1

Introduction

The prerequisites for studying this chapter are that you have academic
training in programming, that is, in algorithms and data structures, say
using two or more of the Standard ML, Java and Prolog programming
languages.

The aims are to set the stage for the entire set of volumes, to introduce
the “triptych” concept of domain engineering, requirements engineering
and software design, to emphasize the importance of documentation and
of descriptions, to preview the concepts of formal techniques, methods
and methodology, and to introduce the concepts of syntax, semantics and
pragmatics.

The objective is to guide you in the direction of what we think are to be
the important aspects of software engineering; that is, to set, with respect
to the aims and objectives of this book, your “spinal chord” to as close as
possible a “state” as that of their author.

The treatment is informal and discursive.

This chapter has been written so as to be read, if not in excruciating detail,
then at least such that the reader is hopefully “tuned” to somewhere near
the “wavelength” of the author of this chapter. The present chapter may
thus be read in between the study of most subsequent chapters.

1.1 Setting the Stage

Characterisation. Engineering is the mathematics, the profession, the dis-
cipline, the craft and the art of turning scientific insight and human needs
into technological products. .

The sciences of software engineering are those of computers and computing.

4 1 Introduction

Characterisation. Computer science is the study and knowledge of what
kind of “things” may (or can) exist “inside” computers, that is, data (i.e.,
values and their types) and processes, and hence their functions, events and
communication. .

Characterisation. Computing science is the study and knowledge of how
to construct those “things”. .

These volumes will provide material for teaching you some of the core as-
pects of the mathematics, the profession, the discipline, the craft and the art
of software engineering. The engineer walks the bridge between science and
technology, creating technology from scientific results, and analysing technol-
ogy to ascertain whether it possesses scientific values. These volumes will teach
you some of the science of computing, exemplify current software technologies,
and help you to become a professional engineer “walking that bridge”!

Students of these volumes are not expected to have any acquaintance with
the disciplines in the following list of computer science topics: automata, for-
mal languages and computability [296,319], programming language semantics
[183,252,443,454,497,521], type theory [1,241,407], complexity theory [319],
cryptography [363], and others as covered in, for example, [344]. The topics of
the above list, other than the first, will either be introduced in these volumes
or can be studied after having studied the present text.

Students of these volumes are expected to possess some fluency in the
following computing science topics: functional programming [261], logic pro-
gramming [295,351], imperative programming [20,243,290], parallel program-
ming [449], and algorithms and data structures [7,161,326-328].

The keywords art [326-328], discipline [194], craft [441], science [245],
logic [275], and practice [276], are also prefix terms of the titles of semi-
nal textbooks on programming, as referenced. In a sense these references also
serve to indicate our basic approach to programming. But software engineer-
ing goes beyond what has been implied by the above listings of computer and
computing science topics. Software engineering goes beyond the algorithm
and data structure, cum programming language skills. These computer and
computing science skills can and must first be reasonably mastered by the
individual, by the professional, academically educated and trained program-
mer. Software engineering is as much about making groups of two or more
programmers work productively together.! And software engineering is about
producing software which can be further deployed in the development of larger
computing systems by other developers.

To fulfill these latter aspirations, software engineering must augment the
knowledge of computer and computing sciences with such disciplines as project
and product management. By project management we colloquially mean: How
do project leaders plan (schedule and allocate) development resources, how

"However, the principles, techniques and tools covered by these volumes are also
required to be used even by the “lone” programmer developing her “own” software.

1.1 Setting the Stage 5

do they monitor and control “progress”, and so on? By product management
we colloquially mean: How does a software house determine a, or its, product
strategy and tactics, that is, which projects to undertake, which products to
market, how to price, service and extend them, and so on?

We detail a number of project management issues: (1) choice and planning
of development process, (2) scheduling and allocation of resources, (3) mon-
itoring and control of work progress, (4) monitoring and control of quality:
assurance and assessment, (5) version control and configuration management,
(6) legacy systems, (7) cost estimation, (8) legal issues, etc. There are other
issues, but listing just these shows, up here, early in these volumes, the large
variety of development concerns.

(1) Process (choice and) modelling is a project management issue. How
do the engineers proceed, what does one do first, then after that, etc.? There
is not just one right way of doing things, of proceeding in phases, stages and
steps, rather there are many eligible process models. First, the development
process is determined by the problem frame; second, by the novelty of the
problem; third, by the experience of the programmers and of management;
and so forth.

(2) Planning, scheduling and allocation of resources is another project
management issue. In planning we decide on which things to do. In scheduling
we decide on when to do these things, and in allocation we decide on which
resources (monies, people, machines, etc.) to deploy.

(3) Monitoring and control of work progress extends the list of project
management concerns. Once the project proper starts, after planning, one
needs to regularly and continuously check what has been achieved. And, if
what has been achieved is according to plan, then just continue. But if plans
are not being followed, then control must be asserted by possibly changing
the plan, rescheduling and/or reallocating development resources.

(4) Monitoring and control of quality assurance and assessment further
extends our project management concern list. The web of application do-
main knowledge that goes into a software product, the maze of hundreds of
mostly unrelated requirements that are expected fulfilled from the software
product and the “Babylonic towers” of software design techniques and tools
(languages, etc.) all necessitate careful formulations of what is meant by prod-
uct quality, as well as close scrutiny of the development process, in order to
ascertain whether quality objectives are at risk or are being met.

(5) Version control & configuration management: In the development of
software the programmers usually construct several versions, or “generations”,
of code. One must monitor and control these generations and versions. This
is called version control. It can be a sizable undertaking when, as is often the
case, there exist hundreds, if not up towards thousands, of such alternative
and complementary versions. Some of these versions may enter into one re-
lease of a product, while other subsets of versions enter into other releases
of related products. Combining such versions into software products is called
configuration management.

6 1 Introduction

(6) Legacy systems: At any time customers (users, acquirers, buyers) of
software operate computing systems composed from often “age-old” parts,
and these have to be maintained: adapted to new hardware and to new soft-
ware, perfected to offer relevant performance, and corrected (by removing
“bugs”). All three maintenance aspects become increasingly problematic as
the original software is either programmed in languages for which there are
no longer adequate, let alone “recent” compilers and related support tools,
or is documented in a style basically unfamiliar to new generations of pro-
grammers, or not documented at all. This kind of software and these kinds of
problems constitute the concept of legacy software.

(7) Cost estimation: Two issues of cost estimation may be relevant: es-
timating the cost of developing new (or maintaining old) software, and es-
timating competitive, profitable prices for software. The problem of cost es-
timation is intertwined with the problems of software development process
models, project and product management, quality assurance, version control
and configuration management, legacy systems, etc.

(8) Legal issues related to software: There are many legal issues related to
software. There are software patents, which establish intellectual, and prop-
erty rights. There is software curriculum accreditation, that is, the approval of
a university or college curriculum in software engineering. And there is soft-
ware house accreditation: the approval (usually, typically by, or through some
ISO-related agency), generally, of a software house as a trustworthy developer
of software. There is software engineer certification: the approval (usually by
some national engineering society) of a person being a bona fide professional.
Finally there is software product certification: the approval (usually by some
international agency, such as Lloyd's Register of Shipping, Bureaux Veritas, Nor-
wegian Veritas, TUV, or others) of a specific software product to meet certain
standards of quality.

Software engineering is anchored in programming: (1) in the design of software,
(2) before that in constructing the software requirements, (3) and before that
in understanding the application domain.

These volumes spend most of their pages on the development aspects of
software engineering: on principles and techniques for developing proper ap-
plication domain understandings, on principles and techniques for developing
proper software requirements and on principles and techniques for developing
proper software designs. These volumes unfold these principles and techniques
based on the tools of both informal and formal languages for describing do-
mains, prescribing requirements and specifying (designing) software.

1.2 A Software Engineering Triptych 7

1.2 A Software Engineering Triptych

It is a definite new contribution of Vol. 3 that it focuses, in a “special way”, on
the triptych? of domain engineering, requirements engineering and software
design. That way emphasises that domain engineering, “ideally and logically
speaking”, precedes requirements engineering, which (and there is nothing
new in this), ideally and logically speaking, precedes software design. The
new contribution is the central role given to domain engineering.

1.2.1 Software Versus Systems Development

Although these volumes are primarily about the engineering of software, we
cannot avoid getting involved, to a nontrivial degree, in the more general
engineering of computing systems.

Characterisation. By a computing system we mean a combination of hard-
ware and software that together implement some requirements. .

Typically a computing system is distributed, over local areas as well as glob-
ally, and thus very typically requires extensive data communication hardware
and software. When, in the following, we say ‘software’ or ‘system’ we can
usually substitute the more general term ‘computing system’.

1.2.2 Motivating the Triptych

We motivate the roles of the three triptych constituents as follows: Before we
can (3) design software we must understand the (2) requirements put to this
software. And before we can prescribe the (2) requirements we must under-
stand the application (1) domain. What is discussed, again and again in these
volumes, is how we interpret the “ideal and logical” precedences mentioned
above. But first we will take a look at the three triptych components, or,
as we shall also refer to them in these volumes, the three phases of software
development.

1.2.3 Domain Engineering

Characterisation. By domain engineering we mean the engineering of do-
main descriptions. .

2Triptych: (i) From Greek ‘“triptychos’, having three folds, (ii) an ancient Roman
writing tablet with three waxed leaves hinged together, (iii) a picture (as an altar-
piece) or carving in three panels side by side, (iv) something composed or presented
in three parts or sections. Same as trilogy.

8 1 Introduction

Characterisation. By a domain we mean (i) an area of human activity, (ii)
and/or an area of semi- or fully mechanised activity, (iii) and/or an area of
nature that can be described, and parts or all of which that can potentially
be subject to partial or total computerisation. .

Example 1.1 Three Domains: Examples of (respective) domains, related to
the above enumeration (i-iii), are: (i) book-keeping; (ii) the sending of freight
from a harbour of origin, on ships via other harbours, to a destination harbour;
and (iii) the planetary movements, i.e., celestial mechanics [494]. .

