3

Induced Representations of Linear Groups

7. LINEAR GROUPS OVER LOCAL FIELDS

8.  REPRESENTATIONS OF THE MIRABOLIC GROUP

9. JACQUET MODULES AND INDUCED REPRESENTATIONS

10. CUSPIDAL REPRESENTATIONS AND COEFFICIENTS

10a. APPENDIX: PROJECTIVITY THEOREM

11. INTERTWINING, COMPACT INDUCTION AND CUSPIDAL
REPRESENTATIONS

From now on, we concentrate on the group G = GLy(F) over a non-
Archimedean local field F'. The group G inherits a locally profinite topology
from the base field F', as in 1.4. Our objective is the classification of the
irreducible smooth representations of GG, although we shall not achieve it until
the end of Chapter IV.

In this chapter, the algebraic subgroups B, N, T of G (as in 5.1) play
a pivotal role. In parallel with the representation theory of the finite group
GLy (k) worked out in §6, the irreducible smooth representations of G fall into
two broad classes. First, there is a “principal series” of representations: these
are the composition factors of representations obtained from characters of T’
by a process of inflation to B and then induction to G. Frobenius Reciprocity
characterizes them, among the irreducible smooth representations of G, as
those admitting a non-trivial quotient on which N acts trivially. The irre-
ducible smooth representations not obtainable this way are called “cuspidal”.
The main result of this chapter (9.11) gives a complete classification of the
principal series representations.

There is a further subgroup of G which plays a surprisingly important part
in the classification process. This is the “mirabolic subgroup” M of matrices
(xij) € B with x99 = 1. The group M has a very simple representation theory:
besides an obvious family of characters, it has a unique irreducible smooth
representation. Further, irreducible representations of G decompose very little
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when restricted to M. This is the basis of our detailed analysis of the principal
series representations of G.

In this chapter, we make only rather general remarks about the irreducible
cuspidal representations of G. We give a characterization of them more helpful
than that of not being in the principal series, and a speculative method for
constructing them. This prepares the ground for the analysis in Chapter IV.

Some of the arguments and results here, particularly in §11, apply to quite
arbitrary locally profinite groups: we point these out as they arise. Most of
the time, we work exclusively with GLy(F') or its subgroups, and exploit this
restriction as much as we can to simplify and abbreviate the treatment. We
are rarely unwilling to substitute an explicit matrix calculation for a more
general abstract argument.

7. Linear Groups over Local Fields

As noted in §1, the group G = GL2(F') has many compact open subgroups, of
which a small number are of particular importance. This is expressed first via
various coset decompositions of G, beyond the universal Bruhat decomposition
of 5.2. Using these decompositions, one can turn the general measure theory
of §3 into an effective computational tool, necessary for handling the integrals
arising within the representation theory of G.

This section thus amounts to a course of calculus on GLg(F'), which can
be skimmed at first reading and referred back to at need. The only result
to which we will return is the Duality Theorem at the end, but the general
techniques developed here are used frequently.

7.1. For this section, we set V = F'@ F, and think of it as the space of column
vectors with G acting on the left. The standard subgroups B, N, T, Z are as
in §5. These are all closed subgroups of G. The group isomorphisms B/N = T
and B =T x N are homeomorphisms.

7.2. Reflecting the special nature of the base field F, the group G admits
decompositions besides the Bruhat decomposition of 5.2. The first of these is:

(7.2.1) Iwasawa decomposition. Let B be the standard Borel subgroup of
G and set K = GLy(0); then G = BK.

Proof. Take g € Gj if the (2,1)-entry of g is zero, then g € B. Otherwise, post-
multiplying by the permutation matrix w € K if necessary, we can assume
UF(g21) = vr(gaz). We can then post-multiply by a lower triangular matrix
in K to achieve go; = 0. O

Consequently, the quotient space B\G is a continuous image of the com-
pact group K = GL3(0), and so:
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Corollary. The quotient space B\G is compact.

Continuing with the notation K = GLy(0), we also have:
(7.2.2) Cartan decomposition. Let w be a prime element of F. The
matrices

(wa Ob), a,b €7, a<b,

0 w

form a set of representatives for the coset space K\G/K.

Proof. Permuting rows and columns, using the permutation matrix in K, we
can arrange for the largest entry of ¢ (in absolute value) to be in the 1,1 place.
Multiplying by elementary matrices from K, we can then arrange for g to be
diagonal, and unit factors can be absorbed into K. This gives

G- K(% LK.
a<b

We have to prove this union is disjoint. That is, we have to recover the integers
a,b from the coset KgK, where

g=(%"2)

First, we have a+b = vp(deth), for any h € KgK. Next, the group index
(K : KNhKh~') depends only on the coset KhK, and (K : KNgKg~') =1
if b=a,or (g+1)g* ¢ Lifb>a. O

Corollary. If K is a compact open subgroup of G, the set G/K is countable.

Proof. As observed in 2.6, it is enough to show that G/K is countable for one
choice of K: we take K = GLy(0). The space K\G/K is certainly countable,
and each double coset KgK contains only finitely many cosets ¢'K. 0O

That is, G satisfies the countability hypothesis of 2.6.

