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From now on, we concentrate on the group G = GL2(F ) over a non-
Archimedean local field F . The group G inherits a locally profinite topology
from the base field F , as in 1.4. Our objective is the classification of the
irreducible smooth representations of G, although we shall not achieve it until
the end of Chapter IV.

In this chapter, the algebraic subgroups B, N , T of G (as in 5.1) play
a pivotal rôle. In parallel with the representation theory of the finite group
GL2(k) worked out in §6, the irreducible smooth representations of G fall into
two broad classes. First, there is a “principal series” of representations: these
are the composition factors of representations obtained from characters of T

by a process of inflation to B and then induction to G. Frobenius Reciprocity
characterizes them, among the irreducible smooth representations of G, as
those admitting a non-trivial quotient on which N acts trivially. The irre-
ducible smooth representations not obtainable this way are called “cuspidal”.
The main result of this chapter (9.11) gives a complete classification of the
principal series representations.

There is a further subgroup of G which plays a surprisingly important part
in the classification process. This is the “mirabolic subgroup” M of matrices(
xij

)
∈ B with x22 = 1. The group M has a very simple representation theory:

besides an obvious family of characters, it has a unique irreducible smooth
representation. Further, irreducible representations of G decompose very little



50 3 Induced Representations of Linear Groups

when restricted to M . This is the basis of our detailed analysis of the principal
series representations of G.

In this chapter, we make only rather general remarks about the irreducible
cuspidal representations of G. We give a characterization of them more helpful
than that of not being in the principal series, and a speculative method for
constructing them. This prepares the ground for the analysis in Chapter IV.

Some of the arguments and results here, particularly in §11, apply to quite
arbitrary locally profinite groups: we point these out as they arise. Most of
the time, we work exclusively with GL2(F ) or its subgroups, and exploit this
restriction as much as we can to simplify and abbreviate the treatment. We
are rarely unwilling to substitute an explicit matrix calculation for a more
general abstract argument.

7. Linear Groups over Local Fields

As noted in §1, the group G = GL2(F ) has many compact open subgroups, of
which a small number are of particular importance. This is expressed first via
various coset decompositions of G, beyond the universal Bruhat decomposition
of 5.2. Using these decompositions, one can turn the general measure theory
of §3 into an effective computational tool, necessary for handling the integrals
arising within the representation theory of G.

This section thus amounts to a course of calculus on GL2(F ), which can
be skimmed at first reading and referred back to at need. The only result
to which we will return is the Duality Theorem at the end, but the general
techniques developed here are used frequently.

7.1. For this section, we set V = F ⊕F , and think of it as the space of column
vectors with G acting on the left. The standard subgroups B, N , T , Z are as
in §5. These are all closed subgroups of G. The group isomorphisms B/N ∼= T

and B ∼= T � N are homeomorphisms.

7.2. Reflecting the special nature of the base field F , the group G admits
decompositions besides the Bruhat decomposition of 5.2. The first of these is:

(7.2.1)Iwasawa decomposition. Let B be the standard Borel subgroup of
G and set K = GL2(o); then G = BK.

Proof. Take g ∈ G; if the (2, 1)-entry of g is zero, then g ∈ B. Otherwise, post-
multiplying by the permutation matrix w ∈ K if necessary, we can assume
υF (g21) � υF (g22). We can then post-multiply by a lower triangular matrix
in K to achieve g21 = 0. ��

Consequently, the quotient space B\G is a continuous image of the com-
pact group K = GL2(o), and so:
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Corollary. The quotient space B\G is compact.

Continuing with the notation K = GL2(o), we also have:
(7.2.2) Cartan decomposition. Let � be a prime element of F . The
matrices (

�a 0
0 �b

)
, a, b ∈ Z, a � b,

form a set of representatives for the coset space K\G/K.

Proof. Permuting rows and columns, using the permutation matrix in K, we
can arrange for the largest entry of g (in absolute value) to be in the 1, 1 place.
Multiplying by elementary matrices from K, we can then arrange for g to be
diagonal, and unit factors can be absorbed into K. This gives

G =
⋃
a�b

K
(

�a 0
0 �b

)
K.

We have to prove this union is disjoint. That is, we have to recover the integers
a, b from the coset KgK, where

g =
(

�a 0
0 �b

)
.

First, we have a+b = υF (det h), for any h ∈ KgK. Next, the group index
(K : K ∩hKh−1) depends only on the coset KhK, and (K : K ∩ gKg−1) = 1
if b = a, or (q+1)qb−a−1 if b > a. ��

Corollary. If K is a compact open subgroup of G, the set G/K is countable.

Proof. As observed in 2.6, it is enough to show that G/K is countable for one
choice of K: we take K = GL2(o). The space K\G/K is certainly countable,
and each double coset KgK contains only finitely many cosets g′K. ��

That is, G satisfies the countability hypothesis of 2.6.

Exercise. Let K be a compact subgroup of G. Show that gKg−1 ⊂ GL2(o),
for some g ∈ G. Deduce that, up to G-conjugacy, GL2(o) is the unique maxi-
mal compact subgroup of G.

Hint. There are two steps. One first shows that there exists a K-stable o-
lattice in V : consider the o-span of KL, for a randomly chosen o-lattice L.
The second consists of showing that the only GL2(o)-stable lattices in V are
the obvious ones pj ⊕ pj , j ∈ Z.

7.3. The standard Iwahori subgroup of G is the compact open subgroup

I =
{(

a b
c d

)
: a, d ∈ UF , b ∈ o, c ∈ p

}
.

Let N ′ = Nw denote the group of lower triangular unipotent matrices in G.
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(7.3.1) Iwahori decomposition. We have I = (I∩N ′)(I∩T )(I∩N). More
precisely, the product map

I ∩ N ′ × I ∩ T × I ∩ N −→ I

is bijective, and a homeomorphism, for any ordering of the factors on the left
hand side.

Proof. The product map is certainly continuous. It is elementary to write
down its inverse and observe that it is continuous. ��

Set K = GL2(o); under the canonical surjection K → GL2(k), the image
of I is the standard Borel subgroup of GL2(k). The Bruhat decomposition for
GL2(k) implies

K = I ∪ IwI. (7.3.2)

Combining (7.3.2) with the Iwasawa decomposition (7.2.1) for G, we obtain
the more symmetric double-coset decomposition

G = BI ∪ BwI = B(I ∩ N ′) ∪ Bw(I ∩ N). (7.3.3)

The cosets BwI, BI are both open in G.

Remark. Let L = o ⊕ o, L′ = o ⊕ p. The Iwahori subgroup I is then the
common G-stabilizer of the two lattices L, L′.

7.4. We now describe the Haar measures attached to the various locally profi-
nite groups under discussion. We start with the basic example of the field F

itself.

Lemma. The vector space C∞
c (F ) is spanned by the characteristic functions

of sets a+pm, a ∈ F , m ∈ Z.

Proof. Surely the characteristic function of a+pm lies in C∞
c (F ). Conversely,

let Φ ∈ C∞
c (F ). Since Φ has compact support, there exists n ∈ Z such that

suppΦ ⊂ pn. Also, Φ is fixed under translation by a compact open subgroup
of F , hence by pm, for some m ∈ Z. Thus Φ is a linear combination of char-
acteristic functions of sets a+pm, a ∈ pn/pm. ��

If Φ0 denotes the characteristic function of o and µ is a Haar measure on
F , we have ∫

F

Φ0(x) dµ(x) = c0,

for some c0 > 0. If Φ1 is the characteristic function of a coset a+pb, a ∈ F ,
b ∈ Z, then ∫

F

Φ1(x) dµ(x) = c0q
−b.
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This identity suffices for integrating any function Φ ∈ C∞
c (F ).

Now take Φ ∈ C∞
c (F ) and y ∈ F×. Using the identity above, we find
∫

F

Φ(xy) dµ(x) = ‖y‖−1

∫

F

Φ(x) dµ(x),

where, we recall, ‖y‖ = q−υF (y). We accordingly define a measure µ× on F×

by dµ×(x) = dµ(x)/‖x‖, meaning the following. If Φ ∈ C∞
c (F×), the function

x �→ ‖x‖−1Φ(x) (vanishing at 0) lies in C∞
c (F ), so we can put

∫

F×
Φ(x) dµ×(x) =

∫

F

Φ(x)‖x‖−1 dµ(x), Φ ∈ C∞
c (F×). (7.4.1)

A simple manipulation shows that (7.4.1) defines a Haar integral on F×.

7.5. The matrix ring A = M2(F ) is (as additive group) a product of 4 copies
of F and a Haar measure is obtained by taking a (tensor) product of 4 copies
of a Haar measure on F .

Proposition. Let µ be a Haar measure on A. For Φ ∈ C∞
c (G), the function

x �→ Φ(x)‖det x‖−2 (vanishing on A � G) lies in C∞
c (A). The functional

Φ �→
∫

A

Φ(x)‖det x‖−2 dµ(x), Φ ∈ C∞
c (G),

is a left and right Haar integral on G. In particular, G is unimodular.

Proof. Let g ∈ G and consider the functionals

Φ �−→

⎧
⎪⎪⎨
⎪⎪⎩

∫

A

Φ(gx) dµ(x),
∫

A

Φ(xg) dµ(x),
Φ ∈ C∞

c (A).

Each is a Haar integral on A and differs from the initial one by a positive
constant (depending on g). To evaluate this constant, we take Φ to be the
characteristic function of m = M2(o). In the first instance, the function x �→
Φ(gx) is the characteristic function of the lattice m′ = g−1m. Thus

∫

A

Φ(gx) dµ(x) = µ(m′) = µ(m) (m′ : m ∩ m′)/(m : m ∩ m′).

This quotient of indices depends only on the double coset KgK, K = GL2(o).
Taking g in diagonal form (7.2.2), one gets

∫

A

Φ(gx) dµ(x) = ‖det g‖−2

∫

A

Φ(x) dµ(x).
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The second instance is treated in same way to get
∫

A

Φ(xg) dµ(x) = ‖det g‖−2

∫

A

Φ(x) dµ(x).