We understand a domain when we can describe it in an objective way.

Characterisation. By a domain description we mean an indicatively ex-
pressed description of the properties of the following domain facets: the in-
trinsics (the basic, invariant, and core), the enterprise (business, institution)
processes, the technology supports, the management and organisation, the
rules and regulation, the human behaviour, and possibly of other facets of the
domain. .

Domain descriptions explain the domain as it is. No reference can be made
to any requirements to desired software — that comes later! Furthermore, no
reference can be made to the desired software — that also comes later! So,
a domain description really has nothing to do with information technology
(IT) or software — other than what is already installed and deployed in the
domain, and then only if reference to such existing IT and software is deemed
relevant.

Example 1.2 A Logistics Domain: We are not describing the example do-
main, only informing about it, but in almost descriptional terms: A logistics
domain consists (a) of senders and receivers of freight; (b) of logistics firms
which arrange for senders and receivers to send or, respectively, receive freight;
(c) of hubs (like harbours, railway stations, truck terminals and airport air
cargo centres) where freight may be loaded onto or, respectively, unloaded
from conveyors; (d) of conveyors (such as ships, freight trains, trucks, respec-
tively air planes) that are owned and/or operated by transport companies;
(e) of transport companies (like cargo liners, railway operators, trucking com-
panies, airlines); and (f) of the networks of transport routes (shipping lanes,
railway lines, highways or, respectively, air corridors).

Some further descriptions can be hinted at: A conveyor path® is a con-
nection between two hubs. A conveyor route is a sequence of one or more
connected paths. Some hubs are of two or more kinds, viz., harbours and
railway stations, air cargo centres and truck terminals, etc. Conveyors travel
their routes according to fixed time tables. A conveyor fee table prescribes
costs of transporting freight, per cubic meter, between hubs. This example is

1.2 A Software Engineering Triptych 9

continued in Example 1.3. Notice that there were no references to either re-
quirements or to possibly desired software (i.e., computing system), let alone
to such a system. o

A domain description, to repeat, describes the domain as it is. Chapter 5 of
Vol. 3 covers principles, techniques and tools for describing any universe of
discourse, whether domain, requirements or software. Part IV (Chaps. 8-16)
of Vol. 3 covers principles, techniques and tools for proper domain description.
Domain knowledge need be acquired, that is, elicited from those who work in
and are affected by the domain.

1.2.4 Requirements Engineering

Characterisation. By requirements engineering we mean the engineering of
requirements prescriptions. -

Requirements arise as a natural consequence of a contractual relation between
a client who procures (who is to acquire) some desired software (i.e., software
to be delivered), and the deliverer or the developer of that software. By re-
quirements we mean a list of one or more putatively expressed statements as
to which properties are expected from the software to be developed. Require-
ments must be acquired, that is, elicited from those who may be affected by
the eventually acquired software.

Example 1.3 Some Logistics Requirements: This example continues Exam-
ple 1.2. We do not exemplify a proper requirements prescription, we just hint
at what it might deal with. A logistics system needs software support for (at
least) the following kinds of activities:

First we exemplify some domain requirements. These are requirements
that solely pertain to the domain, and whose professional terms are domain
terms. Examples are: Software support for handling inquiries, from potential
senders, with logistics firms, as to possible routing of freight, schedules and
costs; software support for handling requests, from actual senders, to logistics
firms, for the dispatch of freight, and hence the issuance of bills of lading
(waybills) and the handling (passing on) of freight to be sent; software support
for logistics firms tracing the whereabouts of freight at hubs or with the owner
transport companies of scheduled conveyors; software support for the hub
management of conveyors in and out of hubs, the unloading and loading of
conveyors, and the receipt of freight from, and delivery of freight to logistics
firms.

Then we exemplify some machine requirements. These are require-
ments that primarily pertain to the machine to be built, that is: the soft-
ware+hardware of the desired computing system, in other words, whose pro-
fessional terms additionally include information technology terms in general.

3Examples of paths: Sea lanes, rail lines, roads, and air corridors.

10 1 Introduction

Examples are: The computing system shall have a mean time between failures
of two years; when the system is “down” it must at most be so for two hours,
and so on.

Finally, we exemplify some interface requirements. These are requirements
that pertain both to the domain and to the machine to be built, to the interface
between the machine and the domain, human users of the domain as well as
(other) natural phenomena and man-made equipment of the domain. Interface
requirements are about the phenomena that are shared between the domain
and the machine. Examples are: senders and receivers shall be able to ascertain
the transport status of their own freight from their own, home PCs based on
standard Internet browsers; the computing system shall display, for logistics
firms, the route networks in some “zoom-able” manners, and so on.

This example is continued in Example 1.4. =

Notice how Example 1.3 introduced three notions of requirements: domain
requirements, interface requirements and machine requirements.

This decomposition represents a pragmatic separation of concerns. Do-
main requirements, to repeat, are requirements that pertain solely to domain
phenomena, i.e., they are requirements whose professional terms are domain
terms. Interface requirements, to repeat, are requirements that pertain both
to the domain and to the machine to be built, to the interface between the
machine and the domain, human users of the domain as well as (other) natural
phenomena and man-made equipment of the domain.That is, to phenomena
shared between the environment and the machine. Machine requirements, to
repeat, are requirements that primarily pertain to the machine to be built,
that is, the software + hardware of the desired computing system. In other
words, the professional terms of machine requirements additionally include
information technology terms in general.

Notice how we, in rough sketching some requirements, relied on domain
terms having been previously described. We did, however, not precisely de-
scribe those terms. But we hinted at how it is the purpose of a domain de-
scription to explicate all such domain specific terms. We likewise relied on
machine (hardware + software technology, that is: IT) terms also having been
precisely specified, elsewhere!

Notice also how we “sneaked” the crucial concepts of domain, interface and
machine requirements into the example! Part V (Chaps. 17-24) of Vol. 3 covers
principles, techniques and tools for the proper prescription of requirements.

A popular view of requirements makes the following distinctions: user re-
quirements, system requirements, and non-functional requirements. How are
we to take these? User requirements form one entire set of requirements: do-
main, interface and machine requirements. So do system requirements. Non-
functional requirements are what we refer to as some interface and most, if
not all machine requirements. How does this work? User requirements do not
need to be complete, they can be, as we shall call them, rough-sketches, al-
though they are typically well-structured and carefully cross-referenced, and

1.2 A Software Engineering Triptych 11

they form input for the development of system requirements. System require-
ments must be consistent and relatively complete: they “improve” upon the
user requirements, and they form input to software design.

1.2.5 Software Design
Software: Code and Documents

Characterisation. By software we mean not only the code based on which
computers can act, but also all the documentation that is necessary for the
proper deployment of the code. This includes the business process reengineer-
ing manuals that are necessary for the enterprise (the institution) acquiring
the computing system to function most optimally when using this system, the
installation manuals that are necessary when initially installing the computing
system, the user training and daily use manuals that are needed in prepara-
tory training of future system users as well as in their daily use of the system
as installed, the maintenance manuals that are needed during the daily facil-
ities management of the installed system (for (adaptive) up- or downgrades,
for performance (perfective) enhancements, and for error corrections), and the
disposal manuals that are needed when dismantling the system. Ideally soft-
ware also includes a precise record of the software validation and verification
history: stakeholder responses, verification and tests, including test suites and
the results expected from, and actually recorded during, actual tests using
these test suites. By a test suite we mean a collection of data serving as input
to a test. .

Software Design, I

Characterisation. By software design we mean the implementation of (re-
quired) software, not just coding, but its stage and stepwise development and
documentation. .

Phases, Stages and Steps of Development

Characterisation. By software development we mean the combined devel-
opment of domain descriptions, requirements prescriptions, and software de-
signs. .

Software, as well as domain descriptions and requirements prescriptions, is
usually rather complex. Hence these need be developed according to the prin-
ciple of separation of concerns, i.e., of divide and conquer. Therefore we divide
the development phases of domain descriptions, requirements prescriptions
and software design into stages and steps. A first development, one that is
reasonably illustrative of a multistep development, is given in Examples 16.10
to 16.21. Part VI (Chaps. 25-30) of Vol. 3 covers software design.

12 1 Introduction
Software Design, IT

Conventionally we think of establishing, in stages of software design, first
the software architecture,* which in a sense explained, in Chap. 26 of Vol. 3,
implements a “high-level design” of the domain requirements, the interface
requirements and the machine requirements. In the second stage we establish
the program components which in a sense, explained in Chaps. 27 and 28 of
Vol. 3, designs the gross and detailed modular structure of the software. The
final or implementation stage, which usually consists of many steps, includes
platform reuse design in which available software components are examined
for their possible reuse in the implementation, modularisation or objectivisa-
tion, in which a fine grained decomposition of the program organisation into
modules takes place, and finally the coding itself in which final lines of code
are specified. That is, the instructions to the computer as expressed in some
programming languages and in calls to run-time system facilities and (other
platform) components.

In Example 1.4 we give an informally expressed software architecture de-
sign.

Example 1.4 A Logistics System Software Design: This example continues
Examples 1.2 and 1.3. We do not exemplify a proper software design speci-
fication. We just hint at what it might deal with. A logistics computing and
communication system is implemented as follows: Each sender or receiver,
each logistics firm, each transport firm, each hub and each conveyor (of a
transport firm) is implemented as a separate, concurrently operating process
with its own state. None of the processes share global state components, but
instead operate based on synchronised and communicated messages. Freights
are not implemented as objects, i.e., as independent processes. Shared data
is implemented as a separate process whose state represents the shared data
(i-e., a database). .

1.2.6 Discussion
General Issues

This ends our exposition of core concepts of the software development triptych.
In summary we emphasise two sets of relations between the three software
development phases. The three kinds (cum phases) of engineering development
can be summarised as follows: In domain engineering we describe the domain
as it is. In requirements engineering we prescribe the requirements to software
(i.e., a computing system) for the support of activities in the domain as we

“Wherever we say software architecture we could say computing systems archi-
tecture.

