject to the endpoint constraints

(x(a), x(b)) € 2 C X*. (6.14)

This problem is labeled by (P) and called the (generalized) Bolza problems for
differential inclusions. We use the term arc for any solution x = x(-) to (6.1)
with J[x] < co and the term feasible arc for arcs x(-) satisfying the endpoint
constraints (6.14). Since the dynamic (6.1) and endpoint (6.14) constraints
are given explicitly, we may assume that both functions ¢ and ¢ in the cost
functional (6.13) take finite values.

The formulated problem (P) covers a broad range of various problems of
dynamic optimization in finite-dimensional and infinite-dimensional spaces. In
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particular, it contains both standard and nonstandard models in optimal con-
trol for parameterized control systems (6.2) with possibly closed-loop control
sets U(x,t). Note also that problems with free time (non-fixed time inter-
vals), with integral constraints on (x, x), and with some other types of state
constraints can be reduced to the form of (P).

Aiming to derive necessary conditions for optimal solutions to (P) that
would apply not only to global but also to local minimizers, we first introduce
appropriate concepts of local minima. Our basic notion is as follows.

Definition 6.7 (intermediate local minima). A feasible arc X is an IN-
TERMEDIATE LOCAL MINIMIZER (i.l.m.) of rank p € [1,00) for (P) if there
are numbers ¢ > 0 and o > 0 such that J[X] < J[x] for any feasible arcs to
(P) satisfying

|x(z) —x(#)|| <& forall t €la,b] and (6.15)

b
a/ 5(6) — 5(0)||P dt < e . (6.16)

Relationships (6.15) and (6.16) actually mean that we consider a neigh-
borhood of X in the Sobolev space W17 ([a, bl; X ) If there is only requirement
(6.15) in Definition 6.7, i.e., « = 0 in (6.16), that one gets the classical strong
local minimum corresponding to a neighborhood of x in the norm topology of
C([a, b]; X). If instead of (6.16) one puts the more restrictive requirement

|x(t) —x(¢)|| <& ae. t€la,b],

then we have the classical weak local minimum in the framework of Defini-
tion 6.7. This corresponds to considering a neighborhood of x in the topol-
ogy of W1>°([a,b]; X). Thus the introduced notion of i.l.m. takes, for any
p € [1,0), an intermediate position between the classical concepts of strong
(¢ = 0) and weak (p = c0) local minima. Clearly all the necessary conditions
for i.l.m. automatically hold for strong (and hence for global) minimizers. Let
us consider some examples that illustrate relationships between weak, inter-
mediate, and strong local minimizers in variational problems.

The first example is standard showing that the notions of weak and strong
minimizers are distinct in the simplest problems of the classical calculus of
variations with endpoint constraints.

Example 6.8 (weak but not strong minimizers). There is a problem of
the classical calculus of variations for which a weak local minimizer is not a
strong local minimizer.

Proof. Consider the variational problem:

minimize J[x]:= /OJT x2()[1 — %2(1)) dt
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over absolutely continuous functions x: [0, 7] — IR satisfying the endpoint
constraints x(0) = x(;r) = 0. Let us first show that x(-) = 0 is a weak local
minimizer. Indeed, taking any ¢ € (0, 1) and any feasible arc x # X satisfying

|x(t) —x(t)| <e, t€[0,7], and |x(t)—x(t)]<e ae. t€]0,7],

one has 0 < 1—&2 < 1—x2(t) for almost all ¢ € [0, r]. Thus x2(#)[1—%2(¢)] > 0
a.e. t € [0, ] with J[x] > 0 = J[x], i.e., X is a weak local minimizer. On the
other hand, x is not a strong local minimizer, which can be justified as follows.
Take feasible arcs x;(¢) := (1/v/k)sin(kt) for any k € IN and observe that

1 1
J[xk]:%(%—1)<0 for k >5

while |x; (t) —x(¢)| < 1/Vk for all t € [0, 7] and k € IN. Thus, given any & > 0,

we can always find a feasible arc x; that belongs to the e-neighborhood of x
in C([0, 7]; R) with J[xx] < J[X]. A

Next let us consider a less standard situation when a weak local minimizer
may not be an intermediate local minimizer in the sense of Definition 6.7 for
any rank p € [1,00). Again it happens in the one-dimensional framework of
the classical calculus of variations.

Example 6.9 (weak but not intermediate minimizers). There is a one-
dimensional problem of the calculus of variations for which a weak local min-
imizer is not an intermediate local minimizer of any rank p > 1.

Proof. Consider the variational problem:
1
minimize J[x] ::/ [x%(1) + 3x%(1)] dt
0

over absolutely continuous function x: [0, 1] — IR satisfying the endpoint con-
straints x(0) = x(1) = 0. To show that x(-) = 0 is a weak local minimizer,
we observe that the integrand is non-negative whenever x(t) > —3, and hence
J[x] > 0 for every feasible arc x with

0<|x(t)—x(t)| <e<3 ae te]0,1].

Given any p > 1, let us now prove that x is not an intermediate local minimizer
of rank p. To proceed, we consider the family of feasible arcs

1
—k2rt ifo<r<y,
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for natural numbers k > 3*”. One can check that
k7

T :*m[(k% ~3)(k—2)-3] <0 and

)"

e

/01 () = 5 ()7 = ¢1§ (1 & _11>p_1)” <(

Thus for any ¢ > 0 and any p > 1 we have
1 .
/ [t(t) — X(1)|” < &” with J[x] <0 whenever k >max{s %", 3%},
0

which shows that x cannot be an intermediate minimizer of rank p.
Considering the simplified version

1
minimize J [x] ::/ %3(t)dt subject to x(0) =0, x(1)=1
0

of the above problem, observe that the arc x(¢) = ¢ is a weak local minimizer
while not an intermediate local minimizer of any rank p > 2 (but not of
p > 1). To show the latter, we take the functions x;(¢) = x(¢) + yx(¢) with
Ye(0) = yi(1) = 0 and

and check directly that
1
Jx] = —Vk + 0(1) — —oo while / |xe(t) —x(£)|Pdt = 0 as k —
0
for each p € [2, 00), which completes the discussion. A

The previous examples concerned problems of the calculus of varia-
tions with no differential inclusion/dynamic constraints. The next example
deals with autonomous, convezr-valued, Lipschitzian differential inclusions and
demonstrates that the concepts of strong and intermediate local minimizers
may be different in this case.

Example 6.10 (intermediate but not strong minimizers for bounded,
convex-valued, and Lipschitzian differential inclusions). There is an
optimal control problem of minimizing a linear cost function over trajectories
of an autonomous, uniformly bounded, and Lipschitzian differential inclusion
with compact and convex values for which an intermediate local minimizer of
any rank p € [1,00) is not a strong local minimizer.
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Proof. Let x = (x1, x2, X3, x4) € IR*, and let

x% cos (’”‘1) for xo # 0,

w(xls-XQ) =
0 for xo =0.

It is easy to check that ¥ is continuously differentiable on IR*. Consider the
following problem:

minimize J[x] := —x3(1)

over absolutely continuous trajectories for the differential inclusion

X1 1

X2 0

Sl e vE[-4,4 p ae re]|0,1]
X3 v

X4 |¥ (x1, X2) — x2x3]

with the endpoint constraints
x1(0) = x4(0) = x4(1) =0, x(l)=1.

Take a feasible arc x(¢) = (¢,0,0,0) and show first that it is not a strong
local minimizer. Indeed, for any ¢ € (0, 2\/5) the function

e ¢ V27
x(t) = (t, 7 Ecos( i t), 0)

is a feasible arc from the e-neighborhood of X in the space C([0, 1]; R*) with
the cost J[x] = —&/Vv2 < 0 = J[x].

Next let us show that x is an intermediate local minimizer of rank p =1,
and hence of any rank p € [1, 00), for the problem under consideration. Choose
any ¢ € (0,1/2) and assume on the contrary that there is a feasible arc
x(+) satisfying the relations (6.15) and (6.16) in Definition 6.7 and such that
J[x] < J[x]. Then

x1(t) =t, x2(t)=c, and |Y(t,¢)—cx3(t)]=0

on [0, 1] for some ¢ € (0, 1/2). This gives

x3(t) = LAUT) = ccos (n?t)’ and hence X3 = —m sin (%t) .

c

Therefore one has

—1

/||x ) —x( ||dt—7r/ ’sm ‘dl—nc/ |sin(rs)|ds
0

G 172
znc/ |smns|ds—2c[} —
0 3
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due to ¢ € (0, 1/2), where [a] stands as usual for the greatest integer less than
or equal to a € IR. The latter clearly contradicts the choice of ¢ < 1/2, which
proves that x is an intermediate local minimizer of rank p = 1. A

In what follows, along with the original problem (P), we consider its re-
lazed counterpart that, roughly speaking, is obtained from (P) by the convez-
ification procedure with respect to the velocity variable. Taking the integrand
¥ (x, v, 1) in (6.13), we consider its restriction

Op(x, v, 1) :=0(x,v, 1) + S(U; F(x, t))

to the sets F(x, 1) in (6.1) and denote by 9¢(x, v, ) the biconjugate (bipolar)
function to ¥r(x, -, 1), i.e.,

Or(x,v,1) = (z?F):*(x, v,1) forall (x,v,t) € X X X X [a,b].

It is well known that O (x, v, 1) is the greatest proper, convex, l.s.c. function
with respect to v, which is majorized by ¥r. Moreover, 9 = O if and only
if O is proper, convex, and l.s.c. with respect to v.

Given the original variational problem (P), we define the relaxed problem
(R), or the relazation of (P), as follows:

o~ b ~
minimize J[x] := ¢ (x(a), x(b)) —|—/ Op(x(t), x(t), 1) dt (6.17)

over a.e. differentiable arcs x: [a, b] — X that are Bochner integrable on [a, b]
together with & (x(r), x(r), 1), satisfy the Newton-Leibniz formula on [a, b]
and the endpoint constraints (6.14). Note that, in contrast to (6.13), the inte-
grand in (6.17) is extended-real-valued. Furthermore, the natural requirement
J[x] < oo yields that x(-) is a solution (in the sense of Definition 6.1) to the
convezified differential inclusion

x(t) € clco F(x(r),1) ae. t €a,b]. (6.18)

Thus the relaxed problem (R) can be considered the explicit dynamic con-
straint given by the convexified differential inclusion (6.18). Any trajectory
for (6.18) is called a relaxed trajectory for (6.1), in contrast to original trajec-
tories/arcs for the latter inclusion.

There are deep relationships between relaxed and original trajectories for
differential inclusion, which reflect hidden convezity inherent in continuous-
time (nonatomic measure) dynamic systems defined by differential operators.
We’ll see various realizations of this phenomenon in the subsequent material
of this chapter. In particular, any relaxed trajectory of compact-valued and
Lipschitz in x differential inclusion in Banach spaces may be uniformly ap-
prozimated (in the space C([a, b]; X) by original trajectories starting with the
same initial state x(a) = xo; see, e.g., Theorem 2.2.1 in Tolstonogov [1258]
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with the references therein. We need a version of this approximation/density
property involving not only differential inclusions but also minimizing func-
tionals. The following result, which holds when the underlying Banach space
is separable, is proved by De Blasi, Pianigiani and Tolstonogov [308]. Results
of this type go back to the classical theorems of Bogolyubov [121] and Young
[1350] in the calculus of variations.

Theorem 6.11 (approximation property for relaxed trajectories).
Let x(-) be a relazed trajectory for the differential inclusion (6.1), where X
is separable, and where F: X X [a,b] = X is compact-valued and uniformly
bounded by a summable function, locally Lipschitzian in x, and measurable in
t. Assume also that the integrand & in (6.13) is continuous in (x, v), measur-
able in t, and uniformly bounded by a summable function near x(-). Then there
is sequence of the original trajectories xi () for (6.1) satisfying the relations

xk(a) =x(a), x¢(-) = x(-) in C(la,b];X), and

b b
lim inf z&‘(xk(t),xk(t),t)dtg/ Or (x(1), (1), 1) dt .

k—oo  J,
Note that Theorem 6.11 doesn’t assert that the approximating trajectories
xi(+) satisfy the endpoint constraints (6.14). Indeed, there are examples show-

ing that the latter may not be possible. If they do, then problem (P) has the
property of relaxation stability:

inf(P) = inf(R) , (6.19)

where the infima of the cost functionals (6.13) and (6.17) are taken over all
the feasible arcs in (P) and (R), respectively.

An obvious sufficient condition for the relaxation stability is the convex-
ity of the sets F(x,t) and of the integrand ¢ in v. However, the relaxation
stability goes far beyond the standard convexity due to the hidden convexity
property of continuous-time differential systems. In particular, Theorem 6.11
ensures the relaxation stability of nonconvex problems (P) with no constraints
on x(b). There are other efficient conditions for the relaxation stability of non-
convex problems discussed, e.g., in Toffe and Tikhomirov [617], Mordukhovich
[888, 915], and Tolstonogov [1258]. Let us mention the classical Bogolyubov
theorem ensuring the relaxation stability in variational problems of minimiz-
ing (6.13) with endpoint constraint (6.14) but with no dynamic constraints
(6.1); relaxation stability of control systems linear in state variables via the
fundamental Lyapunov theorem on the range convexity of nonatomic vector
measures that largely justifies the hidden convexity; the calmness condition
by Clarke [246, 255] for differential inclusion problems with endpoint con-
straints of the inequality type; the normality condition by Warga [1315, 1321]
involving parameterized control systems (6.2), etc.
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An essential part of our study relates to local minima that are stable with
respect to relaxation. The corresponding counterpart of Definition 6.7 is for-
mulated as follows.

Definition 6.12 (relaxed intermediate local minima). The arc X is a
RELAXED INTERMEDIATE LOCAL MINIMIZER (r.i.l.m.) of rank p € [1, 00) for
the original problem (P) if X is a feasible solution to (P) and provides an
intermediate local minimum of this rank to the relaxzed problem (R) with the

same cost J[x] = J[x].

The notions of relaxed weak and relazed strong local minima are defined
similarly, with the same relationships between them as discussed above. Of
course, there is no difference between the corresponding relaxed and usual
(non-relaxed) notions of local minima for problems (P) with convex sets
F(x,t) and integrands ¢ convex with respect to velocity. It is also clear that
any relaxed intermediate (weak, strong) minimizer for (P) provides the cor-
responding non-relaxed local minimum to the original problem. The opposite
requires a kind of local relaxation stability. Note that any necessary condition
for r.i.l.m. holds for relaxed strong local minima, and hence for optimal so-
lutions to (P) (global or absolute minimizers) under the relaxation stability
(6.19) of this problem.

Our primary goal is to derive general necessary optimality conditions for
rilm. in the Bolza problem (P) under consideration; some results will be
later obtained without any relaxation as well. To proceed, we employ the
method of discrete approzimations, which relates variational/optimal control
problems for continuous-time systems to their finite-difference counterparts.
The first step in this direction is to build well-posed discrete approximations
of a given r.i.l.m. X(-) in problem (P) such that optimal solutions to discrete-
time problems strongly converge to X(-) in the space W% ([a, b]; X). This will
be accomplished in the next subsection.

6.1.3 Well-Posed Discrete Approximations of the Bolza Problem

Considering differential inclusions and their finite-difference counterparts in
Subsect. 6.1.1, we established there that every trajectory for a differen-
tial inclusion in a general Banach space can be strongly approximated by
extended trajectories for finite-difference inclusions under the natural as-
sumptions made. This result doesn’t directly relate to optimization problems
involving differential inclusions, but we are going to employ it now in the opti-
mization framework. The primary objective of this subsection is as
follows.

Given a trajectory x(-) for the differential inclusion (6.1), which provides
a relazed intermediate local minimum (r.i.l.m.) to the optimization problem
(P) defined above, construct a well-posed family of approximating optimiza-
tion problems (Py) for finite-difference inclusions (6.3) such that (extended)
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optimal solutions Xn(-) to (Py) strongly converge to x(-) in the norm topology
of Wh2([a, b]; X).

Imposing the standing hypotheses (H1) and (H2) formulated in Sub-
sect. 6.1.1, we observe that the boundedness assumption (6.4) implies that
the notion of r.i.l.m. from Definition 6.12 doesn’t depend on rank p from the
interval [1, 00). This means that x(:) is an r.i.l.m. of some rank p € [1, c0),
then it is also an r.i.l.m. of any other rank p > 1. In what follows we take
p=2and @ =1 in (6.16) for simplicity.

To proceed, one needs to impose proper assumptions on the other data ¥,
@, and £2 of problem (P) in addition to those imposed on F. Dealing with the
Bochner integral, we always identify measurability of mappings f:[a, b] — X
with strong measurability. Recall that f is strongly measurable if it can be a.e.
approximated by a sequence of step X-valued functions on measurable subsets
of [a, b]. Given a neighborhood U of x(-) and a constant mp from (H1), we
further assume that:

(H3) 9(:, -, 1) is continuous on U x (mpIB) uniformly in z € [a, b], while
¥ (x, v, ) is measurable on [a, b] and its norm is majorized by a summable
function uniformly in (x,v) € U x (mpIB).

(H4) ¢ is continuous on U x U; £ C X x X is locally closed around
(¥(a), %(b)) and such that the set proj£2 N (x(a) + ¢IB) is compact for some
& > 0, where proj;$2 stands for the projection of £2 on the first space X in
the product space X x X.

Note that symmetrically we may assume the local compactness of the
second projection of 2 C X x X; the first one is selected in (H4) just for
definiteness.

Now taking the r.i.L.m. X(-) under consideration, let us apply to this feasible
arc Theorem 6.4 on the strong approximation by discrete trajectories. Thus
we find a sequence of the extended discrete trajectories Xy(-) approximating
X(-) and compute the numbers ny in (6.11). Having ¢ > 0 from relations
(6.15) and (6.16) for the intermediate minimizer x(-) with p = 2 and @ = 1,
we always suppose that X(t) + ¢/2 € U for all t € [a, b]. Let us construct
the sequence of discrete approximation problems (Py), N € IN, as follows:
minimize the discrete-time Bolza functional

Inlxn] = w(XN(tO)’XN(tN)) + [Jxn (t0) — %(a)][?
R xn(tjr1) — xn(t))
" Z/ S i ) (6.20)
. Z /l/+1 XN l‘]+1 N N(t_j) _X(I)Hth
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over discrete trajectories xy = xy(-) = (xn(f0), ..., xn(ty)) for the difference
inclusions (6.3) subject to the constraints

()CN(to),XN(lN)) €2+ HNB s (621)

HxN(tj)—)E(tj)Hgg for j=1,...,N, and (6.22)

(6.23)

Z /t/+1

As in Subsect. 6.1.1, we consider (without mentioning any more) piecewise
linear extensions of xy(-) to the whole interval [a, b] with piecewise constant
derivatives for which one has

XN l,+1 — XN l‘J H f
2

xy(t) =xy(a) + /Z xin(s)ds forallt € [a,b] and
a (6.24)

).CN(I) ZXN(Z‘J') S F(XN(lj),lj), t e [l‘j,l‘j.;,_l), jZO,...,N— 1.

The next theorem establishes that the given local minimizer x(-) to (P)
can be approximated by optimal solutions to (Py) strongly in W1’2([a, b; X),
which implies the a.e. pointwise convergence of the derivatives essential in
what follows. To justify such an approximation, we need to impose both the
Asplund structure and the Radon-Nikodym property (RNP) on the space X
in question, which ensure the validity of the classical Dunford theorem on the
weak compactness in L' ([a, bl; X ) It is worth noting that every reflexive space
is Asplund and has the RNP simultaneously. Furthermore, the second dual
space X** enjoys the RNP (and hence so does X C X**) if X* is Asplund. Thus
the class of Banach spaces X for which both X and X* are Asplund satisfies
the properties needed in the next theorem. As discussed in the beginning of
Subsect. 3.2.5, there are nonreflexive (even separable) spaces that fall into this
category.

Theorem 6.13 (strong convergence of discrete optimal solutions).
Let x(+) be an r.i.l.m. for the Bolza problem (P) under assumptions (H1)—
(H4), and let (Py), N € IN, be a sequence of discrete approzimation problems
built above. The following hold:

(i) Each (Py) admits an optimal solution.

(ii) If in addition X is Asplund and has the RNP, then any sequence
{xnv(:)} of optimal solutions to (Py) converges to Xx(-) strongly
in Wh2([a, b]; X).

Proof. To justify (i), we observe that the set of feasible trajectories to each
problem (Py) is nonempty for all large N, since the extended functions xy(-)
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from Theorem 6.4 satisfy (6.3) and the constraints (6.21)—(6.23) by construc-
tion. This follows immediately from (6.11) in the case of (6.21) and (6.22). In
the case of (6.23) we get from (6.4) and (6.12) that

N

-1 /ml
0“1t

j=

Xy (1) —Xn(t) -1 "2 X
e =BG s ar = [ fowto) - o

g
<2mray < B

for large N by the formula for ay in (6.12). The existence of optimal solu-
tions to (Py) follows now from the classical Weierstrass theorem due to the
compactness and continuity assumptions made in (H1), (H3), and (H4).

It remains to prove the convergence assertion (ii). Check first that

In[xy] = J[x] as N — o0 (6.25)

along some sequence of N € IN. Considering the expression (6.20) for Jy[xy],
we deduce from Theorem 6.4 that the second terms therein vanishes, the
forth term tends to zero due to (6.4) and (6.12), and the first term tends
to ¢(x(a), (b)) due to the continuity assumption on ¢ in (H4). It is thus
sufficient to show that

oy = Nf/”“ 2 (B (1), ’?N(’f“;)l*’?N(‘f'),t) dt — /bﬁ(x(t),;c(z),z)dr
j=0 "1 N a

as N — oo. Using the sign “~” for expressions that are equivalent as N — oo,
we get the relationships

N71 l/+1 . h .
ov=3 [ ol v~ [ 0. i)
j=0 "4 a

b ) b
~/ z?(i(t),)?N(t),t)dtN/ 9 (x(2), x(2), 1) dt

by Theorem 6.4 ensuring the a.e. convergence xy(f) — x(¢) along a subse-
quence of N — oo and by the Lebesgue dominated convergence theorem for
the Bochner integral that is valid under (H3).

Note that we have justified (6.25) for any intermediate (not relaxed) local
minimizer x(-) for the original problem (P) in an arbitrary Banach space X.
Next let us show that (6.25) implies that

b

Jim | By = [lx(a) - x(a)||? +/ X (1) —f(f)||2dt} =0 (6.26)
o0 a

for every sequence of optimal solutions Xy(-) to (Py) provided that x(-) is a

relazed intermediate local minimizer for the original problem, where the state

space X is assumed to be Asplund and to satisfy the RNP.
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Suppose that (6.26) is not true. Take a limiting point 8 > 0 of the sequence
{Bn} in (6.26) and let for simplicity that By — B for all N — co. We are going
to apply the Dunford theorem on the relative weak compactness in the space
L'([a, b]; X) (see, e.g., Diestel and Uhl [334, Theorem IV.1]) to the sequence
{xn(-)}, N € IN. Due to (6.24) and (H1) this sequence satisfies the assump-
tions of the Dunford theorem. Furthermore, both spaces X and X* have the
RNP, since the latter property for X* is equivalent to the Asplund structure
on X, as mentioned above. Hence we suppose without loss of generality that
there is v € L' ([a, b]; X) such that

xn(-) = v(-) weakly in L'([a,b];X) as N — o0.

Since the Bochner integral is a linear continuous operator from L1 ([a, bl; X )
to X, it remains continuous if the spaces L! ([a, b; X ) and X are endowed with
the weak topologies. Due to (6.21) and the assumptions on §2 in (H4), the set
{Xn(a)| N € IN} is relatively compact in X. Using (6.24) and the compactness
property of solution sets for differential inclusions under the assumptions made
in (H1) and (H2) (see, e.g., Tolstonogov [1258, Theorem 3.4.2]), we conclude
that the sequence {Xy(-)} contains a subsequence that converges to some x(-)
in the norm topology of the space C([a, bl; X). Now passing to the limit in the
Newton-Leibniz formula for Xy(-) in (6.24) and taking into account the above
convergences, one has

x(t) =x(a) + /f v(s)ds forall € [a,b],

which implies the absolute continuity and a.e. differentiability of x(-) on [a, b]
with v(r) = x(¢) for ae. t € [a, b]. Observe that x(-) is a solution to the
convexified differential inclusion (6.18). Indeed, since a subsequence of {xy(-)}
converges to x(-) weakly in L ([a, b); X), some convex combinations of Xy/(-)
converge to f() in the norm topology of L! ([a, bl; X), and hence pointwisely
for a.e. t € [a, b]. Passing to the limit in the differential inclusions for Xy(-)
in (6.24), we conclude that x(-) satisfies (6.18). By passing to the limit in
(6.21) and (6.22), we also conclude that x(-) satisfies the endpoint constraints
in (6.14) as well as

IF(6) — %(t)|| < &/2 for all 1 € [a,b].

Furthermore, the integral functional

b
1) = / loe) — &)t

is lower semicontinuous in the weak topology of Lz([a, bl; X) due to the con-
vexity of the integrand in v. Since the weak convergence of Xy (-) — x() in
L'([a, b]; X) implies the one in L?([a, b]; X) by the boundedness assumption
(6.4), and since
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/||xN —xX(0)||?dt = Z/ xN t’“ N(tj)—)?(t)‘rdt

hy

the above lower semicontinuity and relation (6.23) imply that

/ I1x(r) — x()||2dt < hmlan/

Thus the arc x(-) belongs to the e-neighborhood of x(-) in the space
Wh2([a, b]; X).

Let us finally show that the arc x(+) gives a smaller value to cost functional
(6.17) than x(-). One always has

fj41 Xy lj+1 7)CN(IJ)

N

2
- fc(t)” dt <

&
5

Iy[xXn] < Jy[xy] for all large N € IV,

since each Xy (-) is feasible to (Py). Now passing to the limit as N — oo and
taking into account the previous discussions as well as the construction of the
convexified integrand ¥r in (6.17), we get from (6.25) that

b/\ .
@(x(a), X(b)) +/ Op(x(t),x(t),t)dt + B < J[x],

which yields by B > 0 that J[X] < J[x] = J[x]. The latter is impossible, since
x(+) is ar.ilm. for (P). Thus (6.26) holds, which obviously implies the desired
convergence Xy(-) — X(-) in the norm topology of the space W2 ([a, b]; X)
and completes the proof of the theorem.

The arguments developed in the proof of Theorem 6.13 allow us to estab-
lish efficient conditions for the value convergence of discrete approximations,
which means that the optimal/infimal values of the cost functionals in the
discrete approximation problems converge to the one in the original problem
(P). Moreover, using the approximation property for relaxed trajectories from
Theorem 6.11, we obtain in fact a necessary and sufficient condition for the
value convergence in terms of an intrinsic property of the original problems.

Observe that the cost functional (6.20) as well as the constraints (6.22)
and (6.23) in the discrete approximation problems (Py) explicitly contain the
given local minimizer x(-) to (P). Considering below the value convergence
of discrete approximations, we are not going to involve any local minimizer
in the construction of discrete approximations and/or even to assume the
existence of optimal solutions to the original problem. To furnish this, we
consider a sequence of new discrete approximation problems (Py) built as
follows: minimize

N-1

In[xn] = @ (xn(t0), xn(tv)) + Z /J+1 ﬂ(xN(tj)’ XN(lj—s-l})l —xn(t;) ’ t) dt
=07 N
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subject to the discrete inclusions (6.3) and the perturbed endpoint constraints
(6.21), where the sequence ny is not yet specified. Note that problems (ISN)
are constructively built upon the initial data of the original continuous-time
problem. In the next theorem the notation J3 := inf(Py), inf(P), and inf(R)
stands for the optimal value of the cost functional in problems (Py), (P), and
(R), respectively. Observe that optimal solutions to the discrete-time problems
(Py) always exist due to the assumptions (H1)-(H4) made in Theorem 6.13
under proper perturbations ny of the endpoint constraints; see its proof.

Theorem 6.14 (value convergence of discrete approximations). Let
U C X be an open subset of a Banach space X such that x;(t) € U ast € [a, ]
and k € IN for a minimizing sequence of feasible solutions to (P). Assume that
hypotheses (H1)—(H4) are fulfilled with this set U, where X(a)+¢B is replaced
by clU in (H4). The following assertions hold:

(i) There is a sequence of the endpoint constraint perturbations ny | 0 in
(6.21) such that

inf(R) < lim inf .71?, < lim sup .71(\), < inf(P), (6.27)
N—o0 N—co
where the left-hand side inequality requires that X is Asplund and has the
RNP. Therefore the relazation stability (6.19) of (P) is sufficient for the value
convergence of discrete approximations

inf(Py) — inf(P) as N — oo

provided that X is Asplund and has the RNP.

(ii) Conwversely, the relazation stability of (P) is also a necessary condition
for the wvalue convergence inf(ﬁN) — inf(P) of the discrete approximations
with arbitrary perturbations ny | 0 of the endpoint constraints provided that
X is reflexive and separable.

Proof. Let us first prove that the right-hand side inequality in (6.27) holds
in any Banach space X. Taking the minimizing sequence of feasible arcs x;(+)
to (P) specified in the theorem, we apply to each xx(-) Theorem 6.4 on the
strong approximation by discrete trajectories. Involving the diagonal process,
we build the extended discrete trajectories xy () for (6.3) such that

ny = ||(Xn(a), xn (b)) — (xiy (@), x4y (b)) | =0 as N — oo

and consider the sequence of discrete approximation problems (FN) with these
constraint perturbations ny in (6.21). Similarly to the proof of the first part
of Theorem 6.13, we show that each (ISN) admits an optimal solution and,
arguing by contradiction, one has the right-hand side inequality in (6.27). To
justify the left-hand side inequality in (6.27), we follow the proof of the second
part of Theorem 6.13 assuming that X is Asplund and enjoys the RNP. This
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automatically implies the value convergence of inf(Py) — inf(P) under the
relaxation stability of (P).

To prove the converse assertion (ii) in the theorem, we first observe that
the relaxed problem (R) admits an optimal solution under the assumptions
made; see Tolstonogov [1258, Theorem A.1.3]. It follows from the arguments
in the second part of Theorem 6.13 that actually justify, under the assump-
tions made, the compactness of feasible solutions to the relaxed problem and
the lower semicontinuity of the minimizing functional (6.17) in the topology
on the set of feasible solutions x(-) induced by the weak convergence of the
derivatives x(-) € L' ([a, b]; X) provided that X is Asplund and has the RNP.
Assume now that X is reflexive and separable and, employing Theorem 6.11,
approximate a certain relaxed optimal trajectory x(-) by a sequence of the
original trajectories x;(-) converging to x(-) as established in that theorem. In
turn, each x;(-) can be strongly approximated in W1’2([a, bl; X) by discrete
trajectories Xi, (-) due to Theorem 6.4. Using the diagonal process, we get a
sequence of the discrete trajectories xy(-) approximating x(-) and put

ny = ||(Xn(a), xx (b)) — (¥(a), X(b))|| - 00 as N —oo.

Now assume that problem (P) is not stable with respect to relaxation, i.e.,
inf(R) < inf(P), and show that

liminf .7[9, < inf(P)
N—o0

for a sequence of discrete approximation problems ( ﬁN) with some perturba-
tions ny of the endpoint constraints (6.21). Indeed, having

b -~ .
inf(R) = ¢(¥(a), X(b)) +/ Op(x(t), x(t), 1) dt < inf(P)

for the relaxed optimal trajectory x(:), we build ny as above and consider
problems (I;N) with these perturbations of the endpoint constraints. Taking
into account the approximation of x(-) by x¢(-) due to Theorem 6.11, the
strong approximation of x;(-) by the discrete trajectories Xy (-) in Theorem 6.4,
and the relations

N—-1

~ =" = Lj+1 . Xn(t: — xn(t;
118 < (p(xN(to),xN(tN)) + Z/ §<XN(IJ‘), xN( ]+1})ZN xN( J)’ l) dt
j=0 "1

N—-1

= p(En(@). 3n () + 3 [H 9 (R (1)), S (). 1)

Jj=0

we get by the absence of the relaxation stability that
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b .
liminf 7} < lip inf [go()?N(a),fN(b)) +/a 9 (B (1), Fn (1), 1) dt}

b/\ .
< ¢(x(a), x(b)) —|—/ O (x(2),x(t), 1) dt <inf(P).

Therefore we don’t have the value convergence of discrete approximations for
problems (Py) corresponding to the above perturbations of the endpoint con-
straints. This justifies (ii) and completes the proof of the theorem. A

Thus the relaxation stability of (P), which is an intrinsic and natural prop-
erty of continuous-time dynamic optimization problems, is actually a criterion
for the value convergence of discrete approximations under appropriate per-
turbations of the endpoint constraints in (6.21). It follows from the proof of
Theorem 6.14 that one can express the corresponding perturbations ny via
the averaged modulus of continuity (6.6) by

nv =t(X;hy) - 00 as N — 00

provided that (P) admits an optimal solution x(-) with the Riemann integrable
derivative X(-) on [a, b]. Moreover, ny = O (hy) if X(¢) is of bounded variation
on this interval; see Subsect. 6.1.1.

Remark 6.15 (simplified form of discrete approximations). Observe
that if ¥ (x, v, ) is a.e. continuous on [a, b] uniformly in (x, v) in some neigh-
borhood of the optimal solution X(-), then the cost functional in (6.20) in
problem (Py) can be replaced in Theorem 6.13 by

Inlxn] i = (P(XN(tO)va(tN)) + |lxn (o) — x(a)|?

N-1

xn(tj+1) — xn(t))
hy U xn (), .7
! ; ( ) hy t) (6.28)

+z/

and similarly for the cost functional in problem (ﬁN) used in Theorem 6.14.
Indeed, this is an easy consequence of the fact that t(¢#;hy) — 0 as N — o0
for the averaged modulus of continuity (6.6) when ¢ (x, v, -) is a.e. continuous.
Denote by (Py) the discrete approximation problem that differs from (Py)
of that the cost functional (6.20) is replaced by the simplified one (6.28). In
what follows we consider both problems (Py) and (Py) using them to derive
necessary optimality conditions for the original problem. The results obtained
in these ways are distinguished by the assumptions on the initial data that
allow us to justify the desired necessary optimality conditions. Namely, while

XN lj+1 — XN lj H
N
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the use of the simplified problems (Py) as N — oo requires the a.e. continuity
assumption on ¢ with respect of ¢ (versus the measurability), it relaxes the
requirements on the state space X needed in the case of (Py); see below.

6.1.4 Necessary Optimality Conditions
for Discrete-Time Inclusions

Theorem 6.13 on the strong convergence of discrete approximations makes a
bridge between optimal solutions to the discrete-time problems (Py), as well
as their simplified versions (Py) from Remark 6.15, and the given relaxed
intermediate local minimizer X(-) for the original continuous-time problem
(P). Our further strategy is as follows: first to establish necessary optimality
conditions in the sequences of discrete approximation problems (Py) and (P y)
and then to obtain, by passing to the limit as N — oo, necessary conditions
for the given local minimizer to the original optimal control problem (P)
governed by differential inclusions.

This subsection is devoted to the derivation of necessary optimality con-
ditions in general discrete-time Bolza problems and their special counterparts
for the discrete approximations problems (Py) and (Py). We explore two
approaches to these issues. The first one involves reducing general dynamic
optimization problems for discrete-time inclusions to non-dynamic problems
of mathematical programming with operator comstraints and then employing
necessary optimality conditions for such problems obtained in Subsect. 5.1.2.
The second approach is based on the specific features of the discrete approx-
imation problems (Py) and (Py) and the use of fuzzy calculus results from
Chaps. 2—4. The results derived by using these two approaches are not reduced
to each other, and they require different assumptions. It happens, however,
that the approximate necessary optimality conditions obtained via the sec-
ond approach are more suitable for deriving the corresponding results for the
continuous-time problem (P) in the next subsection, while those obtained via
the first one are definitely of independent interest.

Let us start with the first approach and consider the following (non-
dynamic) problem of mathematical programming (M P) with operator, in-
equality, and geometric constraints to which we can reduce our discrete-time
problems of dynamic optimization:

minimize @o(z) subject to

(6.29)
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where ¢; are real-valued functions on Z, where f: Z — E is a mapping between
Banach spaces, and where &; C Z. This is a problem with operator constraints
of the type considered in the end of Subsect. 5.1.2 with the only difference
that now we have many geometric constraints given by the sets &;. As we see
below, the geometric constraints in (6.29) arise from the discretized differential
inclusions (6.3), and the number [ of them is increasing as N — co. Note that
problem (MP) is intrinsically nonsmooth, even in the case of the smooth
data f and ¢; in (6.29) and in the generating dynamic problems. Indeed, the
nonsmoothness comes from the geometric constraints in (6.29), which reflect
the dynamics governed by differential and finite-difference inclusions in the
original problem (P) and its discrete approximations.

To derive necessary optimality conditions in problem (M P), one may apply
Corollary 5.18 that concerns the problem like (6.29) but with many geometric
constraints. Denote

@

E=E1N...N&

and replace the geometric constraints in (6.29) by z € &. Employing now the
result of Corollary 5.18, we need to present necessary optimality conditions
for problem (M P) via its initial data. This can be done by using calculus rules
for generalized normals and the SNC property of set intersections developed
in Chap. 3.

Proposition 6.16 (necessary conditions for mathematical program-
ming with many geometric constraints). Let Z be a local optimal solution
to problem (6.29), where the spaces Z and E are Asplund and where the sets
Z; are locally closed around zZ. Assume also that all ¢; are Lipschitz continu-
ous around z, that f is generalized Fredholm at Z, and that each Z; is SNC
at this point. Then there are real numbers {u; € R| j =0,...,s} as well as
linear functionals e* € E* and {z;‘ €z j=1,...,1}, not all zero, such that
wij >0 for j=0,...,5 and

1j9j(z) =0 for j=1,....s, (6.30)
;€N 8)) for j=1,...,1, (6.31)

1 s

=z ea( Do nies) @+ Dy fE)E) | (6.32)

j=1 j=0

Proof. Apply Corollary 5.18 to problem (6.29) with the condensed geometric
constraint z € & given by the intersection of the sets Z;. Then we find
{u; >0/ j=0,...,s} and e* € E*, not all zero, such that u; satisfy the
complementary slackness conditions in (6.30) and
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0€d( D niei) @)+ Dy fE)e) + N(E E) (6.33)
j=0

provided that the intersection set & is SNC at z. The latter holds, by Corol-
lary 3.81, if each & is SNC at this point and the qualification condition

[ZT—I—...—HZ‘:O, zjeN(Z;Ej)] = {z}fzo, jzl,...,s]

is fulfilled. Furthermore, the same qualification condition ensures, by Corol-
lary 3.37, the intersection formula

N(z;E)C N(z; 1) +...+ N(Z; &)

when all but one of &; are SNC at z. Substituting this into (6.33), we con-
clude that the fulfillment of the above qualification condition implies (6.32)
with (uj, e*) # 0. At the same time, the violation of the qualification con-
dition means that (6.32) holds with (z},...,z/) # 0 and all zero u; and e*.
This completes the proof of the proposition. A

Now let us consider the application of Proposition 6.16 to the following
constrained Bolza problem for discrete-time inclusions labeled as (DP):

N-1
o Xj+1 — Xj
minimize (p(xo,xN)—l-hE ﬁj(xj, ]+h !
i=0

Xjt+1 GXj+hFj(Xj) for j=0,...,N—1,

) subject to

(x0,xy) € E C X2,

where F;: X = X, where ¢ and 9; are real-valued functions on X2, and where
h > 0and N € IN are fixed. Observe that problem (D P) incorporates the basic
structure of discrete approximation problems from the preceding subsection,
for any fixed N, without taking into account the terms therein related to
approximating the given intermediate local minimizer x(-) for the original
continuous-time problem (P).

Theorem 6.17 (necessary optimality conditions for discrete-time in-
clusions). Let {x;| j =0, ..., N} be a local optimal solution to problem (D P).
Assume that X is Asplund, that the sets & and gph F; are locally closed and
SNC at (Xo, %y) and (X}, (X;41 — X;)/h), respectively, and that the functions
¢ and ¥; are locally Lipschitzian around the corresponding points X; for all
j=0,....,N —1. Then there are A > 0 and {p; € X*| j =0,..., N}, not
simultaneously zero, such that one has the extended Fuler-Lagrange inclusion

Pj+1—Dj _ Xjg1 — X - Xj41— X
(20 y) < 550 (o )

forall j =0,..., N —1 with the transversality inclusion

(Po. —pn) € 209(X0, Xn) + N ((X0, Xn)); &) .
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Proof. It is easy to see that the discrete-time dynamic optimization problem
(DP) can be equivalently written in the non-dynamic form of mathematical
programming given by (6.29) with

2= (X0s s XNy VO ooy Uy_1) € Z = XNTL B = XN [ :=N+1,

N—-1

@o(2) = p(xo, xw) +h Y (x5, v)),  ¢;(2) =0 as j>1,
=0

f(2) = (fo(2), ..., fn-1(z)) with

fi(@) =xj41—x;—hv;, j=0,...,N—1,

g :={ze X v; € Fj(x;)} for j=0,...,N—1,
Sy ={z€ X>*! (x0,xy) € E} .

Thus 7 := ()Eo, ce X, (X1 = Xo)/ b, ., (B — )?N,l)/h) is a local optimal
solution to the (M P) problem (6.29) with the data defined above. The op-
erator constraint mapping f is surely generalized Fredholm at z; moreover,
the sets &, j = 0,..., N, are obviously SNC at z under the assumptions
imposed on F; and Z. Since the cost function ¢g is locally Lipschitzian
around 7z and the product spaces Z and E are Asplund, we apply the neces-
sary optimality conditions from Proposition 6.16 to the (M P) problem under
consideration, which give us a number pg > 0 as well as linear function-
als 77 = (xa‘j,...,x,’(,j,vgj,...,vE"N_l)j) € (X*)2V+! for j = 0,...,N and
e* = (e}, ....ey_1) € (X*)V not all zero, such that conditions (6.30)—(6.32)
hold with the data defined above. It follows from the above structure of &;
that (6.31) is equivalent to

* * o Xj41 — X
(x5, v5;) € N((xj, %);gphﬂ) and

xi=v;=01if i#j forall j=0,...,N—1;

(xgn-Xin) € N((¥0,Xy); &) and xjy = vy =0 otherwise .

Denoting A := uo and employing the sum rule for basic subgradients of locally
Lipschitzian functions in Theorem 3.36, we get from (6.32) and the structures
of g9 and f that there are

(55264 € Do, ) and (., w) € 0, (5, L)

for j =0,..., N — 1 satisfying the relations
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—xgo — x5y = A(xg + huy) — e
j=1...,N—-1,

* * * _ ¥
xXj; = Ahui +ei_y —e;,

* _ * *
—Xyy = Axy teyq

—vi; =h(Awi —e;), j=0,...,N—1.
Denoting finally
po = —xoy —Axg +ey and pji=hei_;, j=1,...,N,

we arrive at the desired Euler-Lagrange and transversality inclusions with
A >0and {p; € X*| j =0,..., N} not equal to zero simultaneously. This
completes the proof of the theorem. A

Let us return to our discrete approzimation problems (Py) and (Py). Fixed
any N € IN, observe that problem (Py) defined in (6.3), (6.21)—(6.23), and
(6.28) reduces to the form of mathematical programming (6.29) that is just
slightly different from the one for (DP). Indeed, letting

Z:i= (Xo,---,xN,vo,-..,vN_l)GZ::XQN“, E;:XN, s =N+2,1:=N,

we rewrite (Py) as (6.29) with the following data:

N—-1
90(2) : = @(x0. xn) + X0 — (@)[| + Ay Y #5(x;. v;)

j=0
N=1 i, ! (6.34)
e [ ey )
j=0"1

||Xj,1—)f([j,1)|| —8/2 for j= 1,....,.N+1,

QDj(Z) = liy1 (635)
Z/ lvi — x(¢)||>dt — /2 for j=N+2,

f(@) = (fo(z), ..., fu-1(z)) with

fi(2) :=xj41 —xj —hyv;, j=0,....,N—1,

(6.36)

0

~.

= {z € XN v; € Fj(x;)} for j=0,....N—1,
(6.37)
= {z€ X®™*| (x0,xy) € 2v},

0]
=
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where 9;(x, v) := 9 (x,v,¢;), Fj(x) := F(x,t;), and 2y := §2 4+ nyIB. Notice
that the only difference between the (M P) forms for (DP) and (Py) is re-
flected by the terms in the cost functions and inequality constraints involving
the given intermediate local minimizer x(-) for the original continuous-time
problem (P). These terms can be easily treated in deriving necessary optimal-
ity conditions similarly to the proof of Theorem 6.17. Moreover, the impact
of these terms to necessary optimality conditions disappears in the limiting
procedure as N — oo, i.e., they can be actually ignored from the viewpoint of
necessary optimality conditions in the original problem (P); see below.
Similarly we observe that problem (Py) defined in (6.3), (6.20)-(6.23)
equivalently reduces to the (M P) form (6.29) with the cost function

90(2) : = @(x0, xn) + [lx0 — %(a)|?
NZLoeti (6'38)
+Z/ |:l?(xj',vj,t)+||Uj*)?(l)H2i| dt
j=0 7l

and the same constraints (6.35)—(6.37). The difference between (6.34) and
(6.38) consists of replacing

Tj+1

N—1 N—-1
hy Y 9(xj,v;) by Z/ P (xj, v, 1)dt
j=0 j=0 "t

where the latter allows us to deal with summable (in Bochner’s sense) inte-
grands @ (x, v, -). In order to derive necessary optimality conditions for prob-
lems involving measurable/summable integrands, we need an auxiliary result
(certainly important for its own sake) ensuring the subdifferentiation under the
integral sign, which can be viewed as an “infinite sum” (continuous measure)
extension of the subdifferential sum rule for finite sums of Lipschitzian func-
tions obtained in Subsect. 3.2.1. However, the validity of the integral result
requires more restrictions on the space in question: we assume its reflexivity
and separability versus the Asplund structure in the finite sum rule used in
Theorem 6.17. Although the following subdifferential formula holds in rather
general measure spaces, we present it only for the case of real intervals, say
T = [0, 1], needed in subsequent applications. Recall that the integral of a
set-valued mapping is always understood as the collection of integrals of its
summable selections.

Lemma 6.18 (basic subgradients of integral functional). Let X be a
reflexive and separable Banach space. Given X € X, assume that ¢: X x[0, 1] —
IR is measurable in t for each x near x and locally Lipschitzian around x with
a summable modulus on [0, 1]. Then one has

1

8(/01(p(«,t)dt>()E)Ccl/0 d9(%.1)dt , (6.39)
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where the subdifferential on the right-hand side is taken with respect to x, and
where the closure “cl ” is taken with respect to the norm topology in X*.

Proof. First we observe that the mapping d¢(x, -): [0, 1] = X* is closed-valued
and measurable in the standard sense for set-valued mappings F: T =3 Y, i.e.,
that the inverse image F~!(®) is measurable for any open subset ® C Y;
for closed-valued mappings such a measurability admits many other equiva-
lent descriptions; see, e.g., Theorems 14.3 and 14.56 in Rockafellar and Wets
[1165] that hold in infinite dimensions. Note also that, in the case of separable
image spaces, this measurability is equivalent to strong measurability (i.e., the
possibility of the a.e. pointwise approximation by a sequence of step map-
pings) that is specific for the Bochner integral under consideration. By the
well-known theorems on measurable selections (see, e.g., the afore-mentioned
book [1165] as well as the early book by Castaing and Valadier [229]) there
are measurable singe-valued mappings &: [0, 1] — X* such that £(r) € d¢(X, 1)
for a.e. t € [0, 1]. Moreover, since X* is separable and d¢(X;-) is integrably
bounded by the summable Lipschitz modulus of ¢(-, t) as easily follows from
the assumptions made (see Corollary 1.81), every measurable selector & of
d¢(x;-) is Bochner integrable on [0, 1]. Hence the multivalued integral on the
right-hand side of (6.39) is well-defined and nonempty.

