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Models of Financial Markets
on Finite Probability Spaces

2.1 Description of the Model

In this section we shall develop the theory of pricing and hedging of derivative
securities in financial markets.

In order to reduce the technical difficulties of the theory of option pricing
to a minimum, we assume throughout this chapter that the probability space
Ω underlying our model will be finite, say, Ω = {ω1, ω2, . . . , ωN} equipped
with a probability measure P such that P[ωn] = pn > 0, for n = 1, . . . , N .
This assumption implies that all functional-analytic delicacies pertaining to
different topologies on L∞(Ω,F ,P), L1(Ω,F ,P), L0(Ω,F ,P) etc. evaporate,
as all these spaces are simply R

N (we assume w.l.o.g. that the σ-algebra F
is the power set of Ω). Hence all the functional analysis, which we shall need
in later chapters for the case of more general processes, reduces in the setting
of the present chapter to simple linear algebra. For example, the use of the
Hahn-Banach theorem is replaced by the use of the separating hyperplane
theorem in finite dimensional spaces.

Nevertheless we shall write L∞(Ω,F ,P), L1(Ω,F ,P) etc. (knowing very
well that in the present setting these spaces are all isomorphic to R

N ) to
indicate, which function spaces we shall encounter in the setting of the general
theory. It also helps to see if an element of R

N is a contingent claim or an
element of the dual space, i.e. a price vector.

In addition to the probability space (Ω,F ,P) we fix a natural number
T ≥ 1 and a filtration (Ft)T

t=0 on Ω, i.e., an increasing sequence of σ-algebras.
To avoid trivialities, we shall always assume that FT = F ; on the other hand,
we shall not assume that F0 is trivial, i.e. F0 = {∅, Ω}, although this will
be the case in most applications. But for technical reasons it will be more
convenient to allow for general σ-algebras F0.

We now introduce a model of a financial market in not necessarily dis-
counted terms. The rest of Sect. 2.1 will be devoted to reducing this situation
to a model in discounted terms which, as we shall see, will make life much
easier.
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Readers who are not so enthusiastic about this mainly formal and elemen-
tary reduction might proceed directly to Definition 2.1.4. On the other hand,
we know from sad experience that often there is a lot of myth and confusion
arising in this operation of discounting; for this reason we decided to devote
this section to the clarification of this issue.

Definition 2.1.1. A model of a financial market is an R
d+1-valued stochastic

process ̂S = (̂St)T
t=0 = (̂S0

t , ̂S1
t , . . . , ̂Sd

t )T
t=0, based on and adapted to the filtered

stochastic base (Ω,F , (Ft)T
t=0,P). We shall assume that the zero coordinate

̂S0 satisfies ̂S0
t > 0 for all t = 0, . . . , T and ̂S0

0 = 1.

The interpretation is the following. The prices of the assets 0, . . . , d are
measured in a fixed money unit, say Euros. For 1 ≤ j ≤ d they are not
necessarily non-negative (think, e.g., of forward contracts). The asset 0 plays
a special role. It is supposed to be strictly positive and will be used as a nu-
méraire. It allows us to compare money (e.g., Euros) at time 0 to money at
time t > 0. In many elementary models, ̂S0 is simply a bank account which
in case of constant interest rate r is then defined as ̂S0

t = ert. However, it
might also be more complicated, e.g. ̂S0

t = exp(r0h+ r1h+ · · ·+ rt−1h) where
h > 0 is the length of the time interval between t − 1 and t (here kept fixed)
and where rt−1 is the stochastic interest rate valid between t− 1 and t. Other
models are also possible and to prepare the reader for more general situations,
we only require ̂S0

t to be strictly positive. Notice that we only require that
̂S0

t to be Ft-measurable and that it is not necessarily Ft−1-measurable. In
other words, we assume that the process ̂S0 = (̂S0

t )T
t=0 is adapted, but not

necessarily predictable.
An economic agent is able to buy and sell financial assets. The decision

taken at time t can only use information available at time t which is modelled
by the σ-algebra Ft.

Definition 2.1.2. A trading strategy ( ̂Ht)T
t=1 = ( ̂H0

t , ̂H1
t , . . . , ̂Hd

t )T
t=1 is an

R
d+1-valued process which is predictable, i.e. ̂Ht is Ft−1-measurable.

The interpretation is that between time t − 1 and time t, the agent holds
a quantity equal to ̂Hj

t of asset j. The decision is taken at time t − 1 and
therefore, ̂Ht is required to be Ft−1-measurable.

Definition 2.1.3. A strategy ( ̂Ht)T
t=1 is called self financing if for every t =

1, . . . , T − 1, we have
(

̂Ht, ̂St

)

=
(

̂Ht+1, ̂St

)

(2.1)

or, written more explicitly,

d
∑

j=0

̂Hj
t
̂Sj

t =
d

∑

j=0

̂Hj
t+1

̂Sj
t . (2.2)

The initial investment required for a strategy is ̂V0 = ( ̂H1, ̂S0) =
∑d

j=0
̂Hj

1
̂Sj
0.
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The interpretation goes as follows. By changing the portfolio from ̂Ht−1

to ̂Ht there is no input/outflow of money. We remark that we assume that
changing a portfolio does not trigger transaction costs. Also note that ̂Hj

t may
assume negative values, which corresponds to short selling asset j during the
time interval ]tj−1, tj ].

The Ft-measurable random variable defined in (2.1) is interpreted as the
value ̂Vt of the portfolio at time t defined by the trading strategy ̂H:

̂Vt = ( ̂Ht, ̂St) = ( ̂Ht+1, ̂St).

The way in which the value ( ̂Ht, ̂St) evolves can be described much easier
when we use discounted prices using the asset ̂S0 as numéraire. Discounting
allows us to compare money at time t to money at time 0. For instance we
could say that ̂S0

t units of money at time t are the “same” as 1 unit of money,
e.g., Euros, at time 0. So let us see what happens if we replace prices ̂S by
discounted prices

(

bS
bS0

)

=
(

bS0

bS0 ,
bS1

bS0 , . . . ,
bSd

bS0

)

. We will use the notation

Sj
t :=

̂Sj
t

̂S0
t

, for j = 1, . . . , d and t = 0, . . . , T. (2.3)

There is no need to include the coordinate 0, since obviously S0
t = 1. Let us

now consider ( ̂Ht)T
t=1 = ( ̂H0

t , ̂H1
t , . . . , ̂Hd

t )T
t=1 to be a self financing strategy

with initial investment ̂V0; we then have

̂V0 =
d

∑

j=0

̂Hj
1
̂Sj
0 = ̂H0

1 +
d

∑

j=1

̂Hj
1
̂Sj
0 = ̂H0

1 +
d

∑

j=1

̂Hj
1Sj

0,

since by definition ̂S0
0 = 1.

We now write (Ht)T
t=1 = (H1

t , . . . , Hd
t )T

t=1 for the R
d-valued process ob-

tained by discarding the 0’th coordinate of the R
d+1-valued process ( ̂Ht)T

t=1 =
( ̂H0

t , ̂H1
t , . . . , ̂Hd

t )T
t=1, i.e., Hj

t = ̂Hj
t for j = 1, . . . , d. The reason for dropping

the 0’th coordinate is, as we shall discover in a moment, that the holdings
̂H0

t in the numéraire asset S0
t will be no longer of importance when we do the

book-keeping in terms of the numéraire asset, i.e., in discounted terms.