The proposition then follows from simple manipulations. For example, if Φ ∈
C∞

c (G),
∫

A

Φ(xg)‖det x‖−2 dµ(x) = ‖det g‖−2

∫

A

Φ(x)‖det xg−1‖−2 dµ(x)

=
∫

A

Φ(x)‖det x‖−2 dµ(x),

as required. ��

7.6. We turn to the subgroups B, N , T of G. Since N ∼= F and T ∼= F××F×,
there is nothing more to say about them. We have B = T � N ; we define a
linear functional on the space C∞

c (B) = C∞
c (T ) ⊗ C∞

c (N) by

Φ �−→
∫

T

∫

N

Φ(tn) dµT (t)dµN (n), Φ ∈ C∞
c (B),

where µT , µN are Haar measures on T , N respectively. One verifies immedi-
ately that this functional is left B-invariant, so it is a left Haar integral on B.
We are so justified in denoting it

Φ �−→
∫

B

Φ(b) dµB(b).

The Haar measure µB may be thought of as the tensor product, µB = µT ⊗µN ,
but the two factors do not commute. This reflects the fact that the group B

is not unimodular. In the language of 3.3:

Proposition. The module δB of the group B is given by

δB : tn �−→ ‖t2/t1‖, n ∈ N, t =
(

t1 0
0 t2

)
∈ T. (7.6.1)

Proof. Setting
c = sm, m ∈ N, s =

(
s1 0
0 s2

)
∈ T,

we get ∫

B

Φ(bc) dµB(b) =
∫

T

∫

N

Φ(ts s−1ns m) dµT (t)dµN (n).

We use the obvious isomorphism N → F to identify µN with a certain Haar
measure µF on F . For φ ∈ C∞

c (N), we then have
∫

N

φ(s−1ns) dµN (n) =
∫

F

φ
(

1 s−1
1 xs2

0 1

)
dµF (x)

= ‖s1s
−1
2 ‖

∫
N

φ(n) dµN (n).
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By definition,
∫

B

Φ(bc) dµB(b) = δB(c)−1

∫

B

Φ(b) dµB(b),

and the result follows. ��

In the notation of 3.4, we now have:

Corollary. The space C∞
c (B\G, δ−1

B ) admits a positive semi-invariant mea-
sure µ̇, where δB is given by (7.6.1). If K = GL2(o), there is a Haar measure
µK on K such that

∫

B\G

f(g) dµ̇(g) =
∫

K

f(k) dµK(k),

for f ∈ C∞
c (B\G, δ−1

B ).

Proof. The character δB is trivial on the compact group K ∩ B. Restriction
of functions is an isomorphism C∞

c (B\G, δ−1
B ) → C∞

c (K ∩ B\K, 1), where 1
denotes the trivial character of K ∩ B. The semi-invariant measure µ̇ thus
restricts to a semi-invariant measure on C∞

c (K ∩ B\K, 1), but so does any
Haar measure on K. ��

We observe that µK is effectively just the restriction of a Haar measure
µG on G. Comparing with the proof of 3.4 Proposition, there is a left Haar
measure µB on B such that

∫

G

φ(g) dµG(g) =
∫

K

∫

B

φ(bk) dµB(b)dµG(k), φ ∈ C∞
c (G). (7.6.2)

Exercises.

(1) Let I be the standard Iwahori subgroup; let dn′, dt, dn be Haar measures
on the groups I∩N ′, I∩T , I∩N respectively. Show that the functional

f �−→
∫∫∫

f(n′tn) dn′dt dn, f ∈ C∞
c (I),

is a Haar integral on I.
(2) Let C = N ′TN . Show that C is open and dense in G, and that the

product map N ′ × T × N → C is a homeomorphism.
(3) Let dg be a Haar measure on G. Show that there are Haar measures

dn′, dt, dn on N ′, T , N such that
∫

G

f(g) dg =
∫∫∫

f(n′tn)δB(t)−1 dn′dt dn, f ∈ C∞
c (G).
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7.7. Let σ be a smooth representation of T , viewed as representation of B

trivial on N . Corollary 7.2 implies that the canonical inclusion map

c-IndG
B σ −→ IndG

B σ

is an isomorphism. We can therefore apply the Duality Theorem of 3.5 to get:

Duality Theorem. Let σ be a smooth representation of T , viewed as repre-
sentation of B trivial on N , and fix a positive semi-invariant measure µ̇ on
C∞

c (B\G, δ−1
B ). There is a canonical isomorphism

(
IndG

B σ
)∨ ∼= IndG

B δ−1
B ⊗ σ̌,

depending only on the choice of µ̇.

8. Representations of the Mirabolic Group

Before starting on the representation theory of the group G = GL2(F ), we
study the representations of a certain subgroup of G, the so-called mirabolic
subgroup

M =
{
( a x

0 1 ) : a ∈ F×, x ∈ F
}

.

Thus M is the semi-direct product of N by the group S = T ∩ M ∼= F×.

8.1. To start with, let (π, V ) be a smooth representation of N and let ϑ be a
character of N . We denote by V (ϑ) the linear subspace of V spanned by the
vectors π(n)v−ϑ(n)v, n ∈ N , v ∈ V . We set Vϑ = V/V (ϑ): this is the unique
maximal N -quotient of V on which N acts via the character ϑ.

If ϑ0 is the trivial character of N , we have V (ϑ0) = V (N) (notation of
2.3) and we write Vϑ0 = VN .

Lemma. Let µN be a Haar measure on N and ϑ a character of N .

(1) Let (π, V ) be a smooth representation of N and v ∈ V . The vector v

lies in V (ϑ) if and only if there is a compact open subgroup N0 of N

such that ∫

N0

ϑ(n)−1π(n)v dµN (n) = 0. (8.1.1)

(2) The process (π, V ) �→ Vϑ is an exact functor from Rep(N) to the cate-
gory of complex vector spaces.

Proof. We assume first that ϑ is the trivial character of N .
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The group N ∼= F is the union of an ascending sequence of compact open
subgroups. So, if

v =
r∑

i=1

vi−π(ni)vi ∈ V (N),

there is a compact open subgroup N0 of N containing all ni. The relation
(8.1.1) then holds for this choice of N0.

Conversely, let v ∈ V and suppose (8.1.1) holds. There is an open nor-
mal subgroup N1 of N0 such that v ∈ V N1 . The space V N1 carries a rep-
resentation of the finite group N0/N1. Therefore, in the obvious notation,
V N1 = V N1(N0/N1) ⊕ V N0 (cf. 2.3) and the map

w �−→ µN (N0)−1

∫

N0

π(n)w dµN (n), w ∈ V N1 ,

is the N0-projection V N1 → V N0 . This has kernel V N1(N0/N1) ⊂ V (N) and
we have proved (1) for the trivial character of N .

Now let ϑ be an arbitrary character of N , and consider the representation
(π′, V ′) of N , where V ′ = V and π′(n) = ϑ(n)−1π(n). We then have V (ϑ) =
V ′(N) and so (1) follows in general.

Part (2) is an immediate consequence of (1). ��

We mention some simple consequences of the lemma. If (π, V ) is a smooth
representation of N (or of M), then V (N) is an N - (or M -) subspace of V .
The exact sequence

0 → V (N) −→ V −→ VN → 0

gives an exact sequence

0 → V (N)N −→ VN −→ VN → 0

in which the map VN → VN is the identity. Therefore

V (N)N = 0 and V (N)(N) = V (N). (8.1.2)

Suppose that ϑ 
= 1. As N acts trivially on V/V (N), we have (V/V (N))ϑ = 0
and so the inclusion V (N) → V induces an isomorphism

V (N)ϑ
∼= Vϑ. (8.1.3)

Proposition. Let (π, V ) be a smooth representation of N , and let v ∈ V ,
v 
= 0. There exists a character ϑ of N such that v /∈ V (ϑ).
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Proof. We write
Nj =

(
1 p

j

0 1

)
, j ∈ Z. (8.1.4)

Take v ∈ V , v 
= 0. We choose j0 ∈ Z such that Nj0 fixes v. For j � j0,
let Vj denote the Nj-space generated by v. This is the direct sum of isotypic
components V η

j , as η ranges over the characters of Nj trivial on Nj0 . For each
j � j0, there exists ηj such that V

ηj

j 
= 0; by definition, we have
∫

Nj

ηj(n)−1π(n)v dn 
= 0.

The Nj−1-space generated by V
ηj

j is contained in Vj−1, so we may choose ηj−1

such that ηj−1 | Nj = ηj . It follows (compare the argument in 1.7) that there
exists a character ϑ of N such that, for all j � j0, we have

∫

Nj

ϑ(n)−1π(n)v dn 
= 0.

Therefore v /∈ V (ϑ), as required. ��

Corollary 1. Let (π, V ) be a smooth representation of N . If Vϑ = 0 for all
characters ϑ of N , then V = 0.

Now let (π, V ) be a smooth representation of M . The space V (N) is then
an M -subspace of V and VN carries a natural representation of M/N = S.
On the other hand, π(S) permutes the subspaces V (ϑ), ϑ 
= 1, transitively.
Explicitly, for s ∈ S, π(s)V (ϑ) = V (ϑ′), where ϑ′(n) = ϑ(s−1ns). We can
therefore sharpen Corollary 1 for representations of M :

Corollary 2. Let (π, V ) be a smooth representation of M . Suppose that VN =
0 and that Vϑ = 0 for some non-trivial character ϑ of N . Then V = 0.

8.2. We now fix a non-trivial character ϑ of N , and consider the two M -spaces
IndM

N ϑ, c-IndM
N ϑ. Observe that, if ϑ′ is some other non-trivial character of

N , then IndM
N ϑ′ is M -isomorphic to IndM

N ϑ and similarly for the compactly
induced representations.