It follows from Clarke [255, Theorem 2.7.2] that a counterpart of (6.39)
holds with the replacement of the basic subdifferential by the Clarke gener-
alized gradient of Lipschitz functions on both sides. Using now Theorem 3.57
and the reflexivity of X, we have

8(/01g0(~,t)dt) (%) C /01 clcode(x, t)dr ,

since the weak closure agrees with the norm closure for convex sets in reflexive
spaces by the Mazur theorem. On the other hand, it is known as an infinite-
dimensional extension of the celebrated Lyapunov-Aumann theorem (see, e.g.,
Sect. 1.1 in Tolstonogov [1258]) that

1 1
/ cleco F(t)dt = cl / F(t)dt
0 0

for every compact-valued, strongly measurable, and integrable bounded map-
ping. This gives (6.39) and ends the proof of the lemma. A

Based on Theorem 6.17 and the subsequent discussions, we can similarly
formulate and justify the extended Euler-Lagrange and transversality inclu-
sions for optimal solutions to both discrete approximation problems (Py) and
(Py). The differences between the above ones for problem (DP) in Theo-
rem 6.17 and those for problem (Py) are just in terms converging to zero as
N — co. The Euler-Lagrange inclusion for problem (Py) is parallel to the one
in (Py) with replacing
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Y t —_—— t
ANaz?(XN(tj), v ( /+12l xn (1)) 7 t,)
N
by the norm-closure of

A fj+1 xn(t: — xn(t;
AN aﬂ(iN(tj), xN(H—l) XN(J)’I> dt
hy Jy, hy

on the right-hand side, which comes from the integration formula of
Lemma 6.18. The latter terms converges to A9 (xX(¢), x(¢),t) as N — oo for
a.e. t € [a, b]; see the proof of Theorem 6.21 in the next subsection.

The results obtained by this approach employing the exact/limiting opti-
mality conditions in the general mathematical programming problems from
Theorem 6.16 require the SNC' assumptions on the sets gph F; and §2 in prob-
lems (Py) and (Py). These assumptions may be restrictive for the limiting
procedure to derive necessary optimality conditions in the original continuous-
time problem (P); so we'll try to avoid or essentially relax them in what fol-
lows. This can be done by starting with approzimate/fuzzy necessary optimal-
ity conditions for problems of mathematical programming that strongly take
into account specific features of the discrete-time problems (Py) and (Py).
It happens that to realize this approach, we need to impose the Lipschitz-like
property of the set-valued mappings F; generating the graphical geometric
constraints in problem (DP), and hence in (Py) and (Py), which is not as-
sumed in Theorem 6.17. On the other hand, the Lipschitz continuity of the
original mapping F(-,¢) in (6.1) is among our standing assumptions (see (H1)
in Subsect. 6.1.1), and thus we don’t have any reservations to employ it in the
context of necessary optimality conditions for discrete approximations.

The next two theorems give approzimate necessary optimality conditions
for local minimizers in sequences of discrete-time problem (Py) and (Py).
Their proofs involve the use of some fuzzy/neighborhood calculus results from
the prior chapters. In particular, we employ the semi-Lipschitzian sum rule
for Fréchet subgradients from Theorem 2.33 and the fuzzy intersection rule
for Fréchet normals from Lemma 3.1. These results provide representations
of Fréchet subgradients and normals of sums and intersections at the refer-
ence points via those at points that are arbitrarily close to the reference ones.
Just for notational simplicity we suppose in the formulation and proof of the
following theorem that these arbitrarily close points reduce to the reference
points in question. This agreement doesn’t actually restrict the generality
from the viewpoint of our main goal in this section to derive necessary op-
timality conditions in the continuous-time problem (P), which is finalized in
the next subsection. Indeed, the possible difference between the mentioned
points obviously disappears in the limiting procedure. The interested reader
may readily proceed with all the details.

Let us start with approximate necessary optimality conditions for the sim-
plified discrete approximation problems (Py) as N — oo described in Re-
mark 6.15, which are efficient under the a.e. continuity assumption on the
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integrand ¢ (x, v, ) in the original problem (P). In what follows IB* stands
as usual for the dual closed unit ball regardless of the space in question, and
subdifferential of ¢ is taken with respect to the first two variables.

Theorem 6.19 (approximate Euler-Lagrange conditions for simpli-
fied discrete-time problems). Let Xy(-) = {xy(t;)| j =0, ..., N} be local
optimal solutions to problems (Py) as N — oo. Assume that X is Asplund,
that Qy s locally closed around (Xy(to), Xn(ty)), that F; is closed-graph and
Lipschitz-like around (Xy(t;), [y (tj41)—Xn(1;)]/ hn), and that the functions ¢
and ¥ (-, -, t;) are locally Lipschitzian around Xy(-) for every j =0, ..., N —1.
Consider the quantities

j+1
9Nj = 2/
1j

Then there exists a number y > 0 independent of N such that for some se-
quences of natural numbers N — oo and positive numbers ey | 0 there are mul-
tipliers Ay > 0 and adjoint trajectories py(-) = {pn(t;) € X*| j =0,...,N}
satisfying the nontriviality condition

Xy (tj41) — Xn ()
hy

—)?(t)Hdt, j=0,...,N—1.

An +|lpn(tw)|| >y as N — o0, (6.40)

the approximate Euler-Lagrange inclusion

t; — t: Oy
(PN(1+1) pN(]),pN(fjH)—)tNﬂb;kv)
hy hy ™
€ AN51§‘ ()EN(IJ'), XN(thrlZlN_ XN(tj> , lj) (641)

+ﬁ((izv(tj), xN(thlN_ 20 ) ; gph Fj) + enIB*

for j=0,..., N —1, and the approzimate transversality inclusion

(o) = 22nb311%(@) — 5w (10)]|. =i (an)) o
6.42

S }\.Né\(p()?N(tg), )?N(IN)) + N((f[\/(lo), )ZN(fN)); QN) + eyhyIB*
with some by, by, € IB*.

Proof. Fixed N € IN, consider problem (Py) in the equivalent (M P) form
(6.29) with the data defined in (6.34)—(6.37). Denote
7= ()ZN([()), ey XN(Z‘N), ﬁN(IQ), e li)N(lel))

and take N so large that constraints (6.22) and (6.23) for xy(-) hold with
the strict inequality. The latter can be clearly done by the strong convergence
result of Theorem 6.13.
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Suppose first that f in (6.36) is metrically regular at z relative to the
intersection = := ZyN...N &y, where the sets Z; are constructed in (6.37).
Since ¢g in (6.34) is locally Lipschitzian around z and by the choice of N, we
employ Theorem 5.16 and find u > 0 such that z is a local optimal solution
to the unconstrained problem:

minimize @o(z) + (|| f(2)]| + dist(z; &) .

Therefore, by the generalized Fermat rule, one has
0€ (o) +llFOll + dist( 2)) ().

Now using the fuzzy sum rule from Theorem 2.33 and remembering our no-
tational agreement, we fix any ¢ > 0 and get

0 € dgo(z) + ud]| £ ()[1(2) + p ddist(z; &) + (e/3)B" .

By Proposition 1.95 on Fréchet subgradients of the distance function and
by the elementary chain rule for the composition || f(z)|| = (¥ o f)(z) with
¥ (y) := |ly]| and the smooth mapping f from (6.36) one has

N—1
0€dgo(2) + Y Vfi(@)e; + Nz &)+ (¢/3)B"
j=0
with some e}* € X*. Observe that

N—1
—\k _k * % * * * * * *
E Vfi(z) e; = (— €0s €0 — €1, ---s€y_o— EN_1,EN_15 —hNeO,...,—hNeNfl)

j=0

by the structure of f(z) in (6.36). Further, it follows from the fuzzy inter-
section rule in Lemma 3.1 and the discussion right after it that, taking into
account the notational agreement, we get

N(Z;E)C N Eo) +...+ N(z: En) + (¢/3)B* .

To justify it, one needs to check the fuzzy qualification condition (3.9) for
the sets involved. It obviously holds for the set intersections of &;, with j =
0,..., N — 1 by the structure of these sets in (6.37). To verify this condition
at the last step, let us show that there is ¥ > 0 for which

N-1

(]\A/(z; ﬂ Ej) —+ yB*) ﬂ ( — IV(ZN;EN) + yB*) ﬂB* C %B*

j=0

whenever z € Z;N(z+yB), j =0,...,N—1,and zy € EyN(z+y B). It follows
directly from the set structures in (6.37) that for any z; € N(z;; &;) with 2} =
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x(’)“j,...,xj{,j,vgj, ...,v1’§,71j) and z; = (Xoj, ..., Xnj, Voj, ..., Un—1;) close to
Z one has the relations

X € D*F,v(xjj,vjj)(—v;]-), xhp=v,=0if i#j, j=0,...,N—-1;

(xgnsXpn) € ]V((xON, xyN); 2y) with xy = vy =0 otherwise .

Therefore, by Theorem 1.43 on Fréchet coderivatives of Lipschitzian map-
pings, we get the estimates

lx5;1l < €ljvy]| forall j=0,...,N—1

provided that F; are Lipschitz-like around (x;;, v;;) with modulus £. This
easily implies the above fuzzy qualification condition at the last step by taking
into account that it holds at all the previous steps with ey :=¢/N.

Next we proceed with estimating Fréchet subgradients of the cost function
@o in (6.34). It is well known from convex analysis that

all - |I*(x) C 2||x||/B* for any x € X

in arbitrary Banach spaces. Using this and applying the fuzzy sum rule from
Theorem 2.33 to the specific form of ¢ in (6.34), we have

~

390(2) C dg(xn(t0), Tn(tn)) + 2l|%n (t0) — X(a)|| B*

N-—1
+hy Y [5?91()%/(6’), o () + (0, 29N,-13*)} + (¢/3)B*
j=0

with taking into account our notational agreement and the construction of fy;.
Now combining the above relationships and estimates in generalized Fermat
rule, one gets

—X00 — Xon — X0 — 2bK;H)@v(fo) - )E(a)” —ul + el € elB*,
—xfj—hNujf—e}‘_1+ej€£B*, j=0,...,N—1,

* * * *
—Xyy — Xy —en_q € eB*,

—v}; — hyw? —Oy;by; + hye; €eB*,  j=0,...,N -1

with some b*j, b* € IB*,

(xf,v)) € ]V((XN(I_,-), XN(tHl})lixN(tj));gph F_,-), and

ijo Yij
N

(x5, x3) € B (Enr0), n (1)), (e, w]) € 89, (), Inltjen) = X’V(”))
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for j =0,..., N — 1. Denoting
pn(to) == —xoy — Anxg +eg and py(t)) :=hyej_q, j=1,...,N,

we arrive at the approximate Euler-Lagrange and transversality inclusions
(6.41) and (6.42) with Ay = 1 for any N € IN sufficiently large and any
¢ = ey. Note that the nontriviality condition (6.40) is obviously fulfilled with
yy = 1 in the metric regularity case under consideration.

It remains to consider the case when the mapping f from (6.36) is not
metrically reqular at 7 relative to the set intersection & := &y N...N Ey.
In this case the extended mapping fz(z) := f(z) + A(z; &) is not metrically
regular around Z in the sense of Definition 1.47(ii). We now apply the neigh-
borhood characterization of metric regularity in Asplund spaces obtained in
Theorem 4.5. It is not hard to observe that this criterion can be equivalently
written as follows: a closed-graph mapping F: X =2 Y between Asplund spaces
is metrically regular around (X, y) € gph F if and only if there is a positive
number v such that

ker D*F(x,y) C B* whenever x € x +vIB, y € F(x)N (7 + viB).

Applying this result to the mapping f(z) + A(z; &) that is not metrically
regular around z, we have the following assertion as N is fixed: for any n > 0
there are z € 7 + nIB and e* € ker D* f=z(z) with e* = (¢f, ..., ey ;) € (X*)V
satisfying ||e*|| > 1. Thus

0 € D* fz(z)(e*) for some le*]] >1 and z€z+4+VviB.

Fixed ¢ > 0, we employ the coderivative sum rule from Theorem 1.62(i) and
then the above intersection rule for Fréchet normals that give

=

N—1
0€e Z Vfi(z)"e; + ZN(Z}‘; Z;)+eB”
j=0 j=0

with some z; € &E; N (z 4+ ¢IB). According to our notation agreement we may
put z; = z =  for simplicity. Thus there are z} € N(z; &;) satisfying

N N—-1
_sz € Z ij(Z)*€7 +eB* .
=0 i=0

Taking into account the structures of the mapping f in (6.36) and the sets
E; in (6.37), we find as above dual elements

(x5, v5) € Z\AJ((J?N(U)’ Inltia) - iN(tj));gPh Fj)

12 - hN

for j=0,...,N—1and
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(X Xiw) € N (B (10). v (13)): 2)

satisfying the relations

—X3o — Xy + €5 € eBT,

* * * * . _
—xj;—ei_1te; ceB*, j=0,....N—1,

* * * *
—Xyy — Xy —en_q € eB,

—v}kj—i—hNe;f eceB*, j=0,...,N—1.
Define the adjoint discrete trajectory py(t;), j =0,..., N, by
pn(to) == —xoy +e5 and py(t):=ej_4, j=1,...,N.

It follows from the above constructions that the pair (Xy(-), py(-)) satisfies
the Euler-Lagrange inclusion (6.41) and the transversality inclusion (6.42)
with Ay = 0 and arbitrary ey = & > 0. Moreover, the adjoint trajectory py(-)
obeys the following nontriviality condition:

lpn ()| + ...+ |[|pa(ty)|| > 1 for all large N € IN .

Let us finally prove that, by the Lipschitz-like assumption on F;, the non-
triviality condition in this case can be equivalently written as || pn(tn)|| > 1,
which agrees with (6.40) as Ay = 0. The approximate Euler-Lagrange inclu-
sion (6.41) can be now rewritten in the form

XN (tj41) — Xn ()
hy

pa(tji+1) — pa(t))

€ B*Fj(iN(tj), )(pr(th)JrB*)

+eB* for j=0,...,N—1.

Then the Lipschitz-like property of F; assumed in the theorem with modulus
£ = £ yields by Theorem 1.43 that

[Ix7]l < £[lvi|| whenever x} € ﬁ*Fj(xj, v;)(v})
and (x;, v;) around (Xy(t;), [¥n(tj11) — %n(2;)]/ hn). Thus
[ px(ev-2)ll < lpwaw)I[(1 + wt) + hye
Continuing this process, one has
[pn ()| < exp (€(b—a))|pn(tn)|| + e(b—a) forall j=0,...,N.

Suppose that the nontriviality condition (6.40) doesn’t hold along with (6.41)
and (6.42) in the case of Ay = 0 under consideration. Take a sequence y; | 0
as k — oo and choose numbers N, and &; such that
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Ne= [1/wl, e <y¢ and |[py(n)| <y, ke,

where [-] stands for the greatest integer less than or equal to the given real
number. By the adjoint trajectory estimate we have

Ny
> o))l < 2Neyiexp (£(b — @) + exNi(b — a)
j=1
<ycexp(€(b—a)) +wb—a)l0 as ke N,

which contradicts the fact established above. This therefore completes the
proof of the theorem. A

Finally in this subsection, we obtain approrimate necessary optimality con-
ditions for the sequence of discrete-time problems ( Py) defined in (6.3), (6.20)—
(6.23). The difference between these problems and the simplified problems
(Py) is that (Py) deal with approximating summable integrands @ (x, v, -) in
the original problem (P), which is reflected by the integral term involving ¢ in
the cost function (6.20). The latter term makes the analysis of problems (Py)
to be more complicated in comparison with the one for (Py). To proceed,
we need to use Lemma 6.18 on the subdifferentiation under the (Bochner)
integral sign, which requires additional assumptions on the space X. The next
theorem incorporates these developments in the framework of the extended
Euler-Lagrange inclusion for (Py). We keep our notational agreement dis-
cussed before the formulation of Theorem 6.19.

Theorem 6.20 (approximate Euler-Lagrange conditions for discrete
problems involving summable integrands). Let xy(-) = {¥n(t;)| j =
0,..., N} be local optimal solutions to problems (Py) as N — oco. Assume
that X is reflexive and separable, that ¢, F;, 2y, and Oy, are the same as in
Theorem 6.19, and that ¥ satisfies assumption (H3) of Subsect. 6.1.3 with the
replacement of continuity by Lipschitz continuity. Then there exists a number
y > 0 independent of N such that for some sequences of natural numbers
N — oo and positive numbers ey | 0 there are multipliers Ly > 0 and adjoint
trajectories py(-) = {pn(t;) € X*| j = 0,..., N} satisfying the nontrivial-
ity condition (6.40), the approzimate transversality inclusion (6.42), and the
Euler-Lagrange inclusion in the modified form

(pN(fjH) —pn(t))
hn

A lji+1 xn(t; — Xy (t;
e MV g / aﬁ(x,v(t,-), I (tj) = S () t) dr (6.43)
hN f hy

Onj ,«
cpn(tjsn) — )‘Nmij)

J

+N ((XN(tj)a XN(ZM;N_ (L) ) ;gph Fj) + exhyIB*

forall j =0,...,N —1 with some by; € IB*.



198 6 Optimal Control of Evolution Systems in Banach Spaces

Proof. Each problem (Py) can be equivalently written in the (MP) form
(6.29) with the data defined in (6.35)—(6.38). Now we proceed similarly to
the proof of Theorem 6.19 using additionally Lemma 6.18 to calculate sub-
gradients of integral function. This becomes possible under the additional
assumptions on X made in the theorem and gives the modified form (6.43) of
the approximate Euler-Lagrange inclusion. A

Taking into account the value convergence results of Theorem 6.14, we can
treat the necessary optimality conditions obtained in this subsection for the
discrete approximation problems under consideration as suboptimality condi-
tions for the original problem (P). Moreover, the strong convergence results
presented in Theorem 6.13 and Remark 6.15 allow us to view the above nec-
essary optimality conditions for the discrete-time problems as suboptimality
conditions concerning a given relaxed intermediate local minimizer for the
original problem. Note that the assumptions made in Theorems 6.13 and 6.14
ensure the ezistence of optimal solutions to the discrete approximations, while
it is not the case for the original continuous-time problem (P) in either finite-
dimensional or infinite-dimensional setting. Necessary optimality conditions
for relaxed local minimizers to problem (P) are considered next.

6.1.5 Euler-Lagrange Conditions for Relaxed Minimizers

The aim of this subsection is to derive necessary conditions for the underlying
rilm. to the original Bolza problem (P) involving constrained differential
inclusions by passing to the limit from the ones for discrete approximations
obtained in the preceding subsection. This is based on the strong convergence
result for discrete approximations given in Theorem 6.13, on the approximate
necessary optimality conditions for the discrete problems (Py) and (Py) from
Theorems 6.19 and 6.20, and on stability properties of the generalized differ-
ential constructions. The major ingredient involved in this limiting procedure
is the possibility to establish an appropriate convergence of adjoint trajecto-
ries, which allows us to pass to the limit in the approximate Euler-Lagrange
inclusions. This is done below by employing the coderivative characterization
of Lipschitzian stability used also in the preceding subsection.

Let us first clarify the assumptions needed for the main results of this
subsection. They involve of course those ensuring the strong convergence of
discrete approximations and the fulfillment of the (approximate) necessary
optimality conditions in discrete-time problems (Py) and (Py) used below.
In fact, not too much has to be added for furnishing the limiting process to
derive pointwise necessary optimality conditions in the original Bolza problem
(P) via discrete approximations.
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In what follows we keep assumptions (H1) and (H2) from Subsect. 6.1.1
on the mapping F in (6.1) and consider the Lipschitzian modification of as-
sumptions (H3) and (H4) from Subsect. 6.1.3:

(H3") 9 (-, -, t) is Lipschitz continuous on U x (mgIB) uniformly in ¢t €
[a, b], while ¥ (x, v, -) is measurable on [a, b] and its norm is majorized by a
summable function uniformly in (x,v) € U X (mpiB).

(H4') ¢ is Lipschitz continuous on U x U; 2 C X x X is locally closed
around (x(a), x(b)) and such that the set proj£2 N (X(a) + ¢IB) is compact
for some ¢ > 0.

Note that (H3") contains the measurability assumption on 9 (x, v, ), which
corresponds to Theorem 6.20. The latter imposes more restrictive requirement
on the state space X in comparison with Theorem 6.19, which however relates
to the a.e. continuity of ¥ (x, v, -) in the convergence result for problem (P y);
see Remark 6.15. Taking this into account, we consider also another modifi-
cation of (H3) that is an alternative to the above assumption (H3'):

(H3") ¥(x, v, ) is a.e. continuous on [a, b] and bounded on this interval
uniformly in (x,v) € U x (mpIB), while 9 (-, -, t) is Lipschitz continuous on

O,(1) == {(x,v) €U x (mp +v)B| It € (t — v, 1] with v € F(x,1)}
uniformly in 7 € [a, b] for some v > 0.

Dealing with the a.e. continuous mappings F(x,-) and ¢(x, v, ) in the
limiting procedures involving ¢, we use extended normal cone Ny from Defi-
nition 5.69 to the moving sets gph F(+) and the corresponding subdifferential
of ¥(x,v,t). Although these constructions may be different from the basic
normal cone and subdifferential in the case of non-autonomous objects, they
agree with the latter in general settings ensuring normal semicontinuity; see
the results and discussions after Definition 5.69. Note that we don’t need to
replace the basic subdifferential of the integrand ¥ by the extended one assum-
ing the measurability of ¥ in r as in (H3"). We also don’t need to replace the
basic normal cone to gph F in the next Subsect. 6.1.6 dealing with measurable
set-valued mappings in differential inclusions.

Recall that, given (x, v,f) with v € F(x, 1), the extended normal cone to
the moving set gph F(¢) at (x, ) € gph F(f) is, in the case of closed subsets
in Asplund spaces,

N ((%,9);gph F(7)) := Limsup N((x,v);gph F(r)) .

(x,v,0)—(x,0,1)
Correspondingly, the extended subdifferential of 9 (-, -, 1) at (x, v) is

9,9(x,v,1) ;== Limsup 51?(x,v,t),

(x,v,0)—=(x,0,1)
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where 99 (-,-, 1) is taken with respect to (x,v) under fixed 7. Note that
949 (X, U, 1) can be equivalently described via the extended normal cone N to
the moving epigraphical set epi#(¢). One can see that these extended objects
reduce to the basic ones N(-;gph F) and 3¢ when F and ¢ are independent
of t, as well as in the more general settings discussed above.

Now we are ready to formulate and prove the extended Euler-Lagrange
conditions for relaxed intermediate minimizers in the original Bolza problem
(P). We consider separately the two cases: when the integrand ¢ is a.e. con-
tinuous in ¢, and when it is summable. Although the second case imposes less
requirements on the integrand and gives a better form of the Euler-Lagrange
inclusion, in the first case we are able to obtain necessary optimality con-
ditions in more general Banach spaces. Let us start with the first one. The
strong PSNC property used below is defined and discussed in Subsect. 3.1.1.

Theorem 6.21 (extended Euler-Lagrange conditions for relaxed lo-
cal minimizers in Bolza problems with a.e. continuous integrands).
Let x(-) be a relazed intermediate local minimizer for the Bolza problem (P)
under assumptions (H1), (H2), (H4"), and (H3"). Suppose also that both spaces
X and X* are Asplund and that the set 2 is strongly PSNC' at (%(a), x(b))
with respect to the second component. Then there are . > 0 and an absolutely
continuous mapping p:la,b] — X*, not both zero, satisfying the extended
Euler-Lagrange inclusion

(u, p(t)) € 3.0 (x(2), x(2), 1)

p(t) € cleo {u € X*
+N ((x(2), x(1)); gph F(t))}

(6.44)

for a.e. t € [a, b] and the transversality inclusion
(pla). ~p(b)) € 2dp(x(a), %(b)) + N((¥(a), 5(0)): @) . (6.45)

Proof. We derive these conditions by passing to the limit in the necessary op-
timality conditions for discrete-time problems (Py) from Theorem 6.19 with
taking into account the strong convergence of the simplified discrete approxi-
mations; see Theorem 6.13 and Remark 6.15. Recall that the Asplund property
of X is equivalent to the Radon-Nikodym property of X*; see Subsect. 6.1.1.
Since X is a closed subspace of X** and X™* is assumed to be Asplund, this
yields that X has the Radon-Nikodym property. Thus all the assumptions of
Theorem 6.13 are fulfilled, which allows us to employ the strong convergence
of discrete approximations.

Note that the assumptions made clearly ensure the fulfillment of the ones
in Theorem 6.19. Employing the necessary optimality conditions for (P y) ob-
tained therein, we find (sub)sequences of numbers Ay > 0 and discrete adjoint
trajectories py(-) = {pn(t;)| j =0, ..., N} satisfying inclusions (6.40)(6.42)
with some ey | 0 as N — oo. Observe that without loss of generality the
nontriviality condition (6.40) can be equivalently written as
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Av+lpn(@n)|| =1 forall N e IV,

because the number y > 0 is independent of N. Also one can always suppose
that Ay > A >0as N — oo.

In what follows we use the notation xy(¢) and py(¢) for piecewise linear ex-
tensions of the corresponding discrete trajectories to [a, b] with their piecewise
constant derivatives X y(¢) and py(t). Having y; defined in Theorem 6.19, we
consider a sequence of functions Oy: [a, b] — IR given by

Onj

GN([) = Iy

—by; for t €ty tjy1), j=0,....,N—1.

Invoking Theorem 6.13, we get

/ low(®) |dt<Z€NJ§22/

=2/ () — 5Ol df = vy > 0 as N = 00

xN ’J+1 W) i
N

This allows us to suppose without loss of generality that
xn(t) = x(t) and Oy(t) =0 ae. t €a,b] as N — 0.

Consider the approximate discrete Euler-Lagrange inclusions (6.41) along
the designated sequence of N — oo, which is identified with the whole set of
natural numbers IN. By (6.41) we find

I (tjv1) — fzv(fj))

(v viy) € B9, (), 22

and ey , ey; € IB* such that the inclusions

(PN(fj+1) — pn(t))

— )»Nx* ) + 81\/6*,
hN Nj N]

I Xn(tiv1) — xn(t Oni -
€ D*F; (xN(tj), v ( J+1})Z v ( J)) ()\,NU;]]- +ANh_Mij — pn(tjt1) +8N€?§/f)
N N :

hold for all j =0,..., N—1and all N € IN. It follows from the local Lipschitz
continuity of ¢ assumed in (H3’) and from Proposition 1.85 that
[[(xn;> vyl < €y forall j=0,...,N—1 and Ne N,

where £y is a uniform Lipschitz modulus of # (-, -, #) independent of ¢ € [a, b].
By the Lipschitz continuity of F in (H1) and the coderivative condition of
Theorem 1.43 we get the estimates
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HPN(tj+1) — pn(t))
hn

* *
— Anxy; +éney,

. Onj , « ~
< KFH)»Nij + )»Nh—ijj — pn(tj41) +eney, H
N

for j = 0,..., N — 1. Similarly to the proof of Theorem 6.19 with taking
lpn(tn)]] < 1 into account, we derive from these estimates that py(¢) is
uniformly bounded on [a, b] and that

[pv @) <@+ Bllon ()] ae. t€a,b]

with some positive numbers o and 8 independent of N. Since both spaces
X and X* have the RNP, it follows from the Dunford theorem on the weak
compactness in L' ([a, b]; X*) that a subsequence of { py(-)} converges to some
v(-) € Lt ([a, bl; X*) weakly in this space. Employing the weak continuity of
the Bochner integral as a linear operator from Ll([a, bl; X*) to X* and the
estimate ||py(b)|]| < 1, we conclude that there is an absolutely continuous
mapping p: [a, b] — X* satisfying

p(t) ::p(b)+/bv(s)ds, a<t<b,

where p(b) is a limiting point of {py(b)} in the weak* topology of X*, and
such that the values py(¢) converge to p(t) weakly in X* (and hence weak*
in this space) for all ¢ € [a, b]. Furthermore, py(-) = p(-) = v(¢) in the weak
topology of Ll([a, bl; X *) Then the classical Mazur theorem ensures that
some sequence of convexr combinations of {py(-)} converges to p(-) strongly
in Ll([a, h];X*) as N — oo, and hence (passing to a subsequence with no
relabeling) it converges to p(7) almost everywhere on [a, b].

Given any N € IN, the approximate Euler-Lagrange inclusion (6.41) can
be rewritten as

pn(t) € {“ € X*| (u, pn(tj31) — *nOn (1)) € )»Ngﬁ(fzv(fj),fzv(f)v t)

N (e (1), (1)) gph F (1)) + en B }

for t € [tj, tj41) with j =0,..., N — 1. Now passing to the limit as N — oo
and using the pointwise convergence results established below, we arrive at
the extended Euler-Lagrange inclusion (6.44).

To derive the transversality inclusion (6.45), we take the limit in the dis-
crete ones (6.42) as N — oo. The only thing to clarify is the possibility to
pass from Fréchet normals to 2y = £2 + ny B to the basic normals to §2. The
latter can be easily done by using the sum rule from Theorem 3.7(i) and the
fact that ny /. 0 as N — oo.

It remains to justify the nontriviality condition (A, p(-)) # 0. Assuming
that A = 0, one may put Ay = 0 for all N € IN without loss of generality.
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We need to show that p(-) is not identically equal to zero on [a, b]. Suppose
the contrary, i.e., p(f) = 0 whenever ¢t € [a,b]. Then it follows from the

above proof that py(t) 250 for all 1 € [a, b]; in particular, py (%) 5 0 and

pn(ty) 2 0 as N — oo. The discrete transversality inclusion (6.42) is written
in this case as

(pw(t0), —pw(tn)) € N((En(to), En(tn)); 2 + nyIB) + ey B* . (6.46)

Using again Theorem 3.7(i) for the Fréchet normals cone to the sum in (6.46)
and then employing the strong PSNC property of £ at (X(a), X(b)) with re-
spect to the second component, we get ||pn(ty)|| = 0 as N — oo, which
contradicts the nontriviality condition (6.42) in Theorem 6.19 and completes
the proof of this theorem. A

The next theorem gives necessary optimality conditions in the extended
Euler-Lagrange form for the original Bolza problem (P) derived by passing to
the limit from the approximate necessary optimality in the discrete-time prob-
lems (Py). In contrast to Theorem 6.21, this theorem applies to the summable
integrands ¢ (x, v, -) and gives a better form of the Euler-Lagrange inclusion.
On the other hand, it imposes more restrictive assumptions on the state space
X in question. In the formulations and proof of this theorem we keep the same
notational agreement as for Theorem 6.21 discussed above.

Theorem 6.22 (extended Euler-Lagrange conditions for relaxed lo-
cal minimizers in Bolza problems with summable integrands). Let
X(+) be a relazed intermediate local minimizer for the Bolza problem (P) under
assumptions (H1), (H2), (H3'), and (H4’). Suppose also that the space X is
reflezive and separable and that the set 2 is strongly PSNC at (x(a),x(b))
with respect to the second component. Then there are a number A > 0 and
an absolutely continuous mapping p: la, b] — X*, not both zero, satisfying the
extended Fuler-Lagrange inclusion

p(t) € co{u e Xx*

(u, p(1)) € A3V (x(2), x(1), 1)

_ (6.47)
+N4 ((x(r), x(1)); gph F(t))}

for a.e. t € [a, b] and the transversality inclusion (6.45).

Proof. We follow the lines in the proof of Theorem 6.21 using the sequence
of discrete approximation problems (Py) instead of (Py). The only differ-
ence is in the justification of the extended Euler-Lagrange inclusion (6.47)
in comparison with (6.44) that are based on generally different discrete-time
counterparts (6.43) and (6.41) under somewhat different assumptions.

To proceed, we suppose for notation convenience that the discrete Euler-
Lagrange inclusions (6.43) hold as N — oo without taking the closure of the
set-valued integral therein; this doesn’t restrict the generality as follows from
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the proof below. Then, by (6.43) and the definition of the Fréchet coderivative,
there are dual elements

L1 xn(t: — xn(t;
(x,*vj,v,*vj)e/ aﬂ(xN(t,),xN(f“})l xN(J),t)dt, j=0,...,N—1,
t N

j

as well as ey, ey; € B satisfying the inclusions

(PN(fj+1) — pn(t))

— )\.Nx* ) + 81\/6*,
hN Nj N]

e D*F, ()EN(tj)’ xN(tj+1})ZN -xN(tj)) (ANU,’t,j + AN%’b;‘W — py(tis1) + sNE;f)
that are fulfilled for all j = 0,..., N — 1 along a sequence of N — o0; put
below N € IN for simplicity. Following the proof of Theorem 6.21, we find
an absolutely continuous mapping p:[a,b] — X* such that py(t) — p(¢)
weakly in X* for all ¢ € [a, b] and a sequence of convex combinations of py ()
converges to p(t) almost everywhere on [a, b] as N — oo. Then rewrite the
above discrete-time inclusions in the form

pn(t) € {u € X*

)\’ * *
(u, pn(tj41) — AnOn (1)) € ﬁ(xzvj’ vy;)

+N (% (1), n(1)); 8P F (1)) + eNB*}

for t € [tj,tj41) with j = 0,..., N — 1. By the construction of (xj(,j, v,’(,j)
there are summable mappings uy;: [t;, t;+1] — X* and wy;:[t;, tj41] — X~
satisfying the relations

(i (1), wh (1)) eBﬁ(iN(tj),XN(tj)_}liN(tj+1),t) ae. 1€t ti41]

(xRjo V) LU \ .

T:H/tl (uy; (), wy; (1)) dt for j=0,....N—1.
Define the sequences of mappings uy: [a, b] — X* and wy: [a, b] = X* on the
whole interval [a, b] by

(un (1), wy (1)) == (un; (1), wy; (1)) for 1 €[tj,tj41), j=0,....N—1.

Since uy (-) and wy (-) are integrable bounded on [a, b], there are subsequences
of them that converge, by the Dunford theorem, to some u*(-) and w*(-) in
the weak topology of L! ([a, bl; X *) Invoking again the Mazur weak closure
theorem and using the strong convergence of Xy (-) — x(-) from Theorem 6.13,
one has the relations
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(u*(r), w*(r)) € cleod¥ (x(¢), x(1), 1) = codV (x(r), X(¢), 1) ae.t € [a,b],

where the closure operation can be omitted due to the reflexivity of X and
the compactness of co 39 (xX(¢), x(¢), t) in the weak topology of X*, and hence
this set is closed in the strong topology of X. Employing now the infinite-
dimensional counterpart of the Lyapunov-Aumann theorem mentioned in the

proof of Lemma 6.18, the well-known property

1 t+h

’%%E/r f(s)ds = f(t) ae. 1€ la,b]

of the Bochner integral, and also the weak closedness of the basic subdifferen-
tial for locally Lipschitzian functions on reflexive spaces (cf. Theorem 3.59),

we conclude that there are subgradients (x*(r), v*(¢)) of 9 (-, -, 1) such that

z—z(x,f,j, N ;) D (x* (1), v* (1)) € 00 (%(2), X(1). ) ae. 1€ [a,b].

Passing finally to the limit in the above inclusions for py(-) as N — oo, we
arrive at the desired extended Euler-Lagrange inclusion (6.47), where the clo-
sure operation can be dropped in the reflexive case under consideration due to
the uniform boundedness of py(-) and py(-); see the discussion above. Note
that it is sufficient to use the basic subdifferential in the integrand @ (-, -, ¢) in
(6.47), but not the extended one as in (6.44), in the case under consideration.
Thus we complete the proof of the theorem. A

The nontriviality condition in both Theorems 6.21 and 6.22 ensures that
the pair (X, p()) satisfying the Euler-Lagrange and transversality inclusions
is not zero. The next result presents additional assumptions under which we
have the enhanced nontriviality conditions: (A, p(b)) # 0.

Corollary 6.23 (extended Euler-Lagrange conditions with enhanced
nontriviality). Let x(-) be an r.i.l.m. for the Bolza problem (P). In addition
to the assumptions in Theorems 6.21 and 6.22, respectively, suppose that

(a) either 2 = 2, X 2, where §2, is SNC at x(b);

(b) or £2 is strongly PSNC' at (¥(a), X(b)) relative to the second compo-
nent, F(-,t) is strongly coderivatively normal at (x(t),x(t)), and gph F(t) is
normally semicontinuous at this point for a.e. t € [a, b].

Then one has the extended Euler-Lagrange and transversality inclusions (6.44)
and (6.45) (respectively, (6.47) and (6.45)) with the replacement of

Ny ((%(t). x(1));gph F(r)) by N((¥(t).x(1));gph F(1))
in case (b) and with the enhanced nontriviality condition A + || p(b)| = 1.

Proof. Following the (same) proof of the nontriviality condition in Theo-
rems 6.21 and 6.22, one has the transversality inclusion (6.46) for the adjoint
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trajectories py(-) in the discrete approximations with Ay = 0. Assuming (a),
we arrive at

—pn(tn) € ﬁ(fN(fN); 2, +nB) +eyB* as N — oo,

which implies, by Theorem 3.7(i) and the SNC property of 2, at x(b), that

lpn(tn)|| — O whenever py(ty) “5 0 as N — oco. This clearly contradicts the
nontriviality condition for the discrete-time problems (Py) and (Py) from
Theorems 6.19 and 6.20, respectively.

It remains to justify the nontriviality condition A + || p(b)|| # 0 in case (b).
It follows from the fact that, under the assumptions made in (b), p(¢) = 0
for all ¢ € [a, b] whenever p(-) satisfies the extended Euler-Lagrange inclusion
(6.44) with A = 0 and p(b) = 0. Indeed, invoking the normal semicontinuity
of gph F(t) in this case, we write (6.44) as

p(t) € cleo {u eXx”

(u, p(1)) € N((X(t),f?(t));gphF(t))} ae. 1€ la,b]
that is equivalent, by the strong coderivative normality assumption in (b), to
p(t) € clco Dy F (x(t), %(2)) (— p(r)) ae. t € a,b].

The latter clearly implies, due to the mixed coderivative condition for the
Lipschitz continuity from Theorem 1.44, that

p(t) =0 on [a,b] when p(b)=0,
which completes the proof of the corollary. A

If X is finite-dimensional, any set is SNC and any mapping F: X = X
is strongly coderivatively normal at every point. Thus we automatically have
the extended Euler-Lagrange conditions in Theorem 6.22 and Corollary 6.23.
Another setting that doesn’t require any SNC/PSNC' assumptions on the con-
straint set £2 is the case of endpoint constraints given by a finite number of
equalities and inequalities with locally Lipschitzian functions considered next.

Corollary 6.24 (extended Euler-Lagrange conditions for problems
with functional endpoint constraints). Let the endpoint constraint set §2
in problem (P) be given by

2 = {(xa,xb)eX2 0i(xg,xp) <0, i=1,...,m,

¢i(xq, xp) = 0, i=m+1,...,m+r},

where each ¢; is locally Lipschitzian around (x(a),x(b)) together with the
cost function @9 := @. Suppose that all the assumptions of Corollary 6.23
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hold except those related to the SNC/PSNC properties of §2. Then there are
nonnegative multipliers (Ao, ..., Amyr) # 0 with

)Li(pi()?(a),i(b))zO, izl,...,m,

and an absolutely continuous adjoint arc p:la,b] — X* satisfying the ex-
tended FEuler-Lagrange inclusions mentioned therein as well as the following
transversality condition:

(p(a), —p(b)) € Z)Via(pi (X(a), x(b))

m—r

+ 30 xifoei(3(@). 20) (- ¢0) (<) 5(1))] -

i=m+1

If, in particular, all ¢; are strictly differentiable at (x(a), X(b)), then there
are (Ao, - ., Amtr) # 0 satisfying the above complementary slackness condition
and the standard sign condition

A >0 for i=0,...,m

and such that the transversality condition

m—+r

(p(a), —p(b)) = > 1 Vi (¥(a), X(b))
i=0

supplements the corresponding Euler-Lagrange inclusion of Corollary 6.23.

Proof. Suppose first that the locally Lipschitzian functions @1, ..., @ui,
satisfy the nonsmooth counterpart of the Mangasarian-Fromovitz constraint
qualification formulated in Theorem 3.86. Then the constraint set £2 defined in
this corollary is SNC at (¥(a), %(b)). Furthermore, it follows from the calculus
rule of Theorem 3.8 specified for F := (¢, ..., @ny,) and

O = {(al,...,am+,)emm+’ o0; <0, i=1,...,m,

o, =0, i:m+1,...,m+r}

therein that the same constraint qualification ensures the inclusion

S mon+ S 0@ Ja (- (@)
i=1 i=m-+1

W>0, i=1,....m+r rgi(z)=0, i:l,...,m}
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for basic normals to the constraint set £2 at the point z := (¥(a), ¥(b)). Then
the transversality inclusion formulated at this corollary follows from (6.45)
with A9 = A, where the nontriviality condition (A, p(b)) # 0 is equivalent
to (A0, .-+ Amtr) # 0. Assuming finally that the qualification conditions of
Theorem 3.86 don’t hold, we immediately arrive at the desired transversality
inclusion with (A1, ..., Amyr) # 0 and complete the proof. A

Note that the enhanced nontriviality condition (AO, p(b)) = 0, inspired by
the one in Corollary 6.23, may not hold in the framework of Corollary 6.24
if the constraint set §2 is not SNC (or strongly PSNC); in particular, when
the Mangasarian-Fromovitz type constraint qualification of Theorem 3.86 is
not fulfilled. It may happen, for instance, for a two-point boundary problem
with x(a) = xg and x(b) = x; involving smooth parabolic systems of optimal
control; see the well-known examples in Fattorini [432] and Li and Yong [789].
On the other hand, the SNC requirement is met in case (a) of Corollary 6.23
when x(a) = xg and x(b) € x1 +rIB with r > 0, since the latter ball is always
SNC (it is actually epi-Lipschitzian by Proposition 1.25).

Observe also that, using the smooth variational description of Fréchet sub-
gradients similarly to the proof of Theorem 5.19 for nondifferentiable pro-
gramming and employing the results of Corollary 6.24 in the case of smooth
endpoint functions, we can derive counterparts of Theorems 6.21 and 6.22
with upper subdifferential transversality conditions; see Remark 6.30 for the
exact formulation and more details.

To conclude this section, let us discuss some particular issues mostly re-
lated to the above Euler-Lagrange conditions for differential inclusions with
infinite-dimensional state spaces.

Remark 6.25 (discussion on the Euler-Lagrange conditions).

(i) It follows from the proof of Theorems 6.21 and 6.22 that the strong
PSNC assumption imposed on §2 to ensure the nontriviality condition may
be replaced by the following alternative assumption on F written as: there is
t € la, b] such that for any sequences t, — t, xp — X(#), vi € F(x, #), and
(xg,vf) € ]V((xk, vk); gph F(#)) one has

(xi, 0)) ™ (0,0) = [|vf]| = 0 as k — oo .

This property is closely related to the strong PSNC property of F at (X(¢),t)
with respect to the image component; cf. also its SNC analog for moving sets
in Definition 5.71.

(ii) Recall that the SNC property of conver sets with nonempty relative
interiors is equivalent by Theorem 1.21 to the finite codimension property of
their closed affine hulls. The strong PSNC property may be essentially weaker
than the SNC one; see, e.g., Theorem 1.75.

(iii) If the velocity sets F(x,t) and the integrand o (x, -, t) are convex
around the given local minimizer, then the Euler-Lagrange inclusion of The-
orem 6.21 easily implies the Weierstrass-Pontryagin mazimum condition
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(p(1), (1)) — A0 (£(1). ¥(1).1) = max {(,:(;), v) — A (2(1). v, t)}

vEF(X(1),1)

for a.e. t € [a, b]. It can be directly derived from the extremal property of
the coderivative of convex-valued mappings in Theorem 1.34. The latter is
the underlying condition of the results unified under the label “(Pontryagin)
maximum principle” in optimal control. It will be shown in the next subsec-
tion that the maximum condition supplements, at least in the case of reflexive
and separable state spaces under some additional assumptions, the extended
Euler-Lagrange inclusion with no convexity requirements. To this end we note
that the SNC (actually strong PSNC) properties required in Theorems 6.21
and 6.22 may be viewed as nonconvexr counterparts of finite codimension re-
quirements in the theory of necessary optimality conditions for controlled
evolution equations of type (6.2) and their PDE specifications known in the
case of smooth velocity mappings f and convez constraint/target sets £2; cf.
the afore-mentioned books by Fattorini [432] and Li and Yong [789] with the
references and discussions therein.

Remark 6.26 (optimal control of semilinear unbounded differential
inclusions). Many important models involving semilinear partial differential
equations can be appropriately described by Cy semigroups; we again refer to
the books by Fattorini [432] and Li and Yong [789] as well as to the subsequent
material of Sects. 7.2-7.4 in this book. In this way an analog of the optimal
control problem (P) from this section can be considered with the replacement
of the differential inclusion (6.1) by the evolution model

x(t) € Ax(t) + F(x(1),1) ,

where A is an unbounded infinitesimal generator of a compact Cy semigroup
on X, and where continuous solutions x(-) to this inclusion are understood in
the mild sense. The latter means that there is a Bochner integrable mapping
v(-) € L'([a, b]; X) such that

v(t) € F(x(r),1) ae. t€la,b] and

t
x(t):ng—a)x(aH/ A=9)y(s)ds, 1€ la,b].

Developing the above approach in the case of the Mayer cost functional
minimize ¢(x(a),x(b)) with (x(a),x(b)) € 2 C X*,

we derive necessary optimality conditions under the additional convexity as-
sumption of the velocity sets F(x,t) around the optimal solution. Then the
extended Euler-Lagrange inclusion in the case of reflexive and separable state
spaces X and autonomous systems (for simplicity) is formulated as follows:
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p(t) € eA*(b_’)p(b)

t
+/ {eA*(J_’)DX,F()E(s), v) (- p(s))‘ v e M(x(s), p(s))}ds
b

for all ¢t € [a, b], where p:[a, b] — X* is a continuous mapping satisfying the
transversality and nontriviality conditions

(p(a), —p(b)) € 109 (x(a), X(b)) + N ((x(a), X(b)); 2), A +][p(b)] #0

with A > 0, where the argmazimum sets M(x, p) are defined by

M(x, p) = {v € F(x)| (p.v) = H(x, p)}

with

H(x, p) :==max {(p,v)| v e F(x)} .

Moreover, the extended Euler-Lagrange inclusion implies in this case the
Weierstrass- Pontryagin maximum condition

(p(t), (1)) = H(%(t), p(t)) ae. € [a,b]

with a measurable mapping v(t) € F(x(¢)) satisfying

p(t) € e O p(b) + /b {eA*(S_’)DX,F()E(s), u(s)) (- p(s))}ds, t €la,b];

see Mordukhovich and D. Wang [970, 971] for proofs and more discussions on
these and related results.

6.2 Necessary Optimality Conditions
for Differential Inclusions without Relaxation

This section is mainly devoted to deriving necessary optimality conditions
for nonconvex differential inclusions without any relaxation based on approx-
imating the original constrained problem by a family of nonsmooth Bolza
problems with no differential inclusions and no endpoint constraints. The ex-
tended Euler-Lagrange conditions for the latter class of unconstrained Bolza
problems and the assumptions made allow essential specifications in compar-
ison with the general results established in the preceding section. By passing
to the limit, we obtain necessary optimality conditions of the Euler-Lagrange
type for arbitrary (i.e., non-relazed) intermediate minimizers for the original
control problems with reflexive and separable state spaces. Moreover, they are
supplemented by the Weierstrass-Pontryagin mazimum condition valid in the
general nonconvex setting. If the state space X is finite-dimensional and the
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velocity sets F(x, t) are convez, the above Euler-Lagrange and maximum con-
ditions are equivalent to the extended Hamiltonian inclusion expressed via a
partial convezification of the basic subdifferential of the Hamiltonian function
associated with F(x, r). We also discuss various generalizations of the results
obtained and present some illustrative examples.