One can make the following easy, but crucial observation: for every R
d-

valued, predictable process (Ht)T
t=1 = (H1

t , . . . , Hd
t )T

t=1 there exists a unique
self financing R

d+1-valued predictable process ( ̂Ht)T
t=1 = ( ̂H0

t , ̂H1
t , . . . , ̂Hd

t )T
t=1

such that ( ̂Hj
t )T

t=1 = (Hj
t )T

t=1 for j = 1, . . . , d and ̂H0
1 = 0. Indeed, one de-

termines the values of ̂H0
t+1, for t = 1, . . . , T − 1, by inductively applying

(2.2). The strict positivity of (̂S0
t )T−1

t=0 implies that there is precisely one func-
tion ̂H0

t+1 such that equality (2.2) holds true. Clearly such a function ̂H0
t+1 is
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Ft-measurable. In economic terms the above argument is rather obvious: for
any given trading strategy (Ht)T

t=1 = (H1
t , . . . , Hd

t )T
t=1 in the “risky” assets

j = 1, . . . , d, we may always add a trading strategy ( ̂H0
t )T

t=1 in the numé-
raire asset 0 such that the total strategy becomes self financing. Moreover,
by normalising ̂H0

1 = 0, this trading strategy becomes unique. This can be
particularly well visualised when interpreting the asset 0 as a cash account,
into which at all times t = 1, . . . , T − 1, the gains and losses occurring from
the investments in the d risky assets are absorbed and from which the in-
vestments in the risky assets are financed. If we normalise this procedure by
requiring ̂H0

1 = 0, i.e., by starting with an empty cash account, then clearly
the subsequent evolution of the holdings in the cash account is uniquely de-
termined by the holdings in the “risky” assets 1, . . . , d. From now on we fix
two processes ( ̂Ht)T

t=1 = ( ̂H0
t , ̂H1

t , . . . , ̂Hd
t )T

t=1 and (Ht)T
t=1 = (H1

t , . . . , Hd
t )T

t=1

corresponding uniquely one to each other in the above described way.
Now one can make a second straightforward observation: the investment

( ̂H0
t )T

t=1 in the numéraire asset does not change the discounted value (Vt)T
t=0

of the portfolio. Indeed, by definition — and rather trivially — the numéraire
asset remains constant in discounted terms (i.e., expressed in units of itself).

Hence the discounted value Vt of the portfolio

Vt =
̂Vt

̂S0
t

, t = 0, . . . , T,

depends only on the R
d-dimensional process (Ht)T

t=1 = (H1
t , . . . , Hd

t )T
t=1.

More precisely, in view of the normalisation ̂S0
0 = 1 and ̂H0

1 = 0 we have

̂V0 = V0 =
d

∑

j=1

Hj
1Sj

0.

For the increment ΔVt+1 = Vt+1 − Vt we find, using (2.2),

ΔVt+1 = Vt+1 − Vt =
̂Vt+1

̂S0
t+1

−
̂Vt

̂S0
t

=
d

∑

j=0

̂Hj
t+1

̂Sj
t+1

̂S0
t+1

−
d

∑

j=0

̂Hj
t+1

̂Sj
t

̂S0
t

= ̂H0
t+1(1 − 1) +

d
∑

j=1

̂Hj
t+1

(

Sj
t+1 − Sj

t

)

=
(

Hj
t+1, ΔSj

t+1

)

,

where ( . , . ) now denotes the inner product in R
d.

In particular, the final value VT of the portfolio becomes (in discounted
units)
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VT = V0 +
T

∑

t=1

(Ht, ΔSt) = V0 + (H · S)T ,

where (H · S)T =
∑T

t=1 (Ht, ΔSt) is the notation for a stochastic integral
familiar from the theory of stochastic integration. In our discrete time frame-
work the “stochastic integral” is simply a finite Riemann sum.

In order to know the value VT of the portfolio in real money, we still
would have to multiply by ̂S0

T , i.e., we have ̂VT = VT
̂S0

T . This, however, is
rarely needed.

We can therefore replace Definition 2.1.2 by the following definition in
discounted terms, which will turn out to be much easier to handle.

Definition 2.1.4. Let S = (S1, . . . , Sd) be a model of a financial market
in discounted terms. A trading strategy is an R

d-valued process (Ht)T
t=1 =

(H1
t , H2

t , . . . , Hd
t )T

t=1 which is predictable, i.e., each Ht is Ft−1-measurable.
We denote by H the set of all such trading strategies.

We then define the stochastic integral H · S as the R-valued process ((H ·
S)t)T

t=0 given by

(H · S)t =
t

∑

u=1

(Hu, ΔSu), t = 0, . . . , T, (2.4)

where ( . , . ) denotes the inner product in R
d. The random variable

(H · S)t =
t

∑

u=1

(Hu, ΔSu)

models — when following the trading strategy H — the gain or loss occurred
up to time t in discounted terms.

Summing up: by following the good old actuarial tradition of discounting,
i.e. by passing from the process ̂S, denoted in units of money, to the process S,
denoted in terms of the numéraire asset (e.g., the cash account), things become
considerably simpler and more transparent. In particular the value process V
of an agent starting with initial wealth V0 = 0 and subsequently applying the
trading strategy H, is given by the stochastic integral Vt = (H · S)t defined
in (2.4).

We still emphasize that the choice of the numéraire is not unique; only
for notational convenience we have fixed it to be the asset indexed by 0. But
it may be chosen as any traded asset, provided only that it always remains
strictly positive. We shall deal with this topic in more detail in Sect. 2.5 below.

From now on we shall work in terms of the discounted R
d-valued process,

denoted by S.
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2.2 No-Arbitrage and the Fundamental Theorem
of Asset Pricing

Definition 2.2.1. We call the subspace K of L0(Ω,F ,P) defined by

K = {(H · S)T | H ∈ H} ,

the set of contingent claims attainable at price 0, where H denotes the set of
predictable, R

d-valued processes H = (Ht)T
t=1.

We leave it to the reader to check that K is indeed a vector space.
The economic interpretation is the following: the random variables f =

(H · S)T are precisely those contingent claims, i.e., the pay-off functions at
time T , depending on ω ∈ Ω, that an economic agent may replicate with zero
initial investment by pursuing some predictable trading strategy H.

For a ∈ R, we call the set of contingent claims attainable at price a the
affine space Ka = a + K, obtained by shifting K by the constant function a,
in other words, the space of all the random variables of the form a+(H ·S)T ,
for some trading strategy H. Again the economic interpretation is that these
are precisely the contingent claims that an economic agent may replicate with
an initial investment of a by pursuing some predictable trading strategy H.

Definition 2.2.2. We call the convex cone C in L∞(Ω,F ,P) defined by

C = {g ∈ L∞(Ω,F ,P) | there exists f ∈ K with f ≥ g} .

the set of contingent claims super-replicable at price 0.

Economically speaking, a contingent claim g ∈ L∞(Ω,F ,P) is super-
replicable at price 0, if we can achieve it with zero net investment by pursuing
some predictable trading strategy H. Thus we arrive at some contingent claim
f and if necessary we “throw away money” to arrive at g. This operation of
“throwing away money” or “free disposal” may seem awkward at this stage,
but we shall see later that the set C plays an important role in the develop-
ment of the theory. Observe that C is a convex cone containing the negative
orthant L∞

− (Ω,F ,P). Again we may define Ca = a + C as the contingent
claims super-replicable at price a, if we shift C by the constant function a.