Proposition. Let ϑ be a non-trivial character of N and set W = IndM
N ϑ,

Wc = c-IndM
N ϑ. Let α : W → C denote the canonical map f �→ f(1).

(1) We have W(N) = Wc(N) = Wc and (W/Wc)(N) = 0.
(2) The map α induces isomorphisms Wϑ

∼= C and Wc
ϑ
∼= C.

Proof. Let f ∈ W and n ∈ N . For a ∈ S, we have f(an) = ϑ(ana−1)f(a). As
there is an integer j such that Nj (as in (8.1.4)) fixes f , we see that f(a) = 0
if ‖det a‖ is sufficiently large. On the other hand, f(an) = f(a) if ‖det a‖ is
sufficiently small, so nf−f vanishes at a if ‖det a‖ is sufficiently small. This
implies that nf−f ∈ Wc. Thus W(N) ⊂ Wc and N acts trivially on W/Wc.
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We next prove that Wc(N) = Wc. Let ψ be the character of F defined by

ψ(x) = ϑ
(

1 x

0 1

)
.

Take a ∈ F×, j ∈ Z, j � 1. Let fa,j ∈ Wc be the function such that

fa,j :
(

1 x

0 1

)(
au 0

0 1

)
�−→ ψ(x), u ∈ U j

F ,

and which vanishes elsewhere. The various functions fa,j span Wc over C. We
have (

1 x

0 1

)
fa,j

(
b 0

0 1

)
= ψ(bx)fa,j

(
b 0

0 1

)
.

We deduce that nfa,j has the same support as fa,j , n ∈ N . We can certainly
find x ∈ F such that the function u �→ ψ(aux), u ∈ U j

F , is constant, equal
to c say, with c 
= 1. If n = ( 1 x

0 1 ), then nfa,j−fa,j = (c−1)fa,j , whence
fa,j ∈ Wc(N) and so Wc(N) = Wc. This implies W(N) = Wc also, and we
have proved (1).

The map α induces a surjection Wϑ → C. On the other hand, since N

acts trivially on W/Wc, the inclusion Wc ↪→ W induces an isomorphism
Wc

ϑ
∼= Wϑ. To prove (2), therefore, it is enough to show that any f ∈ Wc

with f(1) = 0 belongs to Wc(ϑ). A function f , vanishing at 1, is a finite
linear combination of functions fa,j with a /∈ U j

F , so it is enough to treat such
functions. However, as a /∈ U j

F , there exists x ∈ F such that the function
u �→ ψ(aux)−ψ(x), u ∈ U j

F , is a non-zero constant. Taking n = ( 1 x
0 1 ), the

same calculation as before shows that nfa,j − ϑ(n)fa,j is a non-zero constant
multiple of fa,j , whence fa,j ∈ Wc(ϑ) and Wc(ϑ) = Wc, as required. ��

Corollary. The representation c-IndM
N ϑ is irreducible over M .

Proof. Let V be an M -subspace of Wc. As Wc
N = 0, the spaces VN , (Wc/V )N

are both zero. The sequence

0 → Vϑ −→ Wc
ϑ −→ (Wc/V )ϑ → 0

is exact. As dimWc
ϑ = 1, we conclude that dim Vϑ is 0 or 1. In the first case,

V = 0 by 8.1 Corollary 2. In the second, (Wc/V )ϑ = 0 and so Wc = V . ��

We display some of the remarks made in the course of the proof of the
proposition:

Gloss.

(1) A function f ∈ W is determined by its restriction to S ∼= F×. The
restriction f | F× is a smooth function on F×.
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(2) A smooth function φ on F× is of the form φ = f | F×, for some f ∈ W,
if and only if there exists c > 0 such that φ(x) = 0 for all x satisfying
‖x‖ > c.

(3) A function f ∈ W lies in Wc if and only if f | F× ∈ C∞
c (F×).

Remark. Part (3) implies that the representation IndM
N ϑ is never irreducible,

for any non-trivial character ϑ of N . The Duality Theorem 3.5 implies

(c-IndM
N ϑ)∨ ∼= IndM

N ϑ̌.

Thus c-IndM
N ϑ provides an example of an irreducible smooth representation

with reducible contragredient (cf. 2.10).

8.3. Again let ϑ be a non-trivial character of N . Let (π, V ) be a smooth rep-
resentation of M . Frobenius Reciprocity (2.4) gives a canonical isomorphism

HomN (V, Vϑ) ∼= HomM (V, IndM
N Vϑ).

Let q : V → Vϑ denote the quotient map and let q� be the map V → IndM
N Vϑ

corresponding to q under this isomorphism. Explicitly, for v ∈ V , q�(v) is the
function m �→ q(π(m)v).

Theorem. Let (π, V ) be a smooth representation of M . The M -homomorphism
q� : V → IndM

N Vϑ induces an isomorphism V (N) ∼= c-IndM
N Vϑ.

Proof. The N -space Vϑ is a direct sum of copies of ϑ. Therefore IndM
N Vϑ is a

direct sum of copies of IndM
N ϑ. Proposition 8.2 so yields

(IndM
N Vϑ)(N) = c-IndM

N Vϑ = (c-IndM
N Vϑ)(N). (8.3.1)

The M -homomorphism q� : V → IndM
N Vϑ surely maps V (N) to (IndM

N Vϑ)(N) =
c-IndM

N Vϑ.
Let W = Ker q� ∩ V (N) and C = c-IndM

N Vϑ/q�(V (N)). The natural
map WN → V (N)N is injective, by 8.1 Lemma (2), so WN = 0. Likewise,
(c-Ind Vϑ)N is zero, so CN = 0.

The map q� : V → c-IndVϑ induces a map

q�,ϑ : Vϑ = V (N)ϑ −→ (c-Ind Vϑ)ϑ.

By 8.2 Proposition (2), the canonical N -map IndVϑ → Vϑ induces an isomor-
phism αϑ : (c-Ind Vϑ)ϑ → Vϑ. The composite map αϑ ◦ q�,ϑ : Vϑ → Vϑ is the
identity. However, the kernel of this map is Wϑ and its cokernel is isomorphic
to Cϑ. We have shown that the spaces WN , Wϑ, CN , Cϑ are all zero. By 8.1
Corollary 2, therefore, both W and C are trivial and q� : V (N) → c-Ind Vϑ is
an isomorphism, as desired. ��
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Corollary. Let (π, V ) be an irreducible smooth representation of M . Either:

(1) dimV = 1 and π is the inflation of a character of M/N ∼= F×, or
(2) dimV is infinite and π ∼= c-IndM

N ϑ, for any character ϑ 
= 1 of N .

In case (1), dim VN = 1 and Vϑ = 0 for ϑ 
= 1. In case (2), VN = 0 and
dim Vϑ = 1 for all ϑ 
= 1.

Proof. If V (N) = 0, then N acts trivially on V . The group M/N is abelian,
so Schur’s Lemma 2.6 implies dim V = 1 and we are in case (1).

If V (N) 
= 0, then V (N) = V and VN = 0. Therefore Vϑ 
= 0 for all
characters ϑ 
= 1 of N , and so dimV is infinite. The theorem implies that
V = V (N) is M -isomorphic to c-IndM

N Vϑ. The N -space Vϑ is a direct sum
of copies of ϑ, so V is a direct sum of copies of c-IndM

N ϑ and, since it is
irreducible, V ∼= c-IndM

N ϑ. ��

9. Jacquet Modules and Induced Representations

We start the process of classifying the irreducible smooth representations of
the locally profinite group G = GL2(F ). In this section, we deal completely
with those irreducible smooth representations (π, V ) of G (the “principal
series”) for which VN 
= 0.

9.1. Let (π, V ) be a smooth representation of G. As in 8.1, V (N) denotes
the subspace of V spanned by the vectors v−π(x)v, for v ∈ V and x ∈ N .
The space VN = V/V (N) inherits a representation πN of B/N = T , which is
smooth. We call (πN , VN ) the Jacquet module of (π, V ) at N .

In particular, the Jacquet functor

Rep(G) −→ Rep(T ),

(π, V ) �−→ (πN , VN ),
(9.1.1)

is exact and additive.
Let (σ,W ) be a smooth representation of T . We view σ as a smooth

representation of B which is trivial on N , and form the smooth induced rep-
resentation IndG

B σ. (We sometimes abbreviate IndG
B σ = Indσ, since B and

G are the only groups involved for most of the time.)
If (π, V ) is a smooth representation of G, Frobenius Reciprocity (2.4) gives

an isomorphism
HomG(π, Ind σ) ∼= HomB(π, σ).

However, σ is trivial on N so any B-homomorphism π → σ factors through
the quotient map π → πN . We deduce

HomG(π, Ind σ) ∼= HomT (πN , σ). (9.1.2)
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This has the following consequence:

Proposition. Let (π, V ) be an irreducible smooth representation of G. The
following are equivalent:

(1) The Jacquet module VN is non-zero.
(2) The representation π is isomorphic to a G-subspace of a representation

IndG
B χ, for some character χ of T .

Proof. Suppose (2) holds. From (9.1.2) we get

HomT (πN , χ) ∼= HomG(π, Ind χ) 
= 0,

so surely πN 
= 0.
To prove (1)⇒(2), we have to show that the Jacquet module VN admits

an irreducible T - (or B-) quotient.
Choose v ∈ V , V 
= 0. Since V is irreducible over G, any element of V is

a finite linear combination of translates π(g)v of v, for various g ∈ G. Write
K = GL2(o). The vector v is fixed by a subgroup K ′ of K of finite index;
let {v1, v2, . . . , vr} be the distinct elements of the form π(k)v, k ∈ K. In
particular, r � (K:K ′). Since G = BK, the elements v1, . . . , vr generate V

over B, and their images generate VN over T .
Thus VN is finitely generated as a representation of T . We choose a minimal

generating set {u1, . . . , ut}, t � 1, say. A standard Zorn’s Lemma argument
shows that VN has a T -subspace U , containing u1, . . . , ut−1, and maximal for
the property ut /∈ U . Then U is a maximal T -subspace of VN and VN/U is an
irreducible representation of T , hence a character (2.6 Corollary 2). ��

An irreducible smooth representation (π, V ) of G is called cuspidal if VN is
zero. In the literature, cuspidal representations are usually called supercuspidal
or absolutely cuspidal. On the other hand, if VN 
= 0, one says that π is in the
principal series.