6.2.1 Euler-Lagrange and Maximum Conditions for Intermediate
Local Minimizers

The realization of the approach mentioned above requires some additional
assumptions on the initial data in comparison with Theorem 6.22, while the
a.e. continuity assumption on the velocity mapping F(x,-) can be replaced
by its measurability; see below. Furthermore, it is more convenient in this
section to consider the following Mayer form (Py) of problem (P) studied in
the preceding section, with a fixed left endpoint of feasible arcs:

minimize ¢(x(b)) subject to x(b) € 2 C X
over absolutely continuous trajectories of the differential inclusion
x(t) € F(x(t),1) ae. t€la,b], x(a)=ux0. (6.48)

The general case of nonzero integrands f in the Bolza problem can be reduced
to the Mayer one by standard state augmentation techniques. Note also that,
since the state space X is assumed to be reflexive and separable in what
follows, this notion of absolutely continuous solutions to (6.48) agrees with
the one given in Definition 6.1.

We first formulate the assumptions on the set-valued mapping F in (6.48)
that are weaker than those imposed in Theorem 6.22. Keeping assumption
(H1) from Subsect. 6.1.1 on the compactness and Lipschitz continuity of F
in x with possibly summable functions mp(-) and €r(-) on [a, b] (although
it may also be loosen in some directions by various standard reductions as,
e.g., in [255, 261, 598, 1289]), we replace the a.e. continuity assumption (H2)
by the measurability assumption on F in the time variable ¢ € [a, b]. Note
that all the reasonable notions of measurability are equivalent for set-valued
mappings with closed values in separable spaces (cf. the discussion in the proof
of Lemma 6.18), which is the case in this section.

(H2') F(x,-) is measurable on the interval [a, b] uniformly in x on the
open set U C X taken from (H1).

We also weaken the continuity and Lipschitz continuity assumptions on the
cost function ¢ = ¢(x) from (H4) and (H4') observing that this leads to the
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modified (more general) transversality condition for the Mayer problem under
consideration. Namely, we replace the latter assumptions by the following one:

(H4") ¢ is L.s.c. around x(b) relative to §2, which is suppose to be locally
closed around this point.

On the other hand, the following theorem imposes the additional coderiva-
tive normality and SNC assumptions on F in comparison with Theorem 6.22
and Corollary 6.23. Observe that the coderivative form of the extended Euler-
Lagrange inclusion given below is equivalent to the one from Corollary 6.23 for
¥ = 0 without imposing the normal semicontinuity assumptions on gph F(r).
In the rest of this subsection we study intermediate local minimizers of rank
one from Definition 6.7. Recall that po(-) = ¢(-) + 8(+; §2) as usual.

Theorem 6.27 (Euler-Lagrange and Weierstrass-Pontryagin condi-
tions for nonconvex differential inclusions). Let x(-) be an intermediate
local minimizer for the Mayer problem (Py) under assumptions (H1), H2'),
and (H4"). Suppose in addition that:

(a) the Banach space X is reflexive, separable, and admits an equivalent
Kadec norm;

(b) the function gg is SNEC at x(b), and ils epigraph is weakly closed;

(c) the mapping F(-,1): X = X is SNC at (X(t), (1)), strongly coderiva-
tively normal around this point, and its graph is weakly closed for a.e.
t € la,b].

Then there exist a number A > 0 and an absolutely continuous adjoint arc
p:la, b] — X*, not both zero, satisfying the Euler-Lagrange inclusion

p(t) € coDF(x(1),x(t),t)(— p(t)) ae t€la,b], (6.49)
the Weierstrass-Pontryagin mazimum condition

(p(t),x(1)) = vel{“r(ljgt}z(),t) (p(t),v) ae t€lab], (6.50)

and the transversality inclusion
(= p(b),—1) € N((x(b), B);epigga) . (6.51)

Moreover, (6.51) always implies
—p(b) € d[re +58(-;2)] (x(b)) (6.52)

being equivalent to the latter condition if ¢ is Lipschitz continuous around
x(b) relative to $2.

Proof. Consider the parametric functional

0s(x) := dist((x(b), B);epige) as B € R
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over feasible arcs/trajectories to the original differential inclusion (6.1) with no
other constraints. In what follows we fix the open set U C X from assumption
(H1) regarding x(-). For every B € IR one obviously has

0p(x) < [B — Bl

whenever g is sufficiently close to B = ¢(x(b)). Since ¥(-) is an intermediate
local minimizer for (Py) and by the structure of Og(x), we get

0p(x) > 0 for any B < B

whenever a trajectory x(¢) for (6.48) belongs to some W' !l-neighborhood of
the local minimizer under consideration and such that

x(t) €U forall t€la,b].

Form now the space X" of all the trajectories x(-) for (6.48) satisfying the
only constraint x(7) € clU as t € (a, b] with the metric

b
d(x, y) == / () — 5(0)|| de .

It is easy to see, from Definition 6.1 of solutions to the original differential
inclusion and standard properties of the Bochner integral, that the metric
space X is complete and that the function g(-) is (Lipschitz) continuous on
X for any g € IR. It follows from the above constructions that for every ¢ > 0
there is B, < B such that 8, — B as ¢ | 0 and

0<6,(x)<e< ing(GE(x) +e& with 6, : =6 .
xe
Applying the Ekeland variational principle from Theorem 2.26(i), we find an
arc x.(-) € X satisfying

d(xe, x) < e and 0,(x) + Ved(x, x;) > 6:(x;)

for all x € X. Note that the distance estimate above yields that x.(¢r) € U
as t € (a,b] and that x.(-) belongs to the fixed W'!l-neighborhood of the
intermediate local minimizer x(-) for small & > 0. Hence 6;(x,) > 0.

Next, given any «, ¢ > 0 and the summable Lipschitz constant £(-) from
(6.5), we define the Bolza-type functional

b
JE[x] = 0:(x) + Ved(x, x;) + (x/ \/ 1+ €2(r) dist ((x(r), x(r)); gph F (1)) dt

on the sets of all absolutely continuous mappings x: [a, b] — X, not necessarily
trajectories for (6.48), satisfying x(t) € U as t € (a, b]. To proceed, we need
the following auxiliary result.
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Claim. There is a number a > 1 such that for every e € (0, 1/a) the absolutely
continuous mapping x¢: la, b] — X built above provides an intermediate local
minimum for the Bolza functional J& subject to

x(a)=x9 and x(t)eU for t€(a,b].

To prove this claim, we first observe that there are positive numbers v, y
such that for every arc y(-) satisfying y(a) = xo, y(¢t) € U as t € (a, b], and

b
/ dist (y(¢); F(y(1), 1)) dt < v

there exists a trajectory x(-) for (6.28) with

d(x,y) <y/ \/ 1+ €2(r) dist (( y(1));gph F (1)) dt . (6.53)

Indeed, this follows directly from Filippov’s theorem on quasitrajectories of
differential inclusions (see, e.g., Theorem 1 on p. 120 in Aubin and Cellina
[50] whose proof holds true for infinite-dimensional inclusions under the as-
sumptions made in (H1) and (H2')) and from the estimate

dist (v, F(u, 1)) < /1 + €%(¢) dist((u, v); gph F (1))
that is obviously valid under (H1). Suppose now that the above claim doesn’t

hold. Then for each k € IN there are g € (0,1/k) and an arc y;(-) € X
satisfying y(¢t) € U as ¢ € (a, b],

1
o 1) —xa @1+ [ 1500~ a1 < 1
t€la.b k

and J} [x.,] > JX[y]. Hence yi(-) = X(-) in the norm topology of W'*([a, b]; X)
and, moreover,

JE[xe] = 05 (x5) L0 as k — o00.

Therefore, given any v > 0, we get

/ dist (32.(0); FOu (), 1)) di < J¥ [xa] < v

for large k. This implies, by (6.53), that there are a number y > 0 independent
of k and trajectories xi(-) for (6.28) as k — oo such that

b
d(xk, yi) < )// 1+ G () dist ((yi(r), ye(r)); gph F (1)) dr . (6.54)
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Since the right-hand side of (6.54) converges to zero and since y(-) — X(+)
strongly in W' ([a, b]; X), we get the strong W' !-convergence x;(-) — x(*) as
k — oo, which ensures that all the trajectories x;(-) € X belong to the fixed
WL ([a, b]; X )-neighborhood of the intermediate local minimizer (-) for large
k € IN. This gives

Jskk [xk] > Jskk [xé‘k] > Jakk[yk] = 88k(yk) + \/ad(yksxt?k)

b
—|—k/ dist (ye(2); F(ye(), 1)) dt =: k& .
Now taking into account (6.54) and the construction of 6, we arrive at

k& < Ve (d(xi, xe,) — d (i, xe,)) + 0e, (xx) — O, (W) < 3y

for large k. This is a contradiction, which ends the proof of the claim.

Note that, since U is open in X, the constraint x(¢) € U as ¢t € (a, b] can
be ignored from the viewpoint of necessary optimality conditions. Thus we
may treat x(-) is an intermediate local minimizer for the unconstrained Bolza
problem with finite-valued and Lipschitzian data:

b
minimize ¢, (x(b)) + / 9. (x(1), £(t), 1) dit (6.55)

over absolutely continuous arcs x: [a, b] — X satisfying x(a) = x¢ and lying
in a Wll-neighborhood of x(-), where the endpoint cost function is given by

@ (x) := dist ((x, B:); epige) (6.56)

and where the integrand is

Be(x, v, 1) := oy /1 4+ £2(1) dist((x, v); gph F (1)) + Ve|v — %.(¢)]| . (6.57)

Note that any intermediate local minimizer for the unconstrained prob-
lem (6.55) provides a relazed intermediate local minimum to this problem. It
can be observed from the relaxation result in Theorem 6.11 and its “inter-
mediate” modification given by Toffe and Rockafellar in Theorem 4 of [616],
which is valid in infinite dimensions under the assumptions made. Note also
that assumptions (H1), (H2'), and (H3") ensure that problem (6.55) with the
data defined in (6.56) and (6.57) satisfies all the assumptions of Theorem 6.22
except for the compactness of the velocity sets in (P), which in fact is not
needed in the unconstrained and Wh!-bounded framework of (6.55); cf. the
proof of Theorem 6.22 and the preceding results it is based on.

We now apply the necessary optimality conditions from Theorem 6.22
to problem (6.55) for any fixed ¢ > 0. Using the extended Euler-Lagrange
inclusion (6.47) with the integrand 9, in (6.57) and then employing the
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sum rule from Theorem 2.33(c), find an absolutely continuous adjoint arc
De:la, b] = X* satisfying

pe(t) € co {u € X*

(, pe(r)) € pu(2)ddist ((xe (1), % (1)); gph F (1))

+e(0, %) }

for a.e. t € [a, b] with u(t) :== ay/1+ €2(t). Fixed 1 € [a, b], consider the two
cases regarding (x;(1), x,(1)):

(i) %:(t) € F(xe(2),1) and (i) %:(z) & F(xe(2),1) .

In case (i) we use Theorem 1.97 on basic subgradients of the distance function
at set points, which gives the approximate adjoint inclusion

pe(t) € Co{u €X*

(1 e(1)) € N (2 (1), e (0))s 800 F (1)) + V& (0, 187) }

Considering case (ii) and employing the first projection formula from The-
orem 1.105 for basic subgradients of the distance function at out-of-set points
under the Kadec norm structure of X assumed in (a) (see Corollary 1.106 of
that theorem), we have the inclusion

ddist ((x. (1), %:(r)); gph F (1)) C U N((x,v);gph F(1)) .
(e0) €T ((xe (1), 52 (1)) P F (1))

Taking now into account the pointwise convergence (x(1), X. (1)) — (¥(), x(t))
as ¢ | 0, one has

3diSt((x5(t), xs(t));gphF(t)) C N((;S’ v); gph F(I))

for some (X,, V,) € gph F(r) converging to (x(¢),x(¢)) as & | 0. Thus in case
(ii) we get the approzimate adjoint inclusion

pelr) € co {u € X*| (. pe(t) € N((F, T)sgpb F(1)) + Ve (0, B*) } .

To derive the extended Euler-Lagrange inclusion (6.49) in problem (Py),
one needs to pass to the limit as ¢ | 0 in the approximate adjoint inclusions for
pe(+) in both cases (i) and (ii). Since the two approximate adjoint inclusions
are similar, we may consider only the first one for definiteness. Observe that

Limsup N (s (1) £(1); 0 F(1)) = N ((£(0). £0))s 800 F (1)

by the pointwise convergence of (x,(r), X.(r)) — (¥(z), x(r)) and the robust-
ness property of the basic normal cone from Theorem 3.60 held due to the SNC
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assumption on F. Note also that the approximate adjoint inclusion for p(-)
can be equivalently rewritten via the normal coderivative of F and hence, by
the strong coderivative normality assumption of the theorem, in terms of the
mized coderivative Dy, F. Proceeding similarly to the proof of Theorem 6.21
with the use of the mixed coderivative condition for the Lipschitzian continu-
ity from Theorem 1.44 as well as the classical Dunford and Mazur theorems
as above, we surely arrive at (6.49).

Consider next the transversality inclusion for p.(b) in problem (6.55) with
the cost function ¢, in (6.56). Employing the transversality condition (6.45)
from Theorem 6.22 in this setting, we have just the first terms in (6.45), where
A =1 and ¢(x4, xp) = ¢:(xp). The crucial condition

dist((x:(b), Be); epigg) > 0

ensures that (x.(b), B:) ¢ epigg for all ¢ > 0 sufficiently small. Employing
again Theorem 1.105/Corollary 1.106, one has

(—Ps(b),—)»g) € U N((XHB)QGP1<PQ)
(x,b) €M ((xe,B:); epige)

with some A, > 0. Moreover, we can put A, + ||pe(b)|| = 1 due to the SNEC
property of ¢e at x(b) and hence around this point; see Remark 1.27(ii).
Passing to the limit as ¢ | 0 and taking into account the robustness result
of Theorem 3.60, we arrive at the desired transversality inclusion (6.51) with
A > 0 by putting ¢ | 0. The nontriviality condition A+|| p(b)|| = 1 follows from
the one for (AE, pg(b)) due to the SNEC property of ¢ that surely holds if £2
is SNC at x(b) and ¢ is Lipschitz continuous around this point. The latter is
an easy consequence of Theorem 3.90, which ensures even the stronger SNC
property of ¢ at ¥(b). The equivalence between the transversality inclusions
(6.51) and (6.52) whenever ¢ is locally Lipschitzian around x(b) relative to 2
follows from Lemma 5.23. Note that inclusion (6.52) further implies

—p(b) € 109 (x(p)) + N(x(b); £2)

for Lipschitz continuous cost functions.

The above proof justifies the extended Euler-Lagrange and transversality
conditions in the theorem for arbitrary intermediate local minimizers to prob-
lem (Py) with no relazation. In this general nonconvex setting the extended
Euler-Lagrange inclusion (6.49) doesn’t automatically imply the maximum
condition (6.50). To establish the latter condition supplementing (6.49) and
(6.51), we follow the proof of Theorem 7.4.1 in Vinter [1289] given for a Mayer
problem of the type (Py) involving nonconvex differential inclusions in finite-
dimensional spaces. The proof of the latter theorem is based on reducing the
constrained Mayer problem for nonconvex differential inclusions to an un-
constrained Bolza (finite Lagrangian) problem, which in turn is reduced to a
problem of optimal control with smooth dynamics admitting a direct way to
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derive the maximum principle; cf. also Sect. 6.3. One can check that the tools
of infinite-dimensional variational analysis developed above and the assump-
tions made allow us to extend the given proof to the case of reflexive and
separable spaces under consideration. In this way we establish the maximum
condition (6.50) in addition to the other necessary optimality conditions of
the theorem and complete the proof. A

Remark 6.28 (necessary conditions for nonconvex differential inclu-
sions under weakened assumptions). Some assumptions of Theorem 6.27,
particularly those on the Kadec norm and on the weakly closed graph and
epigraph in (a)—(c), can be relaxed under a certain modification of the proof.
This concerns the application of necessary optimality conditions from The-
orem 6.22 to the unconstrained Bolza problem (6.55). The latter conditions
are expressed in terms of the basic/limiting constructions and then require
the usage of the projection result from Corollary 1.106 to efficiently estimate
basic subgradients of the distance function at out-of-set points under the men-
tioned assumptions. To avoid these extra requirements, one may apply first
a fuzzy discrete approximation version of Theorem 6.27 to the unconstrained
problem (6.55), involving Fréchet normals and subgradients as in the proof of
Theorem 6.21, and then pass to the limit as N — oo and ¢ | 0. In this way,
the realization of which is more involved, we replace the usage of the distance
function result of Corollary 1.106 via basic subgradients by its Fréchet subgra-
dient counterpart from Theorem 1.103 that holds under milder assumptions.

Observe that the SNC and strong coderivative normality properties of F
are automatic when X is finite-dimensional, which also implies the SNEC
property of the extended endpoint function ¢g assumed in Theorem 6.27.
Furthermore, the latter property is not needed (actually it holds automati-
cally under qualification conditions of the Mangasarian-Fromovitz type) in
the general infinite-dimensional case of the theorem if the cost function is lo-
cally Lipschitzian and the endpoint constraint set given via a finite number of
equalities and inequalities defined by locally Lipschitzian functions.

Corollary 6.29 (transversality conditions for differential inclusions
with equality and inequality constraints). Let X(-) be an intermediate
local minimizer for the Mayer problem (Py) with the endpoint constraint set

2 = {x€X|g0,~(x)§0, i=1,...,m; ¢(x)=0, i:m—|—1,...,m+r},

where each @; is locally Lipschitzian around x(b) together with the cost func-
tion @o := @. Suppose that all the assumptions of Theorem 6.27 hold except
the SNEC property of the extended endpoint function ¢g. Then there are non-
negative multipliers (Lo, ..., Amtr) # 0 and an absolutely continuous adjoint
arc p:la,b] — X* satisfying the Euler-Lagrange and mazimum conditions
(6.49) and (6.50) together with the complementary slackness condition

A[<p[()€(b)) =0 fori=1,....,m
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and the transversality inclusion

m-+r

-p(b) € Em:)»iafpt (x(p)) + Z Aj [3%' (x(p)) Ua( - ¢i)(f(b))} :

i=0 i=m+1

If furthermore all ¢;, i =0, ...,m+r, are strictly differentiable at x(b), then
there are multipliers (Ao, ..., Amtr) 0 with &; > 0 asi = 0,...,m and an
adjoint arc p:a,b] — X* satisfying

m+r

—p(b) = Z AV (X(b))

together with the above Euler-Lagrange, Weierstrass-Pontryagin, and comple-
mentary slackness conditions.

Proof. It follows from (6.52) with A := 1o that
—p(b) € rodgo (X(b)) + N (x(b); 2) .

Moreover, ¢ is SNEC at x(b) provided that §2 is SNC at this point; see
Corollary 3.89. Then we proceed similarly to the proof of Corollary 6.24 and
complete the proof of this corollary. A

6.2.2 Discussion and Examples

In this subsection we consider certain generalizations and variants of the above
results, discuss some interrelations and examples. First note that the compre-
hensive generalized differential and SNC calculi developed in Chap. 3 allow
us to derive various consequences and extensions of Theorem 6.27 in the case
of operator endpoint constraints given by

x(b) € F7HO)N 2

with F: X =2 Y and ® C Y; cf. Sect. 5.1 for problems of mathematical pro-
gramming. Let us discuss in more details some other important issues related
to obtained necessary optimality conditions for differential inclusions.

Remark 6.30 (upper subdifferential transversality conditions). Sup-
pose in addition to the assumptions of Theorem 6.21 that the space X admits
a C! Lipschitzian bump function; this is automatic under the reflexivity as-
sumption on X in Theorems 6.22 and 6.27. Then employing the results of
Sects. 6.1 and 6.2 together with the smooth variational description of Fréchet
subgradients in Theorem 1.88(ii), we derive necessary optimality conditions
for problems (P) and (Py), as well as for their discrete-time counterparts, with
transversality relations expressed via upper subgradients of functions that de-
scribe the objective and inequality constraints. This can be done by reducing
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them to the case of smooth functions describing the objective and inequality
constraints; cf. the proof of Theorem 5.19 for nondifferentiable programming.
Considering, in particular, the Mayer problem of minimizing (po(x(b)) over
absolutely continuous trajectories x:[a, b] — X for the differential inclusion
(6.48) subject to the endpoint constraints

(p,-(x(b)) <0, i=1,....,m,

under the assumptions made on F and X in Theorem 6.27 and no assump-
tions on ¢;, we have the following necessary optimality conditions for an in-
termediate local minimizer x(-): given every set of Fréchet upper subgradients
x[ e 5*@ ()E(b)), i =0,...,m, there are multipliers

(Ao,...,km)#o with )\.120 for all i:O,...,m

and an absolutely continuous mapping p:[a, b] — X* satisfying the Euler-
Lagrange and maximum conditions (6.49) and (6.50) together with

Aiwi()f(b)) =0 for i=1,...,m and

p(b) + Zlixi* =0.
i=0

To justify these conditions via the above arguments, it remains to check the
SNEC property of the extended endpoint function ¢g in Theorem 6.27 with

2= {x€X|g0,-(x)§0, i:1,...,m}

and the smooth data ¢, ¢;. It follows from Corollary 3.87 ensuring the SNC
property of the classical constraint set in nonlinear programming; cf. the proof
of Corollaries 6.24 and 6.29.

Remark 6.31 (necessary optimality conditions for multiobjective
control problems). The methods and results developed above can be ex-
tended to multiobjective optimization problems governed by differential inclu-
sions. Given a mapping f: X — Z and a subset ® C Z of a Banach space
with 0 € ©, consider a multiobjective counterpart of the above Mayer prob-
lem ( Py ), where the generalized order ( f, ©)-optimality of a trajectory x(-) for
(6.48) subject to x(b) € §2 is understood in the sense that there is a sequence
{z+} C Z with z;x — 0 as k — oo such that

f(x®) - f(x()) €O —z, kelN,

for any feasible trajectory x(-) from a W'!([a, b]; X )-neighborhood of x(-); cf.
Definition 5.53 and the related discussions in Subsect. 5.3.1. Let

E(f.2.0)={(x.2) EXXZ| f(x)—z€0, xR}



6.2 Optimality Conditions for Differential Inclusions without Relaxation 221

be the “generalized epigraph” of the restrictive mapping fo = f + A(+; )
with respect to the ordering set ®. Taking a sequence z; — 0 from the above
definition of the (f, ®)-optimality for x(-), we define the functions

O (x) == dist((x, f(X) — 2); E(f. 2, 0)), ke IN.

and proceed similarly to the proof of Theorem 6.27 with the replacement of
0p(x) therein by the sequence of 6;(x). In this way we arrive at necessary
optimality conditions in the multiobjective control problem under considera-
tion that are different from the ones in Theorem 6.27 only in transversality
relations. Namely, suppose in addition to the assumptions on X and F in The-
orem 6.27 that the space Z is WCG and Asplund and that the generalized epi-
graphical set £(f, §2, ©) is locally closed around (x, z) and SNC at this point
with Z := f(x). Then there are an adjoint arc p:[a, b] — X* and an adjoint
vector z* € N(0; @), not both zero, satisfying the extended Euler-Lagrange
inclusion (6.49), the Weierstrass-Pontryagin maximum condition (6.50), and
the transversality inclusion

(- p(b), —z*) € N((x(b),2);E(f, 2,0)) .
The latter inclusion is equivalent, by Lemma 5.23, to
—p(b) €9(z", fo)(x), " € N(0;0)

if the mapping f is Lipschitz continuous around x relative to §£2 and strongly
coderivatively normal at this point, and if the sets £2 and @ are locally closed
around the points x and 0, respectively. Note that multiobjective optimal con-
trol problems of the above type but with respect to closed preference relations
can be treated similarly; cf. Subsect. 5.3.4. In this way we can also derive
necessary optimality conditions for multiobjective (as well as of the Mayer
and Bolza types) optimal control problems governed by differential inclusions
with equilibrium constraints, which are dynamic counterparts of MPEC and
EPEC problems studied in Sect. 5.2 and Subsect. 5.3.5.

Remark 6.32 (Hamiltonian inclusions). When X = [R", an additional
optimality condition can be obtained for relazed intermediate local minimizers
to problem (Py) (as well as to (P) and the counterparts of these problems
discussed in the preceding remarks), which is expressed via basic subgradients
to the Hamiltonian function defined by

H(x, p,t) :=sup{(p, v>| v € F(x, t)} .

It follows from Rockafellar’s dualization theorem ([1162, Theorem 3.3]) that

co{u € R"‘ (u, p) € N((x, 6);gphF)} :co{u € R"

(—u, ) € a%(x,p)}

if F is convex-valued and satisfies some requirements around (x, v) that are
automatic under the assumptions made on F in (H1); dependence on ¢ is
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not important and is thus suppressed. The proof of the latter dualization
relationship is essentially finite-dimensional; cf. also the proofs in Ioffe [604,
Theorem 4] and in Vinter [1289, Theorem 7.6.5]. Since the Hamiltonian of the
convexified inclusion (6.18) is obviously agrees with the original one H(x, p, t),
we deduce from the above duality relation that the Euler-Lagrange inclusion
(6.49) in Theorem 6.27 implies the extended Hamiltonian inclusion

p(t) € co{u € R"

(= %(r)) GE)”H(}E(Z),]J(Z),I)} ae t€la,b (6.58)

as a necessary optimality condition for relaxed minimizers in the case of finite-
dimensional state spaces. Moreover, the Euler-Lagrange inclusion (6.49) and
the Hamiltonian inclusion (6.58) are equivalent for problems (Py) with the
convex velocity sets F(x, t). Note that (6.58) is a refined Hamiltonian inclusion
involving a partial convezification of the basic subdifferential dH (x(¢), p(¢), t),
which clearly supersedes the fully convezified one

(= p(r),x(1)) € codH(x(1), p(t),1) ae. t € [a,b] (6.59)

involving Clarke’s generalized gradient dcH(x(t), p(t),t) = codH(x(z), p(t), t)
of the Hamiltonian with respect to (x, p). It is worth observing that both
Hamiltonian inclusions (6.58) and (6.59) are invariant with respect to the con-
vexification of F(x, t), which is not the case for the extended Euler-Lagrange
inclusion (6.49).

Remark 6.33 (local controllability). The approach developed in the pre-
ceding subsection for necessary optimality conditions allows us to study also
related issues concerning the so-called local controllability of nonconvex dif-
ferential inclusions in the case of finite-dimensional spaces. Given xg € X, we
denote by R(xg) the reachable set for the differential inclusion (6.48), which
is the set of all z € X such that x(b) = z for some arc x: [a, b] — X admissible
to (6.48). The meaning of local controllability is to derive efficient conditions
for boundary trajectories of the differential inclusion (6.48), in a certain gen-
eralized sense. To be more precise, we consider a mapping g: X — X locally
Lipschitzian mapping around x(b) and a trajectory X:[a, b] — X for (6.48)
such that g(x¥(b)) € bdR(xg). Then assuming that X = IR" in addition to
(H1) and (H2'), we find a vector x* € IR" with ||x*|| = 1 and an adjoint arc
p(-) satisfying the extended Euler-Lagrange inclusion (6.49) with the bound-
ary/transversality condition

— p(b) € 0(x*, g)(x(D)) (6.60)

and the Weierstrass-Pontryagin maximum condition (6.50). Moreover, if the
reachable set R(xo) is locally closed around x(b), then the extended Hamilto-
nian inclusion (6.58) is also satisfied.

To justify the Euler-Lagrange and maximum conditions (6.49) and (6.50)
with the new transversality condition (6.60), we follow the proof of Theo-
rem 6.27 and, given any ¢ > 0, find a vector ¢, € IR" and a trajectory x.(-)
for (6.48) such that [|g(x:(b)) — .|| > 0,
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ce — g(x(b)), x.() = x(-) strongly in W"'([a,b]; R") as & 10,

and x.(-) is an unconditional strong local minimizer for problem (6.55) with
the same integrand (6.57) and the endpoint function

@:(2) = llg(z) —cell -

Then we proceed as in the proof of Theorem 6.27 with the only difference
that now we need to compute the basic subdifferential of the new function
@.(+) at the point x,(b) with |g(xs(b)) — cc|| > 0. Using the subdifferential
chain rule of Corollary 3.43 and then passing to the limit as ¢ | 0 while tak-
ing into account the compactness of the unit sphere in IR", we arrive at the
transversality condition (6.60) that supplements (6.49) and (6.50). To justify
the extended Hamiltonian inclusion (6.58), we observe that the assumptions
made ensure the closedness of the reachable set ﬁ(xo) generated by the con-
verified differential inclusion

x(t) €coF(x(t),t) ae. t €la,b], x(a)=xo

and the density of R(xo) in R(xo); cf. Theorem 6.11. Thus the local closedness
assumption on R(x) yields that %(b) is a boundary point of R(xo), and so
(6.58) follows from the discussion in Remark 6.32.

Note that the finite dimensionality of the state space X is needed in the
above proof for local controllability to guarantee the compactness of the dual
unit sphere in the weak™ topology of X*, which never holds in infinite dimen-
sions due to the fundamental Josefson-Nissenzweig theorem. Such a difference
with the infinite-dimensional setting of Theorem 6.27 is due to the fact that in
the proof of the latter theorem we actually applied the exact extremal principle
to the local extremal system of sets R(xq) x {@(X(b))} and epigg (in the no-
tation of Theorem 6.27) with the SNC assumption imposed on the second set
in the extremal system. In the setting of local controllability we deal with the
local extremal system of sets R(xg) and {x(b)}, where the second singleton set
is never SNC in infinite dimensions. Observe however that we didn’t explore
in the proof of Theorem 6.27, as well as in the framework of local controllabil-
ity, the possibility of imposing a SNC' requirement on the reachable set R(xo),
which may lead to alternative assumptions ensuring the fulfillment of neces-
sary optimality and local controllability conditions in infinite dimensions; cf.
the result and discussion in Remark 6.25(3).

To conclude this section, we present some examples illustrating the results
obtained and the relationships between them. First let us show that the par-
tial convexification can not be avoided in both extended Euler-Lagrange and
Hamiltonian inclusion (6.49) and (6.58).

Example 6.34 (partial convexification is essential in Euler-Lagrange
and Hamiltonian optimality conditions). There is a two-dimensional
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Mayer problem of minimizing a linear function over absolutely continuous tra-
jectories of a convex-valued differential inclusion with no endpoint constraints
such that analogs of the Euler-Lagrange inclusion (6.49) and the Hamiltonian
inclusion (6.58) with no (partial) convezification “co” therein don’t hold as
necessary optimality conditions.

Proof. Consider the following Mayer problem for a convex-valued differential
inclusion with x = (x1, xo) € R%:

minimize J[x]:= x2(1) subject to

X1 € [—U, U], xl(O) =0,

s XQ(O) =0,

Xo = |x1

for a.e. t €[0,1] with some v >0.

It is easy to see that x(#) = 0 is the only optimal solution to this problem,
and that an analog of the Euler-Lagrange inclusion (6.49) for the adjoint arc
(p(t), —1) € IR? without “co” therein gives, along this ¥(-), the relation

pt)ye {—1,1} ae.t€[0,1]

with the transversality condition p(1) = 0. Furthermore, the maximum condi-
tion, implied by the Euler-Lagrange inclusion in this case due to Theorem 1.34,
takes the form
(p(t),x(t)) = max (p(t),v) ae. t€]0,1],
vE[—v,V]
which yields that p(¢) = 0; a contradiction. Since H(p, x) = vsign p — |x1],
the Hamiltonian inclusion

(= p(r),x(r)) € 0H(x(), p(t)) ae. t€[0,1],

which is (6.58) with no “co” therein, leads to the same relations as above and
hence doesn’t hold as a necessary optimality condition. A

The next two examples illustrate relationships between the extended
Euler-Lagrange inclusion (6.49) and the extended Hamiltonian inclusion (6.58)
with the (fully) convexified Hamiltonian inclusion (6.59).

Example 6.35 (extended Euler-Lagrange inclusion is strictly better
than convexified Hamiltonian inclusion). There is a compact-valued and
convez-valued multifunction F:IR?> = IR?, which is Lipschitz continuous on
IR? and such that

(—w,v) € codH(x, p) but w ¢ co{u € R*|u € D*F(x,v)(—p)}

for some points x, v, w, p in the plane.
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Proof. Define F: IR? = IR? by
F(x1,x2) :={(t.7|x1|+v) € R*| r € [-1,1], v € [0, u]} with some n >0,

where the sets F(x) are parallelograms in the plane for all x = (x1, x2) € IR?.
The corresponding Hamiltonian is

H(x1, X2, p1. p2) = |p1 + palx1|| + max { ps, 0} .

Considering the points x = (0,0), v = (0,0), and p = (0, —1), we see that
the corresponding set F(x) is the rectangle [—1,1] x [0, u], and that p is
an outward normal vector to this set at the boundary point v. The crucial
feature of this example is that the hyperplane xo = 0 supporting the set
F(x) at v intersects this set in more than one point. In other words, the
maximum of (p, v) over v € F(x) is attained at infinitely many points. The
basic subdifferential of H at the point (0,0,0, —1) and its convexification
(Clarke’s generalized gradient) are actually calculated in Example 2.49; thus

codH(0,0,0, —1) = [-1,1] x {0} x [~1,1] x {0} C R*.
Taking w = (—1, 0), one has (—w, v) € codH(0, 0,0, —1). Let us show that
(w, p) =(-1,0,0,-1) ¢ clcoN((x, v); gph F) ,

which definitely justifies the claim of this example.
To proceed, we note that, up to a permutation of the coordinates, the
graph of F can be represented as

gph F = E x R with E := {(x1,7,|x1|t +v) € R’| 7 € [-1,1], v € [0, u]} ,

where the set E obviously coincides around the point (0, 0, 0) with the epigraph
of the Lipschitzian function ¢: IR> — IR defined by ¢(y, t) := t|y|. It is easy
to see that

codg(0,0) = 3¢(0,0) = {(0,0)} .

One therefore calculates

N((0.0,9(0,0));epip) = | J A[39(0.0) x {~1}] = {(0,0)} x (—00.0] .
1>0

and hence we deduce that
clco N ((0,0,0,0);gph F) = {(0,0,0)} x (—o0,0].
In particular, the latter cone doesn’t contain the point (w, p) = (—1,0,0, —1),

even though (—w, v) € codH(x, p). A

The last example shows that the extended/refined Hamiltonian condition
(6.58) strictly supersedes the fully convexified one (6.59) in both settings of
convex-valued and nonconvex-valued differential inclusions.



226 6 Optimal Control of Evolution Systems in Banach Spaces

Example 6.36 (partially convexified Hamiltonian condition strictly
improves its fully convexified counterpart). There is a set-valued map-
ping F:IR" = IR" in the form F(x) = g(x)S, where S C IR" is a compact
set and where g(x), for each x, is a linear isomorphism of IR" depending
continuously on x, such that for some (x, v, p) one has

co{u € R"| (u,v) € 0H(x, p)} # {u € R"| (u, ) € codH(X, p)} .
Proof. If F is given in the above form, then its Hamiltonian is calculated by
H(x, p) =sup {(p.v)| v € g(x)S} = sup{(p, g(x)s)| s € S} =: 6" (¢"(x)p; S).

where §*(-; §) stands for the standard support function of the set S. Since S
is bounded, its support function is continuous. Denote

Us(x, p) == (s, g"(x)p) = (¢(x)s, p)

and suppose that g(-) is Lipschitz continuous. Employing the scalarization
formula and taking into account the structure of ¥, we have

oH(E p)= |J ov(x p)

s€38*(0;5)
at any given point (X, p). The linearity of ¢ in p yields that
0Ys(x, p) = (9:Vs(¥. p). g(¥)s) -

Therefore the inclusion (u, 0) € 9y, (%, p) implies that s = 0 and thus u = 0.

Based on the above discussion, we need to find a set S, a Lipschitz contin-
uous family of linear isomorphisms g(x) of IR", and a point (X, p) € IR" x IR"
such that 0 € S and codH(x, p) contains a pair (u, 0) with u # 0. In particu-
lar, it can be done as follows for n = 2. Let

" 1|x
Si={(y1.y2) € R*| || <1, y2 =0}, g*(x):= <1 | 11|> ,

x:=1(0,0), and p := (0, 1). Then

8*((w1, wg);S) =w; and H(x, p) = ‘pl + p2|x1|’ .
One can directly calculate (cf. Example 2.49) that the set codH(X, p) is the
convex hull of the following four points: (1,0, 1,0), (-1,0-1,0), (1,0, —1, 0),
and (—1,0,1,0). Thus

{u € R| (u,0) € codH(x, p)} =[-1,1],

which justifies the claim of this example. A
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6.3 Maximum Principle for Continuous-Time Systems
with Smooth Dynamics

In this section we study optimal control problems governed by ordinary dif-
ferential equations in infinite-dimensional spaces that explicitly involve con-
strained control inputs u(-) as follows:

x = f(x,u,t), u(t) eU ae. t €la,b], (6.61)

where f: X x U X [a, b] — X with a Banach state space X and a metric control
space U. Although control systems of this type can be reduced to differential
inclusions X € F(x,t) with F(x, 1) := f(x, U, t), the explicit control input in
(6.61) with the control region U independent of x (it may depend on #) allows
us to develop efficient methods of studying such dynamic systems that take
into account their specific features.

Throughout the section we assume that system (6.61) is of smooth dynam-
ics, which means that the velocity mapping f is continuously differentiable
(C') with respect to the state variable x around an optimal solution to be
considered. Despite this assumption, the control system (6.61) and optimiza-
tion problems over its feasible controls and trajectories intrinsically involve
nonsmoothness due to the control geometric constraints u(z) € U a.e. t € [a, b]
defined by control sets U of a general nature. For instance, it is the case of
the simplest/classical optimal control problems with U = {0, 1}.

In this section the main attention is paid to the Mayer-type control prob-
lem for systems (6.61) of smooth dynamics subject to finitely many endpoint
constraints given by equalities and inequalities with functions merely Fréchet
differentiable (possibly not strictly) at points of minima. Our goal is to derive
necessary optimality conditions in the form of the Pontryagin mazimum prin-
ciple (PMP) for such problems in general Banach spaces, with no additional
assumptions on the reflexivity and separability of X as well as on the sequential
normal compactness and strong coderivative normality of F(x,t) = f(x, U, 1)
imposed in Theorem 6.27 of the preceding section. The technique used for this
purpose is different from those employed in Sects. 6.1 and 6.2; it goes back
to the classical approach in optimal control theory involving needle variations
of optimal controls. We also derive enhanced results of the maximum prin-
ciple type with upper subdifferential transversality conditions in the case of
nondifferentiable cost and inequality constraint functions. Such conditions are
obtained without imposing any smoothness assumptions on the state space in
question needed for the corresponding necessary optimality conditions derived
above in both mathematical programming and dynamic optimization settings;
cf. Theorem 5.19 and Remark 6.30. Thus the results of this section, which es-
sentially exploit the specific structure of smooth control systems (6.61) and
the imposed endpoint constraints, are generally independent of those obtained
in Sects. 6.1 and 6.2.

This section is organized as follows. Subsect. 6.3.1 contains the formu-
lation of the main assumptions and results as well as the derivation of the
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maximum principle with upper subdifferential transversality conditions from
the one with Fréchet differentiable endpoint functions. We also discuss pos-
sible extensions of the maximum principle to control problems with inter-
mediate state constraints as well as to some classes of time-delay systems.
Subsection 6.3.2 is devoted to the proof of the PMP for free-endpoint con-
trol problems in Banach spaces, which is substantially simpler than that for
problems with endpoint constraints. Subsection 6.3.3 deals with optimal con-
trol problems involving endpoint constraints of the inequality type. Finally,
in Subsect. 6.3.4 we derive, with the use of the Brouwer fixed-point theorem,
transversality conditions in the case of equality constraints given by continu-
ous functions that are just differentiable at optimal endpoints.

6.3.1 Formulation and Discussion of Main Results

It is more simple and convenient (and in fact does’t much restrict the gener-
ality) to formulate and then to prove the main results of this section for the
case of control systems (6.61) with a fized left endpoint x(a) = xo; we discuss
various extensions of the main results in the end of this subsection.

Denote by A the collection of admissible control-trajectory pairs {u(-), x(-)}
generated by measurable controls u(-) satisfying the pointwise constraints
u(t) € U for a.e. t € [a,b] and the corresponding solutions x(-) to (6.61)
with x(a) = xo defined by

x(t) =xo + /t f(x(s),u(s),s)ds forall t € [a,b], (6.62)

where the integral is understood in the Bochner sense; cf. Definition 6.1. As is
well known, any solution to (6.62) is absolutely continuous on [a, b]. Moreover,
it is a.e. differentiable on [a, b] and satisfies the differential equation (6.61)
for a.e. t € [a,b] provided that X has the Radon-Nikodym property (see
Subsect. 6.1.1), which is not assumed here. What we need in this section is
the integral representation (6.62), which is taken as the definition of admissible
solutions/arcs to the differential equation (6.61) in Banach spaces.

Given real-valued functions ¢;, i =0, ..., m + r, on the state space X, we
now formulate the optimal control problem studied below:

minimize J[u,x] = @o(x(b)) over (u,x)€ A (6.63)
subject to the endpoint constraints

(p,-(x(b)) <Q for i=1,....,m, (6.64)

@i(x(b)) =0 for i=m+1,....m+r. (6.65)

Admissible solutions (u,x) € A satisfying the endpoint constraints (6.64)
and (6.65) are called feasible solutions to problem (6.63)—(6.65). So we don’t
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distinguish between admissible and feasible solutions for problems with free
endpoints, i.e., with no endpoint constraints (6.64) and (6.65). We always
assume that the set of feasible solutions to (6.63)—(6.65) is not empty.

A feasible solution {u(-), x¥(-)} is optimal to (6.63)—(6.65) if

J[u,x) < Ju, x| forall (u,x)e A

satisfying the endpoint constraints (6.64) and (6.65). Our goal is to derive
necessary conditions of the PMP type for a given optimal solution {u(-), x()}
to the problem under consideration. Although we present necessary conditions
for (global) optimal solutions, one can observe from the proofs provided below
that the results obtained hold true for local minimizers {u(-), x(-)} in the
sense that J[u,x] < J[x,u] whenever (u,x) is feasible to (6.63)—(6.65) and
lx(z) —x(t)|| < € for all t € [a, b] with some & > 0. This corresponds to strong
local minimizers in Subsect. 6.1.2 for F(x,t) = f(x, U, ).

Given an optimal solution {u(-), X(-)} to (6.63)—(6.65), we impose the fol-
lowing standing assumptions throughout the whole section:

——the state space X is Banach;

——the control set U is a Souslin subset (i.e., a continuous image of a Borel
subset) in a separable Banach space;

——there is an open set O C X containing x(¢) such that f is Fréchet
differentiable in x with both f(x,u,?) and V, f(x, u, t) continuous in (x, u),
measurable in ¢, and norm-bounded by a summable function for all x € O,
ueU,and ae. 1€ [a,b];

—the functions ¢; are continuous around x(b) and Fréchet differentiable
at this point fori =m+1,...,m +r.

Note that the control set U may depend on ¢ in a general measurable way,
which allows one to use standard measurable selection results; see, e.g., the
books [54, 229, 1165] with the references therein.

Appropriate assumptions on the functions ¢;, i =0, ..., m, describing the
objective and inequality constraints will be presented in the main theorems
stated below. Note that the basic assumptions on them require their Fréchet
differentiability at x(b) (not even their continuity around this point), while
upper subdifferential conditions hold for a broader class of nondifferentiable
functions on arbitrary Banach spaces.

To formulate the relations of the maximum principle, let us define the
Hamilton-Pontryagin function for system (6.61) by

H(x,p,u,t):=(p, f(x,u,1)) with pe X*.

Observe that the Hamiltonian defined in Sect. 6.2 for F(x,t) = f(x,U, 1)
corresponds to the mazimization of the function H(x, p, u, t) with respect to
u over the whole the control region:
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H(x,p.t) =max{H(x, p,u,t)|ucU}.

Note also that H is smooth with respect to the state and adjoint variables
(x, p), which of course is not the case for H.

Theorem 6.37 (maximum principle for smooth control systems). Let
{u(-),x(-)} be an optimal solution to problem (6.63)—(6.65) under the stand-
ing assumptions made. Suppose also that the functions ¢;, i = 0,...,m, are
Fréchet differentiable at the optimal endpoint X(b). Then there are multipliers

(A0s -+ > Amar) # 0 satisfying

A >0 for i=0,...,m,

Xi(pi()f(b)) =0 fori=1,...,m,
and such that the following maximum condition holds:

H(x(1), p(t),u(r), 1) = mealj(H()?(t), p(t),u,t) ae t€fab], (6.66)
where an absolutely continuous mapping p:[a, b] — X* is a trajectory for the
adjoint system

p=-V.H(x, p,u,t) ae tE€]la,b] (6.67)

with the transversality condition

m—+r

p(b) =—=> nVei(x(b)) . (6.68)
i=0

Note that a solution (adjoint arc) to system (6.67) is understood in the
integral/mild sense similarly to (6.61), i.e.,

b
p(t) = p(b) +/t VXH()?(S), p(s), ﬁ(t),s) ds, t€la,b],

with Vo H(X, p,u,t) = (p, Vi f(X, u,1)). Observe also that the transversality
condition (6.68) agrees with the one in Corollary 6.29. However, now the
endpoint functions is not assumed to be strictly differentiable at x(b).

The proof of Theorem 6.37 will be given in Subsects. 6.3.2-6.3.4. Meantime
let us formulate and prove an upper subdifferential counterpart of this theorem,
which gives on one hand an extension of the transversality condition (6.68)
to the case of nondifferentiable functions ¢;, i =0, ..., m, while on the other
hand follows from Theorem 6.37 and the smooth variational description of
Fréchet subgradients.
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Theorem 6.38 (maximum principle with transversality conditions
via Fréchet upper subgradients). Let {u(-), x(-)} be an optimal solution
to the control problem (6.63)—(6.65) under the standing assumptions made.
Then for every collection of Fréchet upper subgradients x; € 5*(,0[ ()?(b)),
i = 0,...,m, there are multipliers (Ao, ..., Amtr) # 0 satisfying the sign
and complementary slackness conditions of Theorem 6.37 and such that the
mazimum condition (6.66) holds with the corresponding trajectory p(-) of the
adjoint system (6.67) satisfying the transversality condition

m—+r
pb)+ > nixi =0. (6.69)
i=0
Proof. Take an arbitrary set of Fréchet upper subgradients x;* € 5"‘(/),- ()? (b)),
i =0,...,m, and employ the smooth variational description of —x;* from
assertion (i) of Theorem 1.88 held in any Banach space. In this way we find
functions s;: X — IR for i =0, ..., m satisfying the relations

5;i(X(b)) = @i (X(b)), si(x) = @i(x) around x(b) ,

and such that each s;(-) is Fréchet differentiable at x(b) with Vs; (¥(b)) = x7,
i =0,...,m. From the construction of these functions we easily deduce that
the process {u(-), X(-)} is an optimal solution to the following control problem:

minimize J[u,x] = so(x(b)) over (u,x)€ A
subject to the inequality and equality endpoint constraints
si(x(b)) <0 for i=1,....,m

and (6.65), where A is the collection of admissible control-trajectory pairs de-
fined in the beginning of this subsection. The initial data of the latter optimal
control problem satisfy all the assumptions of Theorem 6.37. Thus applying
the above maximum principle to this problem and taking into account that
Vs; ()E(b)) =x; fori =0, ..., m, we complete the proof of the theorem. A

One can observe the difference between the formulations and proofs of
Theorem 6.38, in the part related to upper subdifferential transversality con-
ditions, and of Theorem 5.19 on upper subdifferential optimality conditions
in mathematical programming. Both results reduce to their smooth (in differ-
ence senses) counterparts based on smooth variational descriptions of Fréchet
subgradients. In the case of Theorem 5.19 we need to require the continuous
differentiability (more precisely, strict differentiability) of the cost and con-
straint functions to be able to apply the corresponding necessary conditions
in smooth nonlinear programming. In this way an additional assumption on
the geometry of Banach spaces comes into play to ensure the C* description of
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Fréchet subgradients by Theorem 1.88(ii). On the other hand, Theorem 6.38
relies, by a milder smooth variational description from Theorem 1.88(i), on
the preceding Theorem 6.37 that requires only the Fréchet differentiability of
the endpoint functions at the optimal point. Note that Theorems 6.37 and
6.38 concerning optimal control problems obviously imply, by putting f = 0
n (6.61), the corresponding improvements of the results in Subsect. 5.1.3 for
mathematical programming problems with equality and inequality constraints.