1.3 Documentation 13

would like to have them. In (the early stages of) software design we specify
the software such as we have decided it shall be.

The relations between the three kinds of documents arise from respective
development phases. Domain descriptions are indicative [308], as we seriously
believe the domain essentially is. We must make sure to describe all possible
behaviours of the domain, including as we normally expect well-functioning
actors to perform, but to also include erroneous, faulty, less diligent, sloppy,
or even outright criminal behaviours. Requirements prescriptions are puta-
tive [308], as we would mandate the software to behave. A requirements
prescription would naturally focus on well-functioning behaviour and try to
ensure correct behaviour of all actors, whether men or machines. Software
specifications are imperative [308], that is, mandatory.

When a domain description is formalised, the hedge ‘may’ is lost. And
when a requirements prescription is formalised, the hedge ‘must’ is likewise
lost. Formal domain descriptions, requirements prescriptions and software (de-
sign) specifications have in common a certain “authoritative air” which the
domain description can never have. A domain description is only an abstrac-
tion, or a model of some reality, but it is not that reality, whereas a require-
ments prescription is intended to be a precise exact model of the software to
be implemented.

The triptych approach to software engineering is central to these volumes.
We shall endeavour to enunciate clear principles, techniques and tools for the
development of domain descriptions, requirements prescriptions and software
specifications. Within domain descriptions we find such concepts as domain
attributes, stakeholders and their perspectives, and domain facets. Within re-
quirements prescriptions we find such concepts as domain requirements, inter-
face requirements, and machine requirements. Independently of these we find
such requirements techniques as domain projection, instantiation, extension
and initialisation. Within software design we find such concepts as software
architecture, program organisation and structure, and modularisation.

1.3 Documentation

This section is a precursor for a later chapter, Chap. 2 of Vol. 3, which in-
cludes many examples and enunciates many documentation principles, tech-
niques and tools. Since documentation is all pervasive and is all important in
software engineering, we shall this early in these volumes “lift the curtain” on
documents enough that we can refer broadly and generally to the document
types in the text that follows between this section and Chap. 2 of Vol. 3 in
which we finally dispose of the subject.

We saw, in the previous section, that software development entails three
major phases, possibly several stages within phases and possibly several steps
within stages. Carrying out each of the steps results in documents. These are

14 1 Introduction

documents on domains descriptions, requirements prescriptions and software
specifications.

There is nothing else® emanating from steps, stages and phases than docu-
ments, on paper or electronically. So the question is: What kind of documents?
In this section we will briefly overview three kinds of documents that result
from the engineering of the steps, stages and phases. It is important that
the reader keeps the universe of discourse in mind, either the domain, the
requirements, the software, the two first (domain and requirements), the two
last (requirements and software) or all three (an entire development). That is,
the various documents, even the informative ones, all have a specific universe
of discourse in mind. It must first be clearly stated, lest one of the “parties”
to a development contract gets confused from the very start!

1.3.1 Document Kinds

There are basically three kinds of documents that emerge from the develop-
ment process, and which the developer hence should be aiming at. These are:
(1) informative documents, or document parts, such as partners and current
situation, needs and ideas, product concepts and facilities, scope and span de-
lineations, assumptions and dependencies, implicit/derivative goals, synopsis,
design briefs, contracts, logbook; (2) the description documents, or docu-
ment parts, such as rough sketches (records of “brainstorming”), terminolo-
gies, narratives, and formal models; and finally (3) the analytic documents,
or document parts, such as description property verifications, verification of
correctness of development transition (i.e., development step), and validation
of formal and informal descriptions.

We will briefly review these kinds of documents, both as concerns their
pragmatics: why they are necessary, and as concerns their multitude: why
there are so many seemingly different kinds of documents.

1.3.2 Phase, Stage and Step Documents

A development phase results in a comprehensive, definitive set of informative,
descriptive and analytic documents. A development stage results, similarly,
in a comprehensive set of informative, descriptive and analytic documents,
or in a set of relatively complete domain, interface or machine requirements
prescriptions.

The boundaries between a subphase and a stage, and the comprehensive-
ness of either, are not sharp. It serves no purpose here, or for the approaches
advocated in these volumes, to try sharpen such distinctions. The stage and

5Strictly speaking: Understanding also emerges, and so do closer relations be-
tween client (acquirer, customer) and developer (deliverer, provider), etcetera. But,
contractwise, unless, for example, education and training is also part of a project,
documents are the only tangible goods delivered!

1.3 Documentation 15

step concepts are simply pragmatic. One could go on defining sub-steps, etc.,
but we refrain. Let the actual project determine a need for finer granularities!

If a distinction need be made between a phase and a stage, then the com-
prehensive set of stage documents represents one of more than one “stage” of
development within the phase.

A step of development produces only a part of a comprehensive set of
documents, for example: a comprehensive set of informative, descriptive or
analytic documents or document parts, or just, as a substep, one of these
documents, or document parts. More will emerge as we progress deeper into
these volumes.

1.3.3 Informative Documents

Characterisation. By an informative document we mean a document, or a
document part, which informs, it does not necessarily describe a designatable,
manifest phenomena or concept. .

As the name implies, informative documents give information which takes
many forms. Informative documents include those of perceived or already
enunciated needs, product concepts and facilities, scope and span delineations,
assumptions and dependencies, implicit/derivative goals, synopsis, contracts,
design briefs, and so on.

Current Situation Documentation

Need for software development, or for requirements prescription, or for do-
main description usually arise out of a current situation. A current situation
may be that the domain is not well-understood, or that software is required.
Professional software development projects therefore produce an informative
document — two—three pages — which inform of the current situation that
leads to needs.

Needs Documentation

Needs refer to perceived or actual needs for the product being desired, whether
a domain description, a requirements prescription, a software design (i.e.,
specification), or just plainly, as is most often the case, the software itself.
Needs can be expressed in many ways: We must understand the domain; we
must establish requirements; “So ein Ding muss Ich auch haben”®; software
to automate humanly menial, boring processes; software to speed up slow

processes; and so on. Needs must be quantified, if possible.

»rn

54T must also have such a ‘thing’” (i.e., software).

16 1 Introduction
Product Concepts and Facilities

Product concepts and facilities refer to “brainstorming” or ideas (“dreams”).
That is, what the universe of discourse “contains”, or is to contain, what aims
and objectives the proposers have for the “product”, what roles, in a larger
socioeconomic context, the product is to serve (or fulfill). That is, what are
the strategic or tactical objectives of the developer and/or customers, how it
might complement earlier products, and/or how it might open the way for, or
be, a next-generation product.

Design Briefs

Design briefs refer to documents which state what kind of project is to take
place: for which universe of discourse, specifically (aiming at a very specific
client), or generally (aiming at a largest class of such clients), or something
in-between. Whether the project is an ordinary development, or a research, or
some advanced project encompassing both R&D. Finally it also encompasses
what general deliveries are expected, the time frame, costs, institutions in-
volved, and so on.

Usually a scope and span delineation is part of or strictly adjoins the design
brief. To this we turn next.

Scope and Span Delineations

Scope and span delineations refer to the more specific subjects of the universe
of discourse to be dealt with in the project, that is, the target and modal scope,
for example: railways, or health care, or financial services; respectively new
development (incl. R&D), or maintenance, or other. The target and modal
span, for example, rolling stock monitoring and control, or electronic patient
Jjournals, or stock trading; respectively off-the-shelf commercial, one-of-a-kind,
or other product.

Synopsis

Synopsis refer to a “capsule” (i.e., short overview) characterisation of the
product being desired, whether a domain description, a requirements pre-
scription or a software design. A synopsis is like a movie “trailer”. It tells, in
a few words, what the whole thing (domain, requirements or software) is all
about. A synopsis is not a description (a prescription, a specification), “but
almost”. It mentions all the most important phenomena of the universe of
discourse, their entities, types, values, actions, events and behaviours. It men-
tions their semantics and syntax, but it does so incompletely. And a synopsis
“links” these phenomena components to their pragmatics, that is what role
they serve, and so on.
Synopses often form an important introductory part of contracts.

1.3 Documentation 17
Contracts

A contract describes parties to the contract, the subject matter and consid-
erations.

Contracts refer to the legal documents that name contractors (the parties:
clients and developers); and that define what is to be developed: If software,
then the contract would normally refer to an already existing requirements
prescription; if requirements, then the contract would normally refer to an
already existing domain description; or if a domain description then the scope
and span delineation would be an important document part. In addition (the
considerations) contracts prescribe the development costs (estimates): If soft-
ware is to be developed, then the estimate should be rather binding. If require-
ments are to be developed, then costs could be based on fixed hourly rates
and some usually negotiable rough time estimates. Precise numbers cannot
be given since much, unforeseeable interaction needs to take place between the
contracting parties. Or if a domain description is to be developed—in which
case the project is basically a joint research effort—then the costs are usually
negotiable, and billed on a, say, monthly basis. A contract would (further con-
siderations) refer to legal conditions. Many other considerations may be part
of a contract document.

Discussion

We have outlined essential informative documents. We emphasise that the
developer (and/or client) may, in the extreme, have to “repeat” such docu-
ments for each phase, stage and, in a few cases, step of development and their
transitions. That is, informative documents may be needed for each and all
of the triptych phases: domains, requirements and software design.

We have chosen the wording documents (and documentation) so as to
indicate that one may view each of the listed informative document types as
designating instantiation of individual, separately “bound” documents. For
the next category of documents, the descriptive ones, we choose a wording that
allow their various types to designate document parts that can be “mingled”
(woven together) into larger documents.

1.3.4 Descriptive Documents

Characterisation. By a descriptive document we mean a document, or a
document part, which describes a manifest phenomenon or a concept. .