Exercise. Let K be a compact subgroup of G. Show that gKg~! C GLy(0),
for some g € G. Deduce that, up to G-conjugacy, GLa(0) is the unique maxi-
mal compact subgroup of G.

Hint. There are two steps. One first shows that there exists a K-stable o-
lattice in V: consider the o-span of KL, for a randomly chosen o-lattice L.
The second consists of showing that the only GLs(0)-stable lattices in V' are
the obvious ones p/ @ p?, j € Z.

7.3. The standard Iwahori subgroup of G is the compact open subgroup
I={(¢}):a,deUr bEo, cep}.

Let N’ = N¥ denote the group of lower triangular unipotent matrices in G.
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(7.3.1) Iwahori decomposition. We have I = (INN")(INT)(INN). More
precisely, the product map

INN' xINTxINN — 1T

is bijective, and a homeomorphism, for any ordering of the factors on the left
hand side.

Proof. The product map is certainly continuous. It is elementary to write
down its inverse and observe that it is continuous. O

Set K = GL3y(0); under the canonical surjection K — GL3(k), the image
of I is the standard Borel subgroup of GLs(k). The Bruhat decomposition for
GLz(k) implies

K=1UIwl. (7.3.2)

Combining (7.3.2) with the Iwasawa decomposition (7.2.1) for G, we obtain
the more symmetric double-coset decomposition

G = BIUBwI = B(INN')UBw(INN). (7.3.3)

The cosets BwlI, BI are both open in G.

Remark. Let L = o ® o, L' = o @ p. The Iwahori subgroup I is then the
common G-stabilizer of the two lattices L, L.

7.4. We now describe the Haar measures attached to the various locally profi-
nite groups under discussion. We start with the basic example of the field F
itself.

Lemma. The vector space CX(F) is spanned by the characteristic functions
of sets a+p™, a € F, m € Z.

Proof. Surely the characteristic function of a+p™ lies in C2°(F'). Conversely,
let @ € C°(F). Since ¢ has compact support, there exists n € Z such that
supp® C p™. Also, @ is fixed under translation by a compact open subgroup
of F', hence by p™, for some m € Z. Thus @ is a linear combination of char-
acteristic functions of sets a+p™, a € p™/p™. 0O

If @y denotes the characteristic function of o and u is a Haar measure on
F', we have

/ Do(x) dp(z) = co,
F

for some ¢y > 0. If ®; is the characteristic function of a coset a+p’, a € F,
b € Z, then

/F &1 () du(w) = cog ™.
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This identity suffices for integrating any function ¢ € C°(F').
Now take @ € C°(F) and y € F*. Using the identity above, we find

/ B(ay) du(z) = |ly] / &(z) du(z),
F F

where, we recall, ||y = ¢~**®). We accordingly define a measure p* on F*
by du* (x) = dp(x)/||z||, meaning the following. If & € C°(F*), the function
x — |lz||7'®(x) (vanishing at 0) lies in C°(F), so we can put

| s@aw@ = [ s@lel " dutw). decx(F). @4

A simple manipulation shows that (7.4.1) defines a Haar integral on F*.

7.5. The matrix ring A = My(F) is (as additive group) a product of 4 copies
of F and a Haar measure is obtained by taking a (tensor) product of 4 copies
of a Haar measure on F'.

Proposition. Let u be a Haar measure on A. For & € C°(G), the function
x — @(x)| detz|| =2 (vanishing on A\ G) lies in C>°(A). The functional

@ [ B deta] 2 duta), @ C2(6).
A

is a left and right Haar integral on G. In particular, G is unimodular.

Proof. Let g € G and consider the functionals
[ (o) duta),

A
[ (wg)duta),

A

b +—

P e CX(A).

Each is a Haar integral on A and differs from the initial one by a positive
constant (depending on g). To evaluate this constant, we take @ to be the
characteristic function of m = Ms(0). In the first instance, the function z +—
&(gz) is the characteristic function of the lattice m’ = g~'m. Thus

/A P(gx) dp(x) = p(m’) = p(m) (m": mOm’)/(m: mNm').

This quotient of indices depends only on the double coset KgK, K = GLy(0).
Taking ¢ in diagonal form (7.2.2), one gets

/ B(gz) du(x) = | det ]| 2 / &(z) dp(z).
A A
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The second instance is treated in same way to get

/@wmmmzwaw*/ﬂmwwy
A A

The proposition then follows from simple manipulations. For example, if @ €
(@),

[ #lag)ldeta] duta) = |l detg]) ? | @a)|detag | duta)
A A
— [ @)l deta] " du(a),
A

as required. 0O

7.6. We turn to the subgroups B, N, T of G. Since N 2 F and T & F* x F’*|
there is nothing more to say about them. We have B = T x N; we define a
linear functional on the space C°(B) = C(T) ® C°(N) by

2— [ [ o) auraun). @ e o),

where pr, uy are Haar measures on 7', N respectively. One verifies immedi-
ately that this functional is left B-invariant, so it is a left Haar integral on B.
We are so justified in denoting it

@»—>/ b)dug(b

The Haar measure g may be thought of as the tensor product, up = prpuy,
but the two factors do not commute. This reflects the fact that the group B
is not unimodular. In the language of 3.3:

Proposition. The module dg of the group B is given by
O 1 tn — ||ta/t1]], neN, t=(42)eT (7.6.1)

Proof. Setting
c=sm, meEN, s:(“‘1 ,0)€T,

062

L (be) dus (b // (ts s~ s m) dyur ()dpun ().