Remark 6.39 (control problems with constraints at both endpoints
and at intermediate points of trajectories). One can see from the proof
of Theorem 6.37 given in Subsects. 6.3.2-6.3.4 that a minor modification of
this proof allows us to derive similar necessary optimality conditions (includ-
ing those of the upper subdifferential type) for optimal control problems with
endpoint constraints of form (6.64) and (6.65) at both t = a and t = b and
with the cost function ¢y depending on both x(a) and x(b) under the same
assumptions on the initial data. In this case the transversality condition (6.68)
on the absolutely continuous adjoint arc p:[a, b] — X* is replaced by

m—+tr

@@%—MM)zi:MV@@@%ﬂm%

Furthermore, we may similarly derive necessary optimality conditions for con-
trol problems involving intermediate state constraints, i.e., with constraints on
trajectories given at intermediate points 7; € [a, b] of the time interval. For
example, consider the modified problem (6.63)—(6.65) with

¢i = ¢i(x(a),x(1),x(b)), i=0,....m+r,

where 7 € (a,b) is an intermediate moment of the time interval. Then the
difference between the necessary optimality conditions of Theorem 6.37 and
the ones for the modified state-constrained problem is that we now have a
discontinuous adjoint arc p(-) with the jump condition at the intermediate
point t = t incorporated into the transversality conditions as follows:

m—+r

(p(a). p(t +0) — p(r - 0), Zx Vi (%(a), (r), (b)) .

We can similarly modify the upper subdifferential conditions of Theorem 6.38
in the case of control problems with intermediate state constraints.

Remark 6.40 (maximum principle in time-delay control systems).
The results of Theorems 6.37 and 6.38 can be extended to various systems
with time delays in state and control variables. For example, let us consider
the standard system with a constant time delay 6 > 0 in the state variable:
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x(t) = f(x(t).x(t —0),u(t).t) ae t€lab],
x(t)=c(t), t€la—06,d],
u(t) eU ae. t €la,b

over measurable controls and absolutely continuous trajectories with a Banach
state space X and the initial “tail” mapping c: [a —6, a] — X that is necessary
to start the time-delay process. Denote by A the collection of admissible pairs
{u(-), x(-)} satisfying the above delay system and define the corresponding
Hamilton-Pontryagin function

H(x,y,p,u,t):= <p,f(x,y,u,t)>, peX”,

where y stands for the delay variable x(¢ — 6). Considering now problem
(6.63)—(6.65) with A signifying the collection of admissible pairs for the delay
system, we get counterparts of Theorems 6.37 and Theorem 6.38 with the
adjoint system given by

V. H (x(1),x(t = 0), p(t), u(t), 1)
—p(t) =4 +VyH(x(t +60),x(t), p(t +0),u(t +6),1) ae. t€la,b—0];
V. H (x(t),x(t —0), p(t),u(t), 1) ae t€[b—0,b].

These results can be actually proved by reducing the time-delay control system
in X to the one with no delay in the state space XV, for some natural number
N sufficiently large. Furthermore, the methods developed in the proofs of
Theorems 6.37 and 6.38 allow us to derive similar results for control problems
with more general delays depending on both time and state variables, as well
as with time-distributed delays.

Remark 6.41 (functional-differential control systems of neutral
type). The dynamics of such control systems is described by differential equa-
tions with time delays not only in state variables but in wvelocity variables as
well. A typical model is given by

x(1t) = f(x@),x(t—0), %0 —0),u(t),t), u(t)eU, ae. t€]la,b]

with proper initial conditions on [a —6, a]. Systems of this type are fundamen-
tally different from the standard ODE control systems and time-delay systems
considered in the preceding remark. They are substantially more difficult for
variational analysis and exhibit a number of phenomena that are not inherent
in the control systems considered above; the reader may find more discus-
sions in Commentary to Chap. 7, where we consider such systems and their
extensions in more details. Now observe that, although necessary optimality
conditions in the form of Theorems 6.37 and 6.38 can be derived by similar



234 6 Optimal Control of Evolution Systems in Banach Spaces

methods in the case of convez velocity sets f(x, y, z, U, t) with a Banach state
space, a proper analog of the Pontryagin maximum principle doesn’t generally
hold for neutral control systems even with no endpoint constraints in finite
dimensions. It happens, in particular, for the optimal control

u(t)=0 as t€0,1) and u(t) =1 as t €[1,2]
to the following two-dimensional control problem:
minimize J[u, x] = x2(2) subject to
x1(t) =u(t), x2(t)=x3(t—1)—u*@), t€]0,2],
x1(t) =x2(1) =0, +€[-1,0; Ju@®)| <1, t€]0,2].

The reader can find complete calculations for this example in the book by
Gabasov and Kirillova [485, Sect. 3.6]; see also Example 6.70 in Subsect. 6.4.6
below for similar calculations in a finite-difference analog of this control prob-
lem.

6.3.2 Maximum Principle for Free-Endpoint Problems

In this subsection we study problem (6.63), where A is the collection of ad-
missible pairs {u(-), x(-)} for the control system (6.61) with the fixed left
endpoint x(a) = xo; see the beginning of the preceding subsection for the ex-
act formulation. This problem is labeled as a free-endpoint problem of optimal
control despite the left endpoint is always fixed; we have in mind the absence
of the constraints (6.64) and (6.65) on the right endpoint of admissible trajec-
tories. As follows from the proofs below, the free-endpoint problem (6.63) is
significantly different from the constrained problem (6.63)—(6.65); moreover,
the problems with inequality and equality endpoint constraints are essentially
different from each other as well. The principal difference between the un-
constrained and constrained problems is that in case of (6.63) all admissible
trajectories are feasible, and one doesn’t need to care about satisfying the
endpoint constraints while varying admissible controls u(-) € U. Note that
the control constraints of the above (arbitrary) geometric type are always
present in the problems under consideration, they distinguish optimal con-
trol problems from the classical calculus of variations and signify intrinsic
nonsmoothness inherent in optimal control.

This subsection is devoted to the proof of the maximum principle from
Theorem 6.37 for problem (6.63) under the assumptions made in the theorem
on the given data (U, X, f, ¢9). Note that the transversality condition (6.68)
reduces in this case to

p(b) =~V (x(b)) . (6.70)
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ie, with Ag =land 4, =0,i = 1,...,m +r, in (6.68). Indeed, if 1o = 0
and p(b) = 0 in (6.68), then p(t) = 0 for all ¢ € [a, b] due to the linearity
of the adjoint system (6.67) with respect to p, which would contradict the
nontriviality condition (p(-), o) # 0 in Theorem 6.37.

The proof of Theorem 6.37 for the free-endpoint problem (6.63) is purely
analytic, in the sense that it doesn’t invoke any geometric facts and arguments
in the vein of the convex separation theorem and the like. This is significantly
different from the proofs of Theorem 6.37 in the case of inequality and equality
endpoint constraints given in Subsect. 5.3.3 and 5.3.4. The basic ingredients
in the proof of Theorem 6.37 for problem (6.63) are the increment formula
for the cost functional in (6.63) and the use of the so-called needle variations
(sometimes called “McShane variations”) of the optimal control.

Let us start with the increment formula. Given two admissible controls
u(t),u(t) € U (observe that u#(-) may not be optimal before resuming it in the
sequel) and the corresponding solutions x(+), x(-) in (6.62), we denote

Au(t) :=u(t) —u(t), Ax(t):=x(t)—x(r), AJ[u] = po(x(b)) — po(x(b)) .

Our intention is to obtain a convenient representation of the cost functional in-
crement AJ[i] in terms of the Hamilton-Pontryagin function evaluated along
the admissible pair {u(-), x(-)} and the corresponding trajectory p(-) of the
adjoint system (6.67) with the boundary condition (6.70). Recall that we use
the same standard symbol o(-) for all expressions of this category.

Lemma 6.42 (increment formula for the cost functional). Let

AH (x(1), p(t),a(t), 1) == H(x(t), p(t), u(t),t) — H(x(r), p(t), u(t), 1)

in the notation above. Then one has

b
Allid] = —/ AH (x(1), p(t),a(t), 1) dt + 7,

where the remainder n is given by n = n1 + n2 + n3 with

n = o([|[Ax(b)]

b
). m2i= —/ o(||Ax(r)||) dt,  and

o /ab<3AuH(x(t),af(t), (), 1) ’ Ai(t)>dt .

Proof. Since ¢ is assumed to be Fréchet differentiable at x(b), we have the
representation

AJi] = @o(x(b)) — o (X(b)) = (Vo (X(b)). AX(b)) + o(||AX(b)]]) .

Taking into account that solutions to the state and adjoint equations satisfy
(by definition) the Newton-Leibniz formula and using integration by parts held
for the Bochner integral, one gets the identity
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b b
<p(b),Af(b)>:/ <p(r),Af(t)>dt+/ (p(0). AZ(1)) dt ,

where p:[a, b] — X* is an arbitrary absolutely continuous mapping from the
solution class. Imposing the boundary condition (6.70) on p(b), we arrive at

b b
AJf) = —/ (p(t). Ax(1)) di — / (p(t). A3(1)) di + o(| AZ(B)])) .
a a
Let us transform the second integral above. Using the equation

Ax(t) = f(x(t) + Ax(2), u(t) + Au(t), 1) — f(x(r), u(t), 1),

the definition of the Hamilton-Pontryagin function H(x, p,u,t), and the
smoothness of f in x, we have

b
/ (p(t). A1) di

) . ) - b
+/a <8AL,H(X(I),PU;;C”(I)+Au(t)’t),Ax(t)>dt+/ o(||ax(2)]) dt .

a

Remembering finally that p(-) is a solution to the adjoint system (6.67) gen-
erated by {u(-), Xx(-)}, we complete the proof of the lemma. A

In the above increment formula both controls #(-) and u(-) are arbitrary
measurable mappings satisfying the pointwise control constraints. Now we
build u(-) as a special perturbation of the reference control u(-) that is called
a needle variation, or sometimes a single needle variation, of this control.
Namely, fix arbitrary numbers t € [a,b) and ¢ > 0 with t + ¢ < b, take an
arbitrary point v € U, and construct an admissible control u(t), ¢ € [a, b], in
the following form

v, teft,t+e),
u(t) == (6.71)
u(t), r¢lr,t+e).

The obtained perturbed control differs from the reference one only on the
small time interval [t, T 4 ¢), where its value is arbitrary in the control set U;
the name “needle variation” comes from this. For the corresponding trajectory
increment Ax(t), depending on the parameters (t, ¢, v), one clearly has
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Ax(t) =0 forall 7 € a,1].

Let us estimate Ax(t) for ¢ € (t, b], which is given in the next lemma. In what
follows we denote by £ the uniform Lipschitz constant for f(-,v,t) whose
existence is guaranteed by the standing assumptions. For simplicity we sup-
pose that £ is independent of ¢ although the assumptions made allow it to be
summable on [a, b] with no change of the result.

Lemma 6.43 (increment of trajectories under needle variations). Let
AXx(+) be the increment of X(+) corresponding to the needle variation (6.71) of
u(-) with parameters (z, e, v). Then there is a constant K > 0 independent of
(t,¢€) (it may depend on v) such that

|A%(2)|| < Ke forall t €a,b].
Proof. Since Ax(t) = 0, one has by (6.62) that
t
Ax(t) = / [f()?(s) + Ax(s),v,s) — f(x(s), iu(s), s)} ds, 1<t<t+e.
T
Taking into account the uniform Lipschitz continuity of f in x with the con-

stant £ and denoting A, f (X(s), i(s), s) := f(xX(s),v,s) — f(X(s), i(s), s), we
have

|Aax(2)] < / ||f()?(s) + Ax(s), v, s) — f()?(s), u(s), s)|| ds

/ |Auf(x ).s)|| ds+£/ | Ax(s)| ds .
Using the notation
0= [ 105 (569, 0(5).5) [ ds and o) = | 450)]
the above estimate can be rewritten as
B(1) Sd(t)ﬂLE/Iﬂ(S)dS, t<t<t+e,

which yields by the classical Gronwall lemma that

Jaxol < ([ 4f (56).a(6).5) | ds) exp (e6s — 1)) < Ke

for t € [t, T + €|, where K = K (v) is independent of ¢ and 7.
It remains to estimate AX(¢) on the last interval [t +¢, b], where it satisfies
the equation
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Ax(t) = f(x(t) + Ax(r), u(r), 1) — f(%(¢), u(t), 1) with [|AxX(r +¢)| < Ke

the solution of which is understood in the integral sense (6.62). Since

t
§K8+£/ |AX(s)||ds, T+e<t<b,
T+e¢

we again apply the Gronwall lemma and arrive, by increasing K if necessary,
at the desired estimate of ||Ax(¢)|| on the whole interval [a, b]. A

Now we are ready to justify the maximum principle of Theorem 6.37 for
the free-endpoint control problem under consideration.

Proof of Theorem 6.37 for the free-endpoint problem. Let {u(-), x(-)}
be an optimal solution to problem (6.63), and let p(-) be the corresponding
solution to the adjoint system (6.67) with the boundary/transversality condi-
tion (6.70). We are going to show that the maximum condition (6.66) holds
for a.e. t € [a, b]. Assume on the contrary that there is a set T C [a, b] of a
positive measure such that

H(x(t), p(t),u(r), 1) < sggH(i(r), p(t),u,t) fort €T .

Then using standard results on measurable selections under the assumptions
made, we find a measurable mapping v: T — U satisfying

AyH (1) == H (x(t), p(t),v(t),t) — H(x(t), p(t),u(t),1) >0, teT.

Let Ty C [a, b] be a set of Lebesque regular points (or points of approximate
continuity) for the function A,H(z) on the interval [a, b], which is of full
measure on |a, b] due to the classical Denjoy theorem. Given v € Ty and
& > 0, consider a needle variation of the optimal control built by

v(t), teT.:=[t,t+e)NTy,
u(t), te€la,b)\T:,

and apply to #(-) and u(-) the increment formula for the cost functional from
Lemma 6.42. By this formula we have the relation

T+¢
AJ[ﬁ]:—/ AyH(t)dt +n1 4 n2 + 13

with the above positive increment of the Hamilton-Pontryagin function A, H(¢)
and the remainders n;, i = 1, 2, 3, defined in Lemma 6.42 along the trajectory
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increment Ax(-) corresponding to the needle variation u(-) under considera-
tion. It follows from the proof of Lemma 6.43, with an easy modification to
take into account the variable perturbation v(-) on 7, instead of the constant
one in (6.71), that ||Ax(¢)|| = O(e) for ¢ € [a, b]. Hence

b
n = o([Ax(B)]]) = o(e), 12 = */ o([[ax(r)]|) dt = o(e), and

T+¢
UE S/
T
T+¢
< Ke/
T

The choice of T € Ty as a Lebesgue regular point of the function A, H (¢) and
the construction of the Bochner integral yield

<8AUH()E(t), p(t),u(r), 1)
ax

, A)?(t)>‘ dt

dAH (x(2), p(t), u(t), 1) ‘
ax

‘dt:o(e).

T+e
/ AH(t)dt =¢ [H()E(r), p(t),v(r), 7) — H(x(1), p(x), u(r), r)] +o(e).
Thus we get the representation

AJli] = —¢ [H(x(r), p(1).v(z). 7) — H(%(). p(r). i(2), r)] +ole)

which implies that AJ[u] < 0 along the above needle variation of the optimal
control u(-) for all ¢ > 0 sufficiently small. This clearly contradicts the opti-
mality of #(-) in problem (6.63) and completes the proof of Theorem 6.37 for
the free-endpoint optimal control problem. A

6.3.3 Transversality Conditions for Problems
with Inequality Constraints

One can see from the preceding subsection that the analytic proof of the
maximum principle given there for the free-endpoint optimal control problem
doesn’t hold in the case of endpoint constraints of types (6.64) and/or (6.65).
Indeed, in that proof we didn’t care about the feasibility with respect to these
constraints of trajectories corresponding to needle control variations. Dealing
with endpoint constraint problems requires a more sophisticated technique
that involves the geometry of the reachable set for system (6.61) and its in-
teraction with the cost functional and endpoint constraints. The crux of the
matter is to show that there is a conver set generated by feasible endpoint
variations of the given optimal trajectory that doesn’t intersect some convex
set “forbidden” by optimality, which allows us to employ the convezr sepa-
ration. This can be achieved by using multineedle variations of the optimal
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control in question. The latter is realized by the continuity of time in [a, b] and
actually reflects the hidden convezity of continuous-time control problems.

In this subsection we consider optimal control problems that involve only
endpoint constraints of the inequality type (6.64). Control problems with the
equality constraints (6.65) are somewhat different (more complicated); they
will be studied in the next subsection. Our main goal is to derive the transver-
sality condition (6.68) in the relations of the maximum principle from Theo-
rem 6.37 in the case of inequality constraints given by differentiable functions.
As discussed in Subsect. 6.3.1, transversality conditions in more general con-
trol problems and under less restrictive assumptions can be either reduced to
the one in (6.68) or derived similarly.

Let us emphasize that, although we study optimal control problems with
a Banach state space X, they involve only finitely many endpoint constraints
on system trajectories. The method we develop allows us to take an advantage
of this setting (which is somehow related to the finite codimension property
of the constraint set; cf. Corollaries 6.29, 6.24 and Remark 6.25) and to deal
with finite-dimensional images of endpoint variations under the derivative
operators for the cost and constraint functions, employing thus the convex
separation theorem in finite dimensions.

In the rest of this subsection we consider the optimal control problem
(6.63) with the inequality endpoint constraints (6.64) and fix an optimal so-
lution {u(-), x(-)} to this problem. Assume without loss of generality that
@i(¥(b)) = 0 for all i = 1,...,m. It is easy to see from the proof (as
usually with inequality constraints) that A; = 0 if ¢ ()E(b)) < 0 for some
i €{1,...,m}, i.e., the corresponding function ¢; can be excluded from con-
sideration. In this setting the complementary slackness conditions of Theo-
rem 6.37 hold automatically, and we need to establish relations (6.66)—(6.68)
with » =0 and 0 # (Ao, ..., An) € RY.

Along with (single) needle variations introduced in the preceding subsec-
tion we now invoke “multineedle variations” built as follows. Fix a natural
number M > 1 and M points 7; € [a, b] of the original time interval with
a <1 <7173 <L... <1y <b. Consider also arbitrary numbers N; € IN for
j=1,...,M and o;; € [0,1] for i =1,..., N; satisfying the relations

N,‘ NM
'[j+805 Qij < Tjt1, j:].,...,M*l, and 'L’M+8()E a,-M<b
i=1 i=1

with some g9 > 0. We are going to construct a perturbation u(-) of the refer-
ence control #(+) that is different from () on Ny +...4+ Ny time intervals of a
small total length, while the difference between u(-) and #(-) on these intervals
is up to any element from the feasible control region U. To proceed, let us
take arbitrary v;; € U and e € (0, &) and define a multineedle variation u(-)
of the reference control u(-) by
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i—1 i
vij, € |:'L'j+ E O[Vjé‘,l'j-l- E O[VJ'E), o =0, i:1,...,Nj,
v=0 v=1

u(t) = (6.72)

N
A, 1g [Tty age), =1 M.
i=1

Note that, although there are M basic points 7;, the multineedle variation
(6.72) involves Nj + ... + Ny points of needle-type perturbations; this is
different from a single needle variation (6.71) even in the case of M = 1.
Actually the multineedle variation (6.72) is a collection of N1 +. ..+ Ny single
needle variations of type (6.71) with the given parameters (t;, v;j, aij, €).

Let AX,.,;.,;.6(P) be the endpoint increment of the trajectory X(-) cor-
responding to the single needle variation of type (6.71) with the parameters
(7, vij, @ij, €). Dealing with the differential equation (6.61) of smooth dynam-
ics and its linearization in x along the process {u(-), X(-)} as in the proof of
Lemma 6.43, we can check the relationship

Affj’vij,mj,g (b) = [aijAfrj,u,-_,-,l(b)]s + 0(8) (673)

between AXi, .y, a,.e(P) and the corresponding linearized endpoint increment
AXe, .0, (b) computed by

AXe, 0, (b) = i R(b. 7)) Ay, f (%(1)). (1)), 7)) =t @tij Axe, 0,0

via the resolvent (Green function) R(z, T) of the linearized homogeneous equa-
tion for (6.61) with respect to x along {u(-), x(-)} given as

X =V, f(x@),at),t)x.

Furthermore, the endpoint increment Ax(b) generated by the multineedle vari-
ation (6.72) is represented by

Nj

A% (b) = [ZM: Za,-,»Af,,v,.,,lx(b)}e +o(e) .

j=1i=1

Now we form the following finite-dimensional linearized image set gener-
ated by inner products involving derivatives of the cost and constraint func-
tions and the linearized endpoint increments corresponding to all the multi-
needle variations (6.72) of the reference optimal control u(-):

M N;

S = {()’0, ceey ym) € mm—i—l‘ Yo = ZZ <V¢0(3€(b)>7 Afjvvijxaijx(b)>’ A
j=1i=1
: (6.74)

M Nj

3= 30D (Ven (%)), Aryya ¥(0)) |

j=1i=1
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with arbitrary z; € [a,b), v;j € U, o;; € [0,1],i = 1,...,N;, N; € IN,
j=1,...,M,and M € IN.

There are two crucial facts regarding the set S in (6.74). First of all, it
happens to be convex, which is mainly due to the possibility of using arbitrary
o;j € [0,1] in multineedle variations (6.72). The latter is based on the time
continuity of [a, b] and, as mentioned above, reflects the hidden convezity of
continuous-time control systems. The second fact is due to the optimality
of #(-) in the constrained control problem (6.63), (6.64): it ensures that the
linearized image set (6.74) doesn’t intersect the convex set of forbidden points
(from the viewpoint of optimality and inequality constraints in the problem
under consideration) given by

RZ’H = {(yo,...,ym) € H?”H'l‘ y; <0 for all i :O,...,m} .
Both of these facts are proved in the following lemma.

Lemma 6.44 (hidden convexity and primal optimality condition in
control problems with inequality constraints). Let {u(-),x()} be an
optimal solution to the inequality constrained problem (6.63) and (6.64), where
all the functions ¢; are supposed to be Fréchet differentiable at x(b) in addition
to the standing assumptions of Subsect. 6.3.1. Then the linearized image set
S in (6.74) is convex and doesn’t intersect the set of forbidden points IR™T1.

Proof. Let us fix a collection of parameters (t;, vij, N;, M) and show that the
set (6.74), still denoted by S, is convexr while the numbers «;; are arbitrarily
taken from [0, 1]. This clearly implies the convexity of the “full” set S. Indeed,
taking two different collections of (t;, v;j, N;, M), we may always unify them,
which again gives an admissible multineedle variation (6.72). It is therefore
sufficient to justify the convexity of S only in the case when parameters «;;
take values on the interval [0, 1].

To proceed, we fix (7, v;j, Nj, M) and take two collections {ai(jl)} and
{ai(]?)} such that the corresponding points y(*) and y® in (6.74) belong to
the linearized image set S. Then considering the point Ay™) + (1 — 1)y for
any A € [0, 1] and taking into account the linear dependence of Axq, v, .a; (D)
on «;;, we conclude that Ay + (1- A)y(2) is an element of S corresponding
to {Xoti(jl) +(1- X)ai(jz)}, which justifies the convexity of S.

It remains to show that § N IR™* = (), where S stands for the “full” im-
age set in (6.74) corresponding to all the admissible multineedle variations
(6.72). Assuming the contrary, we find a multineedle variation (6.72) with
some admissible parameters (t;, vi;, o, Nj, M) such that
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=

J

<v¢0(x(b)), Afj,vij,aijx<b)> <0,...,

1

M=

1i

~.
I

=

M=

<V(pm (X(b»’ Ar,»,vi,,aij)f(b)> <0.

1i

~.
I
I

-

Then using the Fréchet differentiability of the functions ¢, ..., ¢, at X(b)
and the above relationship between the endpoint increment Ax(b) generated
by (6.72) and the linearized ones A, ,, o, corresponding to each collection
('L'j, Vij, ®jj, Nj, M), we get

ox (x (b)) — @i (X(b)) = (Ver (2(D)), A% (b)) + o(e)

M Nj
= [Z <Vgok (x(b)). A,].,U,.j,a,.j)?(b)>]8 +o(e) <0
j=1i=1
for all k = 0,...,m and all ¢ > 0 sufficiently small. The latter means that

there is a multineedle control variation (6.72) such that the corresponding
trajectory x(-) satisfies all the inequality constraints (6.64), being therefore
feasible for the problem under consideration, and gives a smaller value to the
cost functional in (6.63) in comparison with x(-). This contradicts the opti-
mality of the process {u(:), x(-)} in problem (6.63), (6.64) and thus completes
the proof of the lemma. A

The obtained relation SN IR™*! = () can be viewed as a primal necessary
optimality condition, which is of course not efficient, since it depends on con-
trol variations and is not expressed in terms of the initial data of the problem
under consideration. To proceed further, we pass to its dual form employing
the convexr separation theorem and then invoking the Hamilton-Pontryagin
function by the constructions of the increment method in Lemma 6.42; see
the arguments below.

Proof of Theorem 6.37 for problems with inequality constraints. Ap-
plying the classical separation theorem to the convex sets S and IR™*! from
Lemma 6.44, we find a nonzero vector (Ag, ..., Ay,) € IR™*! such that

Z)\.iyi Z Z)uizi for all (yo, ey ym) €S and (ZO, . ,Zm) c RZIJFI .

This easily implies that A; > 0 for all i =0, ..., m and that

m

Zkiy,- >0 whenever (yo,...,¥ym) €S. (6.75)

i=0
Note that the vector (Ao, ..., An) doesn’t depend on a specific multineedle
variation (6.72); it separates the set of all such variations from 0 € IR™*!. In
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particular, employing (6.75) just for vectors (yo, ..., ym) generated by single
needle variations (6.71) with parameters (z, v, ¢) and taking into account the
relationship (6.73) between the full and linearized increments of the optimal
trajectory along (single) needle variations, one has

E:M<V@LHM%AWWHM>+0@)ZO
i=0
for all T € [a,b), v € U, and ¢ > 0 sufficiently small. Putting now

p(b) = — Zkivﬁﬂi (x(p))
i=0

and proceeding as in the proof of Lemma 6.42 and Theorem 6.37 for the
free-endpoint control problem in Subsect. 6.3.2 with the replacement of the
boundary condition (6.70) by the latter one, we end the proof of Theorem 6.37
for problems with inequality endpoint constraints. A

6.3.4 Transversality Conditions for Problems
with Equality Constraints

To complete the proof of Theorem 6.37, it remains to justify it for the case
of equality endpoint constraints in the problem under consideration. Without
loss of generality we focus here on the optimal control problem given by (6.63)
and (6.65), i.e., with no inequality constraints considered in the preceding
subsection. For convenience, suppose that the equality constraints are given
by the first m functions ¢; as

gi(x(b)) =0, i=1,....m. (6.76)

Having this in mind, form again the linearized image set S in (6.74) gener-
ated now by the images of multineedle variations under the gradient mappings
for the cost and equality constraint functions. The set of forbidden points in
the equality constrained problem is given by

S< = {0, ym) € R"™H yo < 0,31 =0,....ym =0} .

Our goal is to investigate all the possible relationships between the image set
S and the above set of forbidden points that are allowed by the optimality of
{u(-), x(-)}. The most difficult case is considered in the next lemma, which es-
tablishes that the origin cannot be an interior point of the IR™-projection of S.
The proof given below involves the Brouwer fized-point theorem. Note that,
although this fundamental topological result is heavily finite-dimensional, it
allows us to deal with the optimal control problems described by evolution
equations in infinite dimensions. The crux of the matter is, as mentioned, that
the control problem has finitely many endpoint constraints, which ensures the
finite codimension property of the constraint set.
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Lemma 6.45 (endpoint variations under equality constraints). Let
{u(-),x(-)} be an optimal solution to the control problem (6.63), (6.76) under
the standing assumptions on X, U, and f. Assume also that the functions
@0 - -+ @m are Fréchet differentiable at X(b) and that @1, ..., ¢ are in addi-
tion continuous around this point. Then one has

0 ¢ int (pI‘Oij S) ,

where the linearized image set S is generated in (6.74) by the endpoint equality
constraints (6.76).

Proof. Assume the contrary and denote by B, a closed ball in R™ of radius
n > 0 centered at the origin. Let 7 be a regular “tetrahedron” with the
vertices ¢, s =1, ..., m+1, inscribed into 7. If 5 is sufficiently small, then
for each s =1, ..., m~+1 there are numbers {ozl.(;)} in the multineedle variation
(6.72) and v < 0 such that

M N;
ZZ <V(p0 (x(b)), Ar/,v,-/,a,.(?)x(b)> <v <0 and
j 1 ]

=1i=1

M N;j
= Z <V(pk . Ar, vir, a(;)x(b)>
j=1i=1 Y
for all k = 1, ..., m, where q,ES) stands for the kth component of the vertex

g®). Each point ¢ = ¢(B) € T can be represented as a convexr combination of
the tetrahedron vertices by

m—+1
= Zqu(” with Yy = (yh s Vm+1) EP ’

where P connotes the m-dimensional simplex. Let u, .(-) be a multineedle
variation (6.72) with the parameters (7;, vij, a;;(y), €), where

m—+1
(le Z Vs« 1(;)7 (Vl» s Vm) ep.

Consider now an e-parametric family of mappings g(-, €): P — IR™ defined by

o) = (%(M(b))-%(f(b)) wm(xy,s(b))—wm(f(b))>

gy,

g e e ey

& &

’

where x, . (-) signifies a trajectory for (6.61) corresponding to the multineedle
control variation u, (-). Putting also
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M N;
0) == (Z <V(p1 Olij()/)Azj,v,.j,l)?(b)>, cee
j=1i=1
M N;j
Z <V‘/’m aij(V)Arf,vij,lf(b)>) ,
j=1i=1

we conclude that the mapping g(-,-) is continuous on P X [0, &o] with &g
sufficiently small. This is due to the standing assumptions on the Fréchet
differentiability of ¢1,..., 9, at X(b) and the continuity of these functions
around this point. It follows from the above constructions that

m+1
g(y,0)= Z vsq®) and G(P,0)=T ;

s=1

thus the set g(P, 0) contains the origin as an interior point. Let us show that
there is € > 0 such that

0€intg(P,¢e) forall ¢ <.

To proceed, we observe that the mapping g(-, 0) is one-to-one and continuous
from P into 7. Hence its inverse mapping is single-valued and continuous; let
us denote it by p(y) and put

h(y,e):=g(p(y).e) forall yeT and &€ [0, &) .

Take 1 > 0 so small that the ball B, of radius n centered at the origin belongs
to the tetrahedron 7. Then the continuity of the mapping A(-, ) yields the
existence of € > 0 such that

lh(y,0) —k(y,e)|| <n whenever ¢ <.

Thus, given any ¢ € (0, €), the continuous mapping h(y, 0)—h(y, €) transforms
the ball B, into itself. Employing the Brouwer fized-point theorem, we find a
point y® € B, satisfying

h(y®,0) — h(y®,e) = y® for all ¢ €(0,%).
This implies by h(y,0) = y that
h(y® &) = g(p(»°).¢) = gy, &) for some y° € P with g(y*,0)=y".

Taking into account the construction of g(-, -), we conclude that the trajecto-
ries xye .(-) generated by the multineedle variations u,: .(-) under considera-
tion satisfy the equality constraints (6.76) for all ¢ € (0,%). Moreover, for the
variations along the cost functional one has
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M N;
Z <v¢0 (f(b))’ Afjavifvaif(ys)i<b)>
j=1i=1
m+1 M N;
=3 (XS (VeoE®). 4, 050)))
s=1 j=1i=1 Y
m+1
< Z yfv < v whenever ¢ € (0,%) .
s=1

The latter implies, similarly to the case of inequality constraints, that

Yo (xyf,s (b)) < %o (f(b))

along some feasible solutions to the equality constrained problem (6.63),
(6.65). This contradicts the optimality of the process {u(-), x(-)} in this prob-
lem and completes the proof of the lemma. A

Based on Lemma 6.45 and the arguments developed in Subsects. 6.3.2 and
6.3.3, we finally justify Theorem 6.37 in the remaining case of equality con-
straints and thus complete the whole proof of this theorem.

Proof of Theorem 6.37 for problems with equality constraints. Tak-
ing into account Lemma 6.45, there are the following two possible relation-
ships between the linearized image set S in (6.72) corresponding the equality
constraints (6.76) and the set of forbidden points S<:

(a) SNS= =0
(b) SNS= %0 and 0 € bd (proj g«S).

Consider first case (a). Since both sets S and S< are convex, we employ
the classical separation theorem for convex sets and find a monzero vector
(A0 -+ s Am) € IR™1 such that

Z)\l‘yi Z Zkizi for all (yo, ...,ym) €S and (Zo, ...,Zm) €S,
i=0 i=0

It easily implies, by the structure of the forbidden set S<, that Ay > 0 and
that the relation (6.75) holds. To complete the proof of the theorem in this
case, we now proceed exactly as in the case of inequality constraints at the
very end of Subsect. 6.3.3.

It remains to examine case (b). Denote £2 := proj g=S and observe that
this set is closed and convex in IR™. Since 0 € bd §2, we apply the supporting
hyperplane theorem for convex sets and find a nonzero m-vector (A1, ..., Ay)
supporting £2 at the origin. Then we again arrive at the basic relation (6.75)
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with the nontrivial (m + 1)-vector (0, A1, ..., A,y) and complete the proof of
the theorem similarly to the case of inequality constraints. A

Note that the continuity assumption on the equality constraint functions
@i around x(b), an addition to their Fréchet differentiability at this point, is
essential for the validity of Theorem 6.37 even in the case of finite-dimensional
state space X with the trivial dynamics f = 0; see Example 5.12.

6.4 Approximate Maximum Principle
in Optimal Control

This section is devoted to optimal control problems for a parametric family
of dynamical systems governed by discrete approximations of control systems
with continuous time. Discrete/finite-difference approximations play a promi-
nent role in both qualitative and numerical aspects of optimal control. While
considered as a process with a decreasing step of discretization, they occupy an
intermediate position between continuous-time control systems and discrete-
time control systems with fixed steps. Recall that discrete approximations
of general control problems for differential inclusions have been studied in
Sect. 6.1, but the attitude there was different from that in this section. Our
previous direction was from discrete to continuous: to establish necessary opti-
mality conditions for discrete-time systems with fized discretization steps and
then to use well-posed discrete approximations as a wehicle in deriving opti-
mality conditions for continuous-time control systems. The results obtained
in this way in Sect. 6.1 provide necessary conditions of a mazimum principle
type only under some converity/relazation assumptions imposed a priori on
the system dynamics.

Now we are going to explore the other direction in the relationship be-
tween discrete-time and continuous-time control systems: from continuous to
discrete. Having in mind that the Pontryagin mazimum principle (PMP) and
its extensions to nonsmooth problems and differential inclusions hold without
any convezity/relaxation assumptions on the continuous-time dynamics, it is
challenging to clarify the possibility to establish necessary optimality condi-
tions of the mazimum principle type for discrete approximations. The results
obtained in this direction are rather surprising; see below.

6.4.1 Exact and Approximate Maximum Principles
for Discrete-Time Control Systems

As seen in Sects. 6.2 and 6.3, the relations of the maximum principle involv-
ing the Weierstrass-Pontryagin maximum condition hold for continuous-time
control systems with no a priori converity assumptions. This happens due to
specific features of the continuous-time dynamics that generates some hid-
den convezity property inherent in such control systems. Probably the most
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striking and deep manifestation of the hidden convexity for continuous-time
systems is given by the fundamental Lyapunov theorem on the range con-
vexity of nonatomic/continuous vector measures, which is equivalent to the
Aumann convexity theorem for set-valued integrals; see, e.g., the discussion in
the proof of Lemma 6.18 and the references therein. In the proof of the maxi-
mum principle for control systems with smooth dynamics given in Sect. 6.3 we
didn’t invoke these results while exploiting directly the time continuity in the
construction of needle (and multineedle) variations generating the automatic
convexity of the linearized image set as in Lemma 6.44. One cannot expect
such properties for discrete-time systems described by the general discrete
inclusions of the type

x(t+1) e F(x(¢),t), t=0,...,K—1,
or by their parameterized control representations
x(t+1)= f(x(r),u(t),t), u()eU, t=0,...,K—1,

where K € IN signifies the number of steps (final discrete time) for the dis-
crete dynamic process. However, the discrete mazimum principle holds if the
sets of “discrete velocities” F(x,t), or their counterparts f(x,U,t) for the
parameterized control systems, are assumed to be convex. In this case the
maximum condition is actually a direct consequence of the Fuler-Lagrange
inclusion as discussed above. Indeed, it follows from the extremal property
of the coderivative to convex-valued mappings from Theorem 1.34 due to a
special representation of the normal cone to conver sets.

As well known, the discrete maximum principle may not hold, even for
simple control systems with smooth dynamics, if the above velocity sets are
not conver. We now present an example of the failure of the discrete maxi-
mum principle (as a natural analog of the Pontryagin maximum principle for
discrete-time control systems) for a family of simple free-endpoint problems
with smooth dynamics. In this example the Hamilton-Pontryagin function
achieves its global minimum (instead of maximum) along any feasible control.
As always in this chapter, a “free-endpoint” problem means that there are
no constraints on the right endpoint of the system trajectories, while the left
endpoint may be fixed.

Example 6.46 (failure of the discrete maximum principle). There is
a family of optimal control problems of minimizing a linear function over
two-dimensional discrete-time control systems with smooth dynamics and no
endpoint constraints such that any feasible control for these problems doesn’t
satisfy the discrete maximum principle.

Proof. Consider the following family of optimal control problems with a two-
dimensional state vector x = (x1, x2) € IR?:
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minimize J[u, x] = ¢(x(K)) 1= x2(3) subject to
x1(t+1)=0(u(t), 1), x1(0)=0,

xao(t +1) = y (x1(0))* + mxa(t) — (r/m) (P (u(e), 1), x2(0) =0,

M(I)EU, t:0’1727

where the scalar function (-, -), the numbers y, n, and the control set U are
arbitrary. Then (a natural discrete counterpart of) the Hamilton-Pontryagin
function for this system is

H(x(t), pt +1),u,t) : = (p(t + 1), f(x(t),u,1))
= it + 19 (. 0) + ypa(t +1) (1))

Hnpa(t + Dxa(t) — (v/m)pa(t + 1) (8 (u, 1)),

where the adjoint trajectory p(-) satisfies the corresponding discrete analog
of the system (6.67) given by

p(t) =V H(x(t), p(t +1),u(t),t), t€{0,....,K -1} ={0,1,2},
with the boundary/transversality condition
p(K)=—-Vo(x(K)) =(0,-1) at K =3.

For the problem under consideration one has

p2(3)=—1, pa(2)=—-n, p2(1)=-n*,

p1(3) =0, p1(2) = —yx1(2) = =2y (u(1), 1) ,

p1(1) = —2ynx1(1) = —2yn9 (u(0), 0) .

Then considering only the terms depending on u in the Hamilton-Pontryagin
function, we get

H(u,0) = —yn[20(u(0), 0)9(u, 0) — (#(u,0))°] ,

Hu, 1) = —y [20 (u(1), )9 (u, 1) — (9 (1, 1))7] .

This shows that, given an arbitrary ¢ (-, -) and U, the functions H(u, 0) and
H (u, 1) attain their global minimum at any u(0) and u(1) whenever y > 0 and
yn > 0, respectively. Thus the above relationships of the discrete maximum
principle are not necessary for optimality in the family of optimal control
problems under consideration. A

It is worth mentioning that the Hamilton-Pontryagin function in the above
example does attain its global maximum over u € U for optimal controls when
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t = K — 1 = 2. This can be shown by using the increment formula applied
to concave cost functionals along needle variations of optimal controls; cf. the
arguments below in Subsect. 6.4.2. Moreover, the discrete maximum principle
holds true in the family of problems from Example 6.46 for allt, i.e., it provides
necessary optimality conditions along optimal controls at every time moment,
if and only if

y <0 and n>0.

This follows from the above consideration and the results of Sect. 17 in Mor-
dukhovich’s book [901], where some individual conditions for the validity of
the discrete maximum principle are given. Thus the simultaneous fulfillment
of the conditions y < 0 and n > 0 fully describes the relationships between the
initial data of the problems from Example 6.46, which ensure the fulfillment
of the discrete maximum principle. Note that overall the results in this di-
rection obtained in the afore-mentioned book [901] strongly take into account
interconnections between the initial data of nonconvex discrete-time control
systems; see more discussions and examples therein.

The main attention in this section is paid not to optimal control prob-
lems governed by dynamical systems with fized discrete time but to finite-
difference/discrete approximations of continuous-time problems studied in the
preceding section. This means that instead of the continuous-time control sys-
tem (6.61) we consider a sequence of its finite-difference analogs given by

XN([ +l’lN) = )CN([) +l’le()CN([), MN([), t), XN(CZ) =xg€ X,
(6.77)
MN(I)EU, tETN::{a,aJrhN,...,bth},

with N € IN and hy := (b — a)/N. Recall that discrete approximations of
differential/evolution inclusions have been studied in Sect. 6.1 being used
there as a vehicle to derive necessary optimality conditions for continuous-time
control problems. Now our goal is quite opposite: to look at optimal control
problems for discrete approximations from the viewpoint of their continuous-
time counterparts. The key question is:

Would it be possible to obtain a certain natural analog of the Pontryagin
mazimum principle for optimal control problems governed by nonconvex finite-
difference systems of type (6.77) as N — 0o?

If the answer is no, then such a potential instability of the PMP may pose
serious challenges to its implementation in any numerical algorithm involving
finite-difference approximations of time derivatives.

To begin with, for each N € IN we consider the problem of minimizing a
smooth endpoint function g (x(b)) over discrete-time process {uy(-), xy(-)}
satisfying (6.77). The exact PMP analog for each of these problems, the
discrete mazimum principle, is written as follows: given an optimal process
{un(-), xn(-)}, there is an adjoint arc py(-), t € Ty U {b}, satistying
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pN(l) = pN(l +hN) +hNVXH()?N(t), pN(t +/’lN), I/_LN([), f) (678)

as t € Ty with the transversality condition

pn(b) = —Veo (3n (b)) (6.79)
and such that the exact mazrimum condition

H(xn(t), pn(t +hy), iy(t),1) = rfeaL)}cH()EN(t), pn(t+hy)ut), t€Ty.

is valid whenever N € IN, with the usual Hamilton-Pontryagin function

H(x,p,u,t):= <p, f(x,u, t)> .

It follows from Example 6.46 (via standard rescaling) and the discussion
above that this (ezact) discrete mazimum principle may be generally violated
even for simple classes of optimal control problems governed by discrete ap-
proximation systems of type (6.77) whenever N € IN. This may signify a
possible instability of the PMP under discrete approximations. Note, how-
ever, that to require the fulfillment of such an exact counterpart of the PMP
for discrete approximation systems is too much to ensure the PMP stability
under discretization of continuous-time control systems.

What we really need for this purpose is the validity, along every sequence of
optimal solutions {uy(), Xy (-)} to the discrete approximation problems while
N € IN becomes sufficiently large, of the approrimate maximum condition

H(xn(t), py(t +hy), in(t), 1) = I'fleagiH(fN(t), pn(t+hy),u,t) +e(t hy)
for all + € Ty with some ey (¢, hy) — 0 as N — oo uniformly in ¢ € Ty, where
pn(+) are the corresponding adjoint trajectories satisfying (6.78) and (6.79). In
this case we say that the approzimate mazimum principle (AMP) holds for the
discrete approximation problems under consideration. Such an approximate
analog of the PMP ensures the discretization stability of the latter and thus
justifies the possibility to employ the PMP in computer calculations and sim-
ulations of nonconvex continuous-time control systems. Furthermore, giving
necessary optimality conditions for sequences of discrete approximation prob-
lems, the AMP plays essentially the same role as the (exact) discrete maxi-
mum principle in solving discrete-time control problems with sufficiently small
steps; see particularly Example 6.68. However, in the case of large stepsizes
h the approximate maximum condition, still being necessary for optimality,
may be far removed from the exact maximum.

It is proved in Subsect. 6.4.3 that the AMP holds, with e(hy, 1) = O(hy) in
arbitrary Banach state spaces X, for smooth free-endpoint problems of optimal
control, i.e., for problems of minimizing smooth (continuously differentiable)
cost functions over discrete approximation systems (6.77) with smooth dy-
namics and no endpoint constraints. The proof is purely analytic based on



6.4 Approximate Maximum Principle in Optimal Control 253

using (single) needle control variations and a discrete counterpart of the in-
crement formula from Subsect. 6.3.2.

The crucial difference between the PMP for continuous-time systems and
the AMP for discrete approximations is that the latter result doesn’t have an
expected (lower) subdifferential analog for optimal control problems involv-
ing the simplest nonsmooth (even convex) cost functions! The corresponding
counterexample is presented in Subsect. 6.4.3, together with those showing
the violation of the AMP for optimal control problems with Fréchet differen-
tiable (but not continuously differentiable) cost functions as well as for control
problems with nonsmooth dynamics.

Thus the AMP happens to be very sensitive to nonsmoothness. On the
other hand, in Subsect. 6.4.3 we derive an upper subdifferential version of the
AMP, parallel to that in Subsect. 6.3.1 for continuous-time systems, which
holds however for a more restrictive class of cost functions in comparison with
the one for continuous-time systems. This class of uniformly upper subdiffer-
entiable functions is introduced and studied in Subsect. 6.4.2.

The case of optimal control problems for discrete approximation systems
(6.77) with endpoint constraints is much more involved. Considering control
systems with smooth inequality constraints of the type

oi(xn(0)) <0, i=1,...,m,

we formulate in Subsect. 6.4.4 the AMP with perturbed complementary slack-
ness conditions under some properness assumption on the sequence of optimal
controls, which can be treated as a discrete counterpart of piecewise continu-
ity. The latter assumption happens to be essential for the validity of the AMP
for nonconvex constrained systems as demonstrated by an example. The proof
of the AMP given in Subsect. 6.4.5 reveals an approximate counterpart of the
hidden convezity property for finite-difference control problems under consid-
eration; see below for more details and discussions. We also derive the upper
subdifferential form of the AMP for inequality constrained problems with uni-
formly upper subdifferentiable endpoint functions ¢;, i =0, ..., m.