9.2. In the case of a finite field k, we divided the irreducible representations
according to whether or not they contained the trivial character of N . For
GL2(F ) we use the existence of an N -trivial quotient, for the following reason:

Exercise 1. Let (π, V ) be an irreducible smooth representation of G with a
non-trivial π(N)-fixed vector. Show that π = φ ◦ det, for some character φ

of F×.

Hint. If v ∈ V is fixed by N , it is fixed by the subgroup H of G generated by
N and some open subgroup K. Show that, since H contains a lower triangular
unipotent matrix, it also contains SL2(F ).
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Exercise 2. Let (π, V ) be an irreducible smooth representation of G such that
dim V is finite. Show that V has a non-zero π(N)-fixed vector. Deduce that
dim V = 1 and π is of the form φ ◦ det, for some character φ of F×.

These exercises help to explain the direction we take, although they play
no part in the argument to follow. (We will, however, need Exercise 1 at a
later stage.)

In this connection, we note:

Proposition. Any character of G is of the form φ ◦ det, for some character
φ of F×.

Proof. If χ is a character of G, its kernel contains the commutator subgroup
of G. Since F is infinite, this commutator subgroup is SL2(F ), so χ = φ ◦det,
for some homomorphism φ : F× → C×. The determinant map is surjective
and open, so φ is a character. ��

9.3. An important fact concerns the structure of the Jacquet module
(IndG

B χ)N of an induced representation. Here, it is no more difficult to give a
very general result.

Let µN be a Haar measure on N and let t ∈ T . The measure S �→
µN (t−1St) is the Haar measure δB(t)µN , for δB as in (7.6.1):

∫

N

f(txt−1) dµN (x) = δB(t)
∫

N

f(x) dµN (x), f ∈ C∞
c (N).

As before, let w denote the permutation matrix

w =
(

0 1

1 0

)
.

If σ is a smooth representation of T , we can form the representation σw : t �→
σ(wtw−1), and view it as a representation of B which is trivial on N .

As in 2.4, ασ denotes the canonical B-map Indσ → σ given by f �→ f(1).
It induces a canonical T -map (Indσ)N → σ, which we continue to denote ασ.

Restriction-Induction Lemma. Let (σ,U) be a smooth representation of
T and set (Σ,X) = IndG

B σ. There is an exact sequence of representations
of T :

0 → σw ⊗ δ−1
B −→ ΣN

ασ−−−−−→ σ → 0.

Proof. By definition, X is the space of G-smooth functions f : G → U such
that f(bg) = σ(b)f(g), b ∈ B, g ∈ G. The canonical map ασ : X → U amounts
to restriction of functions to B. Set V = Ker ασ. Thus V provides a smooth
representation of B and there is an exact sequence

0 → VN −→ XN −→ U → 0.

We have to identify the T -representation VN .
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We recall that G = B ∪BwN . A function f ∈ X thus lies in V if and only
if supp f ⊂ BwN . More precisely:

Lemma. Let f ∈ X; then f ∈ V if and only if there is a compact open
subgroup N0 of N (depending on f) such that supp f ⊂ BwN0.

Proof. A function f ∈ X lies in V if and only if f(1) = 0. Since f is G-
smooth, such a function f vanishes on a set BN ′

0, where N ′
0 is some compact

open subgroup of N ′. The identity (for x 
= 0)
(

1 0

x 1

)
=

(
1 x−1

0 1

) (
−x−1 0

0 x

)
w

(
1 x−1

0 1

)
∈ Bw

(
1 x−1

0 1

)

implies that supp f ⊂ BwN0, for some compact open subgroup N0 of N , as
required. ��

Let f ∈ V ; in view of the lemma, we can define a function fN : T → U by

fN (x) =
∫

N

f(xwn) dn = σ(x) fN (1), x ∈ T.

By 8.1 Lemma, the kernel of the map f �→ fN is V (N), and so f �→ fN (1)
gives a bijective map VN → U . Taking t ∈ T and f ∈ V , we have

(tf)N (x) =
∫

N

f(xwnt) dn

= δB(t−1)
∫

N

f(xtwwn) dn = δ−1
B (t) (twfN )(x).

Thus f �→ fN (1) is a B-homomorphism V → σw ⊗ δ−1
B inducing a T -

isomorphism VN
∼= σw ⊗ δ−1

B . ��
9.4. The irreducible representations of G exhibit a helpful finiteness property:

Proposition. Let (π, V ) be an irreducible smooth representation of G which
is not cuspidal. The representation π is admissible.

Proof. By definition, VN 
= 0. By 9.1 Proposition, π is equivalent to a sub-
representation of IndG

B χ, for some character χ of T . It is enough, therefore,
to prove that Indχ is admissible.

We fix a compact open subgroup K of G; shrinking it if necessary, we may
assume that K ⊂ K0 = GL2(o). The space XK of K-fixed points in Indχ

consists of the functions f : G → C satisfying

f(bgk) = χ(b)f(g), b ∈ B, g ∈ G, k ∈ K. (9.4.1)

We have G = BK0, so the set B\G/K is finite, and each double coset BgK

supports, at most, a one-dimensional space of functions satisfying (9.4.1) (cf.
3.5). Thus XK is finite-dimensional, as required. ��
Remark. The irreducible cuspidal representations of G are likewise admissible,
but the proof requires different techniques: see 10.2 Corollary below.
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9.5. We introduce another notation. If (π, V ) is a smooth representation of
G and φ is a character of F×, we define a smooth representation (φπ, V ) of
G by setting

φπ(g) = φ(det g)π(g), g ∈ G. (9.5.1)

One calls φπ the twist of π by φ.
Similarly for characters of T : if χ = χ1 ⊗ χ2 is a character of T and φ is

a character of F×, then we put φ · χ = φχ1 ⊗ φχ2. If we inflate φ · χ to a
representation of B trivial on N , we get φ · χ = (φ ◦ det | B) ⊗ χ. It follows
immediately that

IndG
B(φ · χ) ∼= φ IndG

B χ. (9.5.2)

This allows us to make convenient adjustments to the character χ without
changing the essential structure of the induced representation.

9.6. We aim to give a precise account of the structure of representations of
the form IndG

B χ. The main step is:

Irreducibility Criterion. Let χ = χ1 ⊗ χ2 be a character of T , and set
(Σ,X) = IndG

B χ.

(1) The representation (Σ,X) is reducible if and only if χ1χ
−1
2 is either

the trivial character or the character x �→ ‖x‖2 of F×.
(2) Suppose that (Σ,X) is reducible. Then:

(a) the G-composition length of X is 2;
(b) one composition factor of X has dimension 1, the other is of infinite

dimension;
(c) X has a 1-dimensional G-subspace if and only if χ1χ

−1
2 = 1;

(d) X has a 1-dimensional G-quotient if and only if χ1χ
−1
2 (x) = ‖x‖2,

x ∈ F×.

We will refine this to a classification of the irreducible principal series
representations in 9.11 below. The proof of the theorem occupies paragraphs
9.7–9.9 to follow.

9.7. We use the notation of 9.6. Let

V = {f ∈ X : f(1) = 0}.

This is a B-subspace of X and we have an exact sequence

0 → V −→ X −→ C → 0,

where the one-dimensional space C = X/V carries the character χ of T . By
the Restriction-Induction Lemma (9.3), VN

∼= δ−1
B χw.
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Proposition. Let W be the kernel V (N) of the canonical map V → VN . The
space W is irreducible over B.

Proof. We shall actually prove that W is irreducible as a representation of
the mirabolic group M of §8. We observe that, by (8.1.2), WN = 0 and
W = W (N).

Lemma. For f ∈ V , define a function fN ∈ C∞
c (N) by fN (n) = f(wn),

n ∈ N . The map
V −→ C∞

c (N),

f �−→ fN ,
(9.7.1)

is an N -isomorphism.

Proof. As in 9.3 Lemma, the support of f ∈ V is contained in BwN , for some
compact open subgroup N of N . The assertions follow immediately (observing
that the notation fN here is not the same as that in 9.3). ��

For φ ∈ C∞
c (N) and a ∈ F×, we define aφ ∈ C∞

c (N) by

aφ
(

1 x

0 1

)
= χ2(a)φ

(
1 a−1x

0 1

)
.

This gives an action of F× on C∞
c (N) which we regard as an action of the

group S of matrices ( a 0
0 1 ). We combine this with the natural action of N

to give C∞
c (N) the structure of a smooth representation of M . With this

structure, the map (9.7.1) is a M -isomorphism.
Let ϑ be a non-trivial character of N . The map f �→ ϑf is a linear automor-

phism of V = C∞
c (N) carrying V (N) to V (ϑ). Since V/V (N) has dimension

1, we deduce that dim Vϑ = 1 also. However, since N acts trivially on VN , the
inclusion W → V induces an isomorphism Wϑ

∼= Vϑ, whence Wϑ
∼= ϑ. We

apply 8.3 Theorem to get W = W (N) ∼= c-IndM
N ϑ which, by 8.2 Corollary, is

irreducible. ��
As a direct consequence of the Proposition, we have:

Corollary. As a representation of B or of M , IndG
B χ has composition length

3. Two of the composition factors have dimension one, and the third is of in-
finite dimension. In particular, the G-composition length of the representation
IndG

B χ is at most 3.

9.8. We continue with the same notation and observe:

Proposition. The following are equivalent:

(1) χ1 = χ2;
(2) X has a one-dimensional N -subspace.