Definition 2.2.3. A financial market S satisfies the no-arbitrage condition
(NA) if

K ∩ L0
+(Ω,F ,P) = {0}

or, equivalently,
C ∩ L0

+(Ω,F ,P) = {0}

where 0 denotes the function identically equal to zero.
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Recall that L0(Ω,F ,P) denotes the space of all F-measurable real-valued
functions and L0

+(Ω,F ,P) its positive orthant.
We now have formalised the concept of an arbitrage possibility: it means

the existence of a trading strategy H such that — starting from an initial in-
vestment zero — the resulting contingent claim f = (H · S)T is non-negative
and not identically equal to zero. Such an opportunity is of course the dream
of every arbitrageur. If a financial market does not allow for arbitrage oppor-
tunities, we say it satisfies the no-arbitrage condition (NA).

Proposition 2.2.4. Assume S satisfies (NA) then

C ∩ (−C) = K.

Proof. Let g ∈ C ∩ (−C) then g = f1 − h1 with f1 ∈ K, h1 ∈ L∞
+ and

g = f2 + h2 with f2 ∈ K and h2 ∈ L∞
+ . Then f1 − f2 = h1 + h2 ∈ L∞

+ and
hence f1 − f2 ∈ K ∩L∞

+ = {0}. It follows that f1 = f2 and h1 +h2 = 0, hence
h1 = h2 = 0. This means that g = f1 = f2 ∈ K. �

Definition 2.2.5. A probability measure Q on (Ω,F) is called an equivalent
martingale measure for S, if Q ∼ P and S is a martingale under Q, i.e.,
EQ[St+1|Ft] = St for t = 0, . . . , T − 1.

We denote by Me(S) the set of equivalent martingale measures and by
Ma(S) the set of all (not necessarily equivalent) martingale probability mea-
sures. The letter a stands for “absolutely continuous with respect to P” which
in the present setting (finite Ω and P having full support) automatically holds
true, but which will be of relevance for general probability spaces (Ω,F ,P)
later. Note that in the present setting of a finite probability space Ω with
P[ω] > 0 for each ω ∈ Ω, we have that Q ∼ P iff Q[ω] > 0, for each ω ∈ Ω. We
shall often identify a measure Q on (Ω,F) with its Radon-Nikodým derivative
dQ
dP ∈ L1(Ω,F ,P). In the present setting of finite Ω, this simply means

dQ
dP

(ω) =
Q[ω]
P[ω]

.

In statistics this quantity is also called the likelihood ratio.

Lemma 2.2.6. For a probability measure Q on (Ω,F) the following are equiv-
alent:

(i) Q ∈ Ma(S),
(ii) EQ[f ] = 0, for all f ∈ K,
(iii) EQ[g] ≤ 0, for all g ∈ C.

Proof. The equivalences are rather trivial. (ii) is tantamount to the very defi-
nition of S being a martingale under Q, i.e., to the validity of

EQ[St | Ft−1] = St−1, for t = 1, . . . , T. (2.5)
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Indeed, (2.5) holds true iff for each Ft−1-measurable set A we have EQ[χA(St−
St−1)] = 0 ∈ R

d, in other words EQ[(xχA, ΔSt)] = 0, for each x. By linearity
this relation extends to K which shows (ii).

The equivalence of (ii) and (iii) is straightforward. �
After having fixed these formalities we may formulate and prove the central

result of the theory of pricing and hedging by no-arbitrage, sometimes called
the “Fundamental Theorem of Asset Pricing”, which in its present form (i.e.,
finite Ω) is due to M. Harrison and S.R. Pliska [HP 81].

Theorem 2.2.7 (Fundamental Theorem of Asset Pricing). For a fi-
nancial market S modelled on a finite stochastic base (Ω,F , (Ft)T

t=0,P), the
following are equivalent:

(i) S satisfies (NA),
(ii) Me(S) �= ∅.

Proof. (ii) ⇒ (i): This is the obvious implication. If there is some Q ∈ Me(S)
then by Lemma 2.2.6 we have that

EQ[g] ≤ 0, for g ∈ C.

On the other hand, if there were g ∈ C∩L∞
+ , g �= 0, then, using the assumption

that Q is equivalent to P, we would have

EQ[g] > 0,

a contradiction.

(i) ⇒ (ii) This implication is the important message of the theorem which
will allow us to link the no-arbitrage arguments with martingale theory. We
give a functional analytic existence proof, which will be extendable — in spirit
— to more general situations.

By assumption the space K intersects L∞
+ only at 0. We want to separate

the disjoint convex sets L∞
+ \ {0} and K by a hyperplane induced by a linear

functional Q ∈ L1(Ω,F ,P). In order to get a strict separation of K and
L∞

+ \{0} we have to be a little careful since the standard separation theorems
do not directly apply.

One way to overcome this difficulty (in finite dimension) is to consider the
convex hull of the unit vectors

(

1{ωn}
)N

n=1
in L∞(Ω,F ,P) i.e.

P :=

{

N
∑

n=1

μn1{ωn}

∣

∣

∣

∣

∣

μn ≥ 0,

N
∑

n=1

μn = 1

}

.

This is a convex, compact subset of L∞
+ (Ω,F ,P) and, by the (NA) assump-

tion, disjoint from K. Hence we may strictly separate the convex compact set
P from the convex closed set K by a linear functional Q ∈ L∞(Ω,F ,P)∗ =
L1(Ω,F ,P), i.e., find α < β such that
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(Q, f) ≤ α, for f ∈ K,

(Q, h) ≥ β, for h ∈ P.

Since K is a linear space, we have α ≥ 0 and may replace α by 0. Hence
β > 0. Defining by I the constant vector I = (1, . . . , 1), we have (Q, I ) > 0.
We may normalise Q such that (Q, I ) = 1. As Q is strictly positive on each
1{ωn}, we therefore have found a probability measure Q on (Ω,F) equivalent
to P such that condition (ii) of Lemma 2.2.6 holds true. In other words, we
found an equivalent martingale measure Q for the process S. �

The name “Fundamental Theorem of Asset Pricing” was, as far as we are
aware, first used in [DR87]. We shall see that it plays a truly fundamental role
in the theory of pricing and hedging of derivative securities (or, synonymously,
contingent claims, i.e., elements of L0(Ω,F ,P)) by no-arbitrage arguments.

It seems worthwhile to discuss the intuitive interpretation of this basic
result: a martingale S (say, under the original measure P) is a mathematical
model for a perfectly fair game. Applying any strategy H ∈ H we always have
E[(H · S)T ] = 0, i.e., an investor can neither win nor lose in expectation.

On the other hand, a process S allowing for arbitrage, is a model for an
utterly unfair game: choosing a good strategy H ∈ H, an investor can make
“something out of nothing”. Applying H, the investor is sure not to lose, but
has strictly positive probability to gain something.