A proper setup for discrete approximations of continuous-time control
problems with endpoint constraints of the equality type

(pi(x(b)):O, i=m+1,... . m+r,
involves the constraint perturbations
lgi(xn(b))| <&n., i=m+1,....m+r,

with &y J 0 as N — oo. It is proved in Subsect. 6.4.5 that the AMP holds
for discrete approximation problems with perturbed equality constraints de-
scribed by smooth functions provided that the following consistency
condition
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hy

=0 forall i=m+1,.... m+r. (6.80)

lim sup
N—oo &iN
is imposed. This means that the equality constraint perturbations &;y should
tend to zero slower than the discretization stepsize hy, which particularly
requires that &y # 0. We give an example showing the consistency condition
(6.80) is essential for the fulfillment of the AMP, which may be violated even
when &y = O(hy).

The results obtained admit an extension to discrete approximations of
systems with time delays in state variables, which relates to the case of in-
commensurability between the length b — a of the time interval and the ap-
proximation stepsize hy; see Subsect. 6.4.6. On the other hand, we present an
example showing the AMP doesn’t hold for discrete approximations of neutral
systems, even in the case of smooth free-endpoint control problems.

Before deriving the mentioned results on the AMP, let us describe and
study the class of uniformly upper subdifferentiable functions on Banach spaces
for which the upper subdifferential form of the AMP will be developed. This
class particularly includes every continuously differentiable function as well as
every concave continuous function that are of special interest for applications.

6.4.2 Uniformly Upper Subdifferentiable Functions

The main object of this subsection is the class of functions defined as follows.

Definition 6.47 (uniform upper subdifferentiability). A real-valued
function defined on a Banach space X is UNIFORMLY UPPER SUBDIFFEREN-
TIABLE around a point x if for every x from some neighborhood V of x there
exists a nonempty set DT (x) C X* described by: for any given € > 0 there
is v > 0 such that x* € DY o(x) if and only if

¢(v) —o(x) — (& v —x) <efv—x]| (6.81)
whenever v € V with ||[v — x| < v and x* € DTp(x).

It is easy to see that this class contains every smooth (i.e., C! around x) )
function with DTg(x) = {Ve(x)} and also every concave continuous function
with DVe(x) = 97 ¢(x) as x is around X in any Banach space. Furthermore,
one can derive from the definition that the above class is closed with respect
to taking the minimum over compact sets. Note that even if ¢ is Lipschitz
continuous around X and Fréchet differentiable at x, it may not be uniformly
upper subdifferentiable around this point. A simple example is provided by
the standard function ¢: IR — IR defined by ¢(x) := x%sin(1/x) for x # 0 and
¢(0) := 0 with x = 0.

Before formulating the main result of this subsection, we consider an ar-
bitrary function ¢: X — IR finite at ¥ and describe relationships between the
Fréchet upper subdifferential of ¢ at ¥ defined in (1.52) by
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lim sup P =) = T x -0 0}

e e =]

ate(x) = {x* e X

and the two modifications of the so-called Dini (or Dini-Hadamard) upper
directional derivative of ¢ at x defined by

c 4 ) — o3
d¢(x;z) := limsup p(x +1y) —p(x)
y—z t

10

for the standard (strong) version and by

p(x +1ty) — o(X)
t

d}o(x;z) ;= limsup
vz
1.0
for its weak counterpart, where y — z signifies the weak convergence in X. The
next proposition used below is definitely interesting for its own sake; it reveals
the duality between the subgradient and directional derivative constructions
under consideration that generally holds in reflerive spaces for the weak di-
rectional derivative and in finite dimensions for the strong one. We formulate
it for the case of upper constructions needed in this section; it readily implies
the lower counterpart.

Proposition 6.48 (relationships between Fréchet subgradients and
Dini directional derivatives). One always has

ate(x) C {x* e X*| (x*,2) > df(x;2) forall z€ X}
C {x* € X*| (x*,z) >dTe(x;z) forall z € X} ,

where the equality holds in the first inclusion when X is reflexive, while it
holds in the second one when dim X < co. Moreover,

F112) — ofF

d*o(x;z) = limsup p(¥ +12) = () (6.82)
10 t

if ¢ is locally Lipschitzian around X.

Proof. To prove the final inclusion in the proposition, it is sufficient to observe
that for every x* € 3*¢(x) and z € X one has

o) o) e
d+¢(f;Z)—<x*,z>zlimsup‘a(H y) —(x) —tlx*.y)
y—z t
110

<0;

)

the other is similar. Let us prove that the first inclusion holds as equality if X
is reflexive. To proceed, we pick x* ¢ dT¢(x) and take any y > 0. Then there
is a sequence x; — X such that
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o(x) —(x) — (x", xp —X) — y||lxx —x|| >0 forall ke IN.

Since X is reflexive, we suppose without loss of generality that the sequence
(xx — X)/||xx — x|| weakly converges to some z € X. Then

dt(x;z) > limsup plx) — olx)

z >x* 2 +y,
msup = T S Y

which ensures the required equality, since y was chosen arbitrarily.
It remains to justify representation (6.82) if ¢ is locally Lipschitzian around
X with some modulus £ > 0. Then we get

lp(x +ty) —@(x +1tz)| < tllly —z|| for any y,z € X

when ¢ > 0 is sufficiently small. Thus one has

d+(E:2) = limsup [ LE T Z0(F) | o(x 1) —Wﬂz)}

y—z t t
110
F 1) — o3
= lim sup w whenever z € X,
110 t
which justifies (6.82) and completes the proof of the proposition. A

Now we are ready to establish important properties of uniformly upper
subdifferentiable functions that are employed in what follows being certainly
of independent interest. It shows, in particular, that such functions enjoy the
upper reqularity property formulated right after Definition 1.91.

Theorem 6.49 (properties of uniformly upper subdifferentiable func-
tions). Let X be reflexive, and let ¢ be continuous at X and uniformly upper
subdifferentiable around this point with the subgradient sets DY ¢(x) from Def-
inition 6.47. Then there is a neighborhood of X in which ¢ is Lipschitz con-
tinuous and one can choose

Dto(x) = 5+g0(x) =dTp(x).

Proof. The subgradient sets DVg(x) are obviously convex. Moreover, it is
easy to check that each of these sets is norm-closed in X* and hence also
weakly closed due to its convexity and the assumed reflexivity of X. Let us
show that Dt e(x) is uniformly bounded in X* around ¥. Assume the contrary
and select some sequences x; — X and x;j € DTo(x;) with [|xf| — oo as
k — oo. Then employing the Hahn-Banach theorem and taking into account
the reflexivity of X, we find u; € X satisfying the relations

(xf,ug) = x| and [jug|| = ||x;||7Y? for all k € IN .

Setting now vy := x; — uy, one has from (6.81) that



6.4 Approximate Maximum Principle in Optimal Control 257

@(ve) = (k) < =, ur) + elu|

with [Jux|]| = 0 and (x}, ux) — oo by the construction above. This yields that
() — ¢(xx) — —oo while x, vy — X as k — oo, which contradicts the
required continuity of ¢ at X and thus justifies the uniform boundedness of
DT g(x) around this point.

Next we show that ¢ is locally Lipschitzian around x. It can be done
similarly to the proof of Theorem 3.52 based on the mean value inequality
from Theorem 3.49 that holds for D*¢(-). However, we may easier proceed
directly invoking the uniform boundedness of the sets Dt ¢(x) around X and
property (6.81). Indeed, assume the contrary and find sequences x; — x and
vr — X satisfying

o (vi) = @(xi)| > kffoe — x| as k= o0

Suppose for definiteness that ¢(vy) — @(xx) > k||vx — x||; the other case is
symmetric. Now using the uniform upper subdifferentiability of ¢, we find a
sequence of x; € DT g(x;) satisfying

kllve — xell < (ve) — () < (v — xi) + ellue — x|
< (Il + &) lloe — x|

for any given ¢ > 0 when k is sufficiently large. This yields that ||x}]] — oo
as k — oo, which contradicts the uniform boundedness of the sets Dt g(x)
around x and thus justifies the local Lipschitzian property of ¢.

It follows from the definition of Fréchet upper subgradients in (1.52) and
the construction of DTg(x) in (6.81) that one always has DTg(x) C 3¢ (x).
Let us show in fact that Dte(x) = 9te(x) around X. First observe that
the set-valued mapping DT¢:V = X* is closed-graph in the normxweak
topology of X x X* on any closed subset of V. Using this fact and the local
Lipschitz continuity of ¢ around X, we derive from (6.81) that ¢ is directionally
differentiable in the classical sense

(x +1z) — o(x)

"(x;2) :=1i prriz) o) , X,
¢'(x;2) im . z

whenever x is sufficiently close to x; moreover, we have the representation
¢'(x;z) = min {{x*, )| x* € DFp(x)} , (6.83)

where the minimum is attained due to the weak closedness of DT ¢(x) in X*.
Since DT g(x) is also convex, one gets from (6.83) and the results of Propo-
sition 6.48 that 9+¢(x) C DTe(x). Indeed, assuming the opposite and then
separating x* ¢ DT (x) from the convex and norm-closed set DT p(x) C X*,
we arrive at a contradiction with (6.82) and (6.83). Finally, the equality
DTo(x) = dT¢(x) and the upper regularity of ¢ around x follows from the
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mention closed-graph property of DT ¢(-) by the upper subdifferential version
of Theorem 2.34 on the limiting representation of basic subgradients. This
completes the proof of the theorem. A

As mentioned above, properties of uniformly upper subdifferentiable func-
tions allow us to derive the AMP in optimal control problems for discrete
approximations with upper subdifferential transversality conditions; see the
following subsections. This requires more from the functions and spaces un-
der consideration in comparison with the assumptions needed to justify upper
subdifferential transversality conditions in the PMP for continuous-time sys-
tems as well as upper subdifferential optimality conditions in problems of
mathematical programming; cf. Sects. 5.1, 5.2, and 6.3. These significantly
more restrictive requirements needed for the AMP are due to the parametric
nature of finite-difference systems treated as a process as N — oo. We'll see
in the next subsection that, even in the case of differentiable cost functions in
free-endpoint control problems with finite-dimensional state spaces, the con-
tinuity of the derivatives is essential for the validity of the AMP in sequences
of discrete approximations.

6.4.3 Approximate Maximum Principle
for Free-Endpoint Control Systems

This subsection is devoted to optimal control problems for sequences of finite-
difference systems (6.77) with no endpoint constraints on the right-hand end of
trajectories. As in the case of continuous-time systems, free-endpoint problems
for discrete approximations are essentially different from their constrained
counterparts. The main positive result of this subsection is the approximate
maximum principle for free-endpoint problems in Banach spaces with up-
per subdifferential transversality conditions valid for uniformly upper subd-
ifferentiable cost functions. In particular, this justifies the AMP for control
problems with continuously differentiable cost functions, where the bound-
ary/transversality condition for the adjoint system (6.78) is written in the
classical form (6.79). On the other hand, we present an example showing that
the AMP doesn’t hold when the cost function is differentiable at the point of
interest but not C' around it. Other examples show that the AMP is very
sensitive to nonsmoothness: it doesn’t hold for control problems with non-
smooth dynamics and—which is even more striking—for nice systems with
convex nonsmooth cost functions.

Consider the sequence of optimal control problems (Py) for discrete-time
systems studied in this subsection:

minimize Jy[uy, xn] := @o (xN(b)) (6.84)
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over control-trajectory pairs {uy(-), xy(-)} satisfying the control system (6.77)
as N — oo. Given a sequence of optimal solutions {iy(-), Xy (-)} to problems
(PY), we impose the following standing assumptions:

——the control space U is metric, the state space X is Banach;

——there is an open set O containing Xy () for all ¢+ € Ty U {b} such that
f is Fréchet differentiable in x with both f(x,u,r) and its state derivative
Vif(x,u,t) continuous in (x,u, ) and uniformly norm-bounded whenever
x€O0,ucU,andt € Ty U{b} as N — oc;

——the sequence {Xy(b)} belongs to a compact subset of X.

The latter assumption is not restrictive at all in finite dimensions: it follows
from standard conditions ensuring the uniform boundedness of admissible
trajectories for continuous-time control systems. In infinite dimensions it can
be derived from the conditions imposed in (H1) of Subsect. 6.1.1; cf. the proof
of Theorem 6.13 and the references therein.

Here is the main positive result of this subsection.

Theorem 6.50 (AMP for free-endpoint control problems with upper
subdifferential transversality conditions). Let the pairs {uy(-), Xy (-)}
be optimal to problems (PY)) under the standing assumptions made. Sup-
pose in addition that the cost function @q is uniformly upper subdifferentiable
around the limiting point(s) of the sequence {Xy(b)} with the correspond-
ing subgradient sets DV (x). Then for every sequence of upper subgradients
x} € DYoo (x(b)) there is e(t,hy) — 0 as N — oo uniformly int € Ty such
that one has the approrimate maximum condition

H(xn(t), py(t +hy),iin(1),1) = I'fleaJ(H()fN(t), pa(t+hy), u,t)
(6.85)
+8([,hN), teTy,

where each py(-) is the corresponding trajectory for the adjoint system (6.78)
with the boundary/transversality condition

pn(b) = —xy forall N € IN . (6.86)

Furthermore, this result holds with any x% € 5“‘(/)()@(17)) in (6.86) if in addi-
tion X is reflexive and @q is continuous at the optimal points.

Proof. Considering a sequence of optimal solutions {ity(-), Xy ()} to (PY),
we suppose that the trajectories Xy (¢) belong to the uniform neighborhoods
fixed in the assumptions made for all N € IN. It follows from Definition 6.47 of
the uniform upper subdifferentiability for ¢y that D¥¢q (XN (b)) # () and that
inequality (6.81) holds for any x} € Do (¥y(b)) as N — oo. Now taking an
arbitrary sequence of x3, € Dt ()?N(b)), we get

9o(x) — ¢o(¥n (b)) < (xy.x — Xy (D)) +o(llx — Xy (D)])) (6.87)
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o(llx — xn (b)]))

with —
[x —xn (D)l

— 0 as x — xy(b) uniformly in N .

Letting py(b) := —x} as in (6.86), we derive from (6.87) that

Jun, xy] = Jiin, ¥n] < —(pn(b), Axy (b)) + o(||Axn (B)]]) ,

with Axy(t) := xy(t) — Xy(t), for all admissible processes in (Py) whenever
xy(b) is sufficiently close to xy(b). Taking into account the identity

(pu(b), Axy(B)) = 3 (pu(t +hy) = pu (1), Axn (1))

teTn

+ Z <pN(t +hy), Axy(t+hy) — AXN(f)>

teTy

and using the smoothness of f in x, we get from the above inequality that

0< ][MN,.XN) — J[Ijt]v,)z]v] < - Z <pN(l +I’ZN) — pN(l), A.XN(I)>

teTy

e 3 (e + hy), Vo f (E(0), in(0). 1) Axy (1) )

teTy
(6.88)
—hn Y AH(EN(0), pa(t+ hy),in (1), 1)
teTy
—hy Y () + o Axn(B)])) |
teTy

where the remainder ny(#) is computed by
(1) = (VH (Fn(0), pae + hy), un (1).1)

~VH (Xn(1), pa(t + hy), iy (1), 1), AXN(I)> +o(]|axy(1)]])

with the quantity o(||Axy(#)]|) being uniform in N due to the assumptions
on V, f, and where the increment A,H is defined similarly to the one in
Subsect. 6.3.2 for continuous-time systems.

Now we consider (single) needle variations of the optimal controls uy/(+) in
the following form:

v ift=r1,
MN(I) =
uy(r) ifreTy\{z},
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where v € U and v = ©(N) € Ty as N € IN. All these controls are obvi-
ously feasible for the discrete approximation problems under consideration,
which are not subject to endpoint constraints. The trajectory increments cor-
responding to the needle variations satisfy the relations

Axy(t) =0 for r=a,...,t; |[Axn(t)|=O(hy) for t =1+ hy,....b.

Taking this into account and substituting the needle variations uy(-) into the
increment inequality (6.88), one gets

0 < J[MN,)CN] — J[ﬁN,)?N] < —hNAuH()fN(‘L'), pN(‘[ +l’lN), ﬁN('L’), 'L') +0(hN) .

Arguing by contradiction, we directly derive from the latter inequality the
approximative maximum condition (6.85).

To complete the proof of the theorem, it remains to apply Theorem 6.49 on
uniform upper subdifferentiability to the cost function gg. This ensures that
xj may be taken from the whole Fréchet upper subgradient sets 8+<p0(()f(b))
in the transversality conditions (6.86) as N — oo provided that X is reflexive
and that ¢q is assumed to be continuous a priori. A

Remark 6.51 (discrete approximations versus continuous-time sys-
tems.) Observe that the proof of Theorem 6.50 is similar to the one for
continuous-time systems with free endpoints; cf. the proofs of Theorem 6.37
in Subsect. 6.3.2 and of its upper subdifferential version (Theorem 6.38) in
Subsect. 6.3.1. The given proofs in both continuous-time and discrete-time
settings are based on using the increment formulas for cost functionals and
(single) needle variations of optimal controls. In a sense, the proof for discrete
approximations problems is a simplified version of that given for systems with
continuous time (which is definitely not the case when endpoint constraints
are involved; see the next subsection). On the other hand, there are two signif-
icant differences between the results and proofs for continuous-time systems
and those for discrete approximations.

Firstly, in the case of continuous-time systems there is a possibility of
using a small parameter ¢ as the length of needle variations, which ensures the
smallness of trajectory increments Ax(¢#) = O(e) and happens to be crucial for
establishing the exact maximum principle in continuous-time optimal control.
In systems of discrete approximations the smallness of trajectory increments
is provided by the decreasing stepsize hy, which is a parameter of the problem
but not of variations. This leads to the approrimate maximum condition with
the error as small as the step of discretization. Of course, such a device is not
possible when Ay 4 0.

The second difference concerns the parametric nature of discrete approxi-
mation problems in contrast to problems with continuous time. This requires
the more restrictive uniformity assumptions imposed on cost functions in com-
parison with the case of continuous-time systems.
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The following two consequences of Theorem 6.50 and its proof deal with
important classes of cost functions that are automatically uniformly upper
subdifferentiable and admit more precise versions of the AMP. Note that these
results don’t require the reflexivity assumption on the state space X as in the
second part of Theorem 6.50; they are valid in arbitrary Banach spaces.

Corollary 6.52 (AMP for free-endpoint control problems with
smooth cost functions). Let the pairs {uy(-), xn(-)} be optimal to prob-
lems (Py) under the standing assumptions made. Suppose in addition that
the cost function g is continuously differentiable around the limiting point(s)
of {xn(b)}. Then the approzimate mazimum principle of Theorem 6.50 holds
with the transversality condition (6.79) for the corresponding adjoint trajectory
pn(-) whenever N € IN. Moreover, we can take e(t, hy) = O(hy) in the maz-
imum condition (6.85) if both V, f (-, u,t) and Veo(-) are locally Lipschitzian
around Xy (-) uniformly inu € U, t € Ty, and N — 0.

Proof. As mentioned above, in any Banach space X we have DTg(x) =
{Ve(x)} in a neighborhood of ¥ if ¢ is C! around this point. It can be easily
shown that (6.87) holds as equality for smooth functions ¢p; moreover, one
has |o(n)| < €n? therein if Vg, is locally Lipschitzian. Note further that the
Lipschitzian assumption imposed on V, f (-, u, t) in the corollary implies that

o(llaxy (1)) = O (| Axn (1)II)

uniformly in N for the “o” term in the remainder ny(-) in the proof of the
theorem. This yields that e(¢,hy) = O(hy) in the approximate maximum
condition (6.85) under the assumptions made. A

Corollary 6.53 (AMP for free-endpoint control problems with con-
cave cost functions). Let the pairs {un(:),xn ()} be optimal to problems
(PY) under the standing assumptions made. Suppose in addition that the cost
function @q is concave on some open set containing all Xy(b). Then the ap-
prozimate maximum principle of Theorem 6.50 holds along every sequence of
subgradients x}, € 0Ty (Xy(b)). Moreover, one can take e(t, hy) = O(hy) in
(6.85) if Vi f(-,u,t) is locally Lipschitzian around xy(-) uniformly in u € U,
t €Ty, and N — o0.

Proof. Recall that DT¢(x) = d%¢(x) for concave continuous functions in
arbitrary Banach spaces. Furthermore, o(|[x — xy(b)||) = 0 in the inequal-
ity (6.87) under the concavity assumption of the corollary. Combining this
with the estimate of ny(-) in the proof of Corollary 6.52, we conclude that
e(t,hy) = O(hy) in (6.85) under the assumptions made. A

Now we proceed with counterexamples, i.e., examples showing that the
AMP may be violated if some of the assumptions in Theorem 6.50 are not
satisfied. All the examples below are given for finite-dimensional control sys-
tems with nonconvex velocity sets. Our first example demonstrates that the
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AMP doesn’t hold in the expected lower subdifferential form (as the maximum
principle for continuous-time control systems) even in the simplest nonsmooth
case of minimizing convex functions over systems with linear dynamics.

Example 6.54 (AMP may not hold for linear control systems with
nonsmooth and convex minimizing functions). There is a one-
dimensional control problem of minimizing a nonsmooth and convex cost func-
tion over a linear system with no endpoint constraints for which the AMP is
violated.

Proof. Consider the following sequence of one-dimensional optimal control
problem (Py), N € IN, for discrete-time systems:

minimize @(xy(1)) = [xy(1) — V|

subject to
(6.89)
XN(l+hN):XN(t)+hNMN(t), XN(O)ZO,

un(t) €U :={0,1}, r1€Ty:={0,hy,....,1—hy},

where ¥ is a positive irrational number less than 1 whose choice will be spec-
ified below. The dynamics in (6.89) is a discretization of the simplest ODE
control system x = u. Observe that, since ¢ is irrational and Ay is rational, we
have Xy (1) # ¢ for the endpoint of an optimal trajectory to (6.89) as N € IN,
while obviously x(1) = ¢ for optimal solutions to the continuous-time coun-
terpart. It is also clear that for all sufficiently small stepsizes iy an optimal
control to (6.89) is neither uy(t) = 0 nor uy () = 1, but it has at least one
point of control switch.

Suppose that for some subsequence Ny — oo one has xy, (1) > @; put
{Nx} = IN without loss of generality. Let us show that in this case the approx-
imate maximum condition doesn’t hold at points ¢t € Ty for which ay(t) = 1.
Indeed, we have

H(xy(t), py(t +hy),u) =py(t+hy)u and py(t) = -1

for the Hamilton-Pontryagin function and the adjoint trajectory for this prob-
lems, since xy(1) > ¢ along the optimal solution to (6.89). Thus

r’fleaI}(H()EN(t),pN(t—&—hN),u) =0, teTyn,

while H()EN(S), oy (s + hy), IZN(S)) =-1

at the points s € Ty of control switch, where @y (s) = 1 regardless of hy.

Let us specify the choice of ¢ in (6.89) ensuring that xy(1) > ¢ along some
subsequence of natural numbers. We claim that xy(1) > ¢ if 9 € (0,1) is an
irrational number whose decimal representation contains infinitely many digits
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from the set {5, 6,7, 8,9}; e.g., ¥ = 0.676676667 . ... Indeed, put hy := 10~
which is a subsequence of hy = N~! as required in (6.89). It is easy to
see that in this case the set of all reachable points at t+ = 1 is the set of
rational numbers between 0 and 1 with exactly N digits in the fractional
part of their decimal representations. In particular, for N = 3 this set is
{0, 0.001, 0.002, ..., 0.999, 1}. Therefore, by the construction of #, the closest
point to ¢ from the reachable set is greater than %, and this point must be
the endpoint of the optimal trajectory Xy (1). A

The next example, complemented to Example 6.54, shows that the AMP
fails even for problems with differentiable but not continuously differentiable
cost functions.

Example 6.55 (AMP may not hold for linear systems with differ-
entiable but not C' cost functions). There is a one-dimensional control
problem of minimizing a Fréchet differentiable but not continuously differen-
tiable cost function over a linear system with no endpoint constraints for which
the AMP is violated.

Proof. Consider the same control system as in (6.89) and construct a mini-
mizing function ¢(x) that satisfies the requirements listed above. Let ¢¥(x) be
a C! function with the properties:

¥(x) >0, ¥x)=v(—x), ¢Yx)=0if |x|>2,
[V (x)] <1 forall x, and Vy(-1)=9 >0.

Define the cost function ¢(x) by

n

o) = (x - é)g + i 10723y (1075 (x = 31074 — 1)

k=1

which is continuously differentiable around every point but x = %, where it is

differentiable and attains its absolute minimum. As in Example 6.54, we put
hy := 107", and then the point x = % cannot be reached by discretization.
It is not hard to check that the endpoint of the optimal trajectory xy(-) for

each N is computed by

N
iv(1) =) 107" with Ve(iy(1)) =9 + ey,
k=1

where ey | 0 as N — oo. Proceeding as in Example 6.54 with the same
sequence of optimal controls, we have

H()EN([), pN<l +hN), Lt) = —du + 0(8N) s
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and the approximate maximum condition (6.85) doesn’t hold at the points of
control switch, where ay(7) = 1. A

The last example in this subsection concerns systems with nonsmooth dy-
namics. We actually consider a finite-difference analog of minimizing an inte-
gral functional subject to a one-dimensional control system, which is equiv-
alent to a two-dimensional optimal control problem of the Mayer type. The
discrete “integrand” in this problem is nonsmooth with respect to the state
variable x; it happens to be continuously differentiable with respect to x along
the optimal process {iy(), Xy(:)} under consideration but not uniformly in
N. Thus the example below demonstrates that the uniform smoothness as-
sumption on f over an open set containing all the optimal trajectories Xy (+)
is essential for the validity of the AMP.

Example 6.56 (violation of AMP for control problems with nons-
mooth dynamics). The AMP doesn’t hold in discrete approximations of a
minimization problem for an integral functional over a one-dimensional linear
control system with no endpoint constraints such that the integrand is linear
with respect to the control variable while convexr and nonsmooth with respect
to the state one. Moreover, the integrand in this problem happens to be C*
with respect to the state variable along the sequence of optimal solutions to
the discrete approzimations (PY)) for all N € IN but not uniformly in N.

Proof. First we consider the following continuous-time optimal control prob-
lem of the Bolza type:

b
minimize J[u, x] ::/0 (u(t) + |x(t) — t2/2]) dt

subject to

u(t) eU :={l,c}, 0<r<b,

where the terminal time b and the number ¢ > 1 will be specified below.
It is obvious that the optimal control to this problem is #(¢) = 1 and the
corresponding optimal trajectory is ¥(¢) = t2/2.

By discretization we get the sequence of finite-difference control problems:

minimize J{uy,xy] = hy Z (un(t) + |xn (1) — £2/2)
t€Ty

subject to (6.90)

XN(l+hN):XN([)+thMN(I), XN(O):O,

un(t)eU={1l,c}, t€Ty:={0,....,(N—1)hy}.
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We first show that iy () = 1 remains to be the (unique) optimal control
to (6.90) if the stepsize hy is sufficiently small and the numbers (b, c) are
chosen appropriately. It is easy to check that the corresponding trajectory
X(+) is computed by

2 thy

)EN(I):g—T for all NeN.

Then the value Jy of the cost functional at iy () equals

_ t b%h
JN:b+h12VZ§— 4N (hy) .

teTy

If we replace uy(t) = 1 by un(f) = ¢ at some point ¢ € Ty, then the increment
of the summation hy ), ., un(t) equals (¢ — 1)hy. Hence the corresponding
value of the cost functional is

J[MN,XN —hNZuN +hNZ|xN —12/2|

teTn teTy

>hNZuN Y> b+ (c—1hy

teTy

for any feasible control uy(t) to (6.90) different from uy () = 1. Comparing
the latter with Jy, we conclude that the control iiy(¢) = 1 is indeed optimal
to (6.90) if b2/4 < ¢ — 1 and N is sufficiently large.

We finally show that for b > 2 and ¢ > b?/4+1 (e.g., for b = 3 and ¢ = 4)
the sequence of optimal controls uy(t) = 1 doesn’t satisfy the approximate
maximum condition (6.85) at all points ¢ € Ty sufficiently close to 1 = b/2.
Compute the Hamilton-Pontryagin function as a function of + € Ty and of
u € U at the optimal trajectory Xy (¢) corresponding to the optimal control
under consideration with the adjoint trajectory py(t) for (6.78). Reducing
(6.90) to the standard Mayer form and taking into account that xy(t) < t2/2
for all r € Ty due to above formula for xy(t), we get

H(xn(t), py(t +hy),u t) = tpy(t +hy)u —u — %y (1) —12/2)
= (tpn(t +hy) — Du+ (Xn () —12/2) ,
where py(t) satisfies the equation
pn(t) = pn(t +hy) +hy,  pn(b) =0,
whose solution is py(t) = b — t. Therefore one has

H(Zn(t), pn(t +hy)ou 1) = (t1(b— 1t +hy) — 1)u+ O(hy)

= (=12 +bt —u+ O(hy) .
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The multiplier —¢2 + bt — 1 is positive in the neighborhood of t = b/2 if

its discriminant 52 — 4 is positive. Thus # = c, but not u = 1, provides
the maximum to the Hamilton-Pontryagin function around ¢ = b/2 if hy is
sufficiently small, which justifies the claim of this example. A

Finally in this subsection, we give a modification of Theorem 6.50 in the
general case of possible incommensurability of the time interval b — a and
the stepsize hy; note that b —a = Nhy as N € IN in Theorem 6.50. This
is particularly important for the extension of the AMP to finite-difference
approximations of time-delay systems in Subsect. 6.4.5. For simplicity we use
the notation

flan,un,t) = fan(t), un(t), 1) .
Given the time interval [a, b], define the grid Ty on [a, b] by

TN = {a,a—i—hN,...,b—ﬁN—hN}

b—a},

b— -
with /iy ::Ta and  hy ::b—a—hN{ -
N

where [z] stands for the greatest integer less than or equal to the real number
z. The modified discrete approximation problems (Py) are written as

minimize J[uy, xy] := @o (xN(b)) subject to
xN(t+hN):xN(t)+th(xN,uN,t), IETN, XN(LZ):XQGX,

)CN(b) = XN(b — ZN) + ﬁNf(XN, uy, b — EN) ,

uy(t) eU, teTy.

Theorem 6.57 (AMP for problems with incommensurability). Let
the pairs {iiy(-), Xy (-)} be optimal to problems (PQ). In addition to the stand-
ing assumptions, suppose that @q is uniformly upper subdifferentiable around
the limiting point(s) of the sequence {Xy(b)}, N € IN. Then for every se-
quence of upper subgradients xy € DTy (xy(b)) there is e(t,hy) — 0 as
N — oo uniformly in t € Ty such that the approrimate maximum condition

H(Xy, py. iy, t) = meach()EN, pnsu,t)+e(t, hy)
holds for allt € fN =Ty U{b—ftN}, where the Hamilton-Pontryagin function
is defined by

(pn(t+hy), f(Ev,u 1)) ift €Ty,
H(Xn, pn,u,t) = N ~
{pn (1), fGnu,t —hy)) ift =b—hy,
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and where each py(-) satisfies the adjoint system
pn(t) =pn({E+hy) + AV f(Xn un, t) py(t+hy), t €Ty,

pn(b—hy) = py(b) + hy Vi f(b —hy, Xy, iy, 1)* py(b)

with the transversality condition py(b) = —xp. Furthermore, specifications
similar to the second part of Theorem 6.50 as well as Corollaries 6.52 and
6.53 are also fulfilled.

Proof. It is similar to the proof of Theorem 6.50 and its corollaries with the
following modification of the increment formula for the minimizing functional:

0 S J[MN,XN] — J[ﬁN,)ZN} S —<pN(b), A)CN(b)> —I—O(HAXN(b)H)

==Y {pnlt+hy) = py (1), Ax (1))

—(pn(b) — pn(b—hy). Axy(b—hy))

—hN Z <P1v(l +hN)a fo(-iNvﬁN’ l) AxN(t)>

teTy
—ZN<PN(17), Vif (En iy, b —hy) Axy (b — EN)>

~hn Y AuH(E, pyiiy) +hy Y (t) + o[ Axn (B)]))

IG?N IE?N

where A, H and ny(t) are defined similarly to the non-delay problems. Sub-
stituting the adjoint trajectory into this formula and using needle variations
of the optimal control, we arrive at the conclusions of the theorem. A

6.4.4 Approximate Maximum Principle under Endpoint
Constraints: Positive and Negative Statements

This subsection concerns discrete approximations of optimal control problems
with endpoint constraints. Our primary goal here is to formulate the approx-
imate maximum principle for discrete approximation problems under appro-
priate assumptions and to clarify whether these assumptions are essential for
its validity; the proof of the AMP is given in the next subsection.

Constructing discrete approximations, it is natural to perturb endpoint
constraints and to consider the following sequence of optimal control problems
(Py) for discrete-time systems:
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minimize J{uy,xy] = ¢o(xy(b)) subject to

xn(t+hy) =xy(@) +hyf(xn(t),un(t).1), xn(a)=x0€ X,
uny(t)eU, teTy:={a,a+hy,....b—hy},

@i(xnv() <win, i=1,....m,

loi(xn(b))| <&n, i=m+1,....m+r,

where y;y — 0 and &y | 0 as N — oo for all i. The main result of this
subsection shows that, under standard smoothness assumptions on the initial
data, the AMP holds for proper sequences of optimal controls to problems
(Py) with arbitrary perturbations of inequality constraints (in particular, one
can put y;y = 0) while with consistent perturbations of equality constraints
matched the step of discretization. Then we demonstrate that the mentioned
properness and consistency requirements are essential for the validity of the
AMP, and we also derive an appropriate upper subdifferential analog of the
AMP for problems with nonsmooth cost and inequality constraint functions.
Throughout this subsection we keep the standing assumptions on the initial
data listed in Subsect. 6.4.3 supposing in addition that the state space X
is finite-dimensional, which is needed in the proofs below. Along with the
conventional notation for the matrix product, we use the agreement

A,A,_lAI if i Z],
]IA%: I ifi=j—1,

0 ifi<j—1,

where i, j are any integers and where I stands as usual for the identity matrix.

As in the case of continuous-time systems, the proof of the AMP for
problems (Py) with endpoint constraints is essentially different and more in-
volved in comparison with free-endpoint problems. Recalling the proof of The-
orem 6.37 for continuous-time systems with inequality endpoint constraints
in Subsect. 6.3.3, we observe that a crucial part of this proof is Lemma 6.44,
which verifies that the linearized image set S in (6.74) is convex and doesn’t
intersect the set of forbidden points. These facts are definitely due to the time
continuity reflecting the hidden convezity of continuous-time control systems.
Note that the mentioned image set S in (6.74) is generated by multineedle
variations of the optimal control the very construction of which in (6.82) is
essentially based on the time continuity.

In what follows we establish a certain finite-difference analog of the hid-
den convexity property for control systems in (Py) involving convez hulls of
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some linearized image sets Sy generated by single needle variations of opti-
mal controls. We show that small shifts (up to o(hy)) of these convex hulls
don’t intersect the set of forbidden points as N — oo. This basically leads,
via the convexr separation theorem, to the approximate maximum principle
for problems (Py) under endpoint constraints of the inequality type, with
appropriately perturbed complementary slackness conditions.

Such a device (as well as any finite-difference counterparts of the con-
struction in Subsect. 6.3.4) doesn’t apply to problems (Py) with arbitrarily
perturbed equality constraints (in particular, when &y = 0) for which the
AMP is generally violated. Nevertheless, the complementary slackness condi-
tions mentioned above allow us to derive a natural version of the AMP for
problems (Py) with appropriately perturbed equality constraints by reducing
them to the case of inequalities.

Before formulating the main result of this subsection, we introduce an
important notion specific for sequences of finite-difference control problems.

Definition 6.58 (control properness in discrete approximations). Let
d(-, ) stand for the distance in the control space U is problems (Py). We say
that a sequence of discrete-time controls {uy(-)} in (Py) is PROPER if for
every increasing subsequence {N} of natural numbers and every sequence of
mesh points tg(yy € Ty satisfying

Tyv)y =a+0(N)hy as 6(N)=0,...,N —1 and ton) — 1t € [a, b]
one of the following properties holds:

either d(uy(tow))s un(Tonyq)) = 0 or d(un(toen)), un(Ta(ny—g)) — 0
as N — oo with any natural constant q.

The notion of properness for sequences of feasible controls in discrete
approximation problems is a finite-difference counterpart of the piecewise
continuity for continuous-time systems. It turns out that the situation when
sequences of optimal controls are not proper in discrete approximations of
constrained systems with nonconvex velocities is not unusual, and this leads
to the violation of the AMP for standard problems with inequality constraints.
Note that the properness assumption is not needed for the validity of the AMP
in free-endpoint problems; see Theorem 6.50.

Now we are ready to formulate the AMP for constrained control problems
(Py) with endpoint constraints described by smooth functions.

Theorem 6.59 (AMP for control problems with smooth endpoint
constraints). Let the pairs {uy(-), Xn(-)} be optimal to (Py) for all N € IN
under the standing assumptions made. Suppose in addition that all the func-
tions ¢;, i =0,...,m+r, are continuously differentiable around the limiting
point(s) of {xy(b)} and that:
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(a) the sequence of optimal controls {uy(-)} is proper;
(b) the consistency condition (6.80) holds for the perturbations &y of all
the equality constraints.

Then there are numbers {)LiN| i=0,...,m+r} satisfying
)\,iN((ﬂi()EN(b)) _ViN) = O(hN), i :1,...,7’11, (691)
m-+tr
My >0, i=0,....m, Y Ay=1, (6.92)
i=0

and such that the approzimate maximum condition (6.85) is fulfilled with
en(t, hy) — 0 uniformly int € Ty as N — oo, where each py(t), t € TyU{b},
is the corresponding trajectory of the adjoint system (6.78) with the endpoint
transversality condition

m+r

pn(b) = — Z AinVei (Xn (b)) . (6.93)
i=0

We postpone the proof of this major theorem till the next subsection
and now present two counterezamples showing the properness and consis-
tency conditions are essential for the validity of the AMP under the other
assumptions held. Our first example concerns the properness condition from
Definition 6.58.

Example 6.60 (AMP may not hold in smooth control problems with
no properness condition). There is a two-dimensional linear control prob-
lem with an inequality constraint such that optimal controls in the sequence of
its discrete approximations are not proper and don’t satisfy the approximate
mazximum principle.

Proof. Consider a linear continuous-time optimal control problem (P) with
a two-dimensional state x = (x1, x2) € IR? in the following form:

minimize ¢(x(1)) := —x;(1) subject to
X1 =u, )'62:)61—6‘1‘, X1(O):.)C2(O):O,
u(t) e U :={0,1}, 0<r<1,

c—1
2 9

XQ(I) S

where ¢ > 1 is a given constant. Observe that the only “unpleasant” feature
of this problem is that the control set U = {0, 1} is nonconvez, and hence the
feasible velocity sets f(x, U, r) are nonconvex as well. It is clear that u(t) =1
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is the unique optimal solution to problem (P) and that the corresponding

c—1
optimal trajectory is x1(¢) = t, x2(t) = — t?. Moreover, the inequality
o . . _ c—1
constraint is active, since x3(1) = — 5
Let us now discretize this problem with the stepsize hy := %, N e IN.

For the notation convenience we omit the index N in what follows. Thus the
discrete approximation problems (Py) corresponding to the above problem
(P) are written as:

minimize ¢(x(1)) = —x;(1) subject to
x1(t +h) =x1(t) + hu(t), x1(0)=0,
xo(t +h) =x2(t) + h(x1(t) —ct), x2(0)=0,

u(t) €{0,1}, t€{0,h,....,1—h},

i.e., we put yy := h% in the constraint perturbation for (Py).
To proceed, we compute the trajectories in (Py) corresponding to u(t) = 1.
It is easy to see that x1(¢) = ¢ for this u(-). To compute x2(¢), observe that

2 th
[x(t +h) =x(t) + ht, x(0) =0] = x(1) = 5
Indeed, one has by the direct calculation that
1—h i1 t(t 2
iy -1 t th
x(t)=hY = [put v = kh] :h22k:h2%:5—3.
=0 k=0

Therefore for x2(f) corresponding to u(r) =1 in (Py) we have

-1 -1
St

ht .
2 2

xo(t) =h (t—ct)=—

By this calculation we see that, for 4 sufficiently small, xo(1) no longer satisfies
the endpoint constraint, and thus u(7) = 1 is not a feasible control to problem
(Py) for all i close to zero. This implies that an optimal control to (Py) for
small &, which obviously exists, must have at least one switching point s such
that u#(s) = 0, and hence the maximum value of the corresponding endpoint
x1(1) will be less than or equal to 1 — h. Put

1 if t#s,
u(t) ==
0 if r=s
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and justify the formula

c—1t2+c—1
2 2

ht, t<s,

xo(t) = X
c=1p ¢

1 9
—_ _ >
2 B ht h(t S)+h,t S+h,

for the corresponding trajectories in (Py) depending on i and s. We only
need to justify the second part of this formula. To compute xo(¢) for t > s+h,
substitute x1(¢) = t — h into the discrete system in (Py). It is easy to see that
the increment Axs(t) compared to the case when u(t) =1 is

t—h
h > (=h)=—h(t—h—s)=—h(t —s)+h*,
T=s+h

which justifies the above formula for x5(z).
Now we specify the parameters of the above control putting ¢ = 2 and
s = 0.5 for all N, i.e., considering the discrete-time function

1 if 1#05,
0 if r=0.5.

Note that the point + = 0.5 belongs to the grid Ty for all N due to hy :=
ﬁ. Observe further that the sequence of these controls doesn’t satisfy the
properness property in Definition 6.58. It follows from the above formula for
x2(t) that the corresponding trajectories obey the endpoint constraint in (Py)
whenever N € IN, since x(1) = f% + h2. Moreover, it is clear from the given
calculations that the control u(¢) is optimal to problem (Py) for any N.

Let us show that this sequence of optimal controls u#(-) doesn’t satisfy the
approximate maximum condition (6.85) at the point of switch. Indeed, the
adjoint system (6.78) for the problems (Py) under consideration is

p(t) = p(t +h) +hV, f(x1, X2, 0, 1) p(t + 1),

where the Jacobian matrix V, f and its adjoint/transposed one are equal to

00 « (01
Thus we have the adjoint trajectories

p1(t) = p1(t+h)+hpa(t +h) and pa(t) = const,

where the pair (p1, p2) satisfies the transversality condition (6.93) with the
corresponding sign and nontriviality conditions (6.92) written as
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p1(1) = 2o, p2(1) =—h1; Ao >0, A1 >0, AJ+27=1.

This implies that p;(¢) is a linear nondecreasing function. The corresponding
Hamilton-Pontryagin function is equal to

H (x(t), p(t + h),u(t)) = p1(t + h)u(t) + terms not depending on u .

Examining the latter expression and taking into account that the optimal
controls are equal to u(¢) = 1 for all # but # = 0.5, we conclude that the ap-
proximate maximum condition (6.85) holds only if p;(¢) is either nonnegative
or tends to zero everywhere except + = 0.5. Observe that p;(¢) = 0 yields
A1 = A2 = 0, which contradicts the nontriviality condition. Hence p(f) must
be positive away from ¢ = 0. Therefore a sequence of controls having a point
of switch not tending to zero as & | 0 cannot satisfy the approximate maxi-
mum condition at this point. This shows that the AMP doesn’t hold for the
sequence of optimal controls to the problems (Py) built above. A

Many examples of this type can be constructed based on the above idea,
which essentially means the following. Take a continuous-time problem with
active inequality constraints and nonconvezr admissible velocity sets f(x, U, t).
It often happens that after the discretization the “former” optimal control be-
comes not feasible in discrete approximations, and the “new” optimal control
in the sequence of discrete-time problems has a singular point of switch (thus
making the sequence of optimal controls not proper), where the approximate
maximum condition is not satisfied.

The next example shows that the AMP may be violated for proper se-
quences of optimal controls to discrete approximation problems for continuous-
time systems with equality endpoint constraints if such constraints are not
perturbed consistently with the step of discretization.

Example 6.61 (AMP may not hold with no consistent perturbations
of equality constraints). There is a two-dimensional linear control prob-
lem with a linear endpoint constraint of the equality type such that a proper
sequence of optimal controls to its discrete approzimations doesn’t satisfy the
AMP without consistent constraint perturbations.

Proof. Consider first the following optimal control problem for a two-
dimensional system with an endpoint constraint of the equality type:

minimize @o(x(1)) := x2(1) subject to

x=u, te€T:=][0,1], x(0)=0,

u(t) € U= {(0,0), (0.-1), (1.-v2), (-v2.-3)},

01 (x(l)) =x1(1) =0,
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where x = (x1,x2) € IR? and u = (ug,us3) € IR?. One can see that this
linear problem is as standard and simple as possible with the only exception
regarding the nonconvexity of the control region U.

Construct a sequence of discrete approximation problems (Py) in the stan-
dard way of Theorem 6.59 by taking zero perturbation of the endpoint con-
straint, i.e., with &y = 0. Thus we have:

minimize ¢o(xy(1)) = xan(1) subject to
xN(t +hN) = .XN(I) +/’ZNMN(I), )CN(O) =0¢€ R? ,

u(t)eU, t€Ty:={0,hy,....,1—hy},

¢1(xn(1)) =x1x(1) =0 with hy=N"1, NeN.
It is easy to check that the only optimal solutions to problems (Py) are
uy(t) =(0,-1), Xxn(t)=(0,—t) forall reTy, Ne N,

which give the minimal value of the cost functional Jy = —1. Note that
the sequence {uy(-)} is obviously proper in the sense of Definition 6.58. The
corresponding trajectories py(:) of the adjoint system (6.78) satisfying the
transversality condition (6.93) are

pN([) = (7)\.11\/, 7)\.01\/) forall t € Ty U {1} s

where the sign and nontriviality conditions (6.92) for the multipliers (Agy, A1n)
are written as

donv >0, A2y +A%y =1 whenever N € IN .

Furthermore, for each N € IN the Hamilton-Pontryagin function in the
discrete-time system computed along Xy (-) and the corresponding adjoint tra-
jectory py(-) reduces to

Hy(u,t) = —Aiyur — donua, t €Ty,

that gives Hy(uy) = Aon for the optimal control.
Let us justify the estimate

Sy = max{HN(u)’ uc U} — Hy(uy)>1 forall Ne IV,

which shows that the approximate maximum condition (6.85) is violated in
the above sequence of problems (Py). To proceed, consider the two possible
cases for the multipliers (Agy, A1y):

(@) Aon >0, Ay >0, A3y +ATy =1;

(b) )\01\/ Z 0, )\,11\/ < 0, )"%N +)"%N =1.
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In case (a) we have that

Sy = AinV2 + 3hoy — Aoy > V2(Ay + Aoy) > V2,

while case (b) allows the estimate
8y > Al + V2hon — hon = (V2= 1)(|Aaw| +2on) = V2 1.

Thus the AMP doesn’t hold in the sequence of discrete approximation prob-
lems under consideration. A

We can observe from the above discussion that the failure of the AMP in
Example 6.61 is due to the fact that the equality constraint is not perturbed
(or not sufficiently perturbed) in the process of discrete approximation, while
the optimal value of the cost functional is not stable with respect to such per-
turbations. Indeed, any control uy(t) equal to either (1, —2) or (—v/2, —3) at
some t € Ty and giving the value Jy[uy] < —1 to the cost functional is not
feasible for the constraint x1y(1) = 0, being however feasible for appropriate
perturbations of this constraint. On the other hand, these very points of U
provide the mazimum to the Hamilton-Pontryagin function. Such a situation
occurs in the discrete-time systems of Example 6.61 due to the incommensu-
rability of irrational numbers in the control set U and just the rational mesh
Ty for all N € N. Of course, this is not possible in continuous-time systems
by the completeness of real numbers.