When these conditions hold,

(3) X has a unique one-dimensional N -subspace X0;
(4) X0 is a G-subspace of X, and it is not contained in V .
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Proof. If (1) holds, we may as well take χ1 = χ2 = 1 (cf. (9.5.2)). The (non-
zero) constant function then spans a one-dimensional G-subspace of X.

Conversely, let f ∈ X span an N -stable subspace of dimension 1. Thus
N acts on f (by right translation) as a character. The support of f is left-
invariant under B, so supp f is either G or BwN . The second case is im-
possible: if f(1) = 0, then the support of f is confined to BwN0, for some
compact open subgroup N0 of N (9.3 Lemma). Thus supp f = G and f van-
ishes nowhere. In particular f(1) 
= 0, and f /∈ V . The canonical N -map
X → C = X/V identifies the N -space Cf with the trivial N -space C. It fol-
lows that N fixes f under right translation. Take x ∈ F×, and consider the
identity

w
(

1 x

0 1

)
=

(
1 x−1

0 1

) (
−x−1 0

0 x

) (
1 0

x−1 1

)
.

If ‖x‖ is sufficiently large, then f is fixed under right translation by
(

1 0
x−1 1

)
.

So, as f is fixed by N , we have

f(w) = χ1(−1)χ−1
1 χ2(x) f(1),

for all x ∈ F× of sufficiently large absolute value. Thus χ1 = χ2 = φ, say, and
f(g) = φ(det g)f(1). We have proved (1) ⇔ (2), and that the one-dimensional
N -subspace is uniquely determined. We have already shown that it is not
contained in V . ��

9.9. We now finish the proof of the Irreducibility Criterion 9.6. Assume X

is reducible. Its G-length is 2 or 3, and it has either a finite-dimensional G-
subspace or a finite-dimensional G-quotient (9.7 Corollary).

Assume the first alternative. Thus X has a one-dimensional N -subspace,
and we are in the situation of 9.8: X has a one-dimensional G-subspace L,
and χ1 = χ2 = φ, say. Moreover, G acts on L as the character φ ◦ det and
L∩V = 0 (notation of 9.7). The quotient Y = X/L is therefore B-isomorphic
to V . If X has G-length 3, then Y has G-length 2. However, V has B-length 2
and a unique B-quotient, which is of dimension 1. This gives a G-quotient of
Y on which G must act as a character φ′ ◦ det (9.2). This would force φ′ ⊗ φ′

to appear as a factor in the Jacquet module YN
∼= φ · δ−1

B , which it cannot.
Thus X has G-length 2 and we are in case (2)(c) of 9.6.

In the other alternative, X has a finite-dimensional G-quotient. The rep-
resentation X̌ therefore has a finite-dimensional G-subspace, and we are back
with the first alternative. By the Duality Theorem of 7.7, X̌ ∼= IndG

B δ−1
B χ̌, so

we are in the case (2)(d) of 9.6.
Thus, in part (1) of the theorem, we have shown that X reducible implies

χ has the stated form. The converse is given by 9.8 and the dual case. We
have also proved statements (a)–(d). ��
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9.10. To get a classification of the irreducible, non-cuspidal representations
of G, we need to investigate the homomorphisms between induced represen-
tations:

Proposition. Let χ, ξ be characters of T . The space HomG(IndG
B χ, IndG

B ξ)
has dimension 1 if ξ = χ or χwδ−1

B , zero otherwise.

Proof. We use Frobenius Reciprocity (9.1.2):

HomG(IndG
B χ, IndG

B ξ) ∼= HomT ((Ind χ)N , ξ).

The Jacquet module (Indχ)N fits into the exact sequence

0 → χwδ−1
B −→ (Indχ)N −→ χ → 0.

If we assume that χ 
= χwδ−1
B , then this sequence splits and the result follows

immediately. The equation χ = χwδ−1
B amounts to χ1(x) = ‖x‖χ2(x), x ∈ F×.

In this case, Ind χ is irreducible and the result again follows. ��

By way of some examples, we examine in more detail the case where IndG
B χ

is reducible. Thus there is a character φ of F× such that χ = φ · 1T or χ =
φ · δ−1

B . Twisting does not affect the situation materially, so we assume φ = 1.
Consider first the case IndG

B 1T . The irreducible G-quotient of IndG
B 1T is

called the Steinberg representation of G, and is denoted StG:

0 → 1G −→ IndG
B 1T −→ StG → 0. (9.10.3)

Its dimension is infinite and (StG)N
∼= δ−1

B . Likewise, if φ is a character of
F×, we have an exact sequence

0 → φG −→ IndG
B φT −→ φ · StG → 0,

where φG = φ ◦ det and φT = φ⊗ φ. (Representations of the form φ · StG are
sometimes called special.)

Taking the smooth dual of (9.10.3), we get an exact sequence

0 → St∨G −→ IndG
B δ−1

B −→ 1G → 0. (9.10.4)

The proposition implies
StG

∼= St∨G. (9.10.5)

Remark. The proposition also implies that the space EndG(Ind 1T ) has dimen-
sion 1, while Ind 1T is not irreducible. Thus the converse of Schur’s Lemma
fails in this context, as remarked in 2.6.

Observe also the imperfect parallelism between the proposition above and
the corresponding result (6.3) for the finite field case.
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9.11. We introduce a new notation. If σ is a smooth representation of T , we
define

ιG
B σ = IndG

B(δ−1/2
B ⊗ σ). (9.11.1)

This provides another exact functor Rep(T ) → Rep(G), known as normalized
or unitary smooth induction. It gives rise to more convenient combinatorics,
for example: (

ιG
B σ

)∨ ∼= ιG
B σ̌. (9.11.2)

In this language, the Irreducibility Criterion (9.6) and 9.10 Proposition say:

Lemma.

(1) Let χ = χ1⊗χ2 be a character of T . The representation ιG
B χ is reducible

if and only if χ1χ
−1
2 is one of the characters x �→ ‖x‖±1 of F× or,

equivalently, χ = φ · δ±1/2
B for some character φ of F×.

(2) Let χ, ξ be characters of T . The space HomG(ιG
B χ, ιG

B ξ) is not zero if
and only if ξ = χ or ξ = χw.

Gathering up our earlier arguments and results, we get:

Classification Theorem. The following is a complete list of the isomorphism
classes of irreducible, non-cuspidal representations of G:

(1) the irreducible induced representations ιG
B χ, where χ 
= φ · δ

±1/2
B for

any character φ of F×;
(2) the one-dimensional representations φ ◦ det, where φ ranges over the

characters of F×;
(3) the special representations φ · StG, where φ ranges over the characters

of F×.

The classes in this list are all distinct except that, in (1), we have ιG
B χ ∼=

ιG
B χw.

Proof. The examples in 9.10 show that every irreducible, non-cuspidal rep-
resentation of G appears in this list. The relations between the irreducibly
induced ones are given by 9.10 Proposition. The same result also implies that
no special representation φ · StG can be equivalent to φ′ · StG, φ′ 
= φ, or any
irreducibly induced representation. ��

10. Cuspidal Representations and Coefficients

In 9.1, we defined an irreducible smooth representation (π, V ) of GL2(F ) to
be cuspidal if its Jacquet module (πN , VN ) is trivial or, equivalently, if it is not
isomorphic to a composition factor of an induced representation IndG

B χ, for
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any character χ of T . Such a negative and exclusive approach yields essentially
no information about this particularly important class of representations. We
now give an alternative definition, valid in a much wider context, and show it
is equivalent to the original one. It provides the starting point for a method
of constructing cuspidal representations.

From this new viewpoint, irreducible cuspidal representations have a strik-
ing algebraic property: they are projective objects in the appropriate sub-
category of Rep(G). We have no direct need for this result, but we have
included it as an appendix.

10.1. Let (π, V ) be a smooth representation of G = GL2(F ); from vectors
v ∈ V , v̌ ∈ V̌ , we get a smooth function on G by

γv̌⊗v : g �−→ 〈v̌, π(g)v〉.

We let C(π) be the vector space spanned by the functions γv̌⊗v, v̌⊗v ∈ V̌ ⊗V .
The functions f ∈ C(π) are called the (matrix) coefficients of π.

The space V̌ ⊗V carries a smooth representation of the group G×G, while
G × G acts on the function space C(π) by translation: the first factor acts by
left translation and the second by right translation. The map v̌⊗ v �→ γv̌⊗v is
then a surjective G × G-homomorphism V̌ ⊗ V → C(π).

The space C(π) is primarily, but not exclusively, of interest in the case
where π is irreducible. When π is irreducible, the centre Z of G acts on V via
the central character ωπ of π and

γ(zg) = ωπ(z)γ(g), z ∈ Z, g ∈ G, γ ∈ C(π).

The support of a coefficient is therefore invariant under translation by Z.

Definition. Let (π, V ) be an irreducible smooth representation of G; one says
that π is γ-cuspidal if every γ ∈ C(π) is compactly supported modulo Z.

The term “γ-cuspidal” is a convenient, but temporary, expedient.

Convention. To save adjectives, if a representation is described as cuspidal
or γ-cuspidal, it is implicitly assumed to be smooth.

We first achieve some technical control:

Proposition.

(1) If (π, V ) is an irreducible γ-cuspidal representation of G, then π is
admissible.

(2) Let (π, V ) be an irreducible admissible representation of G, and suppose
that some non-zero coefficient of π is compactly supported modulo Z;
then π is γ-cuspidal.
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Proof. In part (1), we suppose for a contradiction that π is not admissible. We
choose a compact open subgroup K such that V K has infinite dimension. This
dimension, we note, is countable (2.6). The dimension of V̌ K ∼= HomC(V K , C)
is therefore uncountable.