We use the obvious isomorphism N — F to identify py with a certain Haar
measure g on F. For ¢ € C°(N), we then have

[ oty dun o) = [ o (375 duela)

= [ls1s3 [l [y ¢(n) dun (n).

we get



7. Linear Groups over Local Fields 55

By definition,
/ B(be) duss (b) = b5(c) " / (6) dus(b),
B B

and the result follows. 0O

In the notation of 3.4, we now have:

Corollary. The space C°(B\G, 5;1) admits a positive semi-invariant mea-
sure f1, where dp is given by (7.6.1). If K = GLy(0), there is a Haar measure
wr on K such that

/ f(9) dirlg) = / F(R) dpuc (),
B\G K

for f € C*(B\G,é5").

Proof. The character dp is trivial on the compact group K N B. Restriction
of functions is an isomorphism C°(B\G,d5") — C=°(K N B\K, 1), where 1
denotes the trivial character of K N B. The semi-invariant measure g thus
restricts to a semi-invariant measure on C°(K N B\K, 1), but so does any
Haar measure on K. 0O

We observe that pg is effectively just the restriction of a Haar measure
g on G. Comparing with the proof of 3.4 Proposition, there is a left Haar
measure up on B such that

/ 6(9) duc(g) = / / o(bk) dup(B)duc(k), 6eCX(@).  (1.62)
G K JB
Exercises.

(1) Let I be the standard Iwahori subgroup; let dn’, dt, dn be Haar measures
on the groups INN', INT, INN respectively. Show that the functional

fr— /// f(n'tn)dn'dtdn, fe€ C(I),

1s a Haar integral on I.

(2) Let C = N'TN. Show that C is open and dense in G, and that the
product map N' x T x N — C' is a homeomorphism.

(3) Let dg be a Haar measure on G. Show that there are Haar measures
dn', dt, dn on N', T, N such that

/Gf(g)dg:///f(n'tn)ég(t)_ldn’dtdn, f€CE(a).
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7.7. Let o be a smooth representation of T', viewed as representation of B
trivial on N. Corollary 7.2 implies that the canonical inclusion map

c—Indg o — Indg o

is an isomorphism. We can therefore apply the Duality Theorem of 3.5 to get:

Duality Theorem. Let o be a smooth representation of T, viewed as repre-
sentation of B trivial on N, and fix a positive semi-invariant measure i on
C>®(B\G,d5"). There is a canonical isomorphism

(Indg J)V ~1nd§ 05! @7,

depending only on the choice of fi.

8. Representations of the Mirabolic Group

Before starting on the representation theory of the group G = GLa(F), we
study the representations of a certain subgroup of G, the so-called mirabolic
subgroup

M={(§1):ac F*,zeF}.
Thus M is the semi-direct product of N by the group S =T NM = F*.

8.1. To start with, let (7, V') be a smooth representation of N and let ¥ be a
character of N. We denote by V(¢) the linear subspace of V' spanned by the
vectors w(n)v—y9(n)v, n € N, v € V. We set Vyy = V/V(9): this is the unique
maximal N-quotient of V' on which NV acts via the character 9.

If ¥y is the trivial character of N, we have V() = V(N) (notation of
2.3) and we write Vy, = V.

Lemma. Let puy be a Haar measure on N and ¥ a character of N.

(1) Let (m,V) be a smooth representation of N and v € V. The vector v
lies in V(9) if and only if there is a compact open subgroup Ny of N
such that

. d(n) " r(n)vduy(n) = 0. (8.1.1)

(2) The process (mw, V') — Vy is an exact functor from Rep(N) to the cate-
gory of complex vector spaces.

Proof. We assume first that ¢ is the trivial character of N.
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The group N 2 F is the union of an ascending sequence of compact open
subgroups. So, if

v= Zvi—ﬂ'(ni)vi e V(N),
i=1

there is a compact open subgroup Ny of N containing all n;. The relation
(8.1.1) then holds for this choice of Np.

Conversely, let v € V and suppose (8.1.1) holds. There is an open nor-
mal subgroup N; of Ny such that v € V™. The space VM carries a rep-
resentation of the finite group Ny/N;i. Therefore, in the obvious notation,
VNt = VN(Ny/Ny) @ VMo (cf. 2.3) and the map

w»—>,uN(N0)_1/ m(n)wduy(n), we VN,
No

is the No-projection V™ — V™o This has kernel VN1 (Ny/Ny) C V(N) and
we have proved (1) for the trivial character of N.

Now let ¥ be an arbitrary character of N, and consider the representation
(7', V') of N, where V' =V and 7/(n) = ¥(n)~!7(n). We then have V() =
V/(N) and so (1) follows in general.