6.4.5 Approximate Maximum Principle
under Endpoint Constraints: Proofs and Applications

After all the discussions above, let us start proving Theorem 6.59. We split
the proof into three major steps including two lemmas of independent inter-
est, which contribute to our understanding of an appropriate counterpart of
the hidden convexity for discrete approzimations. Then we derive an upper
subdifferential extension of the AMP to constrained problems with inequality
constraint described by uniformly upper subdifferential functions. Finally, we
present some typical applications of the AMP to discrete-time (with small
stepsize) and continuous-time systems.

Let un(¢r) € U for all t € Ty as N € IN. Given an integer number r with
1 <r < N —1, we define needle-type variations of the control uy(-) as follows.
Consider a set of parameters {6;(N), v;(N)},_;, where v;(N) € U and where
0;(N) are integers satisfying

Denoting 7y, (y) :=a + 6;(N)hy, we call

NP R (6.9)
uy(t) := 6.9
un(t), t€Ty, t#tww), j=1,....r,
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the r-needle variation of the control uy (-) with the parameters {6;(N), v;(N)}.
When r = 1, control (6.94) is a (single) needle variation of uy(-), while it is
a multineedle variation of uy(-) for r > 1. The variations introduced are
discrete-time counterparts of the corresponding needle-type variations (6.71)
and (6.72) of continuous-time controls, being however essentially different from
the latter especially in the multineedle case.

Let xy(-) be the trajectory of the finite-difference system

XN(Z‘l‘]’lN):)CN(I)+th(XN(l),MN(l),l), XN(G):XO , (695)

corresponding to the control variation uy(-) with the parameters {6;(N),
v;(N)}; in what follows we usually skip indicating their dependence on N.
Then the difference Xy (-) — xy(-) is denoted by Af{gj,vj}xN(-) for r > 1 and by
Agpxn () for r = 1; it is called for convenience the multineedle (or r-needle)
and the (single) needle trajectory increment, respectively. We speak about the
corresponding endpoint increments when t = b.

Our first intention is to establish relationships between integer combina-
tions of endpoint trajectory increments generated by single needle variations
of the reference controls uy(-) as N — oo and some multineedle endpoint tra-
jectory increments. The result derived below can be essentially viewed as an
approximate finite-difference analog of the hidden convezity property crucial
for continuous-time systems.

Let {un(t)}, t € Ty, be the reference control sequence, and let (6;(N),
v;(N)) be parameters of single needle variations of uy(-) foreach j =1,..., p,
where p is a natural number independent of N. Given nonnegative integers
mjas j =1,..., p also independent of N, consider the corresponding needle
trajectory increments Ay, ,, Xy (b) and denote them by Ay, ;jx(b) for simplicity.
Form the integer combination

pam] Zm]AOijN )

of the (single) needle trajectory increments for each N = p,p +1,... and
show that it can be represented, up to a small quantity of order o(hy), as a
multineedle variation of the reference control.

Lemma 6.62 (integer combinations of needle trajectory increments).
Let {un(-)}, N € IN, be a proper sequence of reference controls, let p € IN and
m;j € INU{0} for j =1,..., p be independent of N, and let (8;(N), v;(N)),
j = 1,...,p, be parameters of (single) needle variations. Then there are
r € IN independent of N and parameters {6;(N), Vi (N)}Yi—y, of r-needle vari-
ations of type (6.94) such that

An(p,mj) = A{»@v~ xy(b) +o(hy) as N — 0.

for the corresponding endpoint trajectory increments.
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Proof. First we obtain convenient representation of endpoint trajectory incre-
ments generated by needle and multineedle variations of the reference controls,
which are mot required to form a proper sequence in this setting. Recall the
above notation for matrix products and denote by K > 0 a common uniform
norm bound of f and V, f along {uy(-), xy(:)}, which exists due to the stand-
ing assumptions formulated in Subsect. 6.4.3. Note that, for applications to
the main theorems, below but not in this lemma, we actually need the uniform
boundedness along the reference sequence of optimal solutions to (Py).

We start with single needle variations generated by parameters
(6(N),v(N)). It immediately follows from (6.95) and the smoothness of f
in x that

AQ’U.XN(TI‘):O, iZO,...,Q,
Agoxn(tos1) = h [ f(xn(t9). v, 70) — f(xn(T0), un(T9). T0) | =: hny .

Agoxn(To42) = hy [I +hy Vs f (xn(To41), un (To41), To41) |y

+hy O(HAQ,UXN(T@H)“) .

Then we easily have by induction that

AQ’U.XN(b) = hN{ i:ﬁl |:1 -+ thxf()CN('C,’), MN(Ti), 'C,'):| }y
0+1
+hy sz {i—ﬁl {I +hn Vo f (v (), un (1), ‘L',')} } o([|Ag.o(te—-1)]l)
k=0+2 k

+hy o(||Agvxn(tn-1)]]) -

Observe from (6.95) and the assumptions made that Ay ,xy(t) = O(hy) for
all t € Ty uniformly in N. Thus given any ¢ > 0, there is N, € IN such that

lo(lAg.0xn(z)Il)|| < ey, k=60+2,...,N—1, N>N,,

which implies the estimate

H Nz—:l {i_ﬁl (I +hy Vo f (en (i), un (7). ri))}0(||A9,va(rk_1)||)H
k=6+2 &
< ehy 5 i:ﬁl(l +hyK) < %exp (K(b—a)) .
k=6+2 K
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Combining this with the above formula for Ag ,xy(b), we arrive at the efficient
representation

i=N-—1

Agyxy(b) = hN{ H {1 + hy Vi f (xn (), un (i), Ti)} }y (6:96)
6+1 )

+o(hy) as N —

for the endpoint trajectory increments generated by single needle variations
of the reference controls, where o(hy)/hy — 0 independently of the needle
parameters 6 = 0(N) and v = v(N) as N — oco.

Consider now endpoint trajectory increments generated by multineedle
variations (6.74) with parameters {6;(N), v;(N)};_;. Similarly to (6.96) we
derive the following representation:

r i=N-1

Ay, o y¥n(b) = hN{ Z [ H (1 +hy Vo f (xn(w), un (%), Ti))}y./% 7
j=10j+1 6.9

+o(hy) as N — o0,

where o(hy) is independent of {6;(N), v;(N)} but depends on the number r
of varying points, and where

yj = f(xN(‘L'gj), Vj, ‘L'g/.) — f(xN(T(;/.),MN('L’gj),ng) for ] = 1, [

Next we assume that the control sequence {uy(-)} is proper and justify
the main relationship formulated in this lemma. Without loss of generality,
suppose that the mesh points

T,y =a+0;(Nhy, j=1,....p,

converge to some numbers T; € [a,b], j = 1,...,p, as N — oo. First we
examine the case of

T; #17; for i # j, and 7; #b whenever i,j e {1,...,p}. (6.98)

Given the parameters of the integer combination Ay(p, m;), for each N > p,
we take the number r := m; 4 ... + m, independent of N and consider the
endpoint trajectory increment A ~ }xN(b) generated by the multineedle

s
control variation o

vi(N) if t = 15,44(N) ,
uy(r) = (6.99)
MN(I) if t 7& ng+q(N), teTy,

whenever j =1,...,pand ¢ =0,...,m; —1 with
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0iq(N):=0;(N)+q and v;,(N):=v;(N) forall j,q.

By assumptions (6.98) these multineedle control variations are well defined for
all large N. Employing representation (6.97) of the corresponding endpoint
increments, we have

m;j 1=

g 0= { X3

N-1
j=lgq=1 " 0;+q

(1 +hy Vo f (xn (1), un(z), Ti))} yjq—l}

+o(hy) as N — o0
with a uniform estimate of o(hy) and with

Yig 1= F(0n(To4q)s Vs To,4g) — F (08 (T0,44)s un (To4q) s To44) -

By the properness of {uy(-)} and the continuity of f with respect to all its
variables we get yjp — yjo — 0 as N — oo, which implies the representation

i=N—-1

Ar{gjq;jq}x]v(b) = {imj {I +hy Vo f (xn (i), un (), Ti):| yj}

N
j=1 0;+

[y

+o(hy) as N — o0,

where y; are defined in (6.97). Comparing the latter representation with for-
mula (6.96) for the endpoint trajectory increment generated by single needle
variations with the parameters (6;(N),v;(N)) as j = 1,..., p and taking
into account the expression for Ay (p, m;), we arrive at the conclusion of the
lemma under the above requirements (6.98) on the limiting point ;.

Suppose now that these requirements are not fulfilled. It is sufficient to
examine the following two extreme cases:

(a) f1:f2:...:fp7éb,
b)T1=%=...=71,=Db,

which being combined with (6.98) cover all the possible locations of the lim-
iting points 7; in [a, b]. Let us present the corresponding modifications of the
multineedle variations (6.99) in both cases (a) and (b), which lead to the
conclusion of the lemma similarly to the arguments above.

To proceed in case (a), reorder (6;(N),v;(N)) as j = 1,..., p in such a
way that 6, < ... < 0, (assuming that all 6; are different without loss of
generality) and identify for convenience the indexes 6; with the correspond-
ing mesh points 75,. Then construct the variations of uy(-) at the points 6y,
01+1,...,01 +m; —1 as in (6.99). Assuming that the control variations corre-
sponding to the parameters (6;, v;) as 1 <i < p — 1 have been already built,
construct them for (6; 41, v;+1). Denote by 6y the greatest point among those
of {0;} at which we have built the control variations. If 6y < 6;41, construct
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variations of uy(-) at 6;41,6;41+1,...,0;41 +m;41 as in (6.99). If 6y > 6,41,
construct variations of the same type at g+ 1, ..., 6y + m; 1. One can check
the multineedle variations built in this way ensure the fulfillment of the lemma
conclusion in case (a).

In case (b) we proceed by reordering (6;(N),v;(N)) as j = 1,..., p so

that 6; > 62 > ... > 6, and then construct the corresponding multineedle
variations of uy(-) symmetrically to case (a), i.e., from the right to the left.
In this way we complete the proof of the lemma. A

The next result gives a sequential finite-difference analog of Lemma 6.44
and may be treated as a certain approzimate (not exact/limiting) manifes-
tation of the hidden convexity in discrete approximation problems, with no
using the abstraction of time continuity. To proceed, we need to distinguish
between essential and inessential inequality constraints in the process of dis-
crete approximation important in what follows.

Definition 6.63 (essential and inessential inequality constraints for
finite-difference systems). The inequality endpoint constraint

@i (xn (b)) < yvin with some i € {1,...,m}

is ESSENTIAL for a sequence of feasible solutions {uy(-), xy(-)} to problems
(Pn) along a subsequence of natural numbers M C IN if

(p[(XN(b))_ViNZO(hN) as ]’ZN—>OO,
i.e., there is a real number K; > 0 such that
_KihNS(Pi(xN(b))_ViNSO as N—o00, NeM.

This constraint is INESSENTIAL for the sequence {uy(-), xy(-)} along M if
whenever K > 0 there is Ng € IN such that

(pi(xN(b)) —yin < —Khy forall N> Ny, Ne M.

The notion of essential constraints in sequences of discrete approximations
corresponds to the notion of active constraints in nonparametric optimization
problems. Without loss of generality, suppose that for the sequence of optimal
solutions {#ty(-), Xy(-)} to the parametric problems (Py) under consideration
the first I € {1,...,m} inequality constraints are essential while the other
m — [ constraints are inessential along all natural numbers, i.e., with M = IN.

Given optimal solutions {un(:), Xy ()} to problems (Py) as N € IN, we
form the linearized image set

Sy = {(yo. .. 3) € R™| yi = (Vi (xn(b)), AgrXn (b))} (6.100)

generated by inner products involving the gradients of the cost and essential
inequality constraint functions and the endpoint trajectory increments corre-
sponding to all the single needle variations of the optimal controls. Our goal
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is to show that the sequence {co Sy} of the convex hulls of sets (6.100) can
be shifted by some quantities of order o(hy) as hy — 0 so that the resulting
sets don’t intersect the convex set of forbidden points in R'*! given by

Rl<+1 = {(yo, ...,yl)ERH'l’yi < 0 for all i:O,...,l}.

Lemma 6.64 (hidden convexity and primal optimality conditions in
discrete approximation problems with inequality constraints). Let
{un(-), xn ()} be a sequence of optimal solutions to problems (Py) with ¢; =0
asi=m+1,...,m~+r (no perturbed equality constraints). In addition to the
standing assumptions, suppose that the endpoint functions ¢; are continuously
differentiable around the limiting point(s) of {xy(-)} for all i = 0,...,m.
Assume also that the control sequence {uy(-)} is proper and that the first
1 €{1,...,m} inequality constraints are essential for {un(-), xn(-)} while the
other are inessential for these solutions. Then there is a sequence of (I + 1)-
dimensional quantities of order o(hy) as hy — 0 such that

(coSy +o(hy)) NREY =0 for all large N € IN . (6.101)

Proof. For each N and fixed r € IN independent of N, consider an endpoint
trajectory increment A’f{gjyv/}xN(b) generated by a multineedle variation of the

optimal control uy(-), where {6;(N),v;(N)},; are the variation parameters
in (6.94). Form a sequence of the vectors

v = (nos -y ywi) € R with yw; = (Vi (3w (D)), Al .,y T (D))

and show that there is a sequence of (I + 1)-dimensional quantities of order
o(hy) as hy — 0 such that

yn +o(hy) ¢ R as N — 0o . (6.102)
Indeed, it follows from representation (6.97) and the assumptions made that
HAT{QJM}XN(I))H <phy forall r€Ty and N € N,

where u > 0 depends on r but not on {0;(N),v;(N)};_;. By optimality
of Xy(-) in problems (Py) with no perturbed equality constraints, for each
N € IN there is an index ip(N) € {0, ..., m} such that

@io (Xn(b) + Ay, 1 ¥n (D)) — g (Xw (D)) > 0.

Since only the first / inequality constraints are essential for {uy(-), xy(-)},
the latter inequality holds for some iy € {0, ...,1} whenever N is sufficiently
large. Consider the numbers

8N = gg?glsup{ |(pl (XN(I)) + A)C) Lz ()EN(b))

—(Vei (2n (b)), Ax)] ‘ l4ax]| < uhN}
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for which §y/hy — 0 as N — oo uniformly with respect to variations due to
the smoothness of ¢; assumed. This implies that

Ynip + 6y >0 as N — oo,

which justifies (6.102) with the quantities o(hy) := (0, ...,8y,...,0) € R'*1,
where 8y appears at the io(N)-th position.

Our next goal is to obtain an analog of estimate (6.102) for conver com-
binations of endpoint trajectory increments generated by single needle vari-
ations of the optimal controls. In the case of such integer combinations, the
corresponding analog of (6.102) follows directly from this estimate due to the
preceding Lemma 6.62. Let us show that the case of convex combinations can
be actually reduced to the integer one.

Consider a sequence of parameters (Gj(N), vj(N)), j=1,..., p, generat-
ing single needle variations of the optimal controls {iy(-)} with some p € IN
and then define the convexr combinations

YNi P,

T M'w

<V<p, Xy (b)), At‘?vvvifN(b)>’ (6.103)

as aj(N)>0, aoa(N)+...4ap(N)=1, i=0,...,1.

Fixing (p, @) in the above combinations and taking yy(p, &) € IR'*! with the
components yy;(p, @), suppose that there is a number Ny € IN such that

yn(p, @) € R whenever N > Nj .

Let us now show that for each natural number N > Ny there is an index
io =ip(N) €{0,...,1} for which

0> yyio (P, ) =0(hy) as hy — 0. (6.104)
Assuming the contrary, we find a subsequence M C IN such that

lim yni(ps o)
N— o0 hN

=B <0 as NeM forall i=0,...,1.

Suppose without loss of generality that M = {p,...,p+1,...}, that g >
—o0, and that the sequence {a;(N)} converges to some a? € IR as N — o0
for each j =1,..., p. Given v > 0, define p integers k; by

a? )
ki=ki(v):= [T] forall j=1,...,p

and form the integer combinations yy;(p, k) by
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0

yni(p. k) = ylv'(% +y° (kj - aj’) <Wi (xn (b)), Ae,v,ffN(b)>

j=1

asi=0,...,1, where k := (ky,...,k,) and @® := (o, ... ).

Let u > 0 be the constant selected (w1th r = 1) in the proof of (6.102),
and let ¥ > 0 be a uniform norm bound for all ¢; (xN (b)) and Vg (xN(b)) as
i=0,...,1. Choose i; € {0,...,1} and define v > 0 so that

— mi — Bix
|Bi,| = Ja, |Bi| andv:= B — pri

Then we have the estimates

Binkp

i1

lim le(p’ )

N—oo ]’lN

< Bi — + ukp < B;i <0 whenever i =0,...,[,
which clearly contradict (6.102) by Lemma 6.62 on the representation of in-
teger combinations of endpoint trajectory increments generated by (single)
control variations. This proves (6.104).

Finally, we justify the required relationships (6.101). There is nothing to
prove when co Sy MR’ = ) for all large N € IN. Suppose that co Sy NIR.!
() along a subsequence {N }, which we put equal to the whole set IN of natural
numbers without loss of generality. For each N € IN define

oN ::—inf{ max y;| ¥y = (Yo, ---» 1) ECOSNHHQI_'H},

0<i<I
where the infimum is achieved at some yy € IR'*! under the assumptions
made. Invoking the classical Carathéodory theorem, represent yy in the con-
vex combination form (6.103) with p =+ 2. Employing now (6.104), we find
an index ip = ig(N) such that

UN:—maX{yN,-’i:O, ...,l}g—yNiozo(hN) as N — oo,

which implies (6.101) with the (I 4+ 1)-dimensional shift o(hy) := (on, ..., 0on)
and thus ends the proof of the lemma. A

Completing the proof of Theorem 6.59. Now we have all the major in-
gredients to complete the proof of the theorem. Let us start with the case
when only the perturbed inequality constraints are present in problems (Py),
ie, @ =0fori =m+1,..., m+r. Since we suppose without loss of generality
that the first I < m inequality constraints are essential for the sequence of op-
timal solutions {uy(-), Xy (-)}, while the remaining m —I inequality constraints
are inessential for this sequence, it gives by Definition 6.63 that

gpi()?N(b))—yiN:O(hN) as N —=oo for i=1,...,1.

Employing Lemma 6.64 and the classical separation theorem for the convex
sets in (6.101), we find a sequence of unit vectors (Aow, .., Ary) € IR'TT that
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separate these sets. Taking into account the structures of the sets in (6.101),
one easily has that

Ain >0 forall i =0,...,1, Ay +...+Arky =1, and

1
Z)wv<v</)i (xn (b)), Ae,ufzv(b)> +o(hy) >0 as N = o0
i=0

for any (single) needle variations of the optimal controls with parameters
(6(N),v(N)). Putting now

Ay =0 for i=1+1,....m as N —

and proceeding similarly to the proof of Theorem 6.50 for free-endpoint prob-
lems, we get as N becomes sufficiently large that

hy [H(XN(Z‘), PN(I +hN), v, l) — H()EN(I), pN(f +hN), IZN(I), l‘)j| +0(hN) <0

for all v € U and t € Ty, where each py(-) satisfies the adjoint system
(6.86) with the transversality condition (6.93) and where Aoy, ..., Ay Obvi-
ously obey conditions (6.91) and (6.92) for the inequality constrained problems
(Py) under consideration. The above Hamiltonian inequality directly implies,
arguing by contradiction as in the proof of Theorem 6.50, the approximate
maximum condition (6.85). This completes the proof of the theorem in the
case of problems (Py) with inequality constraints.

Consider now the general case of (Py) when the perturbed equality con-
straints are present as well. Each of the constraints |<piN (xN (b)) | < &y can be
obviously split into the two inequality constraints

o (xn (b)) == @i (xn(b)) —&n <0,

oy (xn (b)) == —g¢; (xn (b)) — &Ein <O

for i = m+1,...,m + r. Let us show that if one of these constraints is
essential for {uy(-), xn(-)} along some subsequence M C IN, then the other
is inessential along the same subsequence under the consistency condition
(6.80). Indeed, suppose for definiteness that the constraint ¢;f (¥y(b)) <0 is
essential for some i € {m +1,...,m + r} along M. Then by (6.80) we have

oy (En (D)) = —@i(Xn (D)) + &in — 2En = —@iy (Fn (D)) — 286w < Khy

as N € M for any K > 0, which means that the constraint ¢; ()EN(b)) <0
is inessential. Applying in this way the inequality case of the theorem proved
above, we find multipliers )»fN and A; satisfying

xj;,m;N:o for i=m+1,...,.m+r as N — co.
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Putting finally
Mni=AN Ay, i=m+l o m+r,
we complete the proof of the theorem. A

Remark 6.65 (AMP for control problem with constraints at both
endpoints and at intermediate points of trajectories). The approach
developed above allows us to derive necessary optimality conditions in the
AMP form for more general discrete approximation problems of the type (Py)
with the cost function ¢o (xy(a), xy (b)) and the constraints

gi(xn(a), xy (b)) <yin, i=1,....m,

|‘pi(xN(“)’xN(b))| <é&n, i=m+1, ... om+r,

imposed at both endpoints of feasible trajectories. The AMP holds for such
problems, under the same assumptions on the initial data as in Theorems 6.50
and 6.59, with the additional approzimate transversality condition at the left
endpoints of optimal trajectories given by

m+r
p(a) = iV, (Fn(a), xn (b)) |

i=0

where V., ¢; stands for the partial derivatives of the functions ¢; (x,, xp) at
the optimal endpoints.

Similar results can be derived for analogs of problems (Py) with the ob-
jective @9 = @ (x4, X7, xp) and intermediate state constraints of the type

@i (xn(a), xn (1), xn (b)) < yin, i=1,...,m,

’(pi (XN(G),XN(TN),XN(b))| <&y, i=m+1,....m+r,

where Ty € Ty is an intermediate point of the mesh. The AMP obtained for
such problems involves the additional ezact condition of the jump type:

m—-r

pn(ty +hy) — pn(ty) = Z Ain Vi @i (Xn(a), Xn(Tv), X8 (D))
i=0

—hnV i H (Xn(ty), py(ty + hy), idn(Ty), ) -

Note that in this case the adjoint system (6.86) is required to hold for py(-)
at points r € Ty \ Ty.

Next we present an extension of Theorem 6.59 to monsmooth problems
(Py), where the cost and inequality constraint functions ¢;, i =0, ..., m, are
assumed to be uniformly upper subdifferentiable. In this case the transversality
conditions are obtained in the upper subdifferential form.
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Theorem 6.66 (AMP for constrained nonsmooth problems with up-
per subdifferential transversality conditions). Let {iy(-), Xy(:)} be op-
timal solutions to problems (Py) for N € IN under all the assumptions of
Theorem 6.59 except for the smoothness of ¢; for i = 0,...,m. Instead we
assume that these functions are uniformly upper subdifferentiable around the
limiting point(s) of {xn(b)}. Then for any sequences of upper subgradients
xly € §+g0i()?N(b)), i=0,...,m, there are numbers {AiN| i=0,...,m+ r}
such that all the conditions (6.85), (6.86), (6.91), and (6.92) hold with

m m+r
pn(b) = — Zkiin*N — Z Ain Vi (X (D)) -
i=0 i=m+1

Proof. Given x}y, € 0T¢; (xy(b)) for i = 0,...,m and N € IN, construct a
nonsmooth counterpart of the set Sy in (6.100) by

Sy = {(y07 cs ) € IRIH’ Yi = <xi*N’ Ae,vfzv(b»} .

Then we get an analog of Lemma 6.64 with a similar proof. The only difference
is that instead of the equalities

i (Xn(b) + Ax) — @i (Xn (b)) — (Vi (Xn (b)), Ax) + o[ Ax]]) =0

used in the proof of Lemma 6.64 in the smooth case, we now arrive at the
same conclusion based on the inequalities

i ()EN(b) + Ax) —@; (J?N(b)) - <xi*N, Ax> + 0(||Ax||) <0

that are due to the uniform upper subdifferentiability of ¢; for i = 0,...,[.
The separation theorem applied to the above convex sets gives

1
Z <xi*N’ AH,U)EN(b)> + O(hN) 2 0 s
i=0

which leads to the approximate maximum principle with the upper subdiffer-
ential transversality conditions similarly to the proof of Theorem 6.59. A

Remark 6.67 (suboptimality conditions for continuous-time systems
via discrete approximations). The results on the fulfillment of the AMP
in discrete approximation problems obtained above allow us to derive sub-
optimality conditions for continuous-time systems in the form of a certain
e-mazximum principle. We have discussed in Subsect. 5.1.4 the importance of
suboptimality conditions for the theory and applications of optimization prob-
lems, especially in the framework of infinite-dimensional spaces. The results
and discussions of Subsect. 5.1.4 mostly concern problems of mathematical
programming with functional constraints. In optimal control of continuous-
time systems (even with finite-dimensional state spaces) suboptimality condi-
tions are of great demand due to the well-known fact that optimal solutions
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often fail to exist in systems with nonconvex velocities. In such cases “almost
necessary conditions” for “almost optimal” (suboptimal) solutions provide a
substantial information about optimization problems that is crucial from both
qualitative and quantitative/numerical viewpoints.

It follows from the above results on the value stability of discrete approxi-
mations (see Theorem 6.14 in Subsect. 6.1.4) that, given any & > 0, optimal
solutions {uy(-), Xy ()} to the discrete approximation problems (Py) consid-
ered in this subsection allow us to construct e-optimal solutions {u.(-), x¢(-)}
to the corresponding continuous-time counterpart (P) satisfying

@o(xe(b)) <infJ[x,u] +& with

go,-(xg(b))gs, i=1,...,m, |<pi(x8(b))|§£, i=m+1,.... m+r.

Moreover, e-optimal controls to the continuous-time problem (P) may always
be chosen to be piecewise constant on [a, b].

Using now the necessary optimality conditions for the discrete approxima-
tion problems (Py) provided by Theorem 6.59 in the AMP form, we arrive at
the following e-maximum principle for suboptimal solutions to (P): there are
multipliers (Ag, ..., Any,) € IR™ satisfying

>0 for i=0,....,m, Aj+...+r5,, =1,

|Aigi (xe(b))| <& for i=1,....m,
and such that, whenever u € U and ¢ € [a, b], one has

H(xg(t), Pe(t), us(t), t) 2 H(xg(t), pe(t), u, t) —&,
where p.(-) is the corresponding trajectory of the adjoint system
p=—VH(x.(t), p.uc(t),t), t€la,bl,

with the transversality condition

m+r

pe(b) = — ZV%' (xs(b)) .
i=0

Similar results hold for continuous-time problems with intermediate state con-
straints imposed at some points 7; € (a, b) and also for problems with end-
point constraints at both + = a and ¢ = b; cf. Remark 6.65. In the latter case
we get an e-transversality condition at t = a given by

m+r
pe(@) = 3 Vi (xela), xe (b)) < e .
i=0

Note, however, that the upper subdifferential form of the AMP in Theorem 6.66
is mot suitable to induce a similar suboptimality result for continuous-time
systems, since the Fréchet upper subdifferential 5+<p(~) doesn’t generally have
the required continuity property for nonsmooth functions.
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To conclude this subsection, we illustrate the application of the AMP
to optimizing constrained discrete-time systems with small stepsizes of dis-
cretization. First observe from the proof of Theorem 6.50 (and the one for
Theorem 6.59) that the difference in values of the cost and constraint func-
tions between optimal controls iy () to problems ( Py) and controls uy () maz-
imizing the Hamilton-Pontryagin function H (xy(t), py(), -, 1) over u € U is
of order o(hy) as N — oco. This means in fact that the application of the ap-
prorimate maximum principle to optimization of discrete-time systems with
small stepsizes hy leads to practically the same effects as in the case of its
ezract counterpart, the discrete maximum principle. Taking this into account,
we now use the AMP to solve discrete approximation problems arising in
optimization of some chemical processes.

Example 6.68 (application of the AMP to optimization of catalyst
replacement). Consider the following optimal control problem (P) for a two-
dimensional continuous-time system that appears in the catalyst replacement
modeling; see, e.g., Fan and Wang [426]:

minimize Ju, x] = @o(x(1)) := x1(1) subject to
X1 = —Ml(l/ll + MQ), Xo = Uq, xl(O) = )CQ(O) =0, teT:= [0, 1] y

u(t) = (u1(2), uz(r)) € U := {(u1,uz) € R?| 0 < uy,up <2},

o1(x(1)) :==xa(1) < yw .

To solve this problem numerically, construct a sequence of its discrete approx-
imation problems (Py):

minimize Jy[uy, xy] = ¢@o(xn(1)) = x1n(1) subject to
xin(t+hy) = xin (1) — hyury () iy (1) + uan (1)], x1n(0) =0,
.XQN(t +hN) :XQN(I) +hNM1N([), )CQN(O) =0, hN = 1\]71 s

OgulN(t)SZ OSMQN([)§2, teTy Z:{O,]’lN, ...,1—hN},

901(XN(1)) =xon(1) <0 as N - 0.

Since the sets of “admissible velocities” f(x, U, t) in (Py) are not convez, the
(exact) discrete mazimum principle cannot be applied to find optimal controls
for these problems. Let us use for this purpose the approximate mazximum
principle justified in Theorem 6.59.

For each N € IN the corresponding trajectory py(t) = (plN(t), pgN(t)) of
the adjoint system (6.86) with the transversality condition (6.93) is

plN(t) = 7)\0]\], pQN(t) = —MnN whenever t € Ty ,
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while the Hamilton-Pontryagin function along this trajectory is given by
HN(M,I):M1()LQNM1 +)»QNMQ—X1N), teTy.

Let us determine controls uy(t) = (u1n(t), 42y (t)) that maximize the
Hamilton-Pontryagin function over the control region U. One can easily see by
the normalization condition in (6.92) that such controls maximize the function

Hy(u1,us) := ul(kul 4+ Aug — 1 — )ﬁ) over (uy,us) €U

as A € (0,1). It is not hard to compute, taking into account the structure of
the control set U, that the maximizing controls #y (-) are as follows depending
on the values of the parameter A € (0, 1):

(a) if A > 1/3/17, then w5 (t) = 2, oy (t) = 2 for all ¢ € Ty;
(b) if & < 1/3/17, then u1y(t) = 0, uay(t) € [0,2] for all ¢ € Ty;

(c) if A = 1/4/17, then for each r € Ty one has either u1y(t) = oy (1) = 2,
or u1y(t) =0 and uay(z) € [0, 2].

We can directly check that the controls uy(-) in case (a) are not feasible
for (Py), since the corresponding trajectories xy(-) don’t satisfy the end-
point constraint. In case (b) the controls uy(-) are far from optimality, since
Jy[in, Xn] = 0 while inf J[uy, xy] < —1. In case (c) the controls uy(-) are fea-
sible for (Py) provided that the number of points ¢ € Ty at which u;y(¢) =2
and oy (f) = 2 is not greater than [N/2] as N € IN. By Theorem 6.59 and
the discussion right before this example we conclude that optimal controls
uy(-) to (Py) (which always exist) may be either feasible ones uy(-) in case
(c) satisfying the properness condition, or those for which the values of the
cost and constraint functions are different from ¢o(*y (b)) and ¢; (Xy(b)) by
quantities of order o(hy) as N — oo.

Thus the AMP allows us to efficiently describe the collection of all feasible
controls to (Py) that are suspicious to optimality. Based on this information,
we can finally determine from the structure of problems (Py) that optimal
solutions to the sequence of these problems are given by the controls

ﬁlN(t) = ﬁQN(I) =2 if ¢ is the [)/N/QhN]—th point of Ty ,
uin(t) =0, uan(t) €10,2] for all other t € Ty .

This completely solves the problems under consideration.

6.4.6 Control Systems with Delays and of Neutral Type

The last subsection of this section is devoted to the extension of the AMP in
the upper subdifferential form to finite-difference approximations of time-delay
controls systems with smooth dynamics. For brevity we present results only
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for free-endpoint problems. The main theorem of this subsection provides a
generalization of Theorem 6.50 in the case of delay problems; the correspond-
ing extension of Theorems 6.59 and 6.66 can be derived similarly. On the
other hand, we show at the end of this subsection that the AMP may not
hold for discrete approximations of smooth functional-differential systems of
neutral type that contain time-delays not only in state variables but in velocity
variables as well.

We begin with the following continuous-time problem (D) with a single
time delay in the state variable:

minimize J[u, x] := ¢(x(b)) subject to
x(t) = f(x(t),x(t —0),u(r).1) ae t€lab],

x(t)=c(t), te€la—06,d],

u(t) eU ae. t € la,b]

over measurable controls u: [a, b] — U and the corresponding absolutely con-
tinuous trajectories x: [a, b] — X of the delay system, where § > 0 is a constant
time-delay, and where ¢:[a — 0, a] — X is a given function defining the initial
“tail” condition that is needed to start the delay system; see Remark 6.40,
where the results on the maximum principle for such problems have been
discussed. Now our goal is to derive an appropriate version of the AMP for
discrete approximation of the delay problem (D).

Let us build discrete approximations of (D) based on the Euler finite-
difference replacement of the derivative. In the case of time-delay systems we
need to ensure that the point  —0 belongs to the discrete grid whenever ¢ does.

0
It can be achieved by defining the discretization step as hy := N in contrast

b—a

tOhN:

In such a scheme the length of the time interval b — a is generally no longer
commensurable with the discretization step hy. Define the grid Ty on the
main time interval [a, b] by

for the non-delay problems (PJ) considered in Subsect. 6.4.3.

Ty := {a,a—&—hN,...,b—EN—hN} with

0 ~ b—a
hy = 5 and hN;:b—a—hN[ }

hy

and consider the following sequence of finite-difference approximation prob-
lems (Dy) with discrete time delays:
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minimize J[uy, xy] := ¢ (xy(b)) subject to
.XN(I +/’ZN> :.XN(I) +th(xN(t),xN(t — NhN),MN(l),l), teTy,
xN(b) = xN(b - EN) +ﬁNf(XN(b - /’NlN), MN(b - /’NlN), b— /’NlN) s

xy(t) =c(t), t€Toy:= {a—@,a—@—i—hN,...,a},

uy(t) eU, teTy.

To derive the AMP for the sequence of problems (Dy), we reduce these
problems to those without delays and employ the results of Theorem 6.57,
where the standing assumptions are similar to the ones formulated in Sub-
sect. 6.4.3 involving now the additional state variable y in f(x, y, u, r) together
with x. For convenience we introduce the following notation:

an (1) = (an (), xn(r = 6)),  zn(t) := (Xn (1), in(t = 6))
flaw un,t) = f (), xn(t = 0),un(t), 1) ,
@y uy, 1) = f(Zn (), Tyt = 0), un(1), 1)
in which terms the adjoint system to (Dy) is written as
py(t) = pn(t +hn) +hy Vi f(Zn, iy, 1) pa(t +hy)

+hNVyf(ZN,ﬁN,l+9)*pN(l+9+hN) for t € Ty ,

pn(b— EN) = pn(b)+ Evif(ZNv iy, b — EN)* pn(b)

along the optimal processes {iiy(-), Xy(-)} to the delay problems (Dy) for
each N € IN. Introducing the corresponding Hamilton-Pontryagin function

<PN(’ +hw), f(xn, yw,u, t)> ift € Ty ,
H(xn, yn, Py, U, t) := N R
<pN(t)’f(xvaNauvt_hN)> lft:b—h[\l

with yy(f) := xy(t — 6), we rewrite the adjoint system as
pn(t) = pn(t +hy) +hy [VxH(ZN, PN N, 1)+ VyH(Zn, py, iy, t + 9)}
when r € Ty and
py(b —hy) = py(b) + hy V. H(Zn. py. iy, b — hy)

at the “incommensurable” point. Then we have the following result on the
fulfillment of the AMP for time-delay discrete approximations.
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Theorem 6.69 (AMP for delay systems). Let the pairs {iiy(-), Xy ()} be
optimal to problems (Dy). In addition to the standing assumptions, suppose
that the cost function ¢ is uniformly upper subdifferentiable around the limiting
point(s) of the sequence {xy(b)}, N € IN. Then for every sequence of upper
subgradients x5, € D*go()?N (b)) the approximate mazximum condition

H(Zy, py iy, t)=max H(Zy, py, u, 1) + &(t, hy), 1€ Ty =Ty U{b—hy},
is fulfilled, where e(t,hy) — 0 as hy — 0 uniformly int € Ty, and where
pn(-) satisfies the transversality relations

pn(b) = —xy, py()=0 as t >b. (6.105)

Furthermore, we can take any x* € 5+¢(JEN(b)) in (6.105) if X is reflexive
and ¢ is continuous around the limiting point(s) of {xy(b)}.

Proof. We reduce the delay discrete approximation problems to those with
no delay (but with the incommensurability between b — a and hy) by the
following multistep procedure. Denote

le([) ::xN(t—hN), I‘E{a'i‘QhN,...,b—EN},

le(l‘)S:CN(l‘—hN), te{a—9+hN,...,a+hN},

yQN([) Z:le(l—hN), lE{a—G'f‘QhN,...,b—EN},

ywn (1) == yn_an(t —hy), te{a,....b—hy},

and observe that the values of y1x(b), ..., yyn(b) can be defined arbitrarily,
since they don’t enter either the adjoint system or the cost function. To match
the setup of Theorem 6.57, define

yin(b):=xy (b —hy), yon(b) := yin(b —hy), ..., ywn(b):=yy_1.n(b — hy) .
After the change of variables we have

xN(t—O),te{a+9—|—hN,...,b—ﬁN},
ywn(t) =
c(t—0), tefa,....,a+0}.

The original system in (Dy) is thereby reduced, for each N € IN, to the
following non-delay system of dimension RN+

sy(t+hy) =sy(t)+hng(sn,un,t), t €Ty,

SN(b) = SN(b — EN) + ENg(SN, un, b— ﬁ]\/)
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with the state vector sy (t) := (xy(¢), yin(2), ..., ynn(t)) and the “velocity”
mapping g(sy, un,t) given by

S (en(0), ywn (1), un(t), 1)

xn(t) = yin(t)

g (s (1), un(),1) = hy ,

where hy should be replaced by EN fort =b— EN in the last formula.

Let us apply Theorem 6.57 to the problem of minimizing the same func-
tional as in (Dy) over the feasible pairs {uy(-), sy(-)} of the obtained non-
delay system. The adjoint system in this problem, with respect to the new
adjoint variable ¢ € RN*D" has the form

gn(t) = gqn(t + hy) +hyVeg(Sy, un. )" q(t +hy), t€Ty,

an(b—hy) = qn(b) + hyV,g(sy, itn, b — hy)* qu(b)
with the transversality condition
gn(b) = —(x3,0,...,0) for xp € DTop(xy(b)) .

which reduces to xj} € 5+¢()EN (b)) when X is reflexive and ¢ is continuous.
Taking into account the above relationship between g and f and performing
elementary calculations, we express the operator V,g* via V. f* and V, f*
and arrive at the transversality relations (6.105) for the first component py(+)
of the adjoint trajectory gy(-). Furthermore, one gets the relationship

H(sy.qn.u.t) = (qn(t + hy), g(Sn. u, 1))
= (pn(t +hn), f@En,u, 1)) +r(Sn. gy, hy, 1)
= H(Zy, py,u,t) +r(Sy, qn, hy,t), t €Ty,

and similarly for t = b—ﬁN, between the Hamilton-Pontryagin functions of the
non-delay and original delay systems considered above, where the remainder
r(Sn,qn,hn,t) doesn’t depend on u. Applying now the approximate maxi-
mum condition from Theorem 6.57 to the non-delay system, we complete the
proof of the theorem. A

To conclude this section, we consider optimal control problems for finite-
difference approximations of the so-called functional-differential systems of
neutral type (cf. also Sect. 7.1) given by
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x(t) = f(x(1),x(t —0),x(t —6),u(t),t), u(t)eU, ae. t€la,b],

which contain time-delays not only in state but also in welocity variables. A
finite-difference counterpart of such systems with the stepsize & and with the
grid T :={a,a+h,...,b—h}is

x(t +h) = x(t) + hf (x(2), x(t — 0), L= “2 —x0 =) .

as u(t) € U for t € T, and the adjoint system is given by
p(t) = p(t +h) +hV, f(v, i, 1) p(t +h)+hV, f(0,d,t+60)" p(t+6+h)

+hV f(v,u,t+6 —h)* p(t +0)—hV_ f(v,u,t+6) p(t+6 +h)

for t € T, where {u(-), x(-)} is an optimal solution to the neutral analog of
problem (Dy), and where

(1) := (x(0), %(¢ — ), f(“e”’z — Xt ’9)), teT.

The following example shows that the AMP is not generally fulfilled for finite-
difference neutral systems, in contrast to ordinary and delay ones, even in the
case of smooth cost functions.

Example 6.70 (AMP may not hold for neutral systems). There is
a two-dimensional control problem of minimizing a linear function over a
smooth neutral system with no endpoint constraints such that some sequence
of optimal controls to discrete approximations doesn’t satisfy the approximative
mazimum principle regardless of the stepsize and a mesh point.

Proof. Consider the following parametric family of discrete optimal control
problems for neutral systems with the parameter & > 0:

minimize J[u, x1, x2] := x2(2) subject to
x1(t+h)=x1(t) +hu(t), t T = {0,h,...,2—h} ,

xl(t - 1—|—h) —xl(t - 1)
h

xg(t—i-h):xg(t)—l—h( )2—hu2(t), teT,

xl(t) E)CQ([)EO, teTy:= {—1,...,0} y

lu(®)| <1, teT.

It is easy to see that
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2-h ) 2-h
)CQ(Z):x2(1)—|—hz<X1(t_1+h})l_X1(t_1)) —hqu(I)
1—h 1—h 2-h 2-h
=—h Zuz(t) +h Z u(t) —h Zu2(t) =—h ZuQ(t) .
=0 =0 =1 =1

Thus the control

0,re{0,...,1—h},
u(r) =
L,te{l,...,2—h},

is an optimal control to the problems under consideration for any h. The
corresponding trajectory is

0, te{0,...,1—h}, 0, re{0,...,1—h},
% (t) = Xo(r) =
t—1, te{l,...,2—h}; —t+1, te{l,...,2—h}.

Computing the partial derivatives of the “velocity” mapping f in the above

system, we get
0 0 0 0
fo<0 0), Vyf(o 0), and

Vo= (Q(xl(t oh — () 8) :
Hence the adjoint system reduces to
p1(t) = pi(t +h) +2(x1 (1) = X1(t — b)) p2(r + 1)

=2(x1(r +h) —x1(t)) p2(t + 1+ h), t€{0,....,2—h},

with pa(t) = const and with the transversality conditions
p1(2) =0, p2(2)=-1; pi(t)=p2(t)=0 for 1t >2.

The solution of this system is

p1(t) =0, po(t)=-1 forall 1 €{0,...,2—h}.

Thus the Hamilton-Pontryagin function along the optimal solution is

IESER) RS (RS MRS

H(t,fl,fz,m,m,u):P2(1+h){< h

+pit+h)u=u? +€{0,...,1—h}.
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This shows that the optimal control u#(t) = 0 doesn’t provide the approx-
imate maximum to the Hamilton-Pontryagin function regardless of 4 and

mesh points € {0, ..., 1 — h}. Note at the same time that another sequence
of optimal controls with #(z) = 1 for all r € {0,...,2 — h} does satisfy the
ezact discrete maximum principle regardless of /. A

6.5 Commentary to Chap. 6

6.5.1. Calculus of Variations and Optimal Control. Chapter 6
is devoted to problems of dynamic optimization. This name conventionally
reflects the fact that some initial data of a given optimization problem evolve
in time. The origin of such problems goes back to the classical calculus of
variations, which was in the beginning of all infinite-dimensional analysis;
we refer the reader to the seminal contributions by Euler [411], Lagrange
[737], Hamilton [548], Jacobi [625], Mayer [859], Weierstrass [1326], Bolza
[130], Tonelli [1260], Carathéodory [222], and Bliss [119] (with his famous
Chicago school) among other developments the most influential for the topics
considered in this book.

The theory of optimal control for ordinary differential equations (ODE),
which has been well recognized as a modern counterpart of the classical calcu-
lus of variations, distinguishes from its predecessor by, first of all, the presence
of hard/pointwise constraints on control functions generating system trajec-
tories (often called admissible arcs) via the evolution ODE systems

x=f(x,u,t), u(t)eU, t€lab], xe€R". (6.106)

Such control constraints given by sets U of a rather irregular nature, which
appeared already in the very first problems of optimal control arisen from
practical applications, have been a permanent source of intrinsic nonsmooth-
ness in optimal control theory and have eventually motivated the development
of many crucial aspects of modern variational analysis and generalized differ-
entiation.

As mentioned in Subsect. 1.4.1, the fundamental result of optimal control
theory widely known as the Pontryagin mazimum principle (PMP) [1102],
which was formulated by Pontryagin and then was proved by Gamkrelidze
[494] for linear systems and by Boltyanskii [124] for problems with nonlinear
smooth dynamics, has played a major role in developing modern variational
analysis. It is interesting to observe that the first attempt [129] in formulating
the maximum principle—as a sufficient condition for local optimality—was
wrong; see the papers by Boltyanskii [128] and Gamkrelidze [498] for (rather
different) historical accounts in the discovery of the maximum principle. In
these papers and also in the book by Hestenes [565] and in the survey paper
by McShane [865], the reader can find various discussions on the relationships
between the maximum principle and the preceding results obtained in the
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Chicago school on the calculus of variations and in the theory and applications
of automatic control; see also the excellent survey by Gabasov and Kirillova
[487]. Probably the closest predecessors to optimal control theory were non-
standard variational problems and results developed for optimal systems of
linear automatic control, in particular, the so-called “theorem on n-intervals”
by Feldbaum [440] and the “bang-bang principle” by Bellman, Glicksberg and
Gross [95].

Although analogs of many elements in both formulation and proof of the
PMP can be found in the calculus of variations (particularly needle variations
employed by McShane [860], which actually go back to Weierstrass [1326]
and his necessary optimality condition for strong minimizers; tangential con-
vex approzimations and the usage of convex separation as in McShane [860];
canonical variables and a modified Hamiltonian function, etc.), the discovery
of the PMP and its proof came as a surprise (“sensation” in Pshenichnyi’s
wording [1106]). It is difficult to overestimate the impact and role of the PMP
in the development of modern variational analysis. We refer the reader to
[7, 32, 105, 124, 218, 235, 255, 370, 485, 486, 497, 504, 539, 565, 618, 801, 863,
865, 877, 1002, 1106, 1239, 1289, 1315, 1351] for more results and discussions
on the relationships between optimal control, the calculus of variations, and
mathematical programming.

It seems that among the most significant new contributions of the PMP
in comparison with the classical calculus of variations was the discovery (by
Pontryagin) of the adjoint system to (6.106) given by

of (X, u,1)" o
p= —% p=-V.H(x,p,u,t), (6.107)
via the Hamilton-Pontryagin function
H(x,p,u,t):= <p, f(x, u,t)>, pER", (6.108)

computed along the optimal process (¥, #), in which terms the crucial point-
wise mazrimum condition was written as

H(x(t), p(t),u(t), 1) = max H (x(¢), p(t),u, 1) ae. (6.109)
uelU
It has been recognized, after the discovery of the PMP, that the maximum
condition (6.109) is an optimal control counterpart of the Weierstrass’s excess
function condition for strong minimizers in the calculus of variations.