We fix a non-zero v ∈ V K and consider the map Γv : V̌ K → C(π) given
by v̌ �→ γv̌⊗v. Since the translates gv, g ∈ G, span V , the map Γv is injective.
Its image is a space of functions f on G, satisfying

f(zkgk′) = ωπ(z)f(g), g ∈ G, z ∈ Z, k, k′ ∈ K, (10.1.1)

and supported on a finite union of cosets ZKgK. The dimension of Γv(V̌ K) is
therefore at most countable, while Γv is injective and dim V̌ K is uncountable.
This gives the desired contradiction.

We turn to part (2). The smooth dual (π̌, V̌ ) is irreducible and admissible
(2.10). We view the space V̌ ⊗ V as a smooth representation of G × G, and
hence as a smooth module over H(G × G) = H(G) ⊗H(G).

If K is a compact open subgroup of G, we have

(V̌ ⊗ V )K×K = (eK ⊗ eK) ∗ (V̌ ⊗ V ) = V̌ K ⊗ V K .

If K is sufficiently small, the spaces V K , V̌ K are finite-dimensional simple
modules over H(G,K). The Jacobson Density Theorem implies that V̌ K⊗V K

is a simple module over H(G,K)⊗H(G,K) ∼= H(G×G,K ×K). This holds
for all sufficiently small K, so V̌ ⊗V is an irreducible admissible G×G-space
(4.3 Corollary).

The surjective G × G-homomorphism γ : V̌ ⊗ V → C(π) is therefore an
isomorphism and C(π) is irreducible over G × G. If γ ∈ C(π) is non-zero, any
γ′ ∈ C(π) is a finite linear combination of functions (g, h)γ, (g, h) ∈ G×G. If
γ is compactly supported modulo Z, then so is γ′. ��

Remark 1. All of the preceding definitions and arguments apply in the general
case, where G is a unimodular locally profinite group satisfying 2.6 Hypothesis.
Indeed, 2.6 is only used at one point, in the proof of part (1) of the proposition.
Even this can be avoided by noting that the dual of a vector space W has
dimension strictly greater than dim W except when dim W is finite.

Remark 2. In the general context of Remark 1, part (2) of the proposition fails
when the irreducible smooth representation (π, V ) is not admissible. An ex-
ample is given by the representation c-IndM

N ϑ considered in 8.2: see especially
8.2 Remark.

10.2. The reason for introducing the notion of γ-cuspidality is explained by:

Theorem. Let (π, V ) be an irreducible smooth representation of G; then π is
cuspidal if and only if it is γ-cuspidal.
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Proof. We first assume that π is cuspidal, and show it is γ-cuspidal. Let � be
a prime element of F , and put

t =
(

� 0

0 1

)
.

The set T+ of powers tn, n � 0, then provides a family of representatives for
ZK\G/K, K = GL2(o) (7.2.2).

Lemma. Let v ∈ V , v̌ ∈ V̌ . There exists m � 0 such that γv̌⊗v(tn) = 0, for
all n � m.

Proof. We choose a compact open subgroup N1 of N which fixes v̌. Since
VN = 0, we have v ∈ V (N) and (8.1) there is a compact open subgroup N2

of N such that ∫

N2

π(x)v dx = 0.

We then have ∫

N0

π(x)v dx = 0,

for any compact open subgroup N0 of N containing N2. However, there exists
m � 0 such that taN2t

−a ⊂ N1 for all a � m. For such a we have (for certain
positive constants k1, k2)

〈v̌, π(ta)v〉 = k1

∫

N1

〈π̌(x−1)v̌, π(ta)v〉 dx

= k1

∫

N1

〈π̌(t−a)v̌, π(t−axta)v〉 dx

= k2

∫

t−aN1ta

〈π̌(t−a)v̌, π(x)v〉 dx

= 0,

since t−aN1t
a ⊃ N2. ��

Continuing with the proof of the theorem, we fix a non-zero coefficient
f = γv̌⊗v of π. We write K = GL2(o) and let K ′ be an open normal subgroup
of K fixing both v̌ and v. We let k1, k2, . . . , kr be a set of coset representatives
for K/K ′. Thus, if g ∈ G, there exists n � 0 such that

ZKgK = ZKtnK =
⋃
i,j

ZK ′k−1
i tnkjK

′.

It follows that

supp f ⊂
⋃

1�i,j�r

ZK ′ (supp fij ∩ T+)K ′,
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where fij denotes the coefficient function x �→ f(kixk−1
j ). This set is compact

modulo Z, by the lemma. It follows that all coefficients γv̌⊗v of π are compactly
supported modulo Z, and π is therefore γ-cuspidal.

Combining this argument with 9.4 Proposition and 10.1 Proposition, we
have shown:

Corollary. Every irreducible smooth representation of G = GL2(F ) is admis-
sible.

We now prove the converse statement in the theorem. Let (π, V ) be an
irreducible γ-cuspidal representation of G. In particular, (π, V ) is admissible.
By 2.10 Proposition, the dual (π̌, V̌ ) is irreducible and admissible. Let Kn

denote the group 1+pnM2(o), n � 1. We take v ∈ V and choose n � 1 so that
v is fixed by π(Kn). We take t as before.

For v̌ ∈ V̌ Kn , the function g �→ 〈v̌, π(g)v〉 is compactly supported modulo
Z; we deduce that 〈v̌, π(ta)v〉 = 0 for all a ∈ Z sufficiently large. Since V̌ Kn

is of finite dimension there is a constant c such that 〈v̌, π(ta)v〉 = 0 for all
v̌ ∈ V̌ Kn and all a � c. This implies π(eKn

)π(ta)v = 0 for a � c. We write,
for j ∈ Z,

Nj =
(

1 p
j

0 1

)
, N ′

j =
(

1 0
p

j 1

)
, Tn = Kn ∩ T,

so that Kn = NnTnN ′
n. Set K

(a)
n = t−aKnta = Nn−aTnN ′

n+a; we then have,
for a � c,

0 = π(eKn
)π(ta)v = π(ta)π(e

K
(a)
n

)v

= π(ta)
∑

x∈Nn−a/Nn

π(x)π(e
K

(a)
n ∩Kn

)v.

However, v is fixed by K
(a)
n ∩ Kn, so this equation reduces to

0 = k π(ta)
∫

Nn−a

π(x)v dx,

for a constant k > 0 depending on the choice of a Haar measure dx on N .
We deduce that v ∈ V (N) (8.1 Lemma). This applies to all v ∈ V , so π is
cuspidal, as required. ��

10a. Appendix: Projectivity Theorem

We give another property of γ-cuspidal representations. We will not use this
result, but we have included it for its power and beauty. It also holds in a
very general context.
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10a.1. Let G be a locally profinite group with centre Z. Let χ be a character
of Z and let (π, V ) be a smooth representation of G. We recall that π admits
χ as central character if π(z)v = χ(z)v, for z ∈ Z, v ∈ V .

Projectivity Theorem. Let G be a unimodular locally profinite group, satis-
fying (2.6) and with centre Z. Assume that any character χ : Z → R×

+ extends
to a character G → R×

+.
Let (π, V ) be an irreducible γ-cuspidal representation of G, and let (τ, U) be

a smooth representation of G admitting ωπ as central character. Let f : U → V

be a surjective G-homomorphism. There exists a G-homomorphism φ : V → U

such that f ◦ φ = 1V .

10a.2. The group G/Z is locally profinite. One sees easily that it is uni-
modular. Indeed, let µG, µZ be Haar measures on G, Z respectively. By 3.4
Proposition, there is a unique right Haar measure µ̇ on G/Z such that

∫

G

f(g) dµG(g) =
∫

G/Z

∫

Z

f(zg) dµZ(z) dµ̇(g), f ∈ C∞
c (G).

Symmetrically, µ̇ is also a left Haar measure on G/Z.

Schur’s orthogonality relation. Let dġ be a Haar measure on G/Z, and
let v1, v2 ∈ V , v̌1, v̌2 ∈ V̌ . The function

g �−→ 〈π̌(g)v̌1, v1〉〈v̌2, π(g)v2〉, g ∈ G,

is invariant under translation by Z and
∫

G/Z

〈π̌(g)v̌1, v1〉〈v̌2, π(g)v2〉 dġ = d(π)−1 〈v̌1, v2〉 〈v̌2, v1〉,

for a constant d(π) > 0 depending only on π and the measure dġ.

Proof. Since π is γ-cuspidal, the integrand has compact support in G/Z and
the integral converges. If we fix, say, v̌1 and v2, the integral determines a G-
invariant pairing V̌ × V → C. Such a pairing is given by a G-homomorphism
Θ : V̌ → V̌ (cf. Exercise 2.10). Since V is admissible (10.1 Proposition) and
irreducible, the same applies to V̌ (2.10) and Schur’s Lemma (2.6) implies
that any G-invariant pairing V̌ × V → C is a scalar multiple of the standard
one. Therefore, there is a constant cv̌1,v2 such that

∫

G/Z

〈π̌(g)v̌1, v1〉〈v̌2, π(g)v2〉 dġ = cv̌1,v2 〈v̌2, v1〉.

The function (v̌1, v2) �→ cv̌1,v2 is again a G-invariant bilinear pairing V̌ ×V →
C, so

cv̌1,v2 = cπ 〈v̌1, v2〉,
for a constant cπ.
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It remains only to prove that cπ > 0. The assumption on G allows us to
replace π by a twist and assume that |ωπ| = 1. The space V then admits a
positive definite, G-invariant Hermitian form h, constructed as follows. One
chooses a nonzero element v̌ ∈ V̌ and sets

h(v1, v2) =
∫

G/Z

〈v̌, π(g)v1〉〈v̌, π(g)v2〉 dġ.

There is then a complex anti-linear G-isomorphism Θ : (π, V ) → (π̌, V̌ ) such
that h(v1, v2) = 〈Θv1, v2〉. Schur’s Lemma again implies that h is the unique
G-invariant, positive definite Hermitian form on V , up to a positive constant
factor.