In reality, there are many processes S which do not belong to either of
these two extreme classes. Nevertheless, the above theorem tells us that there
is a sharp dichotomy by allowing to change the odds. Either a process S is
utterly unfair, in the sense that it allows for arbitrage. In this case there is
no remedy to make the process fair by changing the odds: it never becomes
a martingale. In fact, the possibility of making an arbitrage is not affected
by changing the odds, i.e., by passing to an equivalent probability Q. On the
other hand, discarding this extreme case of processes allowing for arbitrage,
we can always pass from P to an equivalent measure Q under which S is a
martingale, i.e., a perfectly fair game. Note that the passage from P to Q
may change the probabilities (the “odds”) but not the impossible events (i.e.
the null sets).

We believe that this dichotomy is a remarkable fact, also from a purely
intuitive point of view.

Corollary 2.2.8. Let S satisfy (NA) and let f ∈ L∞(Ω,F ,P) be an attain-
able contingent claim. In other words f is of the form

f = a + (H · S)T , (2.6)

for some a ∈ R and some trading strategy H. Then the constant a and the
process (H · S)t are uniquely determined by (2.6) and satisfy, for every Q ∈
Me(S),

a = EQ[f ], and a + (H · S)t = EQ[f | Ft], for 0 ≤ t ≤ T. (2.7)
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Proof. As regards the uniqueness of the constant a ∈ R, suppose that there are
two representations f = a1 + (H1 · S)T and f = a2 + (H2 · S)T with a1 �= a2.
Assuming w.l.o.g. that a1 > a2 we find an obvious arbitrage possibility by
considering the trading strategy H2−H1. We have a1−a2 = ((H2−H1)·S)T ,
i.e. the trading strategy H2 − H1 produces a strictly positive result at time
T , a contradiction to (NA).

As regards the uniqueness of the process H · S, we simply apply a condi-
tional version of the previous argument: assume that f = a + (H1 · S)T and
f = a + (H2 · S)T and suppose that the processes H1 · S and H2 · S are not
identical. Then there is 0 ≤ t ≤ T such that (H1 · S)t �= (H2 · S)t and with-
out loss of generality we may suppose that A := {(H1 · S)t > (H2 · S)t}
is a non-empty event, which clearly is in Ft. Hence, using the fact hat
(H1 · S)T = (H2 · S)T , the trading strategy H := (H2 − H1)1A · 1]t,T ] is
a predictable process producing an arbitrage, as (H ·S)T = 0 outside A, while
(H · S)T = (H1 · S)t − (H2 · S)t > 0 on A, which again contradicts (NA).

Finally, the equations in (2.7) result from the fact that, for every pre-
dictable process H and every Q ∈ Ma(S), the process H · S is a Q-
martingale. �

We denote by cone(Me(S)) and cone(Ma(S)) the cones generated by the
convex sets Me(S) and Ma(S) respectively. The subsequent Proposition 2.2.9
clarifies the polar relation between these cones and the cone C.

Let 〈E, E′〉 be two vector spaces in separating duality. This means that
there is a bilinear form 〈 . , . 〉 : E×E′ → R, so that if 〈x, x′〉 = 0 for all x ∈ E,
we must have x′ = 0. Similarly if 〈x, x′〉 = 0 for all x′ ∈ E′, we must have
x = 0. Recall (see, e.g., [Sch 99]) that, for a pair (E, E′) of vector spaces in
separating duality via the scalar product 〈 . , . 〉, the polar C0 of a set C in E
is defined by

C0 = {g ∈ E′ | 〈f, g〉 ≤ 1 for all f ∈ C} .

In the case when C is closed under multiplication by positive scalars (e.g., if
C is a convex cone) the polar C0 may equivalently be defined as

C0 = {g ∈ E′ | 〈f, g〉 ≤ 0 for all f ∈ C} .

The bipolar theorem (see, e.g., [Sch 99]) states that the bipolar C00 := (C0)0

of a set C in E is the σ(E, E′)-closed convex hull of C.

In the present, finite dimensional case, E = L∞(Ω,FT ,P) = R
N and

E′ = L1(Ω,FT ,P) = R
N the bipolar theorem is easier. In this case there is

only one topology on R
N compatible with its vector space structure, so that

we don’t have to speak about different topologies such as σ(E, E′). However,
the proof of the bipolar theorem is in the finite dimensional case and in the
infinite dimensional case almost the same and follows from the separating
hyperplane resp. the Hahn-Banach theorem.

After these general observations we pass to the concrete setting of the
cone C ⊆ L∞(Ω,F ,P) of contingent claims super-replicable at price 0. Note
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that in our finite dimensional setting this convex cone is closed as it is the
algebraic sum of the closed linear space K (a linear space in R

N is always
closed) and the closed polyhedral cone L∞

− (Ω,F ,P) (the verification, that the
algebraic sum of a space and a polyhedral cone in R

N is closed, is an easy, but
not completely trivial exercise). We deduce from the bipolar theorem, that C
equals its bipolar C00.

Proposition 2.2.9. Suppose that S satisfies (NA). Then the polar of C is
equal to cone(Ma(S)), the cone generated by Ma(S), and Me(S) is dense
in Ma(S). Hence the following assertions are equivalent for an element g ∈
L∞(Ω,F ,P):

(i) g ∈ C,
(ii) EQ[g] ≤ 0, for all Q ∈ Ma(S),
(iii) EQ[g] ≤ 0, for all Q ∈ Me(S).

Proof. The fact that the polar C0 and the set cone(Ma(S)) coincide, follows
from Lemma 2.2.6 and the observation that C ⊇ L∞

− (Ω,F ,P) and C0 ⊆
L1

+(Ω,F ,P). Hence the equivalence of (i) and (ii) follows from the bipolar
theorem.

As regards the density of Me(S) in Ma(S) we first deduce from Theorem
2.2.7 that there is at least one Q∗ ∈ Me(S). For any Q ∈ Ma(S) and 0 < μ ≤
1 we have that μQ∗ + (1 − μ)Q ∈ Me(S), which clearly implies the density
of Me(S) in Ma(S). The equivalence of (ii) and (iii) is now obvious. �

Similarly we can show the following:

Proposition 2.2.10. Suppose S satisfies (NA). Then for f ∈ L∞, the fol-
lowing assertions are equivalent

(i) f ∈ K, i.e. f = (H · S)T for some strategy H ∈ H.
(ii) For all Q ∈ Me(S) we have EQ[f ] = 0.
(iii) For all Q ∈ Ma(S) we have EQ[f ] = 0.

Proof. By Proposition 2.2.4 we have that f ∈ K iff f ∈ C ∩ (−C). Hence the
result follows from the preceding Proposition 2.2.9. �

Corollary 2.2.11. Assume that S satisfies (NA) and that f ∈ L∞ satisfies
EQ[f ] = a for all Q ∈ Me(S), then f = a + (H · S)T for some strategy H. �

Corollary 2.2.12 (complete financial markets). For a financial market
S satisfying the no-arbitrage condition (NA), the following are equivalent:

(i) Me(S) consists of a single element Q.
(ii) Each f ∈ L∞(Ω,F ,P) may be represented as

f = a + (H · S)T for some a ∈ R and H ∈ H.
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In this case a = EQ[f ], the stochastic integral H · S is unique and we have
that

EQ[f | Ft] = EQ[f ] + (H · S)t, t = 0, . . . , T. �

The Fundamental Theorem of Asset Pricing 2.2.7 allows us to prove the
following proposition, which we shall need soon.