The term describe, and hence the terms description, and descriptive, are here
used in a rather specific, narrow sense. A description designates (i.e., is some
text that sets forth, in words) either some physically existing part of nature
(one that centres around physical behaviours usually governed by laws of
physics) or some man-made part of the world (one that centres around human

18 1 Introduction

activities, including their interaction with artifacts) or some combination of
these two classes of worlds.

Thus a description, such as we shall deploy the term, tends to focus on
what might eventually “fit within a computer”. It may well be that what we
describe concerning a domain is not computable and cannot be “mimicked”
by a computer. A requirements prescription, however, “cuts down” on its
underlying domain description and makes sure that what is required is also
computable. Hence opinions, emotions, metaphysical, political or such other
similar subjective texts are not here considered descriptions.

It can be seen from the above, and it will reappear, again and again later,
that it is not a simple, straightforward matter to delineate precisely when
something is a description (a prescription, a specification), and what can be
described, that is, what can exist. Chapters 5, 6 and 7 of Vol. 3 focus on
principles and techniques for forming proper descriptions (specifications) and
touch on the philosophical issues of being.

We (thus) consider three kinds of descriptions: domain descriptions, re-
quirements prescriptions, and software designs. We point out that we use three
different terms synonymously: descriptions, prescriptions and designs (speci-
fications). Domain descriptions are about what already exists, “the world as
it is”.” Michael Jackson [308] refers to domain descriptions as indicative. Re-
quirements prescriptions are about what we expect from software, “the world
as we would like it to be”. Michael Jackson [308] refers to requirements pre-
scriptions as putative. Software (design) specifications then outline the design
structure of software, that is, specifications of specific types, values, functions,
events and behaviours. Michael Jackson [308] refers to domain descriptions as
imperative.

Descriptive Document Kinds and Types

We see basically two kinds of description documents: informal and formal. And
we see basically four types of description documents: rough sketches (docu-
ments which record results of “brainstorming”), terminologi.e., narratives and
formal models. One could consider the latter two types (narratives and formal
models) to stand for one type, the type of ‘proper description documents’, both
informal and formal. We shall stick with the above compartmentalisation.

Rough Sketches

Characterisation. By a rough sketch document we mean a descriptive doc-
ument which is a draft and whose description is incomplete, and/or is not well
structured. .

"From an epistemological point of view we may have to say: a world as we
subjectively observe it.

1.3 Documentation 19

When we first, as an initial act of proper development, attempt to develop
something, we then “brainstorm”. Recording the ideas that arose during
“brainstorming” results in a rough sketch. We are told either to develop a
domain description or a requirements prescription or a software design. And
we are not quite sure where to begin in the chosen universe of discourse. So
we “doodle”, or we rough sketch. A rough sketch is basically an unstructured
nonsystematic effort at describing whatever has to be described (prescribed,
specified).

A rough sketch serves the purpose — in the style of explorative, experi-
mental work — of coming to grips with the concepts that are central to the
universe of discourse, and from there with the derivative concepts. A rough
sketch shall then serve, as it is being developed, i.e., as a means to identify
the core concepts, and their relations. This identification process is of utmost
importance. It is of analytic nature, and is further discussed in Section 1.3.5.
Section 2.5.1 of Vol. 3 presents examples, principles and techniques of rough
sketching.

Terminology

Characterisation. By a terminology document we mean a description doc-
ument which, in a systematic, but not necessarily a complete or exhaustive
manner, lists and briefly explains a number of terms. .

The rough sketch descriptive step together with the concept formation an-
alytic step serves to identify and consolidate the important concepts (i.e.,
abstractions of phenomena, whether in domains, requirements or software).
This identification contains an element of naming these concepts. A list of
all these concept names and their characterisation (description, explanation,
definition) is what call a terminology. We could also call the list a glossary
or a dictionary or even an ontology. We refer to Sect. B.1 for discussions of
these four and the related terms of encyclopedia and thesaurus.

We consider it to be a very important and indispensable part of every phase
of software development to perform the following four terminology-related
actions: (1) to establish a (phase-oriented) terminology; (2) to use and hence
adhere to such a terminology; (3) to update, i.e., maintain such terminologies
and let changes be reflected back in all the documents where referenced terms
are used; (4) and to make available such terminologies.

Failure to do as advised above usually has dire consequences.
Section 2.5.2 of Vol. 3 will present examples, principles and techniques for
creating a terminology.

Narrative

Characterisation. By a narrative document we mean a description docu-
ment which systematically and reasonably comprehensively, in natural, yet

20 1 Introduction

most likely (application domain-specific) professional language, explains the
entities, functions and behaviours (including events) of a designated universe
of discourse. .

To narrate is to “tell a story”. The story (the narration) to be told here is
that of the chosen universe of discourse, be it a domain, or part of a domain,
a requirement, or a software design. The narrative must be such that the
listener (i.e., the reader) as well as, of course, the narrator, can formalise
the story: That is, we put down as a constraint upon the narratives that
they can be given mathematical, i.e., computing science, models or otherwise
be characterised mathematically. It is not a constraint on domain descriptions
that what is described is computable: that it can be “mimicked” (mechanised,
simulated) by a computer. It is indeed a constraint on domain requirements
prescriptions as well as on software design specifications that they constitute
computational models.

This insistence on formalisation can be justified as follows: The domain
requirements must imply something computable. After all, they are about a
computing system. The software design certainly must also imply something
computable.

But why insist on the domain description being formalisable? First, we
must accept that domain requirements, as mentioned in Example 1.3, are
derived from domain descriptions, and we would like the derivation operations
to be formally well understood. Second, we must accept that the original
role, as well as the successful pursuit of this role over the last two and a
half millennia, has been to formalise phenomena of the actual world, first
the physical ones, and now the human-made ones. So why not also attempt
this for domains — essential parts of which cannot be said to be understood
unless we indeed have a formal model. Third, it must be understood that
we shall only attempt to formalise the semantic and the syntactic aspects
of domains, not their pragmatic imports.® Finally, we must accept that we
today, November 2, 2005, do not quite know how to formalise all aspects of
domains and requirements! That last caveat applies in particular to domain
descriptions and to interface and machine requirements prescriptions.

Thus the task is clear: describe, principally, what can or what ought be for-
malised. The style of the informal narrative follows from this dogma: Present
first text on the classes of entities (i.e., types: abstract type (sorts) and con-
crete types). Then postulate any fixed, i.e., constant, instantiations (i.e., val-
ues), if and when needed. Then postulate all the functions that apply to enti-
ties (i.e., observers, generators, predicates, auxiliaries), and characterise these
functions: Start by stating to which types of entities they apply (the input)
and the type of the resulting, the yielded (the output) entity; then characterise
the functional relationship between inputs and outputs. Similarly identify the

8For a discourse on pragmatics, semantics and syntax we refer to later material
in Sect. 1.6.2 and in Part IV (Chaps. 6-9 inclusive) of Vol. 2.

1.3 Documentation 21

behaviours (i.e., processes); and their interaction (i.e., their shared events,
such as synchronisation and communication).

We are guided in the task of informally describing something when we
follow the above “recipe”, the above “narration” dogma — which leads on to
the formalisation itself.

Chapter 2 of Vol. 3 (Sect. 2.5.3) presents examples, principles and tech-
niques for the construction of proper narratives. These principles and tech-
niques emerge from most chapters in Vols. 1 and 2. Specific domain, require-
ments, and software design narration principles and techniques are then cov-
ered in Parts IV-VI, respectively, of Vol. 3.

Formal Model

Characterisation. By a formal document we mean a document which ex-
presses a model (of some universe of discourse) in a formal language. .

A formal model is a model expressed in some mathematical notation or in
some formal language. A mathematical expression permits conventional, al-
beit precise reasoning, such as is normally done in textbooks on mathematics.
A formal language is one with a precise syntax, a precise semantics and a
mathematical logic proof system, that is, a set of proof rules that allow for-
mal reasoning, such as is done in textbooks on mathematical logic but here
with a twist! The informal narrative and a formal model may be intertwined,
textually, such as we often see in mathematics and physics textbooks. The
relation between the informal narrative and its formal model is necessarily in-
formal. That is, is one that can never be proven correct, it must be validated.

Volumes 1 and 2 contain many chapters which present examples, principles
and techniques for the construction of proper formal models. Specific domain,
requirements and software design formalisation principles and techniques are
then covered in Parts IV-VI, respectively, of Vol. 3.

Discussion

The informal rough sketch, the more structured, but still informal narration,
and the formal model, may be manifested in separate documents or may be
combined and intertwined with the analytic documents. Usually the rough
sketch is not documented in a manner suitable for release other than to the
directly involved client and developer staff, and then usually only to the devel-
opment staff. We say that the informal narratives, the terminologies and the
formal models may constitute deliverables. And we normally assume that the
rough sketches remain proprietary documents of the development enterprise.

22 1 Introduction
1.3.5 Analytic Documents

Characterisation. By an analytic document we mean a document whose
subject is a descriptive document. The text of an analytic document analyses
a descriptive document. .

As the term indicates, analytic documents are documents whose content rep-
resents analyses of other documents, here the descriptive documents. We con-
sider four kinds of analytic documents: those that represent (i) formation of
concepts from rough sketches (during brainstorming), (ii) validation of formal
and informal description documents, (iii) description property verifications,
and (iv) verification of the correctness of development transitions (i.e., devel-
opment steps).

There may be other analytic documents. Examples: documents whose con-
tent analyses behavioural aspects of the intended computing system, such as
expected interface response times based on queueing theoretic studies; ex-
pected machine computation times based on complexity theoretic studies;
details of dictionary or database hashing algorithms based on statistical stud-
ies of reference patterns; and so on. Also included may be documents whose
contents analyse pragmatic issues such as, production line flow (congestion),
based on statistical studies, for a project and production planning, monitoring
and control computing system; company cash flow, based on similar studies,
for a financial services or an electronic trading computing system; and so
on. Further kinds of analytic documents can be imagined. We shall, in these
volumes, only cover those just mentioned.