6.5.2. Differential Inclusions. A notable disadvantage of the original
optimal control model (6.106) is that it doesn’t cover problems with state-
dependent control sets U = U(x) important for both the theory and applica-
tions. Problems of this class, as well as of other significant classes in control
and dynamic optimization, can be naturally written in the form of differential
inclusions
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x € F(x,t), x€R", (6.110)

which actually go back to the classes of set-valued differential equations stud-
ies (not from the control viewpoint) in the 1930s as “contingent equations”
by Marchaud [850] and “paratingent equations” by Zaremba [1355]; see also
Nagumo [990] and Wazewski [1325] for early developments. Control systems
(6.106) equivalently reduce to the differential inclusion form (6.110) by the
so-called “Filippov implicit function lemma” [449], which is in fact a result on
measurable selections of set-valued mappings; see, e.g., Castaing and Valadier
[229] and Rockafellar and Wets [1165] for more references and discussions.

Observe that control systems governed by differential inclusions (6.110) are
significantly more complicated in comparison with the classical ones (6.106)
due to, e.g., the impossibility of employing standard needle variations to derive
optimality conditions. Moreover, systems (6.110) explicitly reveal the intrin-
sic monsmoothness inherent even in classical optimal control via, first of all,
hard control constraints of the type u(¢t) € U, particularly given by finite
sets like U = {0, 1} that are typical in automatic control applications. This
phenomenon is somehow hidden in the PMP for systems (6.106) of smooth dy-
namics due to using the Hamilton-Pontryagin function (6.108) differentiable
in the state-costate variables (x, p). Another manifestation of nonsmoothness
in optimal control is provided by the Hamiltonian function

H(x, p.t) :=sup {(p,v)| v e F(x,1)} (6.111)

for the differential inclusion (6.110), which corresponds to the “true” Hamil-
tonian

H(x, p,t):= sup{H(x,p,u,t)’ ue U}

for the standard/parameterized control systems (6.106). These generalized
Hamiltonians can be viewed as control counterparts of the classical Hamilto-
nian in problems of the calculus of variations and mechanics associated (via
the Legendre transform if the latter is well-defined) with the Lagrangian, i.e.,
integrand under minimization.

6.5.3. Optimality Conditions for Smooth or Graph-Convex Dif-
ferential Inclusions. Nonsmoothness is a characteristic feature of the Hamil-
tonian (6.111) and its above implementation for control systems (6.106); a
smooth behavior occurs only under some quite restrictive assumptions. How-
ever, the first necessary optimality conditions for control problems governed by
differential inclusions were obtained (under the name of “support principle”)
by Boltyanskii [125] assuming the smoothness of (6.111) in the state variable;
see also the related papers by Fedorenko [438, 439], Boltyanskii [127], Blago-
datskikh [117], Blagodatskikh and Filippov [118] with other (mostly Russian)
references therein.
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In [1143, 1144, 1145], Rockafellar derived necessary (and sufficient) opti-
mality condition applied to differential inclusions (6.110) under more reason-
able assumptions of the graph-convezity for F(-,t). In fact, Rockafellar con-
sidered a more general framework of the (fully) convex generalized problem of
Bolza:

b
minimize ¢(x(a), x(b)) —|—/ 9 (x(2), x(2), 1) dr , (6.112)

where, in contrast to the classical Bolza problem [130] and the preceding
Mayer problem [859] with ¥ = 0, the functions ¢ and ¢ may be extended-
real-valued, i.e., (6.112) particularly incorporates the differential inclusion
model (6.110) via the indicator function 9 (x,v,r) := §((x,v);gph F(-,1)).
The convexity assumption on #(x,v,t) in both variables (x,v) made in
[1143, 1144, 1145] implies that the Hamiltonian (6.111) associated with the
differential inclusion (6.110) is convex in p and concave in x, so it is subd-
ifferentiable as a saddle function with respect to (x, p) in the sense of con-
vex analysis. Using the machinery of convex analysis in infinite-dimensional
spaces, Rockafellar obtained necessary and sufficient conditions for optimal
solutions x(-) to the convex generalized problem of Bolza and thus for convex-
graph differential inclusions via the generalized Hamiltonian equation [1145)
called also the Hamiltonian condition/inclusion

(=p(t),x(1)) € 9H(x(2), p(r), 1) ae., (6.113)

where dH stands for the subdifferential of the Hamiltonian function H(x, p, t)
with respect to (x, p). If H(x, p, t) happens to be differentiable with respect
to x and p, inclusion (6.113) reduces to the classical Hamiltonian system

x(t) =V, H(x(r), p(r),1) and — p(r) = V H(x(r), p(r), 1) .

Somewhat different (while mostly equivalent) results for optimization
problems governed by convez-graph differential inclusions were later obtained
by Halkin [542], Berliocchi and Lasry [107], and Pshenichnyi [1107, 1109].

6.5.4. Clarke’s Euler-Lagrange Condition. Observe that although the
graph-convexity assumption on F(-, t) is more reasonable in comparison with
the smoothness requirement on the Hamiltonian, it is still rather restrictive.
In particular, for standard control systems (6.106) this assumption actually
reduces to the linearity of f(-,-,¢) and the convexity of U; see Rockafellar
[1143]. A crucial step from fully convez, or “biconvex” in Halkin’s terminology,
problems (i.e., those for which the integrand in (6.112) in convex in both (x, v)
variables) to problems involving the converity only in the welocity variable
v, which corresponds to the convez-valuedness of F(x,t) in the differential
inclusion framework (6.110), was made by Clarke in his pioneering work in
the 1970s starting with his dissertation [243].
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The initial point for Clarke [243, 245] was the Bolza-type problem (6.112)
with finite (moreover Lipschitzian) integrand/Lagrangian (-, -, 7) considered
without any smoothness and convexity assumptions on the integrand ¢ as
well as on the l.s.c. endpoint function ¢, which was allowed to be extended-
real-valued. The main necessary optimality condition was obtained in the
FEuler-Lagrange form

(p(1), p(1)) € 0c (x(2), x(1),1) a.e. (6.114)

via Clarke’s generalized gradient of ¢ (-, -, ) in (6.114). Inclusion (6.114) gets
back the classical Euler-Lagrange equation if 9 (x, v, ) is smooth in (x, v); it
reduces to the Euler-Lagrange inclusion obtained by Rockafellar [1143] if ¢ is
convex in both x and v variables. Furthermore, Clarke’s proof of (6.114) in
[243, 245] was based on reducing the nonconvex Bolza problem under consid-
eration to the fully convexr problem comprehensively studied by Rockafellar.
The convez-valuedness of Clarke’s generalized gradient and its duality rela-
tionship with his generalized directional derivative played a major role in the
possibility to accomplish the latter reduction and thus in the whole proof of
(6.114).

Based on the Euler-Lagrange condition (6.114) for finite Lagrangians,
Clarke obtained [247] its counterpart

(p(1). p(1)) € Ne((x(1). ¥(1)):gph F(1))  a.e. (6.115)

for Lipschitzian and bounded differential inclusions (6.110) via his normal cone
to the graph of F = F(-,¢). Then he derived [248] the Euler-Lagrange inclu-
sion (6.114) for the generalized Bolza problem (6.112), where ¢ was assumed
to be extended-real-valued and epi-Lipschitzian in (x, v). The most notable
and restrictive assumption imposed in [247, 248] was the calmness condition
similar to that discussed in Subsect. 5.5.16 for problems of mathematical pro-
gramming. This is a kind of constraint qualification/regularity requirement,
which ensures the normal form of necessary optimality conditions and holds,
in particular, when the endpoint function ¢ is locally Lipschitzian in either
variable; the latter however excludes the corresponding endpoint constraints.
Note that the calmness requirement allowed Clarke to avoid formally the con-
vexity assumption on ¢ even in v, while the convexity property was actually
present in [247, 248] due to the “admissible relaxation” provided by calmness;
see also [246] for a detailed study of these relationships. Moreover, as men-
tioned in [248, p. 683], “...the [biJconvex case [developed by Rockafellar] lies
at the heart of the proof of our result.”

The most serious drawback of the Euler-Lagrange inclusion in form (6.115),
fully recognized only later, is that it involves the Clarke normal cone to the
graph of F(-, 1) from (6.110), which happens to be a linear subspace of dimen-
sion d > n whenever F is graphically Lipschitzian near the optimal solution;
see Subsect. 1.4.4 for more discussions. Due to this property, the set on the
right-hand side of (6.115) may be too large to provide an adequate information
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on adjoint arcs p(-) in many situations important for the theory and applica-
tions.

6.5.5. Clarke’s Hamiltonian Condition. Besides the Euler-Lagrange
condition (6.115), Clarke also established necessary optimality conditions for
the generalized Bolza problem and thus for Lipschitzian differential inclusions
in the following Hamiltonian form:

(= p@t),x(t)) € 0cH(x(1), p(r), 1) ae. (6.116)

involving his generalized gradient of the Hamiltonian function in both (x, p)
variables. The first Hamiltonian results were obtained under the calmness
assumption [253, 255] and then without this and other constraint qualifications
[256].

Note that, in the absence of regularity /normality assumptions, the validity
of the Hamiltonian condition (6.116) was established only for convez-valued
differential inclusions (which corresponds to the convexity in v of the La-
grangian in the generalized Bolza form); the derivation of (6.116) without
convexity originally presented in [251] was incorrect in the proof of Claim
on p. 262 therein related to the convexification procedure. Similar approach
based on employing the Ekeland variational principle worked nevertheless for
proving Clarke’s extension [250] of the Pontryagin maximum principle for
nonsmooth optimal control systems of type (6.106). A long-standing conjec-
ture about the validity of the Hamiltonian necessary optimality condition
(6.116) without the above convexity assumption, which resisted the efforts of
several authors, has been recently resolved by Clarke [261] for Lipschitzian
and bounded differential inclusions by applying Stegall’s variational principle
[1224] instead of Ekeland’s one in the framework of his proof. Observe that,
in contrast to the classical smooth case and to the fully convex case of Rock-
afellar, Clarke’s Euler-Lagrange condition (6.115) and Hamiltonian condition
(6.116) are not equivalent even in simple situations. Moreover, they don’t fol-
low from each other being truly independent; see examples and discussions in
Kaskosz and Lojasiewicz [667] and in Loewen and Rockafellar [805].

It was not even clear till the work by Loewen and Rockafellar [804] whether
one could find a common adjoint arc p(-) satisfying both Euler-Lagrange con-
dition (6.115) and Hamiltonian condition (6.116) simultaneously. The affir-
mative answer was given in [804] for convez-valued and Lipschitzian differen-
tial inclusions with no assumption of calmness or normality. Note that in this
case both conditions (6.115) and (6.116) automatically imply the Weierstrass-
Pontryagin maximum condition

(p(t).x(1)) = H(x(t), p(r). 1) ae. (6.117)

We refer the reader to [254, 255, 256, 267, 268, 272, 273, 274, 276, 595, 666, 667,
803, 804, 808, 1178, 1291, 1292] and the bibliographies therein for extensions
and modifications of necessary optimality conditions of the Euler-Lagrange
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and Hamiltonian types obtained in terms of Clarke’s generalized differential
constructions for various problems of dynamic optimization and optimal con-
trol.

6.5.6. Transversality Conditions. Necessary optimality conditions in
problems of dynamic optimization include, besides dynamic relations of the
type discussed above (Euler-Lagrange, Hamiltonian, Weierstrass-Pontryagin),
also endpoint relations on adjoint trajectories called transversality conditions.
They are expressed via appropriate (generalized) differential constructions for
cost and constraint functions depending on endpoints of state trajectories.
Note that endpoint constraints on (x(a), x(b)) can be implicitly included in
the endpoint cost function ¢ if it is assumed to be extended-real-valued as in
the generalized problem of Bolza (6.112). However, typically such constraints
are given explicitly in the form

(x(a),x(b)) € 2 C R", (6.118)

where the constraint /target set £2 may be specified in some functional form by,
e.g., equalities and inequalities with real-valued (often Lipschitzian) functions.

In the afore-mentioned publications by Clarke and his followers concerning
minimization of Lipschitzian cost functions ¢ as in (6.112) subject to endpoint
constraints of type (6.118), the transversality conditions were derived in the
form

(p(a), —p(b)) € rdce(x(a), X(b)) + Nc((x(a), x(b)); 2)  (6.119)

with A > 0 via Clarke’s generalized gradient of ¢ and his normal cone to £2
at the optimal endpoints (x(a), x(b)). When ¢ and §2 happen to be convex,
the transversality inclusion (6.119) reduces to that obtained earlier by Rock-
afellar [1143]. Note that the normal form A = 1 holds under the calmness
assumption and that a proper counterpart of (6.119) is expressed in terms of
Clarke’s normal cone to the epigraph of ¢ 4 §(+; 2) if ¢ is merely l.s.c. around
(x(a), x(b)).

Transversality conditions in the significantly more advanced form

(p(a). —p(b)) € dp(x(a). ¥(b)) + N((¥(a) X(0):2)  (6.120)

were first established by Mordukhovich in the mid-1970s via his basic/limiting
normal cone and subdifferential: in [887] for time optimal control problems
and in [889, 892] for other classes of problems in optimal control and dynamic
optimization involving ODE control systems (6.106) and differential inclusions
(6.110); see also [717, 897, 900, 901, 902, 904]. These results were obtained
by the method of metric approximations, which was actually the driving force
to introduce the nonconvex-valued normal cone and subdifferential in [887];
more comments and discussions were given in Subsects. 1.4.5 and 2.6.1.

It seems that the transversality conditions in form (6.120) didn’t get a
proper attention in the Western literature before Mordukhovich’s talk at the
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Montreal workshop (February 1989) and the publication of Clarke’s second
book [257], where these conditions were mentioned in footnotes with the ref-
erence to Mordukhovich; see Subsect. 1.4.8. However, even after that many
papers (see, e.g., those listed in Subsect. 1.4.8) still continued using transver-
sality conditions in form (6.119) instead of the advanced one (6.120).

Nevertheless, it has been eventually recognized the possibility to justify
the advanced transversality conditions (6.120) in any investigated setting of
dynamic optimization. We particularly refer the reader to the publications
[33, 40, 93, 113, 258, 260, 261, 264, 265, 275, 443, 444, 506, 605, 611, 616, 801,
805, 806, 807, 845, 847, 878, 880, 914, 915, 916, 921, 932, 955, 959, 970, 971,
973, 974, 976, 1021, 1022, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1118, 1161,
1162, 1176, 1179, 1211, 1215, 1216, 1233, 1289, 1293, 1294, 1295, 1372], which
clearly demonstrated this for various problems of the calculus of variations
and optimal control of ordinary differential systems and their distributed-
parameter counterparts.

6.5.7. Extended Euler-Lagrange Conditions for Convex-Valued
Differential Inclusions. The usage of the nonconvex normal cone from [887]
in the framework of dynamic optimality conditions for differential inclusions
was initiated in the 1980 paper by Mordukhovich [892] for the problem of min-
imizing the cost function ¢(x(a), x(b)) over absolutely continuous trajectories
for the convez-valued, bounded, and Lipschitzian (in x) differential inclusion
(6.110) subject to the endpoint constraints (6.118). Given an optimal solution
X(+) to this problem, a dynamic necessary optimality condition was obtained
in [892] in the form

(p(0).5(1)) € co{(u.v) € | (. p(1)) € N((x(1). v): ph F(1)) .
(6.121)

veM(x(t), p(t), t)} a.e. t €la,b]
with the argmazimum sets M(x, p,t) defined by

M(x, p,t):=={v e F(x,t)| (p,v) =H(x,p.1)}

and the transversality inclusion (6.120) held when ¢ is locally Lipschitzian.
If the argmaximum set M (X(z), p(t),t) is a singleton for a.e. t € [a,b] (it
happens, in particular, when the velocity set F(x(t), t) is strictly convex almost
everywhere), condition (6.121) reduces to

(1), %(1)) € co{(u,v)‘ (u, p(1)) € N(()E(t),)?(t));gphF(t))} ae. (6.122)

It is worth mentioning that these results were derived in [892] with no calmness
and/or any other qualification conditions by using the method of discrete
approzrimations; see Subsect. 6.5.12 for more discussions on this technique.
Observe that in contrast to Clarke’s Euler-Lagrange condition (6.115) re-
quiring the full convexification of the basic normal cone (since N¢ = clco N),
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both conditions (6.121) and (6.122) involve only a partial convexification,
which allows us to avoid troubles with the subspace property of the Clarke
normal cone to graphical sets.

Condition (6.122) obviously implies the Euler-Lagrange condition in
Clarke’s form (6.115); it is easy to find examples when (6.122) is strictly bet-
ter. This is however not the case regarding the comparison between (6.115)
and (6.121) when the velocity sets F(x,t) are not strictly convex. Indeed,
there are examples in Loewen and Rockafellar [805] showing that these two
necessary optimality conditions are generally independent. Moreover, it has
been subsequently proved by Ioffe [603] and Rockafellar [1162] (as the two
complementary implications) that Mordukhovich’s initial version of the Euler-
Lagrange condition (6.121) for convex-valued differential inclusions happens
to be equivalent to Clarke’s Hamiltonian condition (6.116).

We refer the reader to other publications by Mordukhovich [901, 902, 908]
containing the developments of condition (6.121), and thus of (6.122) in
the case of strictly convex velocity sets, for various dynamic optimization
problems involving convex-valued (or relaxed) differential inclusions; in par-
ticular, for problems with free time, intermediate state constraints, Bolza-
type functionals, etc. Developing then the discrete approximation techniques
of [892, 901, 902, 908], Smirnov [1215] established the validity of the re-
fined Euler-Lagrange condition (6.122) for (not strictly) convex-valued, Lips-
chitzian, bounded, and autonomous differential inclusions by reduction them
in fact to the strictly convex case.

Further results in this direction were obtained by Loewen and Rockafellar
[805] for convex-valued and unbounded differential inclusions of type (6.110),
with the replacement of the standard Lipschitzian property of F(-,¢) for
bounded inclusions by its “integrable sub-Lipschitzian” counterpart in the
unbounded case. They derived the Euler-Lagrange condition in the advanced
form (6.122) emphasizing that “two simple themes underlie our approach:
truncation and strict convexity.” The latter means that they developed an
efficient technique allowing them to reduce the general case under consid-
eration to bounded and Lipschitzian differential inclusions, for which con-
dition (6.121) held and agreed with the refined one (6.122). Note that the
convezity assumption on the sets F(x, t) played a crucial role in the technique
developed in [805]. The two subsequent papers by Loewen and Rockafellar
[806, 807] contained extensions of these results to the generalized problem of
Bolza with state constraints and free time. It is worth mentioning that in [806]
the general Bolza case with an extended-real-valued integrand/Lagrangian in
(6.112) was reduced under mild “epi-continuity” and growth assumptions to
a Mayer problem for an unbounded differential inclusion satisfying the “in-
tegrable sub-Lipschitzian” property of [805]; moreover, the coderivative crite-
rion for Lipschitz-like behavior established by Mordukhovich [909] (see The-
orem 4.10) served as a key technical ingredient in justifying the possibility of
such a reduction.
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At this point we observe that the Euler-Lagrange inclusion (6.122) can be
equivalently written in the coderivative form

p(t) € coDIF(x(t), x(t),1)( — p(t)) ae., (6.123)

which was actually the original motivation for introducing the coderivative
construction in [892] (as the adjoint mapping to F) to describe adjoint sys-
tems in optimal control problems governed by discrete-time and differential
inclusions. Since the coderivative reduces to the adjoint Jacobian for smooth
single-valued mappings, relation (6.123) can be viewed as an appropriate ex-
tension of the adjoint system (6.107) to generalized control processes governed
by differential inclusions. Note that the Hamiltonian form of necessary opti-
mality conditions as in (6.113) doesn’t offer such an extension in the nons-
mooth setting. Besides an intrinsic esthetic value, form (6.123) carries a pow-
erful technical component allowing us to employ comprehensive coderivative
calculus and dual characterizations of Lipschitzian and related properties to
the study of many issues in control theory for differential inclusions, partic-
ularly those concerning limiting processes; see, e.g., the above proofs of the
major results presented in Sects. 6.1 and 6.2 of this book.

6.5.8. Extended Euler-Lagrange and Weierstrass-Pontryagin Con-
ditions for Nonconvex-Valued Differential Inclusions. As mentioned,
the results discussed in Subsect. 6.5.7 (as well as the previous versions re-
viewed in Subsect. 6.5.6) were derived under the convezity hypothesis imposed
on the velocity sets F(x, t) of differential inclusions in the absence of calmness-
like assumptions. Necessary optimality conditions for nonconver-valued (while
Lipschitzian and bounded) differential inclusions with endpoint constraints in-
volving the extended Euler-Lagrange condition (6.123) were first established
by Mordukhovich [915] without any constraint qualifications. Observe that the
Euler-Lagrange condition in Clarke’s fully convezified form (6.115) was pre-
viously obtained by Kaskosz and Lojasiewicz [667] for boundary trajectories
of nonconvex, bounded, and Lipschitzian differential inclusions. In [915], the
reader can find the corresponding version of the extended Euler-Lagrange con-
dition (6.123) for the Bolza problem (6.112) with a finite nonconvex integrand
over nonconvex differential inclusions, while another paper by Mordukhovich
[916] concerned problems with free time.

The Weierstrass-Pontryagin mazimum condition (6.117) doesn’t play an
independent role for convex-valued differential inclusions, since it follows auto-
matically from any version of the Euler-Lagrange conditions discussed above.
This is no longer true in the nonconvex setting for which the maximum condi-
tion was not established in the afore-mentioned papers [667, 915]. Neverthe-
less, it was asserted in [915, Remark 7.6] that the methods developed therein
would allow us to prove (6.117) accompanying the refined Euler-Lagrange
condition (6.123) if the classical Weierstrass necessary condition would be es-
tablished for strong minimizers of the Bolza problem with finite Lagrangian
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and free endpoints without imposing any smoothness and/or convexity as-
sumptions. The latter task was first accomplished by Ioffe and Rockafellar
[616] who derived the counterpart

p(t) € co{u € R"| (u, p(r)) € 30 (x(2), X(1). 1)} ae. (6.124)

of the extended Euler-Lagrange condition (6.123) accompanied by the classical
Weierstrass condition, valid for all v € IR" and a.e. t,

9 (%(6), v, 1) > D (%(t), %(6), 1) + (p(t), v — £(1)) (6.125)

for the nonconvexr Bolza problem (6.112) with the finite (real-valued)
integrand ¢

Based on Ioffe-Rockafellar’s result and the techniques of [915], Mor-
dukhovich derived in [914] the Euler-Lagrange condition (6.123) accompanied
by the Weierstrass-Pontryagin maximum condition (6.117) for nonconvex dif-
ferential inclusions under the boundedness and Lipschitzian assumptions on F
with respect to x. More general results of this type were then obtained in the
concurrent papers by Ioffe [604] and Vinter and Zheng [1294] who derived, by
different techniques, the extended Euler-Lagrange (6.123) and Weierstrass-
Pontryagin (6.117) necessary optimality conditions for nonconvex and wun-
bounded differential inclusions under the integrable sub-Lipschitzian assump-
tion by Loewen and Rockafellar [805]. It is interesting to observe that Vinter
and Zheng [1294] gave another proof of Toffe-Rockafellar’s results (6.124) and
(6.125) for problems with finite Lagrangians based on their reduction to op-
timal control problems for systems with smooth dynamics and nonsmooth
endpoint constraints employing to them the version of the maximum principle
with transversality conditions (6.120) originally obtained in the 1976 paper
by Mordukhovich [916]. We also refer the reader to the subsequent papers by
Vinter and Zheng [1295, 1296, 1297] for appropriate versions of the extended
Euler-Lagrange and Weierstrass-Pontryagin conditions to problems with state
constraints and free time, and also to their applications. Furthermore, Ram-
pazzo and Vinter [1118] generalized these results for nonconvex differential
inclusions with the so-called degenerated state constraints providing nonde-
generate necessary optimality conditions for problems in which endpoints may
belong to the boundary of state constraints, and so the standard necessary
conditions convey no useful information. See also Arutyunov and Aseev [33],
Ferreira, Fontes and Vinter [443] with the references therein for previous re-
sults concerning degenerate control problems.

Quite recently, Clarke [260, 261] derived necessary optimality conditions in
the extended Euler-Lagrange form (6.123) accompanied by the Weierstrass-
Pontryagin maximum condition (6.117) for nonconvex and unbounded dif-
ferential inclusions under fairly weak (probably minimal) assumptions on the
initial data. In the process of proof, he developed a delicate and powerful tech-
nique involving smooth variational principles and decoupling machinery that
allowed him to reduce these conditions under the weak assumptions made
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to the settings already known and discussed above. The conditions derived
in [260, 261] also incorporated a novel stratified feature in which both the
assumptions and conclusions were formulated relative to a prescribed radius
function. They also gave rise to new forms of the so-called “hybrid maximum
principle” for optimal control problems with cost integrands of a very general
nature while with the smooth underlying dynamics.

Note that in certain special situations potentially stronger versions of the
extended Euler-Lagrange condition can be obtained for minimizing nonconvex
and nonsmooth integral functionals of the calculus of variations and related
problems. To this end we refer the reader to the papers by Ambrosio, Ascenzi
and Buttazzo [17], Marcelli [845, 846], and Marcelli, Outkine and Sytchev
[847], where some versions of the Euler-Lagrange conditions via the subdif-
ferential of convex analysis were derived for nonconver problems with some
special structures. The results of this type are heavily based on relazation
techniques particularly involving the Lyapunov convexity theorem [822] and
its various extensions and modifications.

6.5.9. Dualization and Extended Hamiltonian Formalism. In Sub-
sects. 6.5.5 and 6.5.7 we have discussed some relationships between the previ-
ous versions of the Euler-Lagrange and Hamiltonian optimality conditions for
differential inclusions and for the generalized problem of Bolza. Recall that, in
contrast to the classical smooth and fully convex cases, Clarke’s versions of the
Euler-Lagrange (6.115) and Hamiltonian (6.116) conditions are not equivalent
even in simple settings, while his Hamiltonian condition happens to be equiv-
alent to the early Mordukhovich’s version of the Euler-Lagrange condition
(6.121) for convex-valued differential inclusions. What about an appropriate
Hamiltonian counterpart of the extended Euler-Lagrange condition written as
(6.122), or equivalently as (6.123), for differential inclusions and as (6.124)
and the problem of Bolza in the absence of strict convexity?

This question was first investigated by Rockafellar [1162] in the general
framework of the Legendre-Fenchel transform (or the conjugacy correspon-
dence) of convex analysis defined by the classical formula

9*(x, p) = sup {(p,v) — V¥(x,v)} . (6.126)

vER"

It is well known from convex analysis [1142] that for any proper, convez, and
L.s.c. function ¥ (x, -): IR" — IR the conjugate function ¥*(x, -) enjoys the same
properties on IR" satisfying moreover the symmetric biconjugacy relationship

B (x,v) = ps;l”}e) {(p,v) —0*(x, p)} .

The question stated and resolved by Rockafellar [1162] was about relationships
between basic subgradients of the functions ¥ (x, v) and 9*(x, p) with respect
to their both variables. Under a certain “epi-continuity” assumption, which
automatically holds when either ¥ or ¢* is locally Lipschitzian around the
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reference point, it was established in [1162] the following relationship for the
convex hulls:

co{u € R"| (u, p) € 09 (x,v)} = —co{u € R"| (u,v) € 30*(x, p)} . (6.127)

For the case corresponding to differential inclusions, with ¢ (x, v) = §((x, v);
gph F), the relationships (6.127) reduces to

co{u € R"| (u, p) € N((x,v);gph F)} = co{u € R"| (—u,v) € 3H(x, p)}

by taking into account (6.126) and the Hamiltonian construction (6.111). The
proof of the Rockafellar dualization theorem (6.127) given in [1162] was rather
involved based on advanced tools of convex analysis in finite dimensions in-
cluding Moreau-Yosida’s approximation techniques, Wijsman’s epi-continuity
theorem, Attouch’s theorem on convergence of subgradients, etc.

In view of (6.127), the advanced/extended Hamiltonian form equivalent to
the extended Euler-Lagrange condition (6.123) for convez-valued differential
inclusions reads as follows:

p(t) €co{u € R"| (—u,x(t)) € 0H(¥(r), p(t), 1)} ae.  (6.128)

The same form of the extended Hamiltonian condition holds true for the gen-
eralized Bolza problem (6.112), with the Hamiltonian defined accordingly as
the conjugate of the Lagrangian integrand ¢ (x, p, #) in the velocity variable v.
The elaboration of the assumptions needed for the fulfillment of the associated
Euler-Lagrange condition (6.124) together with the equivalent Hamiltonian
form (6.128) in the framework of the generalized problem of Bolza with the
integrand @ (x, v, ) convex in v was given by Loewen and Rockafellar [806];
see the corresponding discussions on the extended Euler-Lagrange condition
in Subsect. 6.5.7, presented right before (6.123), which can now be equally
relate to the Hamiltonian condition (6.128) due to Rockafellar’s dualization
result (6.127).

In [604], Toffe established the inclusion “C” in (6.127) under significantly
weaker assumptions in comparison with those in Rockafellar [1162], while
still under the convexity of ¥ (x,-). Employing this result, he justified neces-
sary optimality conditions in both Euler-Lagrange (6.123) and Hamiltonian
(6.128) forms for conves-valued and unbounded differential inclusions with
the replacement of the “integrable sub-Lipschitzian” property as in Loewen
and Rockafellar [806] by the more general Lipschitz-like (Aubin’s “pseudo-
Lipschitzian”) property of F(-,t). Observe that Ioffe’s proof clearly reveals
the pivoting role of the Euler-Lagrange condition (6.123) in nonsmooth opti-
mal control, which holds with no convexity assumptions (see Subsect. 6.5.8)
and directly implies the extended Hamiltonian condition (6.128) for convex-
valued problems. Note to this end that the validity of the latter Hamiltonian
inclusion (6.128) for nonconvez problems is still an open question, even for
bounded and Lipschitzian differential inclusions.
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Another proof of the inclusion “C” in Rockafellar’s dualization theorem
(6.127) under about the same hypotheses as in [1162] was later given by Bessis,
Ledyaev and Vinter [113] (see also Sect. 7.6 in Vinter’s book [1289]). The proof
of [113, 1289] employed not Moreau-Yosida’s approximations as in [604, 1162]
but more direct and conventional (while rather involved) techniques of proxi-
mal analysis.

6.5.10. Other Techniques and Results in Nonsmooth Optimal
Control. It is worth mentioning that, as shown by Toffe [604], the advanced
FEuler-Lagrange formalism for nonconvex differential inclusions discussed in
Subsect. 6.5.8 easily implies a nonsmooth version of the Pontryagin maximum
principle for parameterized control systems of type (6.106) with the adjoint
equation

—p(t) € [ f(x(),a(t),1)] " p(t) ae. (6.129)

written via Clarke’s generalized Jacobian J, f of f with respect to x. Recall
that the generalized Jacobian [252, 255] of a Lipschitzian mapping f: IR" —
IR™ is defined as the convezr hull of the classical Jacobian m X n matrices
at points x; — Xx; the latter set is nonempty and compact by the funda-
mental Rademacher’s theorem [1114]. Such a nonsmooth maximum principle
involving the adjoint equation (6.129) was first obtained by Clarke [250, 255]
directly for control systems (6.106) based on approximation procedures via
FEkeland’s variational principle. Note also that Ioffe [604] deduced the max-
imum principle in the somewhat more advanced form suggested by Kaskosz
and Lojasiewicz [666] for parameterized families of vector fields from the ex-
tended Euler-Lagrange formalism for differential inclusions.

Probably the very first extension of the Pontryagin maximum principle to
nonsmooth control systems was published by Kugushev [722] who employed
a certain constructive technique to approximate the given nonsmooth system
by a sequence of smooth ones. However, he didn’t described efficiently the
resulting set of “subgradients” that appeared in this procedure. Other early
results on the nonsmooth maximum principle for systems (6.106) were inde-
pendently obtained by Warga [1316, 1317, 1321] (starting with the end of
1973) using some smooth approximation technique of the mollifier type and
his derivate containers for mappings f: IR" — IR™. The latter objects, which
are not uniquely defined, give more precise results than Clarke’s generalized
Jacobian in some settings of variational analysis, optimization, and control.
However, the convex hull of any derivate container provides no more informa-
tion than the generalized Jacobian (as shown in [1320]), and thus the adjoint
system in form (6.129) subsumes that of Warga [1316].

Warga’s approach to derive necessary optimality and controllability con-
ditions was extended by Zhu [1370] to nonconvex differential inclusions satis-
fying, besides the standard assumptions of boundedness and Lipschitz conti-
nuity, also requirements on the existence of some local selections, which were
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incorporated in the optimality conditions obtained in [1370]. An obvious draw-
back of such and related conditions (see, e.g., Tuan [1273]) is the absence of
any analytic mechanism for obtaining required selections, even in the case of
convex-valued inclusions. Similar remarks on the possibility to constructively
verify assumptions and conclusions explicitly involving certain auziliary ob-
jects of approximation and linearization types can be equally addressed to
some other necessary optimality conditions for nonsmooth optimal control
and variational problems obtained particularly by Frankowska [464, 465, 468]
and by Polovinkin and Smirnov [1094, 1095]; cf. also Ahmed and Xiang [6] for
problems involving infinite-dimensional differential inclusions.

Note that there is another direction in the theory of necessary optimality
conditions for differential inclusions, developed mostly in the Russian school,
that aims to derive results for differential inclusions by limiting procedures
from the Pontryagin maximum principle for smooth optimal control prob-
lems involving systems of type (6.106). In this way, using different kinds of
smooth approximations, some interesting results mainly related to those al-
ready known in the theory of convez-valued differential inclusions were ob-
tained by Arutyunov, Aseev and Blagodatskikh [34], Aseev [39, 40, 41], and
Milyutin [875, 876]; the latter paper was the last work by Alexei Alexeevich
Milyutin submitted and published after his death.

On the other way of development, new results for nonsmooth control sys-
tems (6.106) different from Clarke’s version of the nonsmooth maximum prin-
ciple with the adjoint equation (6.129) were obtained by de Pinho, Vinter, and
their collaborators using an appropriate approximation of control systems by
differential inclusions with the help of Ekeland’s variational principle. These
results are described via joint subgradients of the Hamilton-Pontryagin func-
tion (6.108), called sometimes the unmazimized Hamiltonian, in the (x, p, u)
variables. The first result of this type was derived by de Pinho and Vinter
[1078] for standard optimal control problems with endpoint constraints under
the name of “Euler-Lagrange inclusion,” which didn’t seem to be in accordance
with the real essence of this condition. Then the name has been appropriately
changed, and the results of this type were labeled as necessary optimality
conditions for nonsmooth control systems involving the unmazimized Hamil-
tonian inclusion (UHI); see [1076] for more discussions. The subsequent papers
of these authors and their collaborators [1074, 1075, 1076, 1077, 1079, 1080]
contained various extensions of the UHI type results to optimal control prob-
lems with state constraints, with mixed constraints on control and state vari-
ables, with algebraic-differential constraints, etc. The results of this type are
particularly efficient for weak minimizers; cf. also the related paper by Péles
and Zeidan [1036]. One of the strongest advantages (as well as the original
motivation) of the UHI formalism in comparison with Clarke’s version of the
nonsmooth maximum principle is that the possibility to get necessary and suf-
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ficient conditions for optimality in nonsmooth convex control problems, which
is not the case for Clarke’s formalism (6.129).

6.5.11. Dual versus Primal Methods in Optimal Control. Observe
that the majority of techniques developed for optimization of differential in-
clusions don’t employ the method of variations and its modifications that lie
at the heart of the classical calculus of variations and optimal control dealing
with parameterized control systems of type (6.106). Perhaps the most signif-
icant technical reason for this in the context of differential inclusions (6.110)
relates to the fact that the method of variations based on the comparison
between the given optimal solution and its small (in some sense) local varia-
tions doesn’t fit well to the very nature of the dynamic constraints X € F(x)
and also of control constraints of the type u € U(x) with the state-dependent
control region U (x).

Alternative approaches to developing necessary optimality conditions for
differential inclusions, as well as for constrained control systems of type
(6.106), are based on certain approzimation/perturbation procedures concern-
ing the whole problem under consideration, not only its optimal solution. This
may involve various approximations of dynamic optimization problems by
those with no right-endpoint constraints (which are much easier to handle),
exact penalization, decoupling, discrete approximations, etc.; see more details
and discussions in Clarke [250, 255], Ioffe [604, 611], Mordukhovich [887, 915],
Vinter [1289] with their references.

The techniques and results of the latter type lead to subgradient-oriented
theories of necessary conditions in nonsmooth optimization and optimal con-
trol involving generalized differential constructions in dual spaces (normal
cones, subdifferential, coderivatives). It seems that the strongest general re-
sults of this type are expressed in terms of our basic/limiting dual-space con-
structions, which cannot be generated by derivative-like objects in primal
spaces (as tangent cones and directional derivatives) due to their intrinsic
nonconverity. This allows us to unify the results obtained in this direction
under the name of dual-space theory.

On the other line of developments, approaches and results related to the
method of variations and its modifications deal with variations and perturba-
tions of optimal solutions in primal spaces involving various tangential approx-
imations, particularly of reachable sets for control systems; see, e.g., the proof
of the Pontryagin maximum principle in [1102] and the subsequent develop-
ments by Dubovitskii and Milyutin [370, 877], Halkin [539, 545], Neustadt
[1001, 1002], Warga [1315, 1316], and others. We refer to results of this type
as to primal-space theory. Note that this terminology is not in accordance with
the one adopted by Vinter [1289, pp. 228-231].

Necessary optimality conditions for nonsmooth optimal control obtained
in the dual-space and primal-space theories are generally independent from
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the viewpoints of treated local minimizers, employed analytic machineries,
and imposed assumptions on the initial data. In more detail:

—Types of local minima investigated by primal-space methods depend
on the variations used, while dual-space methods deal with local minimizers
defined regardless of variations.

——Realizations and implementations of primal-space methods heavily de-
pend on using powerful tools of nonlinear analysis (including open mapping
and implicit function theorems and/or fixed-point results), while dual-space
methods are free of this machinery employing instead more simple penalty-
type techniques in finite dimensions as well as modern variational principles
in infinite-dimensional settings.

——Assumptions needed for approximation/perturbation techniques in
dual-space theory require good behavior around points of minima (e.g., Lips-
chitzian properties and metric regularity), while primal-space techniques may
produce results under at-point assumptions.

——Primal-space methods for (smooth and nonsmooth) constrained opti-
mization (including constrained optimal control) require finally the usage of
convex separation for obtaining efficient results in eventually dual terms (La-
grange multipliers, adjoint trajectories, etc.), while dual-space methods don’t
appeal as a rule to convex separation theorems.

In Sect. 6.3, the reader can find some advanced results in the primal-
space direction derived in the conventional PMP form and its upper subdif-
ferential extension. The obtained results concern parameterized control sys-
tems of type (6.106) with smooth dynamics in infinite-dimensional spaces
and endpoint equality and inequality constraints described by finitely many
real-valued functions. However, these functions may be merely Fréchet differ-
entiable at the reference optimal point, not even being continuous around it
(the latter applies only to the functions describing the endpoint objective as
well as inequality constraints); see more comments to the material of Sect. 6.3
presented below.

The most general results of the primal type in nonsmooth optimal control
for finite-dimensional systems have been developed by Sussmann during the
last decade; see [1235, 1236, 1237, 1238] and the references therein. He started
[1235] with the remarkable result called the Lojasiewicz refinement of the
maximum principle that came out of Lojasiewicz’s idea formulated in the
unpublished (and probably unfinished) paper [810]. This refinement consists
of justifying a version of the PMP by assuming that the velocity mapping
f(x,u,t)in (6.106) is not C* with respect to x for all u € U a.e. in ¢ as in the
classical PMP and not locally Lipschitzian in x for all u € U and a.e. t as in
Clarke’s nonsmooth version of the PMP under “minimal hypotheses” [250] but
merely locally Lipschitzian in x along the given optimal control u = u(r) for
a.e. t. A “weak differentiable” version of this result justifies the validity of the
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PMP when f(-, u(t),t) is differentiable (possibly not strictly differentiable) at
one point x(t) along the optimal control u = u(t) for a.e. 1.

Sussmann proved these results and their far-going generalizations in non-
smooth optimal control developing certain abstract versions of needle varia-
tions (crucial in the proof of the classical PMP) and primal-space construc-
tions of generalized differentials. In the recent paper [38], Arutyunov and
Vinter provided a simplified proof of the “weak differentiable” version in the
Lojasiewicz refinement of the PMP based on the so-called “inner finite ap-
proximations” involving special needle-type variations of the reference opti-
mal control u(-) that don’t violate endpoint constraints on trajectories. The
idea of this finite approximation scheme goes back to Tikhomirov being pub-
lished in [7], where it was applied to the classical PMP in smooth optimal
control. Further results in this direction were derived by Shvartsman [1209]
for nonsmooth control systems with state constraints.

6.5.12. The Method of Discrete Approximations. Section 6.1 is
devoted to a thorough study of dynamic optimization problems in infinite-
dimensional spaces by using the method of discrete approximations. Although
our primary goal is to develop this method as a wehicle to derive necessary
optimality conditions of the extended Euler-Lagrange type (6.123) for dy-
namic processes governed by nonconvex differential /evolution inclusions, we
also present some results of numerical value for such processes that concern
well-posedness and convergence issues for discrete approximations of evolu-
tion inclusions with and without optimization involved. It seems that neither
necessary optimality conditions for infinite-dimensional evolution inclusions
nor discrete approximations of such processes have been previously considered
in the literature besides the author’s recent paper [932], where some of the
results obtained in this book were announced. They follow however a series
of finite-dimensional developments; see below.

The method of discrete approximations for the study of continuous-time
systems goes back to Euler [411] who developed it to establish the famous
first-order necessary condition (known now as the Euler or Euler-Lagrange
equation) for minimizing integral functionals in the one-dimensional calcu-
lus of variations. It is significant to note that Euler regarded the integral
under minimization as an infinite sum and didn’t employ limiting processes
interpreting instead (via a geometric diagram) the differentials along the min-
imizing curve as infinitesimal changes in comparison with “broken lines,” i.e.,
finite differences. Euler’s derivation of the necessary optimality condition in
one equational form for a “general” (at that time) problem of the calculus of
variations signified a major theoretical achievement providing the synthesis of
many special cases and examples appeared in the work of earlier researchers.
It is worth mentioning that an approximation idea based on replacing a curve
by broken lines was partly (and rather vaguely) used by Leibniz [757] in his
solution of the brachistochrone problem in the very beginning of the calculus
of variations.
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Since that time, Euler’s finite-difference method and its modifications have
been widely employed in various areas of dynamic optimization and numeri-
cal analysis of differential systems, with mostly numerical emphasis that has
become more significant in the computer era. There is an abundant literature
devoted to different aspects of discrete approximations and their numerous
applications; we refer the reader to [28, 98, 184, 185, 220, 221, 298, 299, 302,
303, 338, 343, 344, 345, 346, 347, 348, 349, 353, 354, 357, 358, 359, 367, 407,
425, 488, 520, 535, 542, 702, 721, 760, 761, 828, 831, 832, 890, 892, 900, 901,
902, 908, 915, 916, 941, 959, 973, 974, 976, 1012, 1061, 1062, 1086, 1107, 1109,
1215, 1175, 1216, 1280, 1282, 1283, 1284, 1301, 1333, 1379] and the bibliogra-
phies therein for representative publications related to dynamic optimization
and control systems.

In Sect. 6.1 we extend to the general infinite-dimensional setting of non-
convex evolution/differential inclusions the basic constructions and results
of the method of discrete approximations developed previously by Mor-
dukhovich [915] for differential inclusions in finite-dimensional spaces; see also
[890, 892, 901, 902, 908, 1107, 1109, 1215, 1216] and the comments below for
the preceding work in this direction concerning convex-graph and convex-
valued differential inclusions in finite dimensions.

The underlying idea and the basic scheme of the method of discrete approx-
imations to derive necessary optimality conditions for variational problems
involving differential inclusions contain the following three major components:

(i) to replace/approximate the original continuous-time variational prob-
lem by a well-posed sequence of discrete-time optimization problems whose
optimal solutions converge, in a certain suitable sense, to some (or to the
given) optimal solution for the original problem;

(ii) to derive necessary optimality conditions in discrete-time problems of
dynamic optimization by reducing them to constrained problems of mathe-
matical programming, which occur to be intrinsically nonsmooth, and then by
employing appropriate tools of generalized differentiation with good calculus;

(iii) to establish robust/pointbased necessary optimality conditions for the
original continuous-time dynamic optimization problem by passing to the limit
from necessary conditions for its discrete approximations and by using the
convergence/stability results obtained for the discrete approximation proce-
dure together with the corresponding properties of the generalized differential
constructions that ensure the required convergence of adjoint trajectories.

In Mordukhovich’s paper [915], the described discrete approximation
scheme was implemented for the general Bolza problem governed by noncon-
vex differential inclusions in finite-dimensional spaces; the extended Euler-
Lagrange condition of the advanced type (6.123) was first established there
in this way for nonconvex problems. The realization of each of the three steps
(i)—(iii) listed above for evolution inclusions in infinite dimensions requires
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certain additional developments most of which happen to be significantly dif-
ferent from the finite-dimensional setting.

6.5.13. Discrete Approximations of Evolution Inclusions. The
main aspects of the theory of differential inclusions of type (6.1) in infinite-
dimensional spaces, called often evolution inclusions, are presented in the
books by Deimling [314] and by Tolstonogov [1258], while much more is avail-
able for differential inclusions in finite dimensions; see, e.g., the books by
Aubin and Cellina [50] and by Filippov [450] with the references therein. We
follow Deimling [314] in Definition 6.1 of solutions to differential/evolution in-
clusions in Banach spaces. Note that it differs from Carathéodory solutions in
finite dimensions (which go back to [222] in the case of differential equations)
by the additional requirement on the validity of the Newton-Leibniz formula
in terms of the Bochner integral; the latter is not automatic for absolutely
continuous mappings with infinite-dimensional values. On the other hand,
there is a precise characterization of Banach spaces, where the fulfillment of
the Newton-Leibniz formula is equivalent to the absolute continuity: these are
spaces with the Radon-Nikodym property (RNP) for which more details are
available in the classical monographs by Bourgin [169] and by Diestel and Uhl
[334]. The latter property is fundamental in functional analysis; in particular,
its validity for the dual space X* is equivalent to the Asplund property of X.
This justifies another line of using the remarkable class of Asplund spaces in
the book.

The principal result of Subsect. 6.1.1, Theorem 6.4, justifies a construc-
tive algorithm to strongly approzimate (in the norm of the Sobolev space
Wt2([a, b]; X) ensuring particularly the a.e. pointwise convergence with re-
spect to velocities) of any given feasible trajectory for the Lipschitzian differ-
ential inclusion (6.1) in arbitrary Banach space X by extended trajectories of
its finite-difference counterparts (6.3) obtained by using the standard Euler
scheme. This result is an infinite-dimensional version of that by Mordukhovich
[915, Theorem 3.1] (with just a little change in the proof) extending his previ-
ous constructions and results from [901, 902] and those from Smirnov’s paper
[1215]; see also [1216]. This theorem, besides its independent interest and nu-
merical value to justify an efficient procedure for approximating the set of
feasible solutions to a general differential inclusion regardless of optimization,
provides the foundation for constructing well-posed discrete approximations
of variational problems for continuous-time evolution systems.

Observe that we don’t impose in Theorem 6.4 any convexity assumptions
on the velocity sets F(x,t) and realize the prozimal algorithm based on the
projection of velocities in (6.10). This distinguishes the velocity approach from
more conventional results on discrete approximations of (convex-graph or
convex-valued) differential inclusions involving projections of state vectors
and ensuring merely the C([a, b]; IR")-norm convergence of trajectories; see,
e.g., Pshenichnyi [1107, 1109] and the survey papers by Dontchev and Lempio
[359] and by Lempio and Veliov [761]. We emphasize that the latter conver-
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gence doesn’t allow us to deal with nonconvex inclusions (since the uniform
convergence of trajectories corresponds to the weak convergence of derivatives
and eventually requires the subsequent convexification by the Mazur weak
closure theorem) and that the achievement of the a.e. pointwise convergence
of derivatives/velocities plays a crucial role in the possibility to establish nec-
essary optimality conditions for nonconvex problems.