Proposition 2.2.13. Assume that S satisfies (NA) and let H ·S be the process
obtained from S by means of a fixed strategy H ∈ H. Fix a ∈ R and define
the R-valued process Sd+1 = (Sd+1

t )T
t=0 by Sd+1 = a+H ·S. Then the process

S = (S1, S2, . . . , Sd, Sd+1) also satisfies the (NA) property and the sets Me(S)
and Me(S) (as well as Ma(S) and Ma(S)) coincide.

Proof. If Q ∈ Me(S) then H · S is a Q-martingale. Consequently S satisfies
(NA). �

2.3 Equivalence of Single-period
with Multiperiod Arbitrage

The aim of this section is to describe the relation between one-period no-
arbitrage and multiperiod no-arbitrage. At the same time we will be able to
give somewhat more detailed information on the set of risk neutral measures
(this term is often used in the finance literature in a synonymous way for
martingale measures). We start off with the following observation. Recall that
we did not assume that F0 is trivial.

Proposition 2.3.1. If S satisfies the no-arbitrage condition, Q ∈ Me(S) is
an equivalent martingale measure, and Zt = EP

[

dQ
dP

∣

∣

∣ Ft

]

denotes the density

process associated with Q, then the process Lt = Zt

Z0
defines the density process

of an equivalent measure Q′ such that dQ′

dP = LT , Q′ ∈ Me(S) and Q′|F0 =
P|F0 .

Proof. This is rather straightforward. Since Q ∈ Me(S) we have that SZ
is a P-martingale. Since Z0 > 0 and since it is F0-measurable the process
S Z

Z0
is still a P-martingale. Since SL is now a P-martingale and since the

density LT > 0, we necessarily have Q′ ∈ Me(S). As L0 = 1 we obtain
Q′|F0 = P|F0 . �

Theorem 2.3.2. Let S = (St)T
t=0 be a price process. Then the following are

equivalent:

(i) S satisfies the no-arbitrage property.
(ii) For each 0 ≤ t < T , we have that the one-period market (St, St+1) with

respect to the filtration (Ft,Ft+1) satisfies the no-arbitrage property.
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Proof. Obviously (i) implies (ii), since there are less strategies in each single
period market than in the multiperiod market. So let us show that (ii) implies
(i). By the fundamental theorem applied to (St, St+1), we have that for each t
there is a probability measure Qt on Ft+1 equivalent to P, so that under Qt

the process (St, St+1) is a Qt-martingale. This means that EQt [St+1 | Ft] =
St. By the previous proposition we may take Qt|Ft = P|Ft . Let ft+1 = dQt

dP
and define Lt = f1 . . . ft−1ft and L0 = 1. Clearly (Lt)T

t=0 is the density process
of an equivalent measure Q defined by dQ

dP = LT . One can easily check that,
for all t = 0, . . . , T − 1 we have EQ[St+1 | Ft] = St, i.e., Q ∈ Me(S). �

Remark 2.3.3. The equivalence between one-period no-arbitrage and multi-
period no-arbitrage can also be checked directly by the definition of no-
arbitrage. We invite the reader to give a direct proof of the following: if H
is a strategy so that (H · S)T ≥ 0 and P[(H · S)T > 0] > 0 then there is
a 1 ≤ t ≤ T as well as A ∈ Ft−1, P[A] > 0 so that 1A(Ht, ΔSt) ≥ 0 and
P[1A(Ht, ΔSt) > 0] > 0 (compare Lemma 5.1.5 below).

Remark 2.3.4. We give one more indication, why there is little difference be-
tween the one-period and the T period situation; this discussion also reveals a
nice economic interpretation. Given S = (St)T

t=0 as above, we may associate a
one-period process ˜S = (˜St)1t=0, adapted to the filtration ( ˜F0, ˜F1) := (F0,FT )
in the following way: choose any collection (f1, . . . , fm) in the finite dimen-
sional linear space K defined in 2.2.1, which linearly spans K. Define the
R

m-valued process ˜S by ˜S0 = 0, ˜S1 = (f1, . . . , fm).
Obviously the process ˜S yields the same space K of stochastic integrals as

S. Hence the set of equivalent martingale measures for the processes S and ˜S
coincide and therefore all assertions, depending only on the set of equivalent
martingale measures coincide for S and ˜S. In particular S and ˜S yield the
same arbitrage-free prices for derivatives, as we shall see in the next section.

The economic interpretation of the transition from S to ˜S reads as follows:
if we fix the trading strategies Hj yielding fj = (Hj ·S)T , we may think of fj

as a contingent claim at time t = T which may be bought at price 0 at time
t = 0, by then applying the trading rules given by Hj . By taking sufficiently
many of these Hj ’s, in the sense that the corresponding fj ’s linearly span K,
we may represent the result f = (H ·S)T of any trading strategy H as a linear
combination of the fj ’s.

The bottom line of this discussion is that in the present framework (i.e. Ω
is finite) — from a mathematical as well as from an economic point of view
— the T period situation can easily be reduced to the one-period situation.

2.4 Pricing by No-Arbitrage

The subsequent theorem will tell us what the principle of no-arbitrage implies
about the possible prices for a contingent claim f . It goes back to the work
of D. Kreps [K 81].
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For given f ∈ L∞(Ω,F ,P), we call a ∈ R an arbitrage-free price, if in
addition to the financial market S, the introduction of the contingent claim f
at price a does not create an arbitrage possibility. How can we mathematically
formalise this economically intuitive idea? We enlarge the financial market S
by introducing a new financial instrument which can be bought (or sold) at
price a at time t = 0 and yields the random cash flow f(ω) at time t = T .
We don’t postulate anything about the price of this financial instrument at
the intermediate times t = 1, . . . , T − 1. The reader might think of an “over
the counter” option where the two parties agree on certain payments at times
t = 0 and t = T . So if we look at the linear space generated by K and the
vector (f−a) we obtain an enlarged space Kf,a of attainable claims. The price
a should be such that arbitrage opportunities are inexistent. Mathematically
speaking this means that we still should have Kf,a ∩ L∞

+ = {0}. In this case
we say that a is an arbitrage free price for the contingent claim f .

Theorem 2.4.1 (Pricing by no-arbitrage). Assume that S satisfies (NA)
and let f ∈ L∞(Ω,F ,P). Define

π(f) = inf {EQ[f ] | Q ∈ Me(S)} ,

π(f) = sup {EQ[f ] | Q ∈ Me(S)} , (2.8)

Either π(f) = π(f), in which case f is attainable at price π(f) := π(f) =
π(f), i.e. f = π(f) + (H · S)T for some H ∈ H and therefore π(f) is the
unique arbitrage-free price for f .

Or π(f) < π(f), in which case

]π(f), π(f)[= {EQ[f ] | Q ∈ Me(S)}

and a is an arbitrage-free price for f iff a lies in the open interval ]π(f), π(f)[.

Proof. The case π(f) = π(f) follows from corollary 2.2.11 and so we only have
to concentrate on the case π(f) < π(f). First observe that the set {EQ[f ] |
Q ∈ Me(S)} forms a bounded non-empty interval in R, which we denote by I.