Rough Sketch Analysis and Concept Formation

The most important task in describing a domain, prescribing some require-
ments or specifying some software design is to identify the core concepts
around which the universe of discourse evolves. On one hand are the phe-
nomena in the domain, the facilities that are desired from the software or
the software program constructs (data structures, procedures, etc.). On the
other hand these phenomena, in the actual world, these facilities (to be made
manifest in the required software), or these program code constructs are to be
conceptualised (as for the domain) or are indeed concepts, that is, abstract
ideas, once captured as requirements or in software code.

Thus we see a transition from a concrete, manifest, actual world of usually
tangible phenomena to an abstract, intellectually perceivable, but usually in-
tangible world of concepts. It is this transition, from what is perceivable, via
what is conceivable, to that which is “made into” software, that we need to
record.

We do so for the domain by first brainstorming, that is by sketching rough
domain descriptions and, from those, through analysis, identifying domain
concepts. Then for the requirements by conceiving. In that case by sketching

1.3 Documentation 23

rough requirements “prescriptions” and, from those, through analysis, identi-
fying requirements concepts. And finally we do this for the software by “cast-
ing”, that is, by sketching rough software “designs” and, from those, through
analysis, identifying proper software constructs.

Analysis with the aim of forming concepts is an art. Perhaps the hardest
thing to learn is to do it right, or at least to do it in such a way that pleasing,
elegant and “economic” concepts emerge. But reading lots of analysis exam-
ples might help. Chapters 13 and 21 of Vol. 3 therefore present analysis and
concept formation examples, principles and techniques that are found useful
in conducting the analyses hinted at above.

Validation of Descriptions, Prescriptions and Specifications

Characterisation. By a validation document we mean an analytic document
which validates the text of a description document (éc.) with respect to the
stakeholders of the described universe of discourse. .

By éc. we mean: prescription and specification document.

Domain descriptions must be validated, they are, most likely, written by a
small group of primarily developers, aided by a likewise small group of client
staff. But larger, more definitively representative groups of client staff need re-
view domain descriptions in order to concur. The same holds for requirements
prescriptions.

Domain description and requirements prescription validation is necessarily
a process of interaction between client staff and developers, and is necessarily
a process based on informal narrative and terminology descriptions. This kind
of validation is a crucial one: It is necessarily an informal, human process, and
it serves the role of getting the right product. Chapters 14 and 22 of Vol. 3
present validation examples, principles and techniques that are found useful
in conducting the analyses hinted at above.

Verification of Properties of Specifications

Characterisation. By a verification document we mean an analytic docu-
ment which proves, model checks, or tests statements made about the prop-
erties of a description or a prescription or a specification. .

A domain description denotes a theory. The description is only a model of
the domain, not the real domain. Expressed in precise English, and especially
expressed in some formal language, the model designated by a domain de-
scription possesses some properties. The sum total of all these properties is a
theory for the domain. The same is true for requirements prescriptions and
software design specifications.

We can informally reason about such properties when given a consistent
and relatively complete description (or prescription or specification). And we

24 1 Introduction

may record this reasoning formally when we also have a formal description
(formal prescription, formal [design] specification). The usefulness of formal
models is that such theorems may be proven. Proof of such theorems affords
a higher trust in the descriptions.

Example 1.5 Towards a Domain Theory: Assume that we have described a
railway system, its network of lines and stations, its train timetables and the
actual train traffic according to timetables. Let us further assume that the
train timetables, and hence the traffic is modulo 24 hours: repeats itself daily
and is always on time. Now a property that transpires only very indirectly
from the train timetables (and hence the train traffic) could be the following
variant of Kirchhoff’s Law: For any station in the network, the number of
trains arriving, over any 24 hour period, at that station, minus the number of
trains ending their journies at that station, plus the number of trains starting
their journey at that station, equals the number of trains departing from that
station, all over the same 24 hour period. .

Informatics models of domains can be made into theories, just as were models
of physical phenomena such as Newton’s Theory of Mechanics, Thermody-
namics, etc. Chapter 15 of Vol. 3 presents domain theory examples, principles
and techniques that are useful in establishing domain theories as above.

Correctness of Development Phase, Stage or Step Transition

When we make the transition from the phase of describing a domain to the
phase of prescribing requirements to software for support of activities in that
domain we correctness-relate that transition, from the latter to the former.
When we make the transition from the phase of prescribing requirements
to software to the phase of specifying the required software we correctness-
relate from the latter to the former. These correctness relations, when stated
properly (and so they must be if we are to have trust in the development),
can be informally reasoned about. And, if the descriptions, prescriptions and
(design) specifications are formally expressed and the relations likewise, then
the reasoning may be formally supported: Formal proofs of correctness may
be made.

Phases can be decomposed into stages of development, and transitions
between stages may be correctness-related and argued about. Stages can
similarly be decomposed into steps, and transitions between steps may be
correctness-related and argued about.

Note that we sometimes used the term ‘can’, and sometimes ‘may’. We can
always try reason informally, as do mathematicians. But it is not always pos-
sible today to formally prove properties and transition correctness. Reasons
for this may be of the following: We may have constructed some unwieldy
models that make the proofs too cumbersome. Or computing science, cum
specification language designers, may not yet have researched and developed

1.4 Formal Techniques and Formal Tools 25

appropriate specification language constructs and proof systems. Or we, the
developers, are simply not good enough at stating and proving auxiliary lem-
mas and theorems. Or we are trying to prove a non-theorem, something that
is false.

Discussion

We have surveyed the analytic documents that may arise during software de-
velopment. There are at least four kinds of analytic document parts: con-
cept formation, description (prescription and design specification) valida-
tion, property verification and correctness verification. Some analytic work is
“inspiration-guided”, such as concept formation seems to be. Other analytic
work is guided by human interaction, such as validation is. And yet other an-
alytic work is formalisable, such as property and correctness verification can
be.

To give a proper, comprehensive presentation of these three kinds of an-
alytic work is, however, not a goal of these volumes. Instead we refer to spe-
cialised texts and monographs on software verification.

1.4 Formal Techniques and Formal Tools

Reading of this section can be skipped till the reader has read Chaps. 2-9
of the present volume. The section may to some lay readers appear a bit
esoteric.

The aim of this early section is to make the reader aware of the fact that
the languages in which one expresses domain descriptions and requirements
prescriptions are not programming languages, but are specification languages.
These specification languages need allow the expression of abstractions, so as
to make easy the expression of essential properties, while allowing freedom of
software design implementations.

1.4.1 On Formal Techniques and Languages

Characterisation. By a formal technique we mean both of the following:
a technique that has a mathematical foundation, and thus can be explained
mathematically, and a technique by which its user expresses descriptions, pre-
scriptions and (design) specifications formally and is able to reason formally
about what is expressed. .

Thus a formal technique implies: Formal specification using subsidiary tech-
niques and the possibility of formal verifications, with their subsidiary tech-
niques. Therefore a formal technique requires a formal specification language.

26 1 Introduction

Characterisation. By a formal specification language we mean all of the
following: a language which has: a formal, mathematical syntax; a formal,
mathematical semantics; and a formal, mathematical logic proof system. =

In Chap. 9 of this volume we explain what is meant by a proof system. In
Vol. 2, Part IV we will explain what is meant by formal syntax and formal
semantics.

Normally, in conventional software engineering, only the last step of de-
velopment uses an almost? formal language, namely the coding (i.e., the com-
puter programming) language. We shall advocate the use of formal languages
from the very beginning, for all phases, stages and steps of development. In
conventional software engineering many different kinds of informal description,
prescription and (design) specification languages are deployed, some with one
form of diagrammatic constructs, others with other constructs, but all without
a proper syntax, let alone any discernible semantics.

1.4.2 Formal Techniques in SE Textbooks

The aims and objectives of these volumes hinge crucially on the ideas of for-
mal techniques and formal tools. The purpose of this section is to motivate
this central role of formality. Most, if not all, existing textbooks on software
engineering shy away from propagating these ideas of formalism. If other text-
books on software engineering bring any material on what they call ‘formal
methods’, it is usually in the form of a separate chapter appearing some-
where in the book. In these volumes formal techniques permeate all technical
chapters. Formal techniques are deployable, and are hence to be taught in
connection with all technical aspects of software engineering.

1.4.3 Some Programming Languages

A language, when seen as the means for expressing an engineering objective,
can be considered a tool. As such, formal languages represent one class of
software engineering tools. As for all crafts, many tools are needed, different
size hammers, different size saws, different size screwdrivers, different size
planners, etc., are needed for carpentry. That is, the artifact to be constructed,
that is, its “nature” or its attributes (properties), determines exactly which
of many different tools are to be deployed.

We have very many different kinds of programming languages, “past”
and “current”!?: functional programming languages such as LISP [370], e
Standard ML [261,389], ¢ Miranda [502], and e Haskell [498], to mention
a few; logic programming languages, including e Prolog [295,351], and CLPR

9Usually most programming languages still do not possess a proof system.
10¢Current’ programming languages are marked with a bullet: e.

1.4 Formal Techniques and Formal Tools 27

[312]; the imperative!! programming languages of Fortran [14], Cobol [12],
Algol 60 [24], Algol 68 [510], Pascal [522],¢ C [321]; object-oriented pro-
gramming languages, such as Simula 67 [54], e C++ [489], Modula 2 and
Modula 3 [262,401,525], e Eiffel [377,378], Oberon [434,526,528-530], and e
Java [10,20,243,348,470,511]; and finally the parallel programming languages
of PL/I [13,37], CHILL [145], Ada [128], and e occam [301,364,449].

1.4.4 Some Formal Specification Languages

We can also expect to have many different kinds of formal specification lan-
guages that are model-oriented or property-oriented.

On Model-Oriented Specification Languages

Some specification languages are model-oriented:'? o VDM-SL [120, 121, 226,
317], e Z [281,476,477,533], and e B [3].