Let us mention two recent developments on the convergence of discrete
approximations in direction (i) listed in Subsect. 6.5.12. In [343], Donchev
derived some extensions of the approximation and convergence results from
the afore-mentioned paper [915] to finite-dimensional differential inclusions
whose right-hand side mappings F(x, t) satisfy the so-called Kamke condition
with respect to x, where the standard Lipschitz modulus is replaced by a
Kamke-type function. The latter property happens to be generic (in Baire’s
sense) in the class of all continuous multifunctions F(-, t). The other work is
due to Mordukhovich and Pennanen [941] who established the epi-convergence
of discrete approximations in the generalized Bolza framework under certain
convezity and Lipschitzian assumptions.

6.5.14. Intermediate Local Minima. In Subsect. 6.2.2 we start study-
ing the Bolza problem for constrained differential/evolution inclusions in Ba-
nach spaces following mainly the procedure developed by Mordukhovich [915]
in finite dimensions, with some significant infinite-dimensional changes on
which we comment below. Note that, in contrast to the generalized Bolza
problem in form (6.13) with extended-real-valued functions ¢ and ¢ implic-
itly incorporating endpoint and dynamic constraints, we deal with such con-
straints explicitly, since the continuity and Lipschitzian assumptions imposed
on ¢ and ¥ in the results obtained in Sect. 6.1 ezclude in fact the infinite
values of these functions.

The main attention in our study is paid to the notions of intermediate local
minima of rank p € [0, 00) (i.L.m.; see Definition 6.7) and its relazed version
(r.i.l.m.; see Definition 6.12). Both notions were introduced by Mordukhovich
[915] and were later studied by Ioffe and Rockafellar [616], Ioffe [604], Vinter
and Woodford [1293], Woodford [1331], Vinter and Zheng [1294, 1295, 1289],
Vinter [1289], and Clarke [260, 261] for various dynamic optimization prob-
lems, mostly in the case of p = 1, referred to as W' local minimizers.

Intermediate local minimizers occupy an intermediate position between the
classical weak and strong minimizers for variational problems; that is where
this name came from in [915]. Examples 6.8-6.10 show that these three major
types of local minimizers may be different even in relatively simple prob-
lems of dynamic optimization problems involving particularly convex-valued,
bounded, and Lipschitzian differential inclusions. Example 6.8 on the differ-
ence between weak and strong minimizers is classical going back to Weierstrass
[1326]. The simplified version of Example 6.9 on the difference between weak
and intermediate minimizers was presented in [915], while the full version of
this example as well as of Example 6.10 are taken from Vinter and Woodford
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[1293]. The latter paper and Woodford’s dissertation [1331] contain also other
examples illustrating the difference between these notions of local minima,
particularly the difference between intermediate minimizers of various ranks
for convex and unbounded differential inclusions in finite dimensions.

6.5.15. Relaxation Stability and Hidden Convexity. The remainder
of Subsect. 6.1.2 presents the construction of the relazed Bolza problem for
differential inclusions together with the associated definition and discussions
on relazation stability. The idea of proper relaxation (or extension, generaliza-
tion, regularization) plays a remarkable role in modern variational theory. In
general terms, it goes back to Hilbert [567] stating in his famous 20th Problem
that “every problem in the calculus of variations has a solution provided that
the word solution is suitably understood.”

It was fully realized in the 1930s, independently by Bogolyubov [121] and
by Young [1349, 1350] for one-dimensional problems of the calculus of vari-
ations who showed that adequate extensions of variational problems, which
automatically ensure the existence of generalized optimal solutions and their
approximations by “ordinary curves,” could be achieved by a certain con-
vexification with respect to velocities. In optimal control, this idea was inde-
pendently developed by Gamkrelidze [495] and by Warga [1313]; in the lat-
ter paper the term “relaxation” was first introduced. Another term broadly
used now for similar issues is “Young measures.” We refer the reader to
[3, 4, 25, 31, 50, 75, 212, 213, 231, 232, 235, 237, 246, 255, 308, 362, 401,
432, 450, 497, 527, 617, 618, 682, 704, 821, 823, 863, 886, 888, 901, 915, 1020,
1049, 1082, 1173, 1174, 1176, 1177, 1258, 1259, 1277, 1315, 1323, 1351] and
the bibliographies therein for various relaxation results and their applications
to problems of the calculus of variations, optimal control, and related topics.

In this book we follow the constructions developed in [915] for the Bolza
problem involving finite-dimensional differential inclusions and employ the re-
laxation procedure not to ensure the existence of generalized solutions but to
describe limiting points of optimal solutions to discrete approximation prob-
lems together with the minimizing functional values. To proceed in this way,
the notion of relazation stability formulated in (6.19) plays a crucial role. This
property is typically inherent in continuous-time control systems and differ-
ential inclusions relating to their hidden convexity; see more discussions and
sufficient conditions for relaxation stability presented in Subsect. 6.1.2 and the
references therein. We specifically note the approximation property of Theo-
rem 6.11 taken from the recent paper by De Blasi, Pianigiani and Tolstonogov
[308], which is a manifestation of the hidden convexity in the framework of the
general Bolza problem for infinite-dimensional differential inclusions. Observe
also that, in a deep sense, the hidden convexity may be traced to the classi-
cal Lyapunov theorem on the range convexity of nonatomic vector measures
[822] and to its Aumann’s version [55] on set-valued integration; see Arkin and
Levin [25] and Diestel and Uhl [334] for infinite-dimensional counterparts of
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such results. We also refer the reader to some other remarkable manifestations
of the hidden convexity:

——Estimates of the “duality gap” in nonconvex programming discovered
by Ekeland [398] and then developed by Aubin and Ekeland [51]. These de-
velopments are strongly related to the classical Shapley-Folkman theorem in
mathematical economics; see the book by Ekeland and Temam [401] for more
details and discussions.

——Convexity of the “nonlinear image of a small ball” recently discovered
by Polyak [1098, 1100] who obtained various applications of this phenomenon
to optimization, control, and related areas; see also Bobylev, Emel’yanov and
Korovin [120] for further developments.

6.5.16. Convergence of Discrete Approximations. While the main
attention in Subsect. 6.1.1 was paid to finite-difference approximations of dif-
ferential /evolution inclusions with no optimization involved, the results of
Subsect. 6.1.3 concern approximation issues for the whole variational prob-
lem of Bolza under consideration. This means that we aim to construct well-
posed discrete approximations of the original Bolza problem (P) by sequences
of discrete-time dynamic optimization problems in such a way that opti-
mal solutions for discrete approximations converge, in a certain prescribed
sense, to those for the continuous-time problem. In fact, we present well-
posedness/stability results that justify the convergence of discrete approxima-
tions of the following two types:

(I) Value convergence ensuring the convergence of optimal values of the
cost functionals in constructively built discrete approximation problems to
the optimal value (infimum) of the cost functional in the original problem for
which the existence of optimal solutions is not assumed.

(IT) Strong convergence of optimal solutions for discrete-time problems to
the given optimal solution for the original problem; the strong convergence is
understood in the W2-norm for piecewise linearly extended discrete trajec-
tories.

Observe that the results of type (II) explicitly involve the given optimal so-
lution (actually an intermediate minimizer) to the original problem. They are
not constructive any more (from the numerical viewpoint) while justifying the
way to derive necessary optimality conditions for continuous-time problems
by using their discrete approximations (instead of, say, the method of varia-
tions, which is not applicable in this framework). The convergence results of
type (II) obtained in Subsect. 6.1.3 are of the main interest for deriving neces-
sary optimality conditions in Sect. 6.1 of this book (cf. also Sect. 7.1 for their
counterparts concerning functional-differential control systems); they gener-
ally impose milder assumptions in comparison with those needed to prove the
value convergence in (I).
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Results of type (I) traditionally relate to computational methods in optimal
control; they justify “direct” numerical techniques based on approximations
of continuous-time control problems by sequences of finite-difference ones,
which reduce to problems of mathematical programming in finite dimensions
provided that state vectors in control systems are finite-dimensional. We are
not familiar with any results in this directions for infinite-dimensional differ-
ential inclusions, even in the parameterized control form (6.106), besides those
presented in Subsect. 6.1.3.

First results on value convergence for standard control systems (6.106)
were probably obtained by Budak, Berkovich and Solovieva [184] and Cul-
lum [302] in the late 1960s under rather restrictive assumptions; see also
[185, 303, 407] for earlier developments. Then Mordukhovich [890] established
the equivalence between the wvalue convergence of discrete approximations
and the relaxzation stability for general control problems involving parame-
terized systems (6.106) provided appropriate perturbations of state/endpoint
constraints consistent with the stepsize of discretization. These results were
extended in [899, 901, 902] to Lipschitzian differential inclusions; cf. also re-
lated results in Dontchev [349] and Dontchev and Zolezzi [367]. Efficient es-
timates of convergence rates, not only with respect to cost functions but also
with respect to controls and trajectories, were derived for systems of special
structures by Hager [535], Malanowski [831], Dontchev [347], Dontchev and
Hager [355], Veliov [1284], and others; see the surveys in [352, 359, 761] for
more details and references.

Theorem 6.14 seems to be new even for finite-dimensional differential inclu-
sions developing the corresponding methods and results from Mordukhovich
[890, 899, 901]. Observe that the proof of this theorem and the related
Theorem 6.13 are more technically involved in comparison with the finite-
dimensional case based, besides other things, on the fundamental Dunford
theorem ensuring the sequential weak compactness in L'([a, b]; X) provided
that both spaces X and X* satisfy the Radon-Nikodym property, which is the
case when both X and X* are Asplund. As we remember, the Asplund struc-
ture plays a crucial role in the generalized differentiation theory developed in
this book from the viewpoint not related to the RNP!

Theorem 6.13, which is what we actually need to implement the method of
discrete approximations as a vehicle for deriving necessary optimality condi-
tions for continuous-time systems (i.e., for “theoretical’ vs. numerical applica-
tions) is an infinite-dimensional extension and a modification of Theorem 3.3
from Mordukhovich [915]. The difference between these two results (even in
finite dimensions) concerns the way of approximating the original integral
functional: we now adopt construction (6.20) instead of the simplified one
(6.28) as in [915]. This modification allows us to deal with measurable inte-
grands with respect to ¢ that is important for applications in Sect. 6.2, where
the integrand must be measurable.

Observe the importance of the last term in (6.20) and (6.28) approximat-
ing the derivative of the given intermediate minimizer x(-). The presence of
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this term and the usage of the approximation result from Theorem 6.4 al-
low us to establish the strong (in the norm of W'2([a, b]; X)) convergence of
optimal solutions for the discrete approximation problems to the given local
minimizer for the original one, which further leads to deriving necessary con-
ditions of type (6.123) for continuous-time problems by passing to the limit
from those for their discrete-time counterparts. Besides [915], this approxi-
mating term was previously used by Smirnov [1215] (see also his book [1216])
for the Mayer problem involving convex-valued, bounded, and autonomous
differential inclusions in finite dimensions. The previous attempts to employ
discrete approximations for deriving necessary optimality conditions in the
Mayer framework of convex-valued or even convex-graph differential inclu-
sions were able to ensure merely the uniform convergence of extended discrete
trajectories to x(-) by using an approximating term of the “state type”

S lew(ty) — 5(17)
=0

with no derivative x(-) involved; cf. Halkin [542], Pshenichnyi [1107, 1109],
and Mordukhovich [892, 901, 902].

6.5.17. Necessary Optimality Conditions for Discrete Approxi-
mations. After establishing the required strong convergence/stability of dis-
crete approximations discussed above, the second step in realizing the strategy
of this method to establish necessary optimality conditions for constrained dif-
ferential inclusions is to derive necessary conditions for discrete-time problems
formulated in Subsect. 6.1.3. We consider two forms of the discrete approxi-
mation problems:

—the “integral” form (Py) involving the minimization of the cost func-
tional (6.20) subject to the constraints (6.3), (6.21)—(6.23), and

——the “simplified” form (Py) in which the other cost functional (6.28) is
minimized under the same constraints.

As discussed, the only distinction between the two functionals (6.20) and
(6.28) relates to different ways of approximating the integral functional in the
original continuous-time Bolza problem (P): the integral type of (6.20) allows
us to consider measurable integrands ¥ (x, v, -) in (6.13), while the summa-
tion/simplified type of (6.28) requires the a.e. continuity assumption impos-
ing on ¥ (x, v, ). The reason to consider the latter simplified approximation is
that the summation form in (6.28) makes it possible to obtain necessary op-
timality conditions for discrete-time and then for continuous-time problems
in more general settings of Asplund state spaces X in comparison with the
reflexivity and separability requirements needed in the case of the integral ap-
proximation as in (6.20). This is due to the more developed subdifferential
calculus for finite sums vs. that for integral functionals; see below.



322 6 Optimal Control of Evolution Systems in Banach Spaces

In Subsect. 6.1.4 we derived necessary optimality conditions for discrete-
time dynamic optimization problems (Py) and (Py) as well as for their less
structured counterpart (DP) called the Bolza problem for discrete-time in-
clusions in infinite dimensions. These problems are certainly of independent
interest for discrete systems with fixed steps being important for many appli-
cations, particularly to models of economic dynamics; see, e.g., Dyukalov [379]
and Dzalilov, Ivanov and Rubinov [380]. Furthermore, necessary optimality
conditions for them provide, due to the convergence results of Subsect. 6.1.3,
suboptimality conditions for the continuous-time Bolza problem under con-
sideration. However, our main interest is to derive such necessary optimality
conditions for (Py) and (Py), which are more convenient for passing to the
limit in order to establish necessary optimality conditions for the Bolza prob-
lem involving infinite-dimensional differential inclusions.

The discrete-time dynamic optimization problems under consideration in
Subsect. 6.1.4 can be reduced to the form of constrained mathematical pro-
gramming (M P) given in (6.29). Problems (M P) appeared in this way have
two characteristic features that distinguish them from other classes of con-
strained problems in mathematical programming:

(a) They involve finitely many geometric constraints the number of which
tends to infinity when the stepsize of discrete approximations is decreasing
to zero. It is worth mentioning that these geometric constraints are of the
graphical type, which are generated by the discretized inclusions. The presence
of such constraints makes the (M P) problem (6.29) intrinsically nonsmooth
even for smooth functional data in (6.29) and in the generating problems (Py),
(Py), and (P).

(b) If the original state space X is infinite-dimensional, the (M P) problem
(6.29) unavoidably contains operator constraints of the equality type f(x) =0,
where the range space for f cannot be finite-dimensional. We know that such
constraints are among the most difficult in optimization, even for smooth
mappings f, which is actually the case for applications to the discrete-time
problems under consideration.

The theory of necessary optimality conditions for mathematical program-
ming problems of type (6.29) is available from Chap. 5, where we established
necessary conditions in terms of the basic/limiting generalized differential con-
structions. The main conditions for problems of this type involving extended
Lagrange multipliers are summarized in Proposition 6.16, where finitely many
geometric constraints in (6.29) are incorporated via the intersection rule for
the basic normal cone and the corresponding SNC' calculus result in the frame-
work of Asplund spaces. Employing these optimality conditions for (M P) to-
gether with exact/pointwise calculus rules developed for basic normals and
subgradients, we arrive at necessary optimality conditions for the discrete
Bolza problem (D P) governed by difference inclusions in the extended Euler-
Lagrange form of Theorem 6.17. Note that the latter result doesn’t impose any
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convezity and/or Lipschitzian assumptions on the discrete velocity sets Fj(x).
The conditions obtained in Theorem 6.17 give an Asplund space version of
the finite-dimensional conditions from Mordukhovich [915, Theorem 5.2] un-
der certain SNC requirements needed in infinite dimensions.

The pointbased necessary optimality conditions for the discrete Bolza
problem (D P) obtained in Theorem 6.17 are important for its own sake and,
furthermore, provide a sufficient ground for deriving necessary optimality con-
ditions of the extended Euler-Lagrange type (6.123) for continuous-time prob-
lems in finite dimensions; see [915] for more details. However, it is not precisely
the case in infinite dimensions, where the realization of this scheme requires
extra SNC assumptions ensuring the fulfillment of the pointbased necessary
optimality conditions in discrete approximations and then the passage to the
limit from them as N — oo. These extra assumptions can be avoided by
deriving approzimate/fuzzy necessary conditions for discrete-time problems,
instead of the pointbased ones as in Theorem 6.17. Such approximate opti-
mality conditions are obtained in Theorems 6.19 and 6.20 for the discrete
approximation problems (Py) and (Py), respectively.

The proofs of the afore-mentioned approximate optimality conditions are
rather involved requiring, among other things, the usage of fuzzy calculus
rules as well as neighborhood coderivative characterizations of metric regularity
established by Mordukhovich and Shao [946]. Observe also a significant role of
Lemma 6.18 extending to the case of basic subgradients the classical Leibniz
rule on (sub)differentiation under integral sign. This is an auxiliary result for
the proof of Theorem 6.20 allowing us to deal with summable integrands in (P)
under discrete approximations of type (Py), while the rule itself is certainly
of independent interest. Its proof employs an infinite-dimensional extension
of the Lyapunov-Aumann convexity theorem and the corresponding rule for
Clarke’s subgradients [255, Theorem 2.7.2], which is strongly based in turn on
the generalized version of Leibniz’s rule established by Ioffe and Levin [612]
for subgradients of convex analysis.

6.5.18. Passing to the Limit from Discrete Approximations. In
Subsect. 6.1.5 we accomplish the third step (labeled as (iii) in Subsect. 6.5.12)
in the method of discrete approximations to derive necessary optimality condi-
tions in the original Bolza problem (P) for differential inclusions. The primary
goal at this step is to justify the passage to the limit from the obtained neces-
sary conditions in the well-posed discrete approximation problems (Py) and
(Py) and to describe efficiently the resulting necessary optimality conditions
for the continuous-time problems that come out of this procedure. As we see,
the resulting conditions occur to be those of the extended Euler-Lagrange type
for relaxed intermediate local minimizers in (P) established in Theorems 6.21
and 6.22.

These major results of Subsect. 6.1.5 are somewhat different from each
other, in both aspects of the assumptions made and of formulating the ex-
tended Euler-Lagrange inclusions in (6.44) and (6.47). The differences came
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from the corresponding results of Subsect. 6.1.4 for the two types of discrete
approximation problems, (Py) and (Py), as well as from additional require-
ments needed for passing to the limit in the necessary optimality conditions
for these problems.

Theorem 6.21, based on the limiting procedure from the simplified dis-
crete approximations (Py), is an infinite-dimensional generalization of that
in Mordukhovich [915, Theorem 6.1] with involving the extended normal cone
in (6.44). The usage of the basic normal cone in a similar setting of [915] was
supported by certain technical hypotheses ensuring the normal semicontinuity
formulated in Definition 5.69 and discussed after it. Theorem 6.22 is new even
in finite dimensions.

One of the main concerns in passing to the limit from the discrete-time
necessary optimality conditions in the proofs of both Theorem 6.21 and Theo-
rem 6.22 is to justify appropriate convergences of adjoint trajectories and their
derivatives. To establish the required convergence, we employ a dual coderiva-
tive characterization of Lipschitzian behavior for set-valued mappings used so
often in this book; such criteria play a crucial role in accomplishing limiting
procedures for adjoint systems associated with discrete-time and continuous-
time inclusions in dynamic optimization problems described by Lipschitzian
mappings.

The principal issue that distinguishes the necessary optimality condi-
tions obtained for infinite-dimensional differential inclusions from their finite-
dimensional counterparts is the presence of the SNC (actually strong PSNC)
assumption on the constraint/target set £2 imposed in Theorems 6.21 and
6.22. Assumptions of this type are crucial for optimal control problems for
infinite-dimensional evolution systems. In particular, it is well known that no
analog of the Pontryagin maximum principle holds even for simple optimal
control problems governed by the one-dimensional heat equation with a sin-
gleton target set 2 = {x;} in Hilbert spaces, which is never PSNC in infinite
dimensions. The first example of this type was given by Y. Egorov [393]. The
reader can also consult with the books by Fattorini [432] and by Li and Yong
[789] for more discussions involving the finite codimension property equiva-
lent to the SNC one for convex sets; see Remark 6.25. Let us emphasize to
this end the result of Corollary 6.24 justifying the extended Euler-Lagrange
conditions for the Bolza problem (P) governed by evolution inclusions with
no explicit (while hidden) SNC/PSNC assumptions on the constraint set §2
given by finitely many equalities and inequalities via Lipschitzian functions.

Lastly, we refer the reader to the recent papers by Mordukhovich and D.
Wang [970, 971], where some counterparts of the above results are derived
for optimal control problems governed by semilinear unbounded evolution in-
clusions that are particularly convenient for modeling parabolic PDEs; see
Remark 6.26.

6.5.19. Euler-Lagrange and Maximum Conditions with No Re-
laxation. As seen, the extended Euler-Lagrange conditions established in



6.5 Commentary to Chap. 6 325

Sect. 6.1 by the method of discrete approximations apply to relazed interme-
diate local minimizers for the Bolza problem governed by infinite-dimensional
differential inclusions. The primary goal of Sect. 6.2 is to derive, based on
the conditions obtained in Sect. 6.1 and involving additional variational tech-
niques, refined results of the Euler-Lagrange type accompanied furthermore
by the Weierstrass-Pontryagin maximum condition for nonconvez differential
inclusions without any relazation. The main result, for simplicity formulated
in Theorem 6.27 in the case of the Mayer-type problem (Py) with a fixed
left endpoint and arbitrary geometric constraints imposed on right endpoints
of trajectories, is new in infinite dimensions; its preceding finite-dimensional
versions were discussed in Subsect. 6.5.8.

As in Sect. 6.1, the principal distinction between necessary conditions ob-
tained in finite-dimensional and infinite-dimensional settings relates to the
presence of SNC' requirements unavoidable in infinite dimensions. On the
other hand, the technical assumptions made in Theorem 6.27 are different
from those imposed in Theorems 6.21 and 6.22. Observe also the more gen-
eral forms (6.51) and (6.52) of the transversality conditions in Theorem 6.27
in comparison with the major results of Sect. 6.1 involving only Lipschitzian
cost and constraint functions.

The proof of the pivoting Euler-Lagrange condition (6.49) for intermediate
local minimizers to nonconvex problems with no relazation is based, besides
applying rather delicate calculus and convergence results of variational anal-
ysis, on two perturbation/approzimation procedures allowing us to reduce the
original problem (Py) to the unconstrained (while nonsmooth and nonconvex)
Bolza problem (6.55) with finite-valued data that are Lipschitzian in the state
and velocity variables and measurable in t. Since any intermediate local min-
imizer for the latter problem is automatically a relazed one, it can be treated
by the necessary optimality conditions obtained in Theorem 6.22 via discrete
approximations.

The first of the afore-mentioned perturbation techniques can be recognized
as the method of metric approximations originally developed by Mordukhovich
[887] to prove the maximum principle for finite-dimensional control problems
with smooth dynamics and nonsmooth endpoint constraints by reducing them
to free-endpoint problems. The second perturbation technique, involving the
Ekeland variational principle and penalization of dynamic constraints, goes
back to Clarke [251] in connections with his results on Hamiltonian and maxi-
mum conditions for nonsmooth control systems in finite dimensions. The claim
in the proof of Theorem 6.27 is an infinite-dimensional extension of the corre-
sponding result by Kaskosz and Lojasiewicz [667] established there for strong
minimizers (or boundary trajectories). Note the importance of the generalized
differential results from Subsect. 1.3.3 for the distance function at in-set and
out-of-set points to deal with approximating problems and also a crucial role
of the coderivative criterion for Lipschitzian behavior that allows us to ac-
complish the convergence procedure in deriving the extended Euler-Lagrange
and transversality inclusions of Theorem 6.27.
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The proof of the maximum condition (6.50) supplementing the extended
Euler-Lagrange condition (6.49) in the nonconvex case is outlined but not
fully presented in Subsect. 6.2.1, since it is technically involved while closely
follows the line developed by Vinter and Zheng [1294] (see also Vinter’s book
[1289, Theorem 7.4.1]) for finite-dimensional differential inclusions; the reader
can check all the details. Note that this proof is based on reducing the gen-
eral Mayer problem for differential inclusions to an optimal control problem
with smooth dynamics and nonsmooth endpoint constraints first treated by
Mordukhovich [887] via his nonconvex/limiting normal cone; see Sect. 6.3 for
related control problems and techniques in infinite-dimensional settings. It
seems that the other available proofs of the maximum condition (6.50) in the
Euler-Lagrange framework (6.49) given by Ioffe [598] and by Clarke [261] are
restricted to the case of finite-dimensional state spaces.

6.5.20. Related Topics and Results in Optimal Control of Dif-
ferential Inclusions. The variational methods developed in this book allow
us to obtain extensions and counterparts of Theorem 6.27 in various settings
partly discussed in Subsect. 6.2.2, which particularly include upper subdif-
ferential conditions and multiobjective control problems; cf. also Zhu [1372],
Bellaassali and Jourani [93], and Eisenhart [395] for related developments
in multiobjective dynamic optimization concerning finite-dimensional control
systems. It seems however that necessary optimality conditions of the Hamil-
tonian type as well as results on local controllability for differential inclusions
require the finite dimensionality of state spaces; see more details and discus-
sions in Remarks 6.32 and 6.33.

The examples given at the end of Subsect. 6.2.2 illustrate some charac-
teristic features of the results obtained for differential inclusions and the re-
lationships between them. Example 6.34 confirming that the partial convexi-
fication is essential for the validity of both Euler-Lagrange and Hamiltonian
optimality conditions of the established extended type is due to Shvartsman
(personal communication). Example 6.35 taken from Loewen and Rockafel-
lar [805] shows that the extended Euler-Lagrange condition involving only
the partial convexification is strictly better than the Hamiltonian condition
in Clarke’s fully convexified form even for Lipschitzian control systems with
convex velocities. Finally, Example 6.36 given by Toffe [604] demonstrates that
the partially convexified Hamiltonian condition, which may not be equivalent
to its Euler-Lagrange counterpart, also strictly improves the fully convexified
Hamiltonian formalism in rather general settings.

6.5.21. Primal-Space Approach via the Increment Method. Sec-
tion 6.3 concerns optimal control problems in the more traditional param-
eterized framework (6.61), involving however the infinite-dimensional dy-
namics. Even more, we impose in this section the continuous differentiabil-
ity/smoothness assumption on the velocity function f with respect to the
state variable x. Nevertheless, the results presented in Sect. 6.3 are different
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from those obtained in Sects. 6.1 and 6.2 for dynamic optimization problems
governed by nonsmooth evolution inclusions at least in the following major
aspects:

——there are no additional geometric assumptions of the state space in
question, which is an arbitrary Banach space;

——the objective and (equality and inequality) endpoint constraint func-
tions may not be locally Lipschitzian, even not continuous around the reference
point in the case of those functions describing the objective and inequality con-
straints, while the resulting necessary optimality conditions are obtained in
the conventional PMP form, whenever the functions are Fréchet differentiable
at the point in question, and in its upper subdifferential extension for special
classes of nonsmooth functions.

In contrast to the approximation/perturbation methods employed in
Sects. 6.1 and 6.2, we now rely on the more conventional primal-space ap-
proach that goes back to the classical proof of the Pontryagin maximum prin-
ciple [124, 1102] with subsequent significant developments in the route paved
by Rozonoér [1180] for finite-dimensional control systems. There are two ma-
jor ingredients of the employed primal-space techniques, the traces of which
could be found in McShane’s paper [860] on the calculus of variations: the
usage of needle variations and the employment of convex separation. Both of
these ingredients were crucial in the original proof of the maximum princi-
ple [124, 1102], while their clarifications and important modifications came
later starting—in different directions—with the papers by Rozonoér [1180]
and Dubovitskii and Milyutin [369, 370]; see also other references and discus-
sions in Subsects. 1.4.1 and 6.5.1.

In the proof of the maximum principle formulated in Theorem 6.37 we
mainly follow the line initiated in the three-part paper by Rozonoér [1180],
who was probably the first to fully recognize a major variational role of the
free-endpoint “terminal control” (i.e., Mayer) problem in the maximum prin-
ciple and to develop the so-called increment method in proving the PMP for
problems of this type employing needle variations. Endpoint constraints were
then treated as in finite-dimensional nonlinear programming by using con-
vex separation techniques related to the so-called image space analysis; cf.
Plotnikov [1083], Gabasov and Kirillova [485], and the recent book by Gian-
nessi [504]. A delicate derivation of the transversality conditions for control
problems with equality endpoint constraints given by merely differentiable
functions was developed by Halkin [545] based on the Brouwer fixed-point
theorem.

The upper subdifferential conditions of the PMP obtained in Theorem 6.38
seems to be new even for finite-dimensional control systems. The closest con-
ditions were derived in the recent book by Cannarsa and Sinestrari [217, Theo-
rem 7.3.1] for free-endpoint control problems in finite dimensions under more
restrictive assumptions, while somewhat related results were established by
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Mordukhovich and Shvartsman [955, 956] for discrete-time systems and dis-
crete approximations; see Section 6.4. Note that Fréchet upper subgradients
(or “supergradients”) of the wvalue function were used in optimal control for
synthesis problems via Hamilton-Jacobi equations; see, e.g., Subbotina [1231],
Zhou [1366], Cannarsa and Frankowska [216], Cannarsa and Sinestrari [217],
Frankowska [472], and their references.

6.5.22. Multineedle Variations and Convex Separation in Image
Spaces. In the proof of Theorem 6.37 given in Subsects. 6.3.2—6.3.4 we mainly
develop the scheme implemented by Gabasov and Kirillova [485] for finite-
dimensional control systems under substantially more restrictive assumptions.
As mentioned, the basic idea of the proof for the free-endpoint problem in Sub-
sect. 6.3.2 goes back to Rozonoér [1180], while needle variations of measurable
controls via the increment formula are treated as in Mordukhovich [887, 901].
The reader can find more recent developments on needle variations including
their usage for higher-order necessary optimality conditions in the publica-
tions by Agrachev and Sachkov [2], Bianchini and Kawski [114], Krener [703],
Ledzewicz and Schéttler [756], Sussmann [1236, 1238], and in the references
therein.

The proof of Theorem 6.37 in the presence of endpoint constraints is signif-
icantly more involved in comparison with that for the free-endpoint problem.
Now it requires taking into account the geometry of reachable sets for dynamic
control systems. The usage of multineedle variations occurs to be crucial in
the constraint framework. It allows us to construct a convex tangential ap-
proximation of the reachable set in the image space, the dimension of which
is equal to the number of endpoint constraints plus one of the cost function.
Thus, although the control problem under consideration involves the infinite-
dimensional dynamics/state space, the proof of the maximum principle relies
on the finite-dimensional convex separation.

Observe that no SNC-type property is involved in Sect. 6.3 to obtain the
required pointbased results as in the general settings of Sects. 6.1 and 6.2. In
fact, the latter is in accordance with the results obtained in the preceding
sections, where we observed that the SNC property of the constraint/target
set was actually automatic in the case of finitely many endpoint constraints.
This phenomenon relates to the finite codimension property of the constraint
set, which readily yields the sequential normal compactness unavoidable in
infinite dimensions. Note also that, as one can see from the proofs in Sub-
sects. 6.3.3 and 6.3.4, the convexity of the underlying approximation set in
the image space was reached due to the continuity of the time interval; this is
yet another manifestation of the hidden convexity inherent in continuous-time
control systems.

6.5.23. The Discrete Maximum Principle. Section 6.4 again con-
cerns optimal control problems with discrete time as well as discrete approxi-
mations of continuous-time systems. However, now our agenda is completely
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different from that in Sect. 6.1, where discrete approximations were mostly
used as the driving force to derive necessary optimality conditions for dif-
ferential inclusions, although the results obtained therein for discrete inclu-
sions are certainly of independent interest. Recall that in Subsect. 6.1.4 we
established necessary optimality conditions of the Euler-Lagrange type for gen-
eral (nonconvex and non-Lipschitzian) discrete inclusions by reducing them
to nonsmooth mathematical programming with many geometric constraints.
When the “discrete velocity” sets F;(x) are convez, the results obtained au-
tomatically imply the mazimum-type conditions by the extremal property of
coderivatives for convex-valued mappings from Theorem 1.34, which is actu-
ally due to the extremal form of the normal cone to convex sets. It is clear
from the general viewpoint of nonsmooth analysis that a certain convezxity
is undoubtedly needed for such extremal-type representations. On the other
hand, the Pontryagin maximum principle and its nonsmooth extensions hold
for continuous-time control systems with no explicit convexity assumptions.
As seen from the results and discussions of Sects. 6.1-6.3, this is due to the
hidden convezity strongly inherent in the continuous-time dynamics.

Considering optimal control problems for discrete systems with fized step-
sizes, we don’t have grounds to expect such maximum-type results in the
absence of some convexity. Nevertheless, the exact analog of the Pontrya-
gin maximum principle for discrete control problems was first obtained by
Rozonoér [1180], under the name of the discrete mazimum principle, for min-
imizing a linear function of the right endpoint x(K) without any constraints
on x(K) over the discrete-time system

x(t+1)=Ax(t) + b(u(t),1), x(0)=xo,
(6.130)
u(t)eU, t=0,....,K-1,

with no convexity assumptions imposed. The proof of this result was based on
the increment formula over needle variations of the reference optimal control at
one point ¢t = 0, similarly to the continuous-time case but without involving
of course a (nonexistent) interval of “small length.” The latter result and
its proof given by Rozonoér heavily depended on the specific structure of
system (6.130) while probably creating a false impression that the discrete
maximum principle might be valid for general nonlinear systems, at least for
free-endpoint problems. Note that doubts about such a possibility were clearly
expressed in [1180].

A number of papers, mostly in the Western literature, and the book by
Fan and Wang [426] were published with incorrect proofs “justifying” that of
the discrete maximum principle was necessary for optimality. The first explicit
(rather involved) example on violating the discrete maximum principle was
given by Butkovsky [208]. Many other examples in this direction, much simpler
than the one from [208], can be found in the book by Gabasov and Kirillova
[486]; see also the references therein.



330 6 Optimal Control of Evolution Systems in Banach Spaces

Example 6.46 is taken from Mordukhovich [901]. Note that it describes a
class of discrete control systems, where the global minimum (instead of max-
imum) condition holds under certain relationships between the initial data.
Other examples from [901] show that the discrete maximum principle can
be violated even for systems of type (6.130), linear in both state and con-
trol variables, with a nonlinear minimizing function and a nonconvex control
set U. In this way we get counterexamples to the conjecture by Gabasov and
Kirillova [486, Commentary to Chap. 5] (repeated later by several authors)
on the relationship between the wvalidity of the discrete mazimum principle
in discrete-time systems with sufficiently small stepsizes and the ezistence
of optimal solutions for continuous-time systems. More striking counterex-
amples in this direction, showing that the existence of optimal controls in
continuous-time systems doesn’t imply the fulfillment of even an approximate
analog of the maximum principle for discrete approximations, are given in
Subsects. 6.4.3 and 6.4.4.

The first correct result on the validity of the discrete maximum principle
for nonlinear control systems of the type

x(t+1) = f(x(r),u(r), ), x(0)=x,
(6.131)
u(t)eU, r=0,...,K—-1,

was probably due to Halkin [540] who established it under the convexity of the
admissible “velocity sets” f(x, U, t); see also the books by Cannon, Cullum
and Polak [218], Boltyanskii [127], and Propoi [1105] for further results and
discussions in this direction. On the other hand, Gabasov and Kirillova [486]
and Mordukhovich [901] singled out special classes of nonlinear free-endpoint
control problems for which the discrete maximum principle holds with no
convexity assumptions. Furthermore, Mordukhovich’s book [901] contains the
so-called individual conditions for the fulfillment of the discrete maximum
principle that allow us to describe relationships between the initial data of
nonconvex systems ensuring either validity or violation of the discrete maxi-
mum principle. In particular, these conditions comprehensively treat the sit-
uation in Example 6.46: the discrete maximum principle holds therein if and
only if y <0 and n > 0.

6.5.24. Necessary Conditions for Free-Endpoint Discrete Para-
metric Systems. The previous discussions clearly illustrate the gap be-
tween the Pontryagin maximum principle for continuous-time systems and
its discrete-time counterpart in the classical framework of optimal control,
even for free-endpoint problems. Besides the striking theoretical value of this
phenomenon, it may have a serious numerical impact signifying a possible in-
stability of the PMP under computing, which inevitably requires the time dis-
cretization. Observe however that computer calculations deal not with fixed-
step discrete systems of type (6.131) but with parametric discrete approzima-
tion systems of the type
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x(t+h)=x(t)+hf(x(r),u(t),t) as h 10, (6.132)

where the stepsize h is a discretization parameter. Thus it is natural to con-
sider necessary optimality conditions for control problems involving paramet-
ric systems (6.132) that themselves depend on the parameter h.

The first result in this direction was obtained by Gabasov and Kirillova
[484, 486] who derived, under the name of “quasimaximum principle,” neces-
sary optimality conditions for free-endpoint parametric control problems gov-
erned by general discrete-time systems of the type

x(t+1) = f(x(t),u(t),t,h), xe€R", heR",

imposing rather standard smoothness while no converity assumptions. Their
result asserts, for any given ¢ > 0, the fulfillment of a certain e-mazimum
condition over a part of the control region that depends on & and h. Being
specified to the discrete approximation systems (6.132), the e-maximum con-
dition is as close to the one in the Pontryagin maximum principle as smaller
& and h are. Similar results were subsequently derived for discrete approxi-
mations of nonconvex free-endpoint control problems in the books by Moi-
seev [884, 885] and by Ermoliev, Gulenko and Tzarenko [407]; see the afore-
mentioned books and also those by Propoi [1105] and Evtushenko [412] for
various discussions and applications of such results to numerical methods in
optimal control for continuous-time and discrete-time systems.

The proof of the quasimaximum principle and the related results for free-
endpoint problems of discrete approximation given in [484, 486, 884, 885, 407]
were similar to each other being, in fact, similar to Rozonoér’s proof of the
PMP for continuous-time systems with no constraints on trajectories; com-
pare, e.g., the proof of Theorem 6.37 in the unconstrained case of Subsect. 6.3.2
with the one for Theorem 6.50 in the smooth unconstrained case of Sub-
sect. 6.4.3. All these proofs strongly exploited the unconstrained nature of the
control problems under consideration involving cost increment formulas on
single needle variations of optimal controls. The only difference between the
continuous-time and finite-difference cases concerned the usage of a small dis-
cretization stepsize in the parametric family of discrete-time problems instead
of a small length of needle variations in continuous-time systems. These proofs
didn’t provide any hint of the possibility to obtain an appropriate counter-
part of the PMP for discrete approximations of optimal control problems with
endpoint constraints, where some finite-difference counterpart of the hidden
converity and the geometry of reachable sets must play a crucial role.

6.5.25. The Approximate Maximum Principle for Constrained
Discrete Approximations. Necessary optimality conditions in the form of
the approzimate mazimum principle (AMP) for optimal control problems of
discrete approximation (6.132) with smooth dynamics and smooth endpoint
constraints were first announced by Mordukhovich in [891] and then were de-
veloped in the subsequent publications [942, 899, 900, 901, 903]. The final
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version for smooth control problems presented in Theorem 6.59 was estab-
lished in [901, 903]; see also [906]. The proof of this major theorem given in
Subsect. 6.4.5 goes along the primal-space direction, being however signifi-
cantly different in crucial aspects from its continuous-time counterpart con-
sidered in Subsects. 6.3.3 and 6.3.4. There are three key assumptions under
which we justify the AMP in Theorem 6.59:

——the consistence of perturbations of the equality constraints;
——the properness of the sequence of optimal controls;

——the smoothness of the initial data with respect to the state variables.

Each of these assumptions occurs to be essential for the validity of the
AMP in discrete approximations of nonconvex constrained problems as demon-
strated by counterexamples of Subsect. 6.4.4.

The crucial role of consistent perturbations of endpoint constraints for
achieving the stability of discrete approximations, from both viewpoints of
the value convergence and the validity of the AMP, has been realized by Mor-
dukhovich since the very beginning of his study; see [890, 891]. Example 6.61
showing that the AMP may be violated if the endpoint equality constraints
are not appropriately perturbed (must decrease slower than the discretization
stepsize) is taken from Mordukhovich and Raketskii [942]; see also [901, 903].

Example 6.60, which is taken from Mordukhovich and Shvartsman [956],
demonstrates the significance of the properness property along the reference
optimal control sequence for the validity of the AMP in constrained noncon-
vex problems. This property is specific for discrete approximations, although
it may be viewed as some analog of the piecewise continuity, or generally
Lebesgue points of measurable controls, that are not of any restriction for
continuous-time systems. Note that we don’t need to impose the properness
assumption to ensure the AMP in free-endpoint problems; see Theorem 6.50
and its proof.

6.5.26. Nonsmooth Versions of the Approximate Maximum Prin-
ciple. One of the most striking features of the approximate maximum prin-
ciple is its sensitivity to nonsmoothness. This is probably the only result on
optimality conditions and related topics of variational analysis we are famil-
iar with that doesn’t have any conventional lower subdifferential (regarding
minimization) extension to nonsmooth (even convez) settings. This is demon-
strated by examples from the paper of Mordukhovich and Shvartsman [956]
presented in Subsect. 6.4.3 for free-endpoint control problems.

On the other hand, the afore-mentioned paper [956] justifies a new form of
the approximate maximum principle involving upper subdifferential transver-
sality conditions for free-endpoint problems with nonsmooth cost functions
(Theorem 6.50) and for constrained problems whose inequality-type endpoint
constraints are described by nonsmooth functions (Theorem 6.66). The re-
sults obtained in this direction apply to a special class of nonsmooth functions
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called uniformly upper subdifferentiable in [956]. This class contains, besides
smooth and concave functions, also semiconcave functions (see Subsect. 5.5.4)
being actually closely connected with a localized version of “weakly concave”
functions in the sense of Nurminskii [1017] who efficiently used them in nu-
merical optimization. Theorem 6.49 seems to be new in reflexive spaces; some
of its conclusions and related properties were established in [956, 1017] with
different proofs in finite dimensions.

Theorem 6.50 on the AMP for free-endpoint problems gives an infinite-
dimensional extension of the upper subdifferential result from Mordukhovich
and Shvartsman [956], which smooth version [901] is actually equivalent to the
“quasimaximum principle” by Gabasov and Kirillova [484, 486] established
under somewhat more restrictive assumptions.

Observe that the free-endpoint version of the AMP in Theorem 6.50
doesn’t fully follow from the constrained versions of Subsect. 6.4.4 in both
smooth and nonsmooth settings. Besides the infinite dimensionality and the
absence of the properness property for free-endpoint problems, there are er-
ror estimates of the rate e(t, hy) = O(hy) for the maximum condition (6.85)
in Corollaries 6.52 and 6.53 valid for smooth and concave cost functions in
arbitrary Banach spaces.

6.5.27. Applications of the Approximate Maximum Principle. At
the end of Subsect. 6.4.5 we present two typical applications of the approx-
imate maximum principle. The first one, described in Remark 6.67, follows
the route from the paper by Gabasov, Kirillova and Mordukhovich [488] to
derive suboptimality conditions for continuous-time systems by using the value
convergence and necessary optimality conditions for discrete approximations.

Secondly, we consider a more practical application of using the approximate
maximum principle to solve optimal control problems governed by discrete-
time systems with sufficiently small stepsizes. Example 6.68 taken from Mor-
dukhovich [901] concerns a (simplified) practical problem of chemical engi-
neering described in the book by Fan and Wang [426]. The discrete maximum
principle cannot be applied to find optimal solutions to this constrained non-
convex problem, although the authors of [426] mistakenly did it throughout
their book and related papers. On the other hand, the application of the
approximate maximum principle justified in Theorem 6.59 allows us to find
optimal controls.

Other applications of the AMP for constrained discrete approximation
problems were developed by Nitka-Styczen [1013, 1014, 1015] who consid-
ered the framework of optimal periodic control involving equality endpoint
constraints. Based on the AMP machinery, she designed efficient numerical
methods of solving such problems and applied them to practical problems
arising in optimization of chemical, biotechnological, and ecological processes.
Some of the models considered in [1015] are described by hereditary/delay
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control systems that require certain modifications of the formulation of the
AMP given in [1015] and in Subsect. 6.4.6 of this book.

6.5.28. The Approximate Maximum Principle in Systems with
Delays. The results presented in Subsect. 6.4.6 are taken from the paper
by Mordukhovich and Shvartsman [956], with their direct extension to delay
systems in infinite-dimensional spaces. Considering for simplicity only free-
endpoint problems, we derive the AMP with upper subdifferential transversal-
ity conditions for nonlinear systems with time-delays in state variables. The
proof of this result for delay systems is based on their reduction, following the
approach by Warga [1315], to ordinary discrete-time systems with possible
incommensurability between the length of the underlying time interval b — a
and the discretization stepsize hy.

The final Example 6.70 of Subsect. 6.4.6 draws the reader’s attention to
a very interesting class of hereditary systems, called functional-differential
systems of neutral type, that are significantly different from ordinary control
systems and their extensions systems with delays only in state variables. Such
systems, admitting time-delays in velocity variables, are considered in more
details in Sect. 7.1; see also Commentary to Chap. 7. Example 6.70, which is
a finite-difference adaptation of the continuous-time example from the book
by Gabasov and Kirillova [485, Section 3.6], shows that there is no natural
analog of the AMP held for smooth free-endpoint control problems governed
by finite-difference systems of neutral type.



2 Springer
http://www.springer.com/978-3-540-25438-6

Variational Analysis and Generalized Differentiation |l
Applications

Mordukhovich, B.S.

20086, XXIl, 610 p., Hardcowver

ISBN: @78-3-540-25438-6



	6 Optimal Control of Evolution Systems in Banach Spaces
	6.1 Optimal Control of Discrete-Time and Continuous-time Evolution Inclusions
	6.1.1 Differential Inclusions and Their Discrete Approximations
	6.1.2 Bolza Problem for Differential Inclusionsand Relaxation Stability
	6.1.3 Well-Posed Discrete Approximationsof the Bolza Problem
	6.1.4 Necessary Optimality Conditions for Discrete-Time Inclusions
	6.1.5 Euler-Lagrange Conditions for Relaxed Minimizers

	6.2 Necessary Optimality Conditions for Differential Inclusions without Relaxation
	6.2.1 Euler-Lagrange and Maximum Conditionsfor Intermediate Local Minimizers
	6.2.2 Discussion and Examples

	6.3 Maximum Principle for Continuous-Time Systemswith Smooth Dynamics
	6.3.1 Formulation and Discussion of Main Results
	6.3.2 Maximum Principle for Free-Endpoint Problems
	6.3.3 Transversality Conditions for Problems with Inequality Constraints
	6.3.4 Transversality Conditions for Problems with Equality Constraints

	6.4 Approximate Maximum Principle in Optimal Control
	6.4.1 Exact and Approximate Maximum Principlesfor Discrete-Time Control Systems
	6.4.2 Uniformly Upper Subdifferentiable Functions
	6.4.3 Approximate Maximum Principlefor Free-Endpoint Control Systems
	6.4.4 Approximate Maximum Principle under Endpoint Constraints: Positive and Negative Statements
	6.4.5 Approximate Maximum Principle under Endpoint Constraints: Proofs and Applications
	6.4.6 Control Systems with Delays and of Neutral Type

	6.5 Commentary to Chap. 6