Part (2) is an immediate consequence of (1). O

We mention some simple consequences of the lemma. If (7, V') is a smooth
representation of N (or of M), then V(N) is an N- (or M-) subspace of V.
The exact sequence

0-V(N)—V —Vy—0
gives an exact sequence
0—=V(N)y —Vy — VN —0
in which the map Vy — Vi is the identity. Therefore
V(N) Ny =0 and V(N)(N)=V(N). (8.1.2)

Suppose that ¥ # 1. As N acts trivially on V/V(N), we have (V/V(N))y =0
and so the inclusion V(N) — V induces an isomorphism

V(N)y 2 Vy. (8.1.3)

Proposition. Let (w,V) be a smooth representation of N, and let v € V,
v # 0. There ezists a character ¥ of N such that v ¢ V(9).
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Proof. We write

N;=(1%), Jez (8.1.4)

Take v € V, v # 0. We choose jo € Z such that Nj, fixes v. For j < jo,
let V; denote the Nj-space generated by v. This is the direct sum of isotypic
components Vj", as 7 ranges over the characters of N; trivial on Nj,. For each
J < Jjo, there exists 7; such that Vj"j # 0; by definition, we have

/ n;(n) " 'm(n)vdn # 0.
Nj

The N;_;-space generated by V}n" is contained in V;_1, so we may choose 1;_;
such that n;_1 | N; = n;. It follows (compare the argument in 1.7) that there
exists a character ¢ of N such that, for all j < jg, we have

/Nj I(n) 1w (n)v dn £ 0.

Therefore v ¢ V(9), as required. O

Corollary 1. Let (7, V) be a smooth representation of N. If Viy = 0 for all
characters ¢ of N, then V = 0.

Now let (7, V) be a smooth representation of M. The space V(N) is then
an M-subspace of V and Vi carries a natural representation of M/N = S.
On the other hand, 7(S) permutes the subspaces V(4), ¢ # 1, transitively.
Explicitly, for s € S, n(s)V(9) = V(¢'), where ¥'(n) = J(s~1ns). We can
therefore sharpen Corollary 1 for representations of M:

Corollary 2. Let (m,V') be a smooth representation of M. Suppose that Vy =
0 and that Vy = 0 for some non-trivial character 9 of N. Then V = 0.

8.2. We now fix a non-trivial character 9 of IV, and consider the two M -spaces
IndY 9, c-Indy 9. Observe that, if 9 is some other non-trivial character of
N, then Ind% 9" is M-isomorphic to Ind% ¥ and similarly for the compactly
induced representations.

Proposition. Let ¥ be a non-trivial character of N and set W = Ind% 9,
We = c—Ind%I 9. Let a : W — C denote the canonical map f — f(1).

(1) We have W(N) = W¢(N) = W° and W/W°)(N) = 0.
(2) The map o induces isomorphisms Wy = C and W5 = C.

Proof. Let f € W and n € N. For a € S, we have f(an) = d(ana™1)f(a). As
there is an integer j such that N; (as in (8.1.4)) fixes f, we see that f(a) =0
if || det a|| is sufficiently large. On the other hand, f(an) = f(a) if || detal| is
sufficiently small, so nf—f vanishes at a if || det a|| is sufficiently small. This
implies that nf—f € W¢. Thus W(N) C W€ and N acts trivially on W/We.
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We next prove that W¢(N) = W¢. Let ¢ be the character of F defined by

vy =0 (7).

Take a € F*, j € Z, j > 1. Let f,; € W¢ be the function such that

faj: (éf) (aOU(l)) — (), wueUl,

and which vanishes elsewhere. The various functions f, ; span W¢ over C. We

have
(31) e (32) = 015 (32)

We deduce that nf, ; has the same support as f, ;, n € N. We can certainly
find z € F such that the function u — ¢(aux), u € Uiﬂ, is constant, equal
to ¢ say, with ¢ # 1. If n = (3 %), then nf,j—fa; = (¢c—1)fa;, whence
fa,; € WE(N) and so WE(IN) = W¢€. This implies W(N) = W¢ also, and we
have proved (1).

The map « induces a surjection Wy — C. On the other hand, since N
acts trivially on W/W¢€, the inclusion W¢ — W induces an isomorphism
WS = Wy. To prove (2), therefore, it is enough to show that any f € W°
with f(1) = 0 belongs to W¢(¢). A function f, vanishing at 1, is a finite
linear combination of functions f, ; with a ¢ U, I{;, so it is enough to treat such
functions. However, as a ¢ U iﬂ, there exists x € F such that the function
u — tp(auz)—1p(x), u € UL, is a non-zero constant. Taking n = (} %), the
same calculation as before shows that nf, ; — ¥(n)f, ; is a non-zero constant
multiple of f, ;, whence f, ; € W°(¥) and W*°(J) = W, as required. O

Corollary. The representation c—Ind% ¥ is irreducible over M.

Proof. Let V be an M-subspace of W°. As WS, = 0, the spaces Vi, W¢/V)n
are both zero. The sequence

0—Vy — W5 — (W/V)y —0

is exact. As dim W§ = 1, we conclude that dim V}y is 0 or 1. In the first case,
V =0 by 8.1 Corollary 2. In the second, (W¢/V)y =0 and so We=V. 0O

We display some of the remarks made in the course of the proof of the
proposition:

Gloss.

(1) A function f € W is determined by its restriction to S = F*. The
restriction f | F* is a smooth function on F*.
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(2) A smooth function ¢ on F* is of the form ¢ = f | F*, for some f € W,
if and only if there exists ¢ > 0 such that ¢(xz) =0 for all = satisfying
||| > e.