We claim that a number a is in I iff a is an arbitrage-free price for f .
Indeed, supposing that a ∈ I we may find Q ∈ Me(S) s.t. EQ[f − a] = 0 and
therefore Kf,a ∩ L∞

+ (Ω,F ,P) = {0}.
Conversely suppose that Kf,a ∩ L∞

+ = {0}. Then exactly as in the proof
of the Fundamental Theorem 2.2.7, we find a probability measure Q so that
EQ[g] = 0 for all g ∈ Kf,a and so that Q is equivalent to P. This, of course,
implies that Q ∈ Me(S) and that a = EQ[f ].

Now we deal with the boundary case: suppose that a equals the right
boundary of I, i.e., a = π(f) ∈ I, and consider the contingent claim f −π(f).
By definition we have EQ[f − π(f)] ≤ 0, for all Q ∈ Me(S), and therefore
by Proposition 2.2.9, that f − π(f) ∈ C. We may find g ∈ K such that
g ≥ f − π(f). If the sup in (2.8) is attained, i.e., if there is Q∗ ∈ Me(S) such
that EQ∗ [f ] = π(f), then we have 0 = EQ∗ [g] ≥ EQ∗ [f − π(f)] = 0 which in
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view of Q∗ ∼ P implies that f − π(f) ≡ g; in other words f is attainable at
price π(f). This in turn implies that EQ[f ] = π(f) for all Q ∈ Me(S), and
therefore I is reduced to the singleton {π(f)}.

Hence, if π(f) < π(f), π(f) cannot belong to the interval I, which is
therefore open on the right hand side. Passing from f to −f , we obtain the
analogous result for the left hand side of I, which is therefore equal to I =
]π(f), π(f)[. �

The argument in the proof of the preceding theorem can be recast to yield
the following duality theorem. The reader familiar with the duality theory of
linear programming will recognise the primal-dual relation.

Theorem 2.4.2 (Superreplication). Assume that S satisfies (NA). Then,
for f ∈ L∞, we have

π(f) = sup{EQ[f ] | Q ∈ Me(S)}
= max{EQ[f ] | Q ∈ Ma(S)}
= min{a | there exists k ∈ K, a + k ≥ f}.

Proof. As shown in the previous proof we have f − π(f) ∈ C and hence

f = π(f) + g, for some g ∈ C
= π(f) + k − h, for some k ∈ K and h ∈ L∞

+

≤ π(f) + k, for some k ∈ K.

This shows that π(f) ≥ inf{a | there exists k ∈ K, a + k ≥ f}.
Let now a < π(f). We will show that there is no element k ∈ K with

a + k ≥ f . This shows that π(f) = inf{a | there exists k ∈ K, a + k ≥ f} and
moreover establishes that the infimum is a minimum. Since a < π(f) there is
Q ∈ Me(S) with EQ[f ] > a. But this implies that for all k ∈ K we have that
EQ[a + k] = a < EQ[f ], in contradiction to the relation a + k ≥ f . �

Remark 2.4.3. Theorem 2.4.2 may be rephrased in economic terms: in order
to superreplicate f , i.e., to find a ∈ R and H ∈ H s.t. a + (H · S)T ≥ f , we
need at least an initial investment a equal to π(f).

We now give a conditional version of the duality theorem that allows us
to use initial investments that are not constant and to possibly use the infor-
mation F0 available at time t = 0. This is relevant when the initial σ-algebra
F0 is not trivial.

Theorem 2.4.4. Let us assume that S satisfies (NA). Denote by Me(S,F0)
the set of equivalent martingale measures Q ∈ Me(S) so that Q|F0 = P.
Then, for f ∈ L∞, we have

sup {EQ[f | F0] | Q ∈ Me(S,F0)}
= min {h | h is F0-measurable and there exists g ∈ K such that h + g ≥ f} .
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Remark 2.4.5. Before we prove the theorem let us remark that the “sup” and
the “min” are taken in the space L0(Ω,F0,P) of F0-measurable functions.
Both sets are lattice ordered. Indeed, if EQ1 [f | F0] and EQ2 [f | F0] are
given, where Q1,Q2 ∈ Me(S,F0), then there is an element Q3 ∈ Me(S,F0)
so that EQ3 [f | F0] = max{EQ1 [f | F0],EQ2 [f | F0]}. The construction is
rather straightforward. Let A = {EQ1 [f | F0] > EQ2 [f | F0]} ∈ F0 and let
Q3[B] = Q1[A ∩ B] + Q2[Ac ∩ B]. Because Q1|F0 = Q2|F0 = P we get that
Q3 is a probability and that Q3 ∈ Me(S,F0). Also EQ3 [f | F0] = EQ1 [f |
F0] ∨ EQ2 [f | F0].

Similarly, the set on the right is stable for the “min” operation. Indeed,
let h1 + g1 ≥ f and h2 + g2 ≥ f . For A = {h1 < h2}, an F0-measurable
set, we define h = h11A + h21Ac and g11A + g21Ac = g. The function h is
F0-measurable and g ∈ K (because A ∈ F0). Clearly h + g ≥ f .

Proof of Theorem 2.4.4. If f ≤ h + g, where h is F0-measurable and g ∈ K,
then for Q ∈ Me(S,F0) we have EQ[f | F0] ≤ h + 0 = h. This shows that

a1 := sup {EQ[f | F0] | Q ∈ Me(S,F0)}
≤ inf {h | h F0-measurable, h + g ≥ f, for some g ∈ K}
=: a2.

To prove the converse inequality, we show that there is g ∈ K with a1+g ≥
f . If this were not be true then (a1 + K) ∩ (f + L∞

+ ) = ∅ and we could find,
using the separating hyperplane theorem, a linear functional ϕ and ε > 0, so
that ∀g ∈ K, ∀ l ≥ 0 we have ε + ϕ(a1 + g) < ϕ(f + l). This implies that
ϕ ≥ 0 and ϕ(g) = 0 for all g ∈ K. Of course we can normalise ϕ so that
it comes from a probability measure Q. So we get EQ[a1] + ε′ < EQ[f ] and
Q ∈ Ma(S), where ε′ > 0.

By the density of Me(S) in Ma(S) we may perturb Q a little bit to make
it an element of Me(S). We still get EQ[a1] + ε < EQ[f ], but this time for

a measure Q ∈ Me(S). Let now Zt = dQ
dP

∣

∣

∣ Ft and set Lt = Zt

Z0
. The process

(Lt)∞t=0 defines a measure Q0 ∈ Me(S,F0) via dQ0

dP = LT . Furthermore

EQ0 [f | F0] = EP[fLT | F0]

=
EP[fZT | F0]

Z0
= EQ[f | F0]

Therefore EQ[f | F0] ≤ a1 and hence EQ[f ] ≤ EQ[a1], contradicting the
choice of Q. �

Corollary 2.4.6. Under the assumptions of Theorem 2.4.4 we have

{EQ[f | F0] | Q ∈ Me(S)} = {EQ[f | F0] | Q ∈ Me(S,F0)} .

Hence, for f ∈ L∞
+ (Ω,F ,P), we have supQ∈Me(S) EQ[f ] = ‖a1‖∞ where

a1 = sup {EQ[f | F0] | Q ∈ Me(S,F0)} .
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Proof. As observed in the proof of Theorem 2.3.2 and Proposition 2.3.1, every
Q ∈ Me(S) can be written as dQ

dP = f0
dQ0

dP where Q0|F0 = P|F0 , Q0 ∈
Me(S,F0) and where f0 is F0-measurable, strictly positive and EP[f0] = 1.
But otherwise f0 is arbitrary. Now for Q ∈ Me(S) we have dQ

dP = f0
dQ0

dP and
hence

EQ[f ] = EQ

[

EQ0 [f | F0]
]

≤ EQ[a1] = EP[a1f0].