Going through the same argument, one sees that
∫

G/Z

h(π(g)v1, v2)h(v3, π(g)v4) dġ = bπ h(v1, v4)h(v3, v2),

for a constant bπ. On taking v1 = v2 = v3 = v4 
= 0, one sees that bπ > 0. On
the other hand,
∫

G/Z

h(π(g)v1, v2)h(v3, π(g)v4) dġ =
∫

G/Z

〈π̌(g)Θ(v1), v2)〉〈Θ(v3), π(g)v4〉 dġ

= cπ 〈Θ(v1), v4〉〈Θ(v3), v2〉
= cπ h(v1, v4)h(v3, v2).

Therefore cπ = bπ > 0, as required. ��

Remark. Let (π, V ) be an irreducible smooth representation of G such that
|ωπ| = 1. One says that π is square-integrable modulo Z if

∫

G/Z

|〈v̌, π(g)v〉|2 dġ < ∞

for all v̌ ∈ V̌ , v ∈ V . The orthogonality relation then holds for π, with
exactly the same proof. The positive constant d(π) is called the formal degree
of π, relative to the measure dġ. (For a full discussion of square-integrable
representations of GL2(F ), see 17.4 et seq. below.)

10a.3. We now prove the Projectivity Theorem. First, we need to generalize
the constructions of 4.1, 4.2. Let χ be a character of F×. Let Hχ(G) be the
space of locally constant functions f : G → C, which are compactly supported
modulo Z, such that f(zg) = χ(z)−1f(g), z ∈ Z, g ∈ G. Using a Haar measure
on G/Z, we define convolution on Hχ(G) as in (4.1). If (σ,W ) is a smooth
representation of G admitting χ as central character, we extend the action of
G on W to one of Hχ(G), just as in 4.2.
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We let (π, V ) be an irreducible γ-cuspidal representation of G, as in the
theorem. We abbreviate ω = ωπ. We take a smooth representation (τ, U)
of G, admitting ω as central character, and a G-surjection f : U → V . If
u ∈ U satisfies f(u) 
= 0, the restriction of f to the G-space τ(Hω(G))u
generated by u is still surjective. Composing it with the obvious G-surjection
Hω(G) → τ(Hω(G))u, we get a G-surjection

Π : Hω(G) −→ V,

φ �−→ f(τ(φ)u) = π(φ)v0,

where v0 = f(u). It is enough to show that Π splits over G.
We choose a vector v̌0 ∈ V̌ such that d(π)−1〈v̌0, v0〉 = 1. The function

φv : g �→ 〈π̌(g)v̌0, v〉 lies in Hω(G) and the map

Φ : V −→ Hω(G),

v �−→ φv,

is a G-homomorphism. The composite map Π ◦ Φ is given by

w �−→ π(φw)v0 =
∫

G/Z

π(g)φw(g)v0 dġ, w ∈ V.

For w̌ ∈ V̌ , this gives

〈w̌,ΠΦ(w)〉 =
∫

G/Z

〈w̌, π̌(g)v0〉〈π̌(g)v̌0, w〉 dġ = 〈w̌, w〉,

whence ΠΦ(w) = w, as required. ��

11. Intertwining, Compact Induction and Cuspidal
Representations

We describe a method for constructing irreducible cuspidal representations of
G = GL2(F ), using compact induction from open subgroups. At this stage,
it is a purely formal matter: it is not clear that the necessary hypotheses are
satisfied sufficiently often to give useful results. Such issues are the subject of
the next chapter. Here, we have to be content with one interesting example.

11.1. We start with general considerations so, for the time being, G is a uni-
modular locally profinite group with the countability property 2.6. Through-
out, Z denotes the centre of G. If K is a compact open subgroup of G, we
write K̂ for the set of isomorphism classes of irreducible smooth representa-
tions of K.
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Definition 1. For i = 1, 2, let Ki be a compact open subgroup of G and let
ρi ∈ K̂i. Let g ∈ G. The element g intertwines ρ1 with ρ2 if

HomKg
1∩K2

(ρg
1, ρ2) 
= 0,

where ρg
1 denotes the representation x �→ ρ1(gxg−1) of the group Kg

1 =
g−1K1g.

As a property of g, this depends only on the double coset K1gK2.
The definition applies equally if the Ki are just closed subgroups of G; we

will often need it in the case where the Ki are open and compact modulo the
centre of G.

Definition 2. Let K be a compact open subgroup of G, and let (π, V ) be a
smooth representation of G. We say that π contains ρ, or ρ occurs in π, if
HomK(ρ, π) 
= 0.

Again, we can use the same definition in more general contexts, for ex-
ample, if K is open and compact modulo the centre of G and π admits a
central character (see 2.7). We also use it when G is compact and K is a
closed subgroup of G.

Remaining with the compact open case for the time being, the significance
of the concept of intertwining is first indicated by the following.

Proposition 1. For i = 1, 2, let Ki be a compact open subgroup of G and
let ρi ∈ K̂i. Let (π, V ) be an irreducible smooth representation of G which
contains both ρ1 and ρ2. There then exists g ∈ G which intertwines ρ1 with
ρ2.

Proof. For each i, we have the decomposition of V into Ki-isotypic components
(2.3 Proposition). The hypothesis is equivalent to V ρi 
= 0, i = 1, 2.

Let e2 denote the K2-projection V → V ρ2 . Since π is irreducible and
V ρ1 
= 0, the spaces π(g−1)V ρ1 = V ρg

1 , g ∈ G, span V . We can therefore
choose g ∈ G such that e2 ◦ π(g−1) induces a non-zero map V ρ1 → V ρ2 : this
is the required element g. ��

Take (Ki, ρi) as in the Proposition. The representations ρg
1, ρ2 of Kg

1 ∩K2

are semisimple, so the spaces

HomKg
1∩K2

(ρg
1, ρ2), HomKg

1∩K2
(ρ2, ρ

g
1) ∼= Hom

K1∩Kg−1
2

(ρg−1

2 , ρ1)

have the same dimension. Therefore g intertwines ρ1 with ρ2 if and only if
g−1 intertwines ρ2 with ρ1.
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Language.

(1) We say that the ρi intertwine in G if there exists g ∈ G which inter-
twines ρ1 with ρ2. The relation of G-intertwining between pairs (Ki, ρi)
is therefore symmetric and reflexive; it is not transitive.

(2) If we have a single pair (K, ρ), we say that g intertwines ρ if it inter-
twines ρ with itself.

Remark. We will often wish to use this approach when K is not compact,
but only an open subgroup of G which is compact modulo Z. One cannot, in
general, decompose a smooth representation (π, V ) of G into a direct sum of
K-isotypic components. Such a decomposition does exist (2.7) if (π, V ) admits
a central character ωπ, in particular, if π is irreducible. With this caveat, we
can treat open, compact modulo centre subgroups of G in the same way as
compact open subgroups.

We will later (in Chapter VI) need another intertwining criterion. (We use
the notation of 4.4 here.)

Proposition 2. Let K be a compact open subgroup of G, let g ∈ G, and
ρ ∈ K̂. The following are equivalent:

(1) there exists f ∈ eρ ∗ H(G) ∗ eρ such that f | KgK 
= 0;
(2) g intertwines ρ.

Proof. Consider the space C∞(KgK) of G-smooth functions on the coset
KgK. This carries a smooth representation of K × K by

(k1, k2)f : x �−→ f(k−1
1 xk2).

Let H denote the group of pairs (k, g−1kg) ∈ K × K, k ∈ K ∩ gKg−1.
The map f �→ f(g) is then an H-homomorphism C∞(KgK) → C (with
H acting trivially). By Frobenius Reciprocity (2.4), this induces a K × K-
homomorphism

C∞(KgK) −→ IndK×K
H (1H). (11.1.1)

We show this is an isomorphism.
The space V = IndK×K

H (1H) consists, by definition, of smooth functions
φ : K×K → C such that φ(hk1, g

−1hgk2) = φ(k1, k2), ki ∈ K, h ∈ K∩gKg−1.
Given such a function φ, we can define fφ ∈ C∞(KgK) by setting fφ(k1gk2) =
φ(k−1

1 , k2); the map φ �→ fφ is the inverse of the map (11.1.1).
In these terms, condition (1) amounts to eρ ∗C∞(KgK) ∗ eρ

∼= V ρ⊗ρ̌ 
= 0.
Equivalently,

HomK×K(ρ ⊗ ρ̌, V ) ∼= HomH(ρ ⊗ ρ̌, 1H) 
= 0.

The last relation is equivalent to the representation k �→ ρ(k) ⊗ ρ̌(g−1kg)
of K ∩ gKg−1 having a fixed vector, that is, HomK∩gKg−1(ρ, ρg−1

) 
= 0, as
required. ��
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11.2. Let K be an open subgroup of G, containing and compact modulo the
centre Z of G. Let (ρ,W ) be an irreducible smooth representation of K. Let
H(G, ρ) be the space of functions f : G → EndC(W ) which are compactly
supported modulo Z and satisfy

f(k1gk2) = ρ(k1)f(g)ρ(k2), ki ∈ K, g ∈ G.

Observe that the support of any f ∈ H(G, ρ) is a finite union of double cosets
KgK.

Let µ̇ be a Haar measure on G/Z. For φ1, φ2 ∈ H(G, ρ), we set

φ1 ∗ φ2(g) =
∫

G/Z

φ1(x)φ2(x−1g) dµ̇(x), g ∈ G.

The function φ1 ∗ φ2 lies in H(G, ρ) and, under this operation of convolution,
the space H(G, ρ) is an associative C-algebra with 1.

Remark. The algebra H(G, ρ) is called the ρ-spherical Hecke algebra of G,
or the intertwining algebra of ρ in G. It is closely related to the algebra eρ ∗
H(G)∗eρ: there is a canonical algebra isomorphism eρ∗H(G)∗eρ

∼= H(G, ρ)⊗
EndC(W ). (In the literature, the algebra we have defined is sometimes denoted
H(G, ρ̌).)