Characterisation. By a model-oriented specification language we mean one
which expresses whatever it specifies in terms of mathematical constructions
(i-e., models) such as sets, Cartesians, lists, functions, etc. .

On Property-Oriented Specification Languages

Other specification languages are property-oriented (algebraic semantics)
specification languages:'® 0BJ3 [233], e CafeOBJ [190,232], and e CASL
[49,397,399].

Characterisation. By a property-oriented specification language we under-
stand one which expresses whatever it specifies in terms of logical properties
of what is specified. .

An imperative programming language is one which primarily focuses on
assignable variables, hence assignments, and hence has statements, and usually
therefore statement labels and GOTOs. Statements, in a sense, prescribe: Do this,
then do that — “imperially”.

12 A model-oriented specification language allows for the expression of models in
terms of mathematical entities such as sets, Cartesians, lists, maps, functions, etc.
Chaps. 12-16 (of the present volume) will make the first presentations of model-
orientedness.

13A property-oriented specification language allows for the expression of mod-
els in terms of logically expressed algebras. Chapters 9 and 12 will make the first
presentations of algebras and property-orientedness.

28 1 Introduction
On Property-Oriented + Model-Oriented Specification Languages

Other specification languages are “mixed” property- and model-oriented spec-
ification languages: e RSL [236, 238, 239].

In these volumes we mostly use the RAISE Specification Language, RSL.
But, really, nothing prevents a lecturer from using, for example, VDM-SL or Z
instead.

More on Programming Languages

One selects a programming language according to what one wishes to express,
that is, the values one wishes to speak of. Different programming language
categories, as listed above, favour different value spaces.

In functional programming we handle functions, their definition, applica-
tion and composition, because functions (including ordinary operator/operand
expressions) are thought to best capture the problem at hand.

In logic programming we express propositions and predicates, i.e., handle
logical values, because it is thought that one can best express certain com-
puting problems by characterising their properties.

In imperative programming we establish, initialise, update and read states,
i.e., assignable variables, because states and state changes are thought to best
capture the problem to be solved.

In object-oriented programming we establish, initialise, update and read
special clusters of state components called objects, because dividing the prob-
lem up into a set of such objects and solving the problem by expressing the
interaction between objects is thought to best capture the problem at hand.

In parallel programming we establish, initialise and compose processes,
and select among processes in various deterministic or nondeterministic ways.
In addition we express cooperation among processes through their synchro-
nisation and communication because it is thought that one can best express
certain computing problems by their decomposition into cooperating and con-
currently operating processes.

Specification Languages Resumed

The situation is not that simple with formal specification languages. Indeed,
there is the distinction between model-oriented and property-oriented formal
specification languages mentioned above. So one can choose one from either
category depending on what it is one wishes to express, and how.

Purists might choose either the Z (since 1980) or the B (since around
1990) specification language paradigm. Both are based on simple set theo-
retic notions, are utterly elegant and can traditionally handle what one would
consider simple state-oriented sequential problems. Z has been extended in
various ways: to express concurrency, or to express objects beyond its own
basic, elegant modularity concept.

1.4 Formal Techniques and Formal Tools 29

VDM [120,121,226] represents possibly the first full-fledged formal specifi-
cation language concept (since early 1970s), and is still flourishing in the form
of the ISO standardised VDM-SL. The RAISE [236,238] Specification Language
(RSL) was conceived, in the mid-1980s, as a successor to the VDM specification
language, then colloquially known as Meta-IV.

RSL, which we primarily use in these volumes, features both property-
oriented and model-oriented means of expression, has a somewhat sophis-
ticated object-oriented means of compositionality, and borrows from CSP
[288, 289, 448, 456] to offer a means of expressing concurrency. Extensions
to RSL have also been proposed, for example with timing [535], and with
Duration Calculus, that is, temporal logic ideas [274].

1.4.5 Insufficiency of Current, Formal Languages

The story as told above may give you the impression that the formal (pro-
gramming as well as specification) languages offer sufficient expressibility
to handle all situations, but this is not so. Few, if any, professionally sup-
ported programming languages offer means for expressing temporal notions
such as absolute times, relative time (intervals), delays, etc. The same is true
for specification languages. Accordingly we see a bevy of very fascinating
programming languages focusing on expressing synchrony: Esterel [47,48],
Lustre [256] and Signal [248]. We also see specification languages involving
temporal notions: Timed Automata [9], TLA (Temporal Logic of Actions) [331]
and Duration Calculus [537,538]. We also find some which provide for the
expression of state transitions: Petri Nets [313,421,435-437], MSCs (Message
Sequence Charts) [302-304] and LSCs (Live Sequence Charts) [171,270,325],
and Statecharts [265, 266,268, 269,271]. We shall have more to say about
Petri nets, sequence charts, statecharts and the duration calculi [5637,538] in
Vol. 2’s Chaps. 12-15.

What does this plethora of programming and specification languages sig-
nify? First, it tells us that we are still in the early days of computing science,
and hence software engineering. Proposals for new and better languages, or
for altogether different language paradigms, are being put forward continually.
It also probably tells us that we should not seek “universal” languages, that
could handle all the “things” that one wishes to express. We shall probably
have to settle for using combinations of different languages when specifying
and when implementing problems.

More generally, it tells us that we shall, in these volumes, be content with
the formal specification languages that are available today, while recognising
their (and our) shortcomings. That is, there are situations in these volumes
where we would like to show a formal specification of a problem, but where
that would entail a longer introduction of a “new” notation, or where we
simply have to give up because no pleasing or adequate or even known such
language can be found!

30 1 Introduction
1.4.6 Other Formal Tools

The most well-known formal tool for software development is a compiler: It
accepts programs in a formal language, the source programming language, it
checks that input programs satisfy a wide variety of static properties, and
if so, it generates an output program in a target coding language, such that
the meaning of the input program is preserved in the meaning of the output
program. To do this properly a compiler embodies a number of instantiations
of theoretical artifacts. These include a finite state machine which processes
(ASCII) character strings into either keyword or identifier tokens, and other
symbols into appropriate delimiter or operator tokens; a push-down stack
machine which processes strings of tokens and creates, while checking, suitable
internal representations of the input program (dictionaries, a parse tree, etc.);
a rewrite system that transforms these internal representations into other,
sometimes claimed optimised representations; and another rewrite system that
finally transforms possibly resulting internal representations into output code.

Other formal tools are possible and exist: type checkers for abstract specifi-
cations; general data or control flow analysers, proof checkers, proof assistants;
model checkers, theorem provers, and program interpreters. These, together
with compilers, are all examples of what we in general call abstract inter-
preters, or partial evaluators. The current understanding of the role and pos-
sibilities of abstract interpretation is far from complete [163,164,215,231,320].

1.4.7 Why Formal Techniques and Formal Tools?
Some Rationale

Engineering, in its classical forms, civil, mechanical, electrical, all deploy cal-
culations in one form or another. They do so in order to determine structural
properties and design parameters, for example, for reinforced concrete or steel
constructions, aircraft wing design, electrical transformer design, and so on.
When we drive over a bridge, fly in an aircraft, or use some electrical appli-
ance, we do so with some confidence that the classical design engineers have
been properly trained in how to, and, when required, can, and indeed do,
perform such calculations.

When we use an ordinary text processing system, yes, even when we send
otherwise “innocent” (read: unimportant) e-mails, then we do not bother
much about the “error-freeness” of that software. But when we fly an air-
craft, or live next to a nuclear power plant, or receive our monthly paycheck
(calculated from a myriad of interdependent tax regulations), or follow in-
structions from a medical doctor, and when we are told that any of these,
the aircraft, the power plant, the paycheck processing and the medical advice,
are monitored and partly or fully controlled by a computer, we may wonder
about the correctness of the relevant software! But are the software engineers

1.5 Method and Methodology 31

comparatively well trained in the many calculi that do indeed exist today for
securing trust in the software, and, if so, are they actually deploying such cal-
culi? The answer is, wrt. current practice, sadly, no! These volumes will teach
you some, but certainly far from enough, such calculi, i.e., formal techniques.

The answer to the rhetorical question of this section, Why formal tech-
niques and formal tools? is therefore: Because we need the highest possible
degree of trust, given today’s knowledge, in our software! Since it can be done,
namely, ensuring highest possible degree of trust, it must be done. Not en-
suring so would be tantamount to cheating the customer — also known as
criminal neglect!

Anecdotal cum Analogical Evidence

Until the mid-1700s most ships’ captains (and their ships’ mates) did not
know how to reckon the longitude!'®. The chronometer was first fully available
and known by the last quarter of the 1700s. Samuel Pepys'® commented on
the pathetic state of navigation:

It is most plain, from the confusion all these people are in, how to make
good their reckonings, even each man’s with itself, and the nonsensical
arguments they would make use of to do it, and the disorder they are in
about it, that it is by God’s Almighty Providence and great chance,
and the wideness of the sea, that there are not a great many more
misfortunes, and ill chances in navigation than there are.

We bring that story here for analogical purposes.

We claim that developing software without using formal techniques is like
sailing the high seas without knowing how to compute the current longitude.
We claim that nobody can become a ship’s mate, much less a captain, if they
do not know how to compute the longitude.

It is as simple as that, but the problem itself is not simple. It was, perhaps,
more obvious, that the chronometer had indeed solved the longitude problem.
To some it is still not obvious that formal specification and related techniques
(verification, etc.) have brought us a long way towards having solved the
software development problem.

1.5 Method and Methodology

We refer to Vol. 3’s Chap. 3 for a more thorough treatment of the concepts of
method, methodology, principles, techniques and tools. Suffice it here to give
a brief account of these terms.

“Those “funny” lines (on a map of the world, or, as here, more appropriately, of
the seas) which stretch between the arctic poles.

5From a trip as a high official of the British Royal Navy, 1683, from England to
Tangier.