(3) A function f € W lies in W if and only if f | F* € C°(F*).

Remark. Part (3) implies that the representation Ind%[ ¥ is never irreducible,
for any non-trivial character ¥ of N. The Duality Theorem 3.5 implies

(c-Ind} 9)Y = Ind}! 9.

Thus c-IndAN/[ ¥ provides an example of an irreducible smooth representation
with reducible contragredient (cf. 2.10).

8.3. Again let ¥ be a non-trivial character of N. Let (7, V') be a smooth rep-
resentation of M. Frobenius Reciprocity (2.4) gives a canonical isomorphism

Hom y (V, Vp) 22 Hom, (V, Ind3 Vy).

Let g : V — Vy denote the quotient map and let g, be the map V' — IndAN/I V
corresponding to ¢ under this isomorphism. Explicitly, for v € V', g, (v) is the
function m — q(7(m)v).

Theorem. Let (7, V) be a smooth representation of M. The M -homomorphism
gV — Ind%f Vo induces an isomorphism V(N) & c—Ind% V.

Proof. The N-space Vy is a direct sum of copies of ©}. Therefore Ind%f Vyis a
direct sum of copies of IndAN/I . Proposition 8.2 so yields

(Ind V) (N) = ¢-Ind¥ Vi = (¢c-Ind¥ Vi) (N). (8.3.1)

The M-homomorphism ¢, : V — Ind} Vy surely maps V (N) to (Ind} Vy)(N) =
c-Ind} V.

Let W = Kerg, N V(N) and C = c-IndY Vy/q.(V(N)). The natural
map Wy — V(N)y is injective, by 8.1 Lemma (2), so W = 0. Likewise,
(¢-Ind V) N is zero, so Cy = 0.

The map ¢4 : V — c¢-Ind Vy induces a map

qx,9 * Vo = V(N)ﬁ — (C—Il’ld Vﬂ)qf).

By 8.2 Proposition (2), the canonical N-map Ind Vy — Vy induces an isomor-
phism ay : (¢-Ind Vy)y — V. The composite map ay o gu 9 : Vo — Vy is the
identity. However, the kernel of this map is Wy and its cokernel is isomorphic
to Cy. We have shown that the spaces Wy, Wy, Cn, Cy are all zero. By 8.1
Corollary 2, therefore, both W and C are trivial and ¢, : V(N) — ¢-Ind Vy is
an isomorphism, as desired. O
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Corollary. Let (m,V) be an irreducible smooth representation of M. Either:

(1) dimV =1 and 7 is the inflation of a character of M/N = F*, or
(2) dim V is infinite and 7 = ¢-Ind¥ 9, for any character 9 # 1 of N.

In case (1), dimVy =1 and Vy = 0 for 9 # 1. In case (2), Vy = 0 and
dim Vy =1 for all ¥ # 1.

Proof. If V(N) = 0, then N acts trivially on V. The group M/N is abelian,
so Schur’s Lemma 2.6 implies dim V' = 1 and we are in case (1).

If V(N) # 0, then V(N) = V and Viy = 0. Therefore Vy # 0 for all
characters 9 # 1 of N, and so dimV is infinite. The theorem implies that
V = V(N) is M-isomorphic to ¢-Indj Vy. The N-space Vy is a direct sum
of copies of ¥, so V is a direct sum of copies of c-Ind%[ ¢ and, since it is
irreducible, V = ¢-IndN 9. O

9. Jacquet Modules and Induced Representations

We start the process of classifying the irreducible smooth representations of
the locally profinite group G = GLa(F). In this section, we deal completely
with those irreducible smooth representations (7,V) of G (the “principal
series”) for which Vi # 0.

9.1. Let (m, V) be a smooth representation of G. As in 8.1, V() denotes
the subspace of V' spanned by the vectors v—n(z)v, for v € V and « € N.
The space Vy = V/V(N) inherits a representation mn of B/N = T, which is
smooth. We call (7x, V) the Jacquet module of (w, V) at N.

In particular, the Jacquet functor

Rep(G) — Rep(T),

(1 V) s (0, Vi), (9.1.1)

is exact and additive.

Let (o,W) be a smooth representation of T. We view o as a smooth
representation of B which is trivial on N, and form the smooth induced rep-
resentation Indg o. (We sometimes abbreviate Indg o = Ind o, since B and
G are the only groups involved for most of the time.)

If (7, V) is a smooth representation of G, Frobenius Reciprocity (2.4) gives
an isomorphism

Homg (7, Ind o) =2 Homp(r, o).

However, o is trivial on N so any B-homomorphism m — o factors through
the quotient map m — mn. We deduce

Homg (7, Ind 0) & Homr(7wy, o). (9.1.2)
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This has the following consequence:

Proposition. Let (7, V) be an irreducible smooth representation of G. The
following are equivalent:

(1) The Jacquet module Vi is non-zero.
(2) The representation 7 is isomorphic to a G-subspace of a representation
Indg X, for some character x of T.

Proof. Suppose (2) holds. From (9.1.2) we get
Homp (7w, x) & Homeg(m, Ind x) # 0,

so surely mn # 0.

To prove (1)=-(2), we have to show that the Jacquet module Vi admits
an irreducible T- (or B-) quotient.