Thus supQ∈Me(S) EQ[f ] ≤ ‖a1‖∞.
To prove the converse inequality we need some more approximations. First

for given ε > 0, we choose f0, F0-measurable, f0 > 0, EP[f0] = 1 and so
that EP[f0a1] ≥ ‖a1‖∞ − ε. Given f0 we may take Q1 ∈ Me(S,F0) so that
E[f0(a1−EQ1 [f | F0])] ≤ ε. This is possible since the family {EQ[f | F0] | Q ∈
Me(S,F0)} is a lattice and since all these functions are in the L∞-ball with
radius ‖f‖∞. Now take Q0 defined by dQ0

dP = f0
dQ1

dP . Clearly Q0 ∈ Me(S)
and we have

EQ0 [f ] = EP

[

f0
dQ1

dP
f

]

= EP

[

f0EQ1 [f | F0]
]

since Q1|F0 = P

≥ EP [f0a1] − ε by the choice of Q1

≥ ‖a1‖∞ − 2ε by the choice of f0. �

2.5 Change of Numéraire

In the previous sections we have developed the basic tools for the pricing and
hedging of derivative securities. Recall that we did our analysis in a discounted
model where we did choose one of the traded assets as numéraire.

How do these things change, when we pass to a new numéraire, i.e., a new
unit in which we denote the values of the stocks? Of course, the arbitrage
free prices should remain unchanged (after denominating things in the new
numéraire), as the notion of arbitrage should not depend on whether we do
the book-keeping in e or in $. On the other hand, we shall see that the risk-
neutral measures Q do depend on the choice of numéraire. We will also show
how, conversely, a change of risk neutral measures corresponds to a change of
numéraire.

Let us analyse the situation in the appropriate degree of generality: the
model of a financial market ̂S = (̂S0

t , ̂S1
t , . . . , ̂Sd

t )T
t=0 is defined as in 2.1 above.

Recall that we assumed that the traded asset ̂S0 serves as numéraire, i.e., we
have passed from the value ̂Sj

t of the j’th asset at time t to its value Sj
t =

bSj
t

bS0
t

,

expressed in units of ̂S0
t . This led us in (2.3) to the introduction of the process
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S = (S1, S2, . . . , Sd) =

(

̂S1

̂S0
, . . . ,

̂Sd

̂S0

)

.

Before we prove the theorem, let us first see what assets can be used as nu-
méraire. The crucial requirement on a numéraire is that it is a traded asset. We
could of course use one of the assets 1, . . . , d but we want to be more general
and also want to accept, e.g., baskets as new numéraires. So we might use
the value (Vt)T

t=0 of a portfolio as a numéraire. Of course, we need to assume
Vt > 0 for all t. Indeed, if the numéraire becomes zero or even negative, then
we obviously have a problem in calculating the value of an asset in terms of
V . Further, for normalisation reasons, it is convenient to assume that V0 = 1,
exactly as we did for ̂S0. So we start with a value process V = 1 + (H0 · S)
satisfying Vt > 0 a.s. for all t, where H0 is a fixed element of H. Observe that
the processes V and S are denoted in terms of our originally chosen numéraire
asset ̂S0.

As we have seen above (Proposition 2.2.13), the extended market

Sext = (S1, S2, . . . , Sd, 1, V ) (2.9)

is still arbitrage free and Me(S) = Me(Sext). In real money terms this process
is described by the process

̂Sext =
(

S1
̂S0, . . . , Sd

̂S0, ̂S0, V ̂S0
)

=
(

̂S1, . . . , ̂Sd, ̂S0, V ̂S0
)

.

If we now use the last coordinate as numéraire, we obtain the process

X =
(

S1

V
, . . . ,

Sd

V
,

1
V

, 1
)

. (2.10)

In order to keep the notation more symmetric we will drop the dummy entry
1 and use (d+1)-dimensional predictable processes as strategies. Similarly we
shall also drop in (2.9) the dummy entry 1 for Sext. This allows us to pass
more easily from Sext to X.

The next lemma shows the economically rather obvious fact that when
passing from S to Sext, the space K of claims attainable at price 0 does not
change.

Lemma 2.5.1. Using the above notation we have

K(Sext) = {(H · Sext)T | H (d + 1)-dimensional predictable}
= K(S) = {(H ′ · S)T | H ′ d-dimensional predictable}.

Proof. The process V is given by the stochastic integral (H0 · S) with respect
to S, so we expect that nothing new can be created by using the additional
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V . It suffices to show that, for a one-dimensional predictable process L, the
quantities LtΔVt are in K(S). This is easy, since

LtΔVt = Lt

(

H0
t , ΔSt

)

=
(

LtH
0
t , ΔSt

)

∈ K(S)

by definition of K(S). This shows that K(Sext) = K(S). �

Lemma 2.5.2. Fix 0 ≤ t ≤ T , and let f ∈ K(S) = K(Sext) be Ft-measurable.
Then the random variable f

Vt
is of the form f ′

VT
where f ′ ∈ K(S).

Proof. Clearly

f

Vt
− f

VT
=

1
VT

(

f
VT − Vt

Vt

)

=
1

VT

T
∑

s=t+1

f

Vt
(Vs − Vs−1) .

We see that f ′′ =
∑T

s=t+1
f
Vt

(Vs − Vs−1) belongs to K(Sext) because f
Vt

is
Ft-measurable and the summation is on s > t. Hence f ′ = f ′′ + f does the
job. �

Proposition 2.5.3. Assume that X is defined as in (2.10). Then

K(X) =
{

f

VT

∣

∣

∣

∣

f ∈ K(S)
}

.

Proof. We have that g ∈ K(X) if and only if there is a (d+1)-dimensional pre-
dictable process H, with g =

∑T
t=1(Ht, ΔXt) =

∑T
t=1

∑d+1
j=1 Hj

t ΔXj
t . Clearly,

for j = 1, . . . , d and t = 1, . . . , T ,

ΔXj
t =

(

Sj
t

Vt
−

Sj
t−1

Vt−1

)

=
ΔSj

t

Vt
+ Sj

t−1

(

1
Vt

− 1
Vt−1

)

=
ΔSj

t

Vt
−

Sj
t−1

Vt−1

ΔVt

Vt

=
1
Vt

(

ΔSj
t − Xj

t−1ΔVt

)

.

So we get that Hj
t ΔXj

t = 1
Vt

(

Hj
t ΔSj

t −
(

Hj
t Xj

t−1

)

ΔVt

)

, which is of the

form f
Vt

for some f ∈ K(Sext) = K(S). For j = d + 1 and t = 1, . . . , T the
same argument applies by replacing Sj

t and Sj
t−1 by 1.

By the previous lemma we have f
Vt

= f ′

VT
for some f ′ ∈ K(S). This shows

that K(X) ⊂ 1
VT

K(S).
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The converse inclusion follows by symmetry. In the financial market mod-
elled by X we can choose Wt = 1

Vt
as numéraire. The passage from X to Sext

is then done by using W as a new numéraire and the inclusion we just proved
then yields

K(S) ⊂ 1
WT

K(X) = VT K(X).