32 1 Introduction
1.5.1 Method

Characterisation. By a method we understand a set of principles for select-
ing and applying a number of analysis and synthesis (construction) techniques
and tools in order efficiently to construct an efficient artifact, here software
(i-e., a computing system). .

The above will be our guiding characterisation of the concept method. It
will flavour these volumes. We will endeavour to enunciate such principles,
techniques and tools that will guide the software engineer in where to start,
how to proceed and where to end.

In the above characterisation we have also emphasized the things about or
to which the principles, techniques and tools are concerned or apply, select-
ing, applying, analysis, synthesis (construction) and efficiency. Humans select
the principles, techniques and tools. Hence choices of selection form a crucial
aspect of a method. We, humans, or machines, i.e., tools, apply techniques.
Hence modes of application form a crucial aspect of a method, likewise for
analysis and construction. Efficiency, as a concept, applies both to the devel-
opment process and to the developed artifact. We have added efficiency as an
attribute of the concept of a method.

1.5.2 Methodology

Characterisation. By methodology we understand the study of, and the
knowledge about one or more methods. .

These volumes also cover methodology: We will contrast several methods,
including several alternative principles, techniques and tools. No one method
suffices for all software. There are a number of principles, techniques and tools
that can help us. But for any one method there are still principles, techniques
and tools to be identified, studied and tried out.

1.5.3 Discussion

The principles are to be interpreted by humans. The selection and analysis is
to be mostly performed by humans. Some techniques and some tools can be
used by machine, i.e., are formalised. But far from all. Hence it is a misnomer
to refer to a concept of formal methods. It seems appropriate to refer to some
techniques and some tools as being formal. So we conclude: Methods cannot
be formal.

1.5.4 Meta-methodology

In this book, that is, in these volumes we shall highlight certain pieces of
texts. These highlighted texts are concerned with

1.6 The Very Bases of Software 33

characterisations,
definitions,
principles,
techniques,

tools, and
examples

as follows. In the text the following kinds of highlighted texts will stand out.
Please take appropriate note of these texts.

Characterisation. Characterisations are descriptive texts. They are not pre-
cise definitions. .

Definition. Definitions are descriptive texts at the level of mathematical
precision. We present definitions either as shown in the present definition, as
numbered and highlighted paragraphs, or as mathematical texts or as RSL
specifications. .

Principles. Principles are here seen as comprehensive and fundamental laws,
doctrines, assumptions or rules (codes) of conduct underlying the pursuit of
software engineering. It is our principle to enunciate characterisations, defini-
tions, principles, techniques and tools, and to bring many examples. .

Techniques. Techniques are here concerned with the manner in which tech-
nical details are treated by the software engineer. The techniques of presenting
highlighted characterisations, definitions, principles, techniques and tools are
basically those used for descriptive texts. .

Tools. Tools are here seen as intellectual (or even software) devices that
aid in accomplishing a task, that is, are used in performing an operation or
necessary in the practice of the profession of software engineering. The tool
for presenting highlighted characterisations, definitions, principles, techniques
and tools is that of English. .

Example 1.6 The previous five boldface highlighted paragraphs together

exemplified the ideas enunciated in this section. They all ended with the “W”
symbol; and so does does this example. .

1.6 The Very Bases of Software

This section previews the core issues of software engineering. The treatment
here is, perhaps, a bit taxing, that is, it requires careful reading. You may
wish to skip this section and return to read it after having studied, for
example, the first half of this volume!

34 1 Introduction

Before introducing types, functions and relations, algebras, and logic, we must,
however, first cover some even more basic material: What is meant by didactics
and paradigms, and what is meant by semiotics, that is, pragmatics, semantics
and syntax. In other words, this section collects and presents a number of basic
concepts, and as such it is a prelude to Part II of this volume.

1.6.1 Didactics and Paradigms

Life is rather a subject of wonder, than of didactics
Ralph Waldo Emerson 1803-1882

We are guided by paradigms, see Sect. 1.6.3. Good paradigms, we claim, reflect
reasonably clarified didactics.

The Shorter Oxford English Dictionary [350] (OED) defines: didactics hav-
ing the character or manner of a teacher; characterised by giving instructions;
instructive; preceptive; and systematic instruction.

We shall, in these volumes, take the word didactics to mean the basic
ideas of practical or theoretical nature upon which the practice of a field of
human activity is (best, or reasonably) pursued. We claim that our rendi-
tion is commensurate with the 0ED explanation. There are other didactic and
practical bases for software engineering than just types, functions, algebras
and mathematical logic such as mentioned earlier. Although we shall in later
volumes devote separate chapters to covering these other didactic bases in
detail, we shall, in order that we may be able to refer to the very essence of
these bases (before we reach those chapters), cover the concepts briefly. They
are semiotics and descriptions.

1.6.2 Pragmatics, Semantics and Syntax

Semiotics can, for our purposes, fruitfully be understood as the study and
knowledge of pragmatics, semantics and syntax of language. That is, respec-
tively the use, meaning, and analysis and synthesis of language texts.

Pragmatics

Characterisation. By the pragmatics of a language we mean its use in social
context: Why a particular expression used? What “ultimate” motive lies
(seems to lie) behind an utterance, an expression. .

We have some ulterior motives when specifying: What is it? What are they?
Pragmatics, characterised somewhat convolutely, is that which cannot be for-
malised! Pragmatics is the “real thing”. Syntax and semantics enable us to
convey and, it is hoped, to understand, those “real things”!

Software specification languages and, more generally, computing systems
specification languages serve to describe domains, prescribe requirements and

1.6 The Very Bases of Software 35

specify software designs. Thus their pragmatics, as well as the pragmatics of
the individual domain, requirements and software design specifications, are
that they are able to cover that spectrum, and that they, individually, allow
for certain kinds of for example trustworthy and manageable development.
Thus the design of any specification language, such as B, Cafe-0BJ, CASL,
RSL, VDM-SL and Z, has taken into account which target applications that
language best caters to. The main specification language of these volumes
is RSL. As we shall see, RSL covers a rather broad spectrum. Two, amongst
several more, important aspects of RSL are that it allows modular, reusable
development and provably correct development.

Semantics

Characterisation. Semantic is about the meaning of what we express syn-
tactically. -

We shall later sharpen this characterisation, but first we express some deeply
felt dogmas. Semantics, in some sense, is what it is all about abstractly! Prag-
matics, in that sense, is what it is about concretely, in a specific social, human
context. If we cannot express the essence abstractly, then we have not under-
stood it. Then we can only have little trust in any software derived from
such an incomplete understanding. Software is, by nature, abstract and is
necessarily conceptual. Therefore it is more important to capture, mentally,
the semantics before we search for a way to express it syntactically. Our best
abstractions are those of mathematics. Mathematics is the science of abstrac-
tion.

So what is the semantics of RSL specifications? To appreciate and under-
stand the choice made for the semantics of RSL, let us consider some very
basic RSL specifications. Usually a specification names “things”.

Example 1.7 Semantics of Class Specifications: Our example is just that: It
does not model anything “practical”, but illustrates, at a minimum cost of
symbols, what we wish to say about semantics.

[0] scheme EXAMPLE =

[1] class

[2] type

[3] A = Int, B = Nat
[4] value

[5] A B

[6] axiom

[7] [bijection]

(8] Va:Aja" A « aZa’ = f(a)#f(a’)
[9] end

36 1 Introduction

two types of values, A and B (lines [2-3]), (iv) a function, a value, f (lines [4-5])
that maps As (integers) into Bs (natural numbers), and (v) an axiom bijection
(lines [6-7]) that expresses that f for distinct arguments yields distinct results.

Of the five things named only four designate specific mathematical entities.
The axiom name, always enclosed in brackets, [...], may be put before the
axiom keyword, and is there for a pragmatic reason so that we can refer to
that axiom. Thus axiom names are optional and can be omitted.

Now what semantics does RSL ascribe to the identifiers EXAMPLE, A, B
and f? We start “inside out”: A and B stand for the sets of integer, respec-
tively sets of natural number values, and f for any function that satisfies the
axiom. The class definition, EXAMPLE, etc. (lines [0-8]) now stands for a set
of models, where a model provides a mapping from identifiers, such as A, B
and f, into their meanings. All members of the set of models have A and B
stand for the same universes of integers, respectively natural numbers, but
each member of the set has f map into a distinct function from A into B, such
that this set of models exhibits all such functions f in fact infinitely many!
Hence EXAMPLE stands for an infinite set of models.

We summarise: Each type and value thing named by the specifier, e.g.,
you, in a specification, has a meaning. And that meaning may determinis-
tically be a value, or a specific set of (typed) values, as for type names, or
nondeterministically be one or another from amongst a possible infinity of
values, as for the illustrated function name. So, functions can be values. The
set of all values contains the set of all functions. Combining two or more such
meaningful identifiers as here in a class expression, or just as a juxtaposition
of definitions without the class keyword and class name results in a named,
respectively unnamed set of (one or more) models. Axioms may be so con-
straining that there may be no model that satisfies the axioms. Or there may
be a finite number of models, including just one!

Let us “display” the set of models for the class expression (lines [0-8]):

{
(A {.-2,-1,0,12,... },
B {0,12,..},
f— Xa -« if a<0 then
3x(2«(—a)) else if a=0 then 0 else 3x(1+2*a) end end,

[A-{..—-2-1,0,12,.. },
B~ {012,..1},
f— Aa - if a<0 then
5%(2x(—a)) else if a=0 then 0 else 5%(1+2xa) end end,

[A-{..—-2,-1,012,.. },
B~ {012,..},
f —)Xa - if a<0 then

1.6 The Very Bases of Software 37

7x(2x%(—a)) else if a=0 then 0 else 7x(1+2xa) end end,

}

By Aa:A+E(a) we mean the function which when applied to an argument z in
A yields a value as prescribed by the function body E(x), i.e., where all free

a in E(a) have been replaced by z. By the ellipses, that is, ..., we intend to
show that the model may contain parts which map other identifiers into other
mathematical values. .