Choose v € V, V # 0. Since V is irreducible over G, any element of V is
a finite linear combination of translates 7(g)v of v, for various g € G. Write
K = GLy(0). The vector v is fixed by a subgroup K’ of K of finite index;
let {v1,v9,...,v,} be the distinct elements of the form 7w (k)v, k¥ € K. In
particular, » < (K:K'). Since G = BK, the elements vy, ...,v, generate V
over B, and their images generate Viy over T'.

Thus Vy is finitely generated as a representation of 7. We choose a minimal
generating set {uy,...,us}, t > 1, say. A standard Zorn’s Lemma argument
shows that Vv has a T-subspace U, containing uy,...,us—1, and maximal for
the property u; ¢ U. Then U is a maximal T-subspace of Vi and Vi /U is an
irreducible representation of T, hence a character (2.6 Corollary 2). O

An irreducible smooth representation (7, V') of G is called cuspidal if Vi is
zero. In the literature, cuspidal representations are usually called supercuspidal
or absolutely cuspidal. On the other hand, if Vv # 0, one says that 7 is in the
principal series.

9.2. In the case of a finite field k, we divided the irreducible representations
according to whether or not they contained the trivial character of N. For
GLy(F) we use the existence of an N-trivial quotient, for the following reason:

Exercise 1. Let (w,V) be an irreducible smooth representation of G with a
non-trivial (N )-fized vector. Show that m = ¢ o det, for some character ¢
of F*.

Hint. If v € V is fixed by N, it is fixed by the subgroup H of G generated by
N and some open subgroup K. Show that, since H contains a lower triangular
unipotent matrix, it also contains SLo(F).



9. Jacquet Modules and Induced Representations 63

Exercise 2. Let (m,V) be an irreducible smooth representation of G such that
dimV is finite. Show that V' has a non-zero w(N)-fixed vector. Deduce that
dimV =1 and 7 is of the form ¢ o det, for some character ¢ of F*.

These exercises help to explain the direction we take, although they play
no part in the argument to follow. (We will, however, need Exercise 1 at a
later stage.)

In this connection, we note:

Proposition. Any character of G is of the form ¢ o det, for some character
¢ of F*.

Proof. If x is a character of G, its kernel contains the commutator subgroup
of G. Since F is infinite, this commutator subgroup is SLo(F'), so x = ¢ o det,
for some homomorphism ¢ : F* — C*. The determinant map is surjective
and open, so ¢ is a character. 0O

9.3. An important fact concerns the structure of the Jacquet module
(Indg X)n of an induced representation. Here, it is no more difficult to give a
very general result.

Let puny be a Haar measure on N and let ¢ € 7. The measure S —
un (t71St) is the Haar measure 65 (¢)un, for 6p as in (7.6.1):

[ st dun(o) = 65(0) [ f@)dun(e). e cE).

As before, let w denote the permutation matrix

_ (01
w=1{,,]-
If o is a smooth representation of T', we can form the representation o : t +—
o(wtw™!), and view it as a representation of B which is trivial on N.

As in 2.4, a, denotes the canonical B-map Indo — o given by f +— f(1).
It induces a canonical T-map (Ind o) y — o, which we continue to denote «,-.

Restriction-Induction Lemma. Let (0,U) be a smooth representation of
T and set (¥, X) = Indga. There is an evact sequence of representations
of T':
O—>0w®5§1 — YNy 22, 0 —0.

Proof. By definition, X is the space of G-smooth functions f : G — U such
that f(bg) = o(b)f(g), b € B, g € G. The canonical map «, : X — U amounts
to restriction of functions to B. Set V' = Ker «,,. Thus V' provides a smooth
representation of B and there is an exact sequence

0—-Vy — Xy —U—0.

We have to identify the T-representation V.
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We recall that G = BU BwN. A function f € X thus lies in V if and only
if supp f C BwN. More precisely:

Lemma. Let f € X; then f € V if and only if there is a compact open
subgroup Ny of N (depending on f) such that supp f C BwNy.

Proof. A function f € X lies in V if and only if f(1) = 0. Since f is G-
smooth, such a function f vanishes on a set BN/, where N/ is some compact
open subgroup of N’. The identity (for « # 0)

G =) o )e(n ) ese(5))
z 1 0 1 0 = 0 1 0 1
implies that supp f C BwNp, for some compact open subgroup Ny of N, as

required. 0O

Let f € V; in view of the lemma, we can define a function fy : T — U by
fn(x) = / flzwn)dn = o(x) fy(1), zeT.
N

By 8.1 Lemma, the kernel of the map f — fy is V(IV), and so f — fn(1)
gives a bijective map Vy — U. Taking t € T and f € V, we have

(tf)n (z) = /N Fzwnt) dn
= dp(t™") [ Flatwn) dn = 55 (0) (" ) o).

Thus f — fn(1) is a B-homomorphism V — o% ® 5,}1 inducing a T-
isomorphism Vy = % ® 5151. O
9.4. The irreducible representations of G exhibit a helpful finiteness property:

Proposition. Let (w,V) be an irreducible smooth representation of G which
is not cuspidal. The representation m is admissible.

Proof. By definition, Viy # 0. By 9.1 Proposition, 7 is equivalent to a sub-
representation of Indg X, for some character x of T. It is enough, therefore,
to prove that Ind x is admissible.