This shows that K(S) = VT K(X) as required. �

Theorem 2.5.4 (change of numéraire). Let S satisfy the no-arbitrage
condition, let V = 1 + H0 · S be such that Vt > 0 for all t, and let
X =

(

S1

V , . . . , Sd

V , 1
V

)

. Then X satisfies the no-arbitrage condition too and
Q belongs to Me(S) if and only if the measure Q′ defined by dQ′ = VT dQ
belongs to Me(X).

Proof. Since K(X) = 1
VT

K(S) we have that X satisfies the no-arbitrage prop-
erty by directly verifying Definition 2.2.3. By Proposition 2.2.10 an equivalent
probability measure Q is in Me(S) if and only if, for all f ∈ K(S), we have
EQ[f ] = 0. But this is the same as

EQ

[

VT
f

VT

]

= 0, for all f ∈ K(S),

which is equivalent to EQ[VT g] = 0 for all g ∈ K(X). This happens if and
only if the probability measure Q′, defined as dQ′ = VT dQ, is in Me(X).
(Note that by the martingale property we have EQ[VT ] = V0 = 1.) �

Remark 2.5.5. The process (Vt)T
t=0 is a Q-martingale for every Q ∈ Me(S).

Now if dQ′ = VT dQ, then we have the following so-called Bayes’ rule for
f ∈ L∞(Ω,F ,P):

EQ′ [f | Ft] =
EQ [fVT | Ft]
EQ [VT | Ft]

=
EQ [fVT | Ft]

Vt

= EQ

[

f
VT

Vt

∣

∣

∣

∣

Ft

]

.

The previous equality can also be written as

VtEQ′ [f | Ft] = EQ[fVT | Ft].

From this it follows that (Zt)T
t=0 is a Q′-martingale if and only if (ZtVt)T

t=0 is a
Q-martingale. This statement can also be seen as the martingale formulation
of Theorem 2.5.4 above.

Remark 2.5.6. The above theorem tells us that the no-arbitrage arguments do
not depend on whether we do the accounting in Euros or Dollars. To phrase
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it more precisely: whether we denote prices in properly discounted Euros (by
the risk-free Euro rate) or Dollars (discounted by the risk-free Dollar rate).

Let us illustrate this explicitly by considering f ∈ L∞(Ω,F ,P) which we
view as a contingent claim maturing at time T , denoted in units of the original
numéraire S0 ≡ 1. By Theorem 2.4.2 the superreplication price (denoted in
units of S0

0) equals

π(f) = sup{EQ[f ] | Q ∈ Me(S)}. (2.11)

Passing to the numéraire V the above contingent claim pays f
VT

units of the
numéraire VT at time T . Hence applying Theorem 2.4.2 to the process X we
get

π(f) =
{

EQ′

[

f

VT

] ∣

∣

∣

∣

Q′ ∈ Me(X)
}

,

which by the above Theorem 2.5.4 gives

π(f) =
{

EQ′

[

f

VT

] ∣

∣

∣

∣

dQ′

dQ
= VT , Q ∈ Me(S)

}

.

This price clearly equals the superreplication price obtained in (2.11).
Hence the interval of arbitrage free prices for a contingent claim does not

depend on the choice of numéraire.

2.6 Kramkov’s Optional Decomposition Theorem

We now present a dynamic version of Theorem 2.4.2 (superreplication), due to
D. Kramkov, who actually proved this theorem in a much more general version
(see [K 96a], [FK98], and Chap. 15 below). An earlier version of this theorem
is due to N. El Karoui and M.-C. Quenez [EQ95]. We refer to Chap. 15 for
more detailed references.

Theorem 2.6.1 (Optional Decomposition). Assume that S satisfies (NA)
and let V = (Vt)T

t=0 be an adapted process.
The following assertions are equivalent:

(i) V is a super-martingale for each Q ∈ Me(S).
(i’) V is a super-martingale for each Q ∈ Ma(S)
(ii) V may be decomposed into V = V0 + H · S − C, where H ∈ H and

C = (Ct)T
t=0 is an increasing adapted process starting at C0 = 0.

Remark 2.6.2. To clarify the terminology “optional decomposition” let us com-
pare this theorem with Doob’s celebrated decomposition theorem for non-
negative super-martingales (Vt)T

t=0 (see, e.g., [P 90]): this theorem asserts that,
for a non-negative (adapted, càdlàg) process V defined on a general filtered
probability space we have the equivalence of the following two statements:
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(i) V is a super-martingale (with respect to the fixed measure P),
(ii) V may be decomposed in a unique way into V = V0 +M −C, where M is

a local martingale (with respect to P) and C is an increasing predictable
process s.t. M0 = C0 = 0.

We immediately recognise the similarity in spirit. However, there are sig-
nificant differences. As to condition (i) the difference is that, in the setting of
the optional decomposition theorem, the super-martingale property pertains
to all martingale measures Q for the process S. As to condition (ii), the role of
the local martingale M in Doob’s theorem is taken by the stochastic integral
H · S.

A decisive difference between the two theorems is that in Theorem 2.6.1,
the decomposition is no longer unique and one cannot choose, in general, C
to be predictable. The process C can only be chosen to be optional, which in
the present setting is the same as adapted.

The economic interpretation of the optional decomposition theorem reads
as follows: a process of the form V = V0+H ·S−C describes the wealth process
of an economic agent. Starting at an initial wealth V0, subsequently investing
in the financial market according to the trading strategy H, and consuming
as described by the process C where the random variable Ct models the ac-
cumulated consumption during the time period {1, . . . , t}, the agent clearly
obtains the wealth Vt at time t. The message of the optional decomposition
theorem is that these wealth processes are characterised by condition (i) (or,
equivalently, (i’)).

Proof of Theorem 2.6.1. First assume that T = 1, i.e., we have a one-period
model S = (S0, S1). In this case the present theorem is just a reformulation
of Theorem 2.4.2: if V is a super-martingale under each Q ∈ Me(S), then

EQ[V1 − V0] ≤ 0, for all Q ∈ Me(S).

Hence there is a predictable trading strategy H (i.e., an F0-measurable R
d-

valued function - in the present case T = 1) such that (H · S)1 ≥ V1 − V0.
Letting C0 = 0 and writing ΔC1 = C1 = −V1 + (V0 + (H · S)1) we get the
desired decomposition. This completes the construction for the case T = 1.

For general T > 1 we may apply, for each fixed t ∈ {1, . . . , T}, the same
argument as above to the one-period financial market (St−1, St) based on
(Ω,F ,P) and adapted to the filtration (Ft−1,Ft). We thus obtain an Ft−1-
measurable, R

d-valued function Ht and a non-negative Ft-measurable function
ΔCt such that

ΔVt = (Ht, ΔSt) − ΔCt,

where again ( . , . ) denotes the inner product in R
d. This will finish the con-

struction of the optional decomposition: define the predictable process H as
(Ht)T

t=1 and the adapted increasing process C by Ct =
∑t

u=1 ΔCu. This
proves the implication (i) ⇒ (ii).

The implications (ii) ⇒ (i’) ⇒ (i) are trivial. �
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