In the rest of these volumes we shall return, again and again, to semantic
models of the above kind.

Syntax

Characterisation. Syntax is about how we can, in our case, write down
specifications: rules of form, basic forms and their proper compositions. These
rules for formal languages are to be of such a nature that the forms, that is,
the language expressions, can be analysed, and such that, from the analysis,
one can ‘construct’ (construe) the meaning. .

Syntax is, of course, important, but its importance is secondary to semantics!
We should strive for semantic clarity, then syntactic elegance. If the idea to
be expressed is “muddled”, then no matter how beautiful the syntactic forms
may be, humans will not easily understand them!

You have already seen some RSL syntax, for example, the scheme definition
of Example 1.7. Since RSL is aimed at a rather wide spectrum of applications
and at a full spectrum of development, from descriptions of actual domains,
via requirements prescriptions to abstract software designs, the RSL syntax is
rather “rich”. That is: has many entities. We shall try unravel these, gently,
as we go along in these volumes, and only introduce the syntax that we need
up to any given point in these volumes.

The syntax of class expressions, as exemplified above, thus appears to be
covered by:

<class_expression> ::=
class
type
<type_definitions>
value
<value_definitions>
axiom
<axiom_definitions>
end

38 1 Introduction

But since there are many more aspects to class expressions than illustrated
so far, the syntax is more complicated than hinted at above.

When explaining a specification language construct we ought systemati-
cally cover its general forms and its static semantics, that is: which constraints
limit the use of for example identifiers, operator symbols, keywords, delim-
iters, etc. and its meaning. We will, however, only give cursory explanations,
leaving details to the RSL Reference Handbook [236].

1.6.3 On Specification and Programming Paradigms

We are guided by paradigms:

(1) Paradigm: thing copied.

(2) Model: pattern, standard, rule, original, mirror;
(3) Prototype: archetype, antetype;

(4) Precedent: lead, representative, epitome

Roget’s International Thesaurus [445].
Using paradigms we construct artifacts:

The universe ... was made exactly conformable
to its Paradigme, or universal Examplar.

(The Shorter Oxford English Dictionary [350].)

These volumes are structured according to a set of specification paradigms.
And these again rest on what we believe are the didactic bases of the practice
and theory of software engineering.

So which are the “most basic” paradigms? Generally, we can say this:
Abstraction is a specification paradigm; so is “favouring, encouraging” non-
determinism in specification. Respective programming styles — functional
(also referred to as applicative), logic, imperative, and parallel program-
ming — represent a programming paradigm. Favouring a specification style
that allows formally verifiable transformations of (more) abstract specifica-
tions into (more) concrete ones, and these finally into ‘executable programs
— is a software development paradigm. There are then paradigms within
paradigms: Practicing the functional specification (or the functional pro-
gramming) paradigm may then be according to, for example, the continu-
ation [59, 63, 315, 392,404, 440,471, 487,513, 514] programming paradigm.
Likewise practicing the parallel specification (or the parallel programming)
paradigm may then be according to, for example, the CSP, i.e., the communi-
cating sequential processes, [287,288,448] paradigm, and so on.

1.6.4 Descriptions, Prescriptions and Specifications

We shall, in these volumes, try strictly to use the following terms consistently
and according to the following overlapping classification:

1.6 The Very Bases of Software 39

e Description: As a general term encompassing the below, and as a special
term in connection with textual characterisations of domains.

e Prescription: As a specific term used primarily in connection with require-
ments.

e Specification: As a general term encompassing the above, and as a special
term in connection with textual characterisations of software designs.

e Definition: As a general term encompassing formalisations, also of the
above; and as a special term in connection with certain textual char-
acterisations, namely and specifically, those parts that constitute proper
definitions as distinguished from designations and refutable assertions.

Software Specifications, Requirements Prescriptions and Domain
Descriptions

To direct a computer to perform any computation it must be so instructed.
These instructions form a program. A program is a finite specification of
possibly infinite sets of possibly infinite computations. So, descriptions, pre-
scriptions and specifications form the most essential object of our endeavour:
to develop software. We first explain the idea of specification, then the idea
of prescription, and finally we explain the idea of description.

We specify computations; thus: to design software we specify how the
computations should proceed: the how is an end goal. We prescribe the what,
that is, the requirements that we expect the subsequently designed software
to fulfill. And, before all that we describe the actual world in which these
computations are to occur, that is, the (application) domain.

1.6.5 Metalanguages

We use language, say M, to describe or “to talk about” other languages, say
L. One cannot use L to describe L. It leads to nonsense. M is said to be a
metalanguage for £. To describe M we need another metalanguage, or, as we
could call it, a meta-metalanguage M'.

The language, say M, in which we explain mathematics, i.e., the notation
of mathematics and its meaning, N, is thus necessarily different from A. We
do not describe M.

1.6.6 Summary

We have briefly introduced the notions of didactics and paradigms; and of
semiotics: pragmatics, semantics and syntax. We have also introduced docu-
ments: informative, descriptive and analytic, as well as (domain) descriptions,
(requirements) prescriptions and (software) specifications. We have finally in-
troduced the notions of metalanguages, and object languages.

We shall later cover these in quite some detail. Suffice it, for now, to say
that the reader now knows that these are basic concepts whose reasonable un-
derstanding is indispensable when pursuing professional software engineering.

40 1 Introduction

1.7 Aims and Objectives

By the ‘aims of these volumes’ we mean the topics that we will be covering or
dealing with. By the ‘objectives of these volumes’ we understand that which
we wish to achieve through covering certain material.

1.7.1 Aims
The Main Aims

The main aims are to teach you general software engineering principles, tech-
niques and tools. That is (in Vol. 3): those of domain engineering, of require-
ments engineering and of software design. Among these we additionally single
out and teach principles, techniques and tools of abstraction and modelling
in (Vols. 1-2); of description (in Vol. 3); and of documentation (in Vol. 3).

Some Other Aims

Additional aims are those of providing appropriate mathematical foundations,
(Vol. 1, Part II), of ensuring appropriate understanding of semiotics issues:
pragmatics, semantics and syntax (Vol. 2, Part IV), and of doing all of this
within an appropriate framework of models and definitions (Vol. 3, Chaps. 4
and 6).

An aim, altogether “orthogonal” to the other aims above, is to illustrate
development components of software for the support of large, distributed and
concurrent infrastructure subsystems and systems.

1.7.2 Objectives
The Main Objectives

The main objectives are to help ensure that you become a professional engi-
neer within software, to thus help ensure that the software (cum computing)
systems, in whose development you are involved, become trustworthy systems
of highest attainable quality, and through our emphasis on exemplifying the
development of software (cum computing) systems for infrastructure compo-
nents to help ensure that you, with colleagues, believably can develop highly
sophisticated systems.

Some Other Objectives

Other objectives are to put the broader concerns of software engineering,
such as treated in these volumes, in the context of other, indispensable and
more specialised computing science disciplines such as artificial intelligence
and knowledge-based systems, compiler systems, concurrent, safety-critical

1.9 Exercises 41

and real-time application systems, database management systems, distributed
systems, operating systems, secure, en- and decryptable systems, and so on.
Another objective is to show that formal techniques are applicable, in all
phases, stages and steps of development, and to all kinds of computing sys-
tems.

1.7.3 Discussion

The usual aims and objectives section has been dispensed with, but with a
change: usually the two concepts, aims and objectives, are “lumped” into one
treatment. Here we have separated them, properly.

There is a conceptual triangle: there is the author of these volumes; there
is you, the reader, who studies its contents; and there is the most important
thing: the subject itself: software engineering. Aims are about which software
engineering topics the author wishes to cover, i.e., to teach you. Objectives
are about which effects, with respect to the discipline of software engineering,
the learning of these topics is to have on you. In other words aims are about
‘what’; objectives are about ‘why’.

1.8 Bibliographical Notes

This book, all three volumes of it, is different from most other textbooks on
software engineering. We shall single out the following major ways in which
this book differs from the following textbooks: [423,430,475,512]. First they
really are short on real development examples: there are hardly any real ex-
amples of specification and design. The present book, all three volumes of it,
hinges crucially on real examples of specification and design. Second, when
they bring a chapter on formal methods, do so in a separate chapter “tucked
away” somewhere, ad hoc. The present book emphasises the use of formal
techniques in all phases, stages and steps of development. Third, they, also
including [240], do not bring any material on domain engineering. It is perhaps
the last thing, domain engineering, in which this book is really new.

One very nice book, [240], does show a lot of formal techniques. Qurs
show almost all, if not all, of these techniques, and many, many more, and
puts these techniques in the context of an overall methodology. The book by
Watts Humphrey [298] is a wise book on management. “Hard to beat”. The
book by Hans van Vliet [512] is, in our mind, the best overall of the above-
referenced books when it comes to these practical and management issues.

1.9 Exercises

Exercise 1.1. The Sciences: Can you define what we, in these volumes, mean
by computer science, and what we mean by computing science.

42 1 Introduction

Exercise 1.2. Project Management Issues: Can you list some of the more
practical, i.e., project management issues of software engineering.

Exercise 1.3. The Triptych of Software Engineering: Please list the three
main phases of software engineering as put forward in this volume.

Exercise 1.4. Documentation: Can you list the three major classes of doc-
uments (as put forward in this volume) and, within each of the classes, can
you list some of the major document parts.

Exercise 1.5. Formal Techniques and Formal Languages: Please define what
these volumes mean by formal techniques and by formal languages.

Exercise 1.6. Method and Methodology: What does these volumes mean by
(an efficient) method, and by methodology?

Exercise 1.7. The Very Bases: What does this chapter hint at as the meaning
of a specification?

2 Springer
http://www.springer.com/978-3-540-21149-5

Software Engineering 1

Abstraction and Modelling

Bjgrner, D,

20086, XL, 714 p. 38 illus., Hardcover
ISEM: 978-3-540-21149-5