We fix a compact open subgroup K of Gj; shrinking it if necessary, we may
assume that K C Ky = GLy(0). The space XX of K-fixed points in Ind x
consists of the functions f : G — C satisfying

f(bgk) =x(b)f(g), beB, ge G, keK. (9.4.1)

We have G = BKj, so the set B\G/K is finite, and each double coset BgK
supports, at most, a one-dimensional space of functions satistfying (9.4.1) (cf.
3.5). Thus X¥ is finite-dimensional, as required. 0O

Remark. The irreducible cuspidal representations of GG are likewise admissible,
but the proof requires different techniques: see 10.2 Corollary below.
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9.5. We introduce another notation. If (7, V) is a smooth representation of
G and ¢ is a character of F*, we define a smooth representation (¢m, V) of
G by setting

¢m(g) = ¢(detg)m(g), g€G. (9.5.1)

One calls ¢ the twist of m by ¢.
Similarly for characters of T if x = x1 ® X2 is a character of T and ¢ is
a character of F'*, then we put ¢ - x = ¢x1 ® ¢x2. If we inflate ¢ - x to a
representation of B trivial on N, we get ¢ - x = (¢ odet | B) @ x. It follows
immediately that
Ind% (¢ - x) = ¢Ind . (9.5.2)

This allows us to make convenient adjustments to the character x without
changing the essential structure of the induced representation.

9.6. We aim to give a precise account of the structure of representations of
the form Indg X- The main step is:

Irreducibility Criterion. Let x = x1 ® x2 be a character of T, and set
(2, X) =Ind§ x.

(1) The representation (X,X) is reducible if and only if x1x5 " is either
the trivial character or the character x — ||z||* of F*.
(2) Suppose that (X, X) is reducible. Then:

(a) the G-composition length of X is 2;

(b) one composition factor of X has dimension 1, the other is of infinite
dimension;

(c) X has a 1-dimensional G-subspace if and only if x1x53 ' = 1;

(d) X has a 1-dimensional G-quotient if and only if x1x5 * (z) = ||z|?,
x € F*.

We will refine this to a classification of the irreducible principal series
representations in 9.11 below. The proof of the theorem occupies paragraphs
9.7-9.9 to follow.

9.7. We use the notation of 9.6. Let
V={feX:f(1) =0}

This is a B-subspace of X and we have an exact sequence
0-V-—>X—C-—0,

where the one-dimensional space C = X/V carries the character x of T. By
the Restriction-Induction Lemma (9.3), Vy = 65" x*.
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Proposition. Let W be the kernel V(N) of the canonical map V- — V. The
space W is irreducible over B.

Proof. We shall actually prove that W is irreducible as a representation of
the mirabolic group M of §8. We observe that, by (8.1.2), Wy = 0 and
W =W(N).
Lemma. For f € V, define a function fny € CX(N) by fn(n) = f(wn),
n € N. The map

V — C°(N),

9.7.1
fr—In, ( )

is an N -isomorphism.

Proof. As in 9.3 Lemma, the support of f € V is contained in BwN\/, for some
compact open subgroup N of N. The assertions follow immediately (observing
that the notation fy here is not the same as that in 9.3). O

For ¢ € C°(N) and a € F*, we define ap € C°(N) by
@ (47) =xel@o(3*)7).

This gives an action of F'* on C°(N) which we regard as an action of the
group S of matrices (¢{). We combine this with the natural action of N
to give C°(N) the structure of a smooth representation of M. With this
structure, the map (9.7.1) is a M-isomorphism.

Let ¢ be a non-trivial character of N. The map f — 9 f is a linear automor-
phism of V = C°(N) carrying V(N) to V(¢¥). Since V/V(N) has dimension
1, we deduce that dim Vy = 1 also. However, since IV acts trivially on Vi, the
inclusion W — V induces an isomorphism Wy = Vy, whence Wy = 3. We
apply 8.3 Theorem to get W = W (N) = c-Ind% 9 which, by 8.2 Corollary, is
irreducible. 0O

As a direct consequence of the Proposition, we have:

Corollary. As a representation of B or of M, Indg x has composition length
3. Two of the composition factors have dimension one, and the third is of in-
finite dimension. In particular, the G-composition length of the representation
Indg X s at most 3.

9.8. We continue with the same notation and observe:

Proposition. The following are equivalent:

(1) x1 = x5
(2) X has a one-dimensional N -subspace.