Lemma. Let g ∈ G; there exists φ ∈ H(G, ρ) with support KgK if and only
if g intertwines ρ.

Proof. Let f ∈ EndC(W ); for a fixed g ∈ G, the assignment kgk′ �→ ρ(k)fρ(k′),
k, k′ ∈ K, gives an element of H(G, ρ) if and only if, for k ∈ Kg ∩ K, we
have f ◦ ρ(k) = ρg(k) ◦ f . That is, if and only if f ∈ HomKg∩K(ρ, ρg). The
representations ρ, ρg of K∩Kg are semisimple, so the spaces HomKg∩K(ρ, ρg),
HomKg∩K(ρg, ρ) have the same dimension. The Lemma now follows. ��

We have actually shown that the space of functions f ∈ H(G, ρ) supported
on KgK is canonically isomorphic to HomKg∩K(ρ, ρg).

11.3. With (K, ρ) as in 11.2, we consider the compactly induced representa-
tion c-IndG

K ρ, as in 2.5. The space X underlying this representation consists
of the functions f : G → W , which are compactly supported modulo Z, and
satisfy f(kg) = ρ(k)f(g), k ∈ K, g ∈ G. The group G acts by right transla-
tion. (All functions f ∈ X are G-smooth for this action, since K is open: see
2.5 Exercise 2.)

For φ ∈ H(G, ρ) and f ∈ c-Ind ρ, we define

φ ∗ f(g) =
∫

G/Z

φ(x)f(x−1g) dµ̇(x), g ∈ G.

Clearly, φ ∗ f ∈ X, and this action gives a homomorphism of C-algebras

H(G, ρ) −→ EndG(c-Ind ρ). (11.3.1)
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Proposition. The map (11.3.1) is an isomorphism of C-algebras.

Proof. We use the relation EndG(c-Ind ρ) ∼= HomK(ρ, c-Ind ρ) of (2.5.2). Let
φ0 : w → φ0

w be the canonical map W → c-Ind ρ, corresponding to the identity
endomorphism of c-Ind ρ: the function φ0

w has support K and φ0
w(k) = ρ(k)w.

The isomorphism EndG(c-Ind ρ) → HomK(ρ, c-Ind ρ) is composition with φ0.
Composing (11.3.1) with φ0, we get a map H(G, ρ) → HomK(W, c-Ind ρ). We
write down its inverse. Let

φ : W −→ c-Ind ρ,

w �−→ φw,

be a K-homomorphism. We define a function Φ : G → EndC(W ) by

Φ(g) : w �−→ φw(g).

For k ∈ K, we have Φ(kg) : w �→ φw(kg) = ρ(k)φw(g), so Φ(kg) = ρ(k)Φ(g).
Also, Φ(gk) : w �→ φw(gk) = φρ(k)w(g), since φ is a K-map. Therefore Φ ∈
H(G, ρ) and φ �→ µ̇(K/Z)−1Φ is the required inverse map. ��

11.4. The central result of this section is:

Theorem. Let K be an open subgroup of G = GL2(F ), containing and com-
pact modulo Z. Let (ρ,W ) be an irreducible smooth representation of K and
suppose that an element g ∈ G intertwines ρ if and only if g ∈ K. The com-
pactly induced representation c-IndG

K ρ is then irreducible and cuspidal.

Proof. We write (Σ,X) = c-IndG
K ρ. We first show that the representation Σ

has a non-zero coefficient which is compactly supported modulo Z. To see
this, we use the canonical K-embedding φ0 : W → X of the preceding proof,
which identifies W with the space of functions in X that are supported in K

(2.5 Lemma).
The groups K, G are unimodular, so the Duality Theorem of 3.5 implies

that X̌ ∼= IndG
K ρ̌. The induced representation IndG

K ρ̌ contains c-IndG
K ρ̌ as

G-subspace. The canonical K-embedding W̌ → c-IndG
K ρ̌ identifies W̌ with

the space of functions in X̌ with support contained in K. We take non-zero
functions w̌ ∈ W̌ ⊂ X̌ and w ∈ W ⊂ X: the coefficient γw̌⊗w is then non-zero
and supported in K.

Consequently, we need only prove that X is irreducible: it is then admis-
sible (10.2 Corollary) and we can apply 10.1 Proposition (2) to show it is
γ-cuspidal, hence cuspidal.

The centre Z of G acts on X via the character ωρ, where ρ(z)w = ωρ(z)w,
z ∈ Z, w ∈ W . Therefore X is the direct sum of its K-isotypic components
(2.7). Any K-map W → X has image contained in Xρ, so:
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HomK(W,Xρ) = HomK(W,X) ∼= EndG(X) ∼= H(G, ρ).

However, the intertwining condition implies that dimH(G, ρ) = 1. The space
HomK(W,Xρ) therefore has dimension 1, and we conclude that W = Xρ.

Let Y be a non-zero G-subspace of X. Therefore

0 
= HomG(Y,X) ⊂ HomG(Y, IndG
K ρ) ∼= HomK(Y, ρ).

Since Y is semisimple over K (2.7), we have Y ρ 
= 0. Thus Y ⊃ W = Xρ,
since W is irreducible over K. As W generates X over G, we conclude that
Y = X. Thus X is irreducible, as required. ��

Remark 1. The theorem holds (with the conclusion that c-Ind ρ is γ-cuspidal),
with the same proof, in considerable generality. It is valid for a unimodular
locally profinite group G, satisfying 2.6 Hypothesis, and such that any irre-
ducible smooth representation of G is admissible.

Remark 2. The converse of the theorem also holds. If ρ is intertwined by some
g ∈ G � K, then H(G, ρ) ∼= EndG(c-Ind ρ) has dimension > 1. Thus c-Ind ρ

has a non-scalar endomorphism and cannot be irreducible.

Remark 3. In the situation of the theorem, the smooth dual (c-Ind ρ)∨ is irre-
ducible. It is, however, isomorphic to Ind ρ̌. We deduce that Ind ρ̌ = c-Ind ρ̌ ∼=
(c-Ind ρ)∨. Since these representations are all admissible, we can dualize again
to get c-Ind ρ = Ind ρ.

11.5. We give an example illustrative of the above procedures. Let G =
GL2(F ), K = GL2(o) and K1 = 1+pM2(o). Thus K1 is an open normal
subgroup of K and K/K1

∼= GL2(k). We also let I1 denote the group of
matrices

I1 = 1 +
(

p o

p p

)
.

Thus I1 is the inverse image in K of the standard group N(k) of upper
triangular unipotent matrices in GL2(k).

Theorem. Let (π, V ) be an irreducible smooth representation of G, and sup-
pose that π contains the trivial character of K1. Exactly one of the following
holds:

(1) π contains a representation λ of K, inflated from an irreducible cuspidal
representation λ̃ of GL2(k);

(2) π contains the trivial character of I1.

In the first case, π is cuspidal, and there exists a representation Λ of ZK such
that Λ | K ∼= λ and

π ∼= c-IndG
ZK Λ.
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Proof. The group K stabilizes the space V K1 , which is therefore a direct sum
of irreducible representations of K which are trivial on K1, that is, they are
inflated from GL2(k). Let λ be one of these, inflated from λ̃. Either λ̃ is
cuspidal (in the sense of §6), or it is not. In the latter case, it contains the
trivial character of N(k), whence λ contains the trivial character of I1.

We have to show that the two cases cannot occur together. To do this, we
interpolate a useful general lemma.

Lemma. For i = 1, 2, let ρ̃i be an irreducible representation of GL2(k), and
let ρi denote the inflation of ρ̃i to a representation of K. Suppose that ρ̃1 is
cuspidal.

(1) The representations ρi intertwine in G if and only if ρ̃1
∼= ρ̃2.

(2) An element g ∈ G intertwines ρ1 if and only if g ∈ ZK.

Proof. Let g ∈ G intertwine ρ2 with ρ1. It is only the coset KgZK which
intervenes, so we can take g of the form

g =
(

�a 0

0 1

)
,

for some a � 0. If a = 0, we have g = 1 and there is nothing to do. We
therefore assume a � 1. The group Kg

1 ∩ K contains the group

N0 =
(

1 o

0 1

)
⊂

(
1 p

0 1

)g

on which ρg
2 is trivial. Since ρ̃1 is cuspidal, ρ1 does not contain the trivial

character of N0, so g cannot intertwine the ρi. All assertions now follow. ��

It follows from 11.1 Proposition 1 that, in the theorem, the two cases
cannot occur together. We now assume that λ̃ is cuspidal. Surely π contains
some representation Λ of ZK extending λ. Thus we have a non-trivial ZK-
homomorphism Λ → π, giving a non-trivial G-homomorphism c-IndG

ZK Λ →
π. However, by part (2) of the lemma and 11.4 Theorem, the representation
c-Ind Λ is irreducible, so π ∼= c-Ind Λ, as desired. ��

Remark. We will eventually see (14.5) that the theorem has a kind of converse.
If (π, V ) is an irreducible representation of G containing the trivial character
of K1, then it is cuspidal if and only if it satisfies condition (1) of the theorem.

Further reading.

Although we have focused exclusively on G = GL2(F ), many elements reflect
the much more general discussions in the papers [5,6] of Bernstein and Zelevin-
sky. These apply in the context of connected reductive algebraic groups over
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F and centre on general versions of the Restriction-Induction Lemma (9.3)
and the homomorphism theorem in the form 9.11 Lemma 2. That programme
culminates in a classification of the non-cuspidal representations of GLn(F ),
[90]. Rodier’s report [71] is a helpful introduction. The eternal pre-print [25]
is also written in these terms, from a slightly different point of view. Only in
very few cases, however, does one have a good command of the non-cuspidal
representations of groups besides GLn(F ).

The initial analysis of cuspidal representations in this chapter is quite
general in tone, and holds very widely. Even 11.5 and its converse have close
analogues for completely general reductive groups [67], [64].
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