When these conditions hold,

(3) X has a unique one-dimensional N -subspace Xo;
(4) Xo is a G-subspace of X, and it is not contained in V.
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Proof. If (1) holds, we may as well take x1 = x2 = 1 (¢f. (9.5.2)). The (non-
zero) constant function then spans a one-dimensional G-subspace of X.
Conversely, let f € X span an N-stable subspace of dimension 1. Thus
N acts on f (by right translation) as a character. The support of f is left-
invariant under B, so supp f is either G or BwN. The second case is im-
possible: if f(1) = 0, then the support of f is confined to BwNy, for some
compact open subgroup Ny of N (9.3 Lemma). Thus supp f = G and f van-
ishes nowhere. In particular f(1) # 0, and f ¢ V. The canonical N-map
X — C = X/V identifies the N-space Cf with the trivial N-space C. It fol-
lows that N fixes f under right translation. Take x € F* and consider the

identit
GG IEIEH
01)  \o 1 0 =z z= 1)

If ||z|| is sufficiently large, then f is fixed under right translation by (xll (1))
So, as f is fixed by N, we have

Fw) =x1(=1) x7 "x2(2) £(1),

for all z € F'* of sufficiently large absolute value. Thus x1 = x2 = ¢, say, and
f(g) = ¢(det g) f(1). We have proved (1) < (2), and that the one-dimensional
N-subspace is uniquely determined. We have already shown that it is not
contained in V. 0O

9.9. We now finish the proof of the Irreducibility Criterion 9.6. Assume X
is reducible. Its G-length is 2 or 3, and it has either a finite-dimensional G-
subspace or a finite-dimensional G-quotient (9.7 Corollary).

Assume the first alternative. Thus X has a one-dimensional N-subspace,
and we are in the situation of 9.8: X has a one-dimensional G-subspace L,
and x1 = x2 = ¢, say. Moreover, G acts on L as the character ¢ o det and
LNV =0 (notation of 9.7). The quotient Y = X/L is therefore B-isomorphic
to V. If X has G-length 3, then Y has G-length 2. However, V has B-length 2
and a unique B-quotient, which is of dimension 1. This gives a G-quotient of
Y on which G must act as a character ¢’ o det (9.2). This would force ¢’ ® ¢’
to appear as a factor in the Jacquet module Yy = ¢ - 651, which it cannot.
Thus X has G-length 2 and we are in case (2)(c) of 9.6.

In the other alternative, X has a finite-dimensional G-quotient. The rep-
resentation X therefore has a finite-dimensional G-subspace, and we are back
with the first alternative. By the Duality Theorem of 7.7, X = Indg 5,;1)2, SO
we are in the case (2)(d) of 9.6.

Thus, in part (1) of the theorem, we have shown that X reducible implies
x has the stated form. The converse is given by 9.8 and the dual case. We
have also proved statements (a)—(d). O
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9.10. To get a classification of the irreducible, non-cuspidal representations
of GG, we need to investigate the homomorphisms between induced represen-
tations:

Proposition. Let x, £ be characters of T. The space Homg(Indg X,IndCB‘v €)
has dimension 1 if £ = x or X“’égl, zero otherwise.

Proof. We use Frobenius Reciprocity (9.1.2):
Home (Ind$ x, Ind$ €) 2 Homy((Ind x) , €).
The Jacquet module (Ind x)y fits into the exact sequence
0—x"“65" — (Indx)y — x — 0.

If we assume that x # X“’(Sgl, then this sequence splits and the result follows
immediately. The equation y = x“d5" amounts to x1(z) = ||z||x2(z), © € F*.
In this case, Ind x is irreducible and the result again follows. 0O

By way of some examples, we examine in more detail the case where Indg X
is reducible. Thus there is a character ¢ of F* such that y = ¢ - 17 or x =
o 551. Twisting does not affect the situation materially, so we assume ¢ = 1.

Consider first the case Indg 17. The irreducible G-quotient of Indg 17 is
called the Steinberg representation of G, and is denoted Stq:

0— 1g — Ind$ 17 — Stg — 0. (9.10.3)

Its dimension is infinite and (Stg)ny = 6;1. Likewise, if ¢ is a character of
F*, we have an exact sequence

0 — ¢¢ — Ind% ¢r — ¢ - St — 0,

where ¢g = ¢ odet and ¢ = ¢ ® ¢. (Representations of the form ¢ - St are
sometimes called special.)
Taking the smooth dual of (9.10.3), we get an exact sequence

0 — St — mdGé5" — 16 — 0. (9.10.4)

The proposition implies
St = St (9.10.5)

Remark. The proposition also implies that the space Endg(Ind 17) has dimen-
sion 1, while Ind 17 is not irreducible. Thus the converse of Schur’s Lemma
fails in this context, as remarked in 2.6.

Observe also the imperfect parallelism between the proposition above and
the corresponding result (6.3) for the finite field case.
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9.11. We introduce a new notation. If o is a smooth representation of T', we
define
G o =dG(65"% ® o). (9.11.1)

This provides another exact functor Rep(T") — Rep(G), known as normalized
or unitary smooth induction. It gives rise to more convenient combinatorics,

for example:
(:Go) =i§s. (9.11.2)

In this language, the Irreducibility Criterion (9.6) and 9.10 Proposition say:
Lemma.

(1) Let x = x1®Xz2 be a character of T. The representation v x is reducible
if and only if x1x5 " is one of the characters x — |z||*' of F* or,
equivalently, x = ¢ - 5;1/2 for some character ¢ of F*.

(2) Let x, € be characters of T. The space Homg (¢§ x, 1S €) is not zero if
and only if £ = x or & = xv.

Gathering up our earlier arguments and results, we get:

Classification Theorem. The following is a complete list of the isomorphism
classes of irreducible, non-cuspidal representations of G:

(1) the irreducible induced representations Lg X, where x # ¢ - 5;51/2 for
any character ¢ of F*;
(2) the one-dimensional representations ¢ o det, where ¢ ranges over the
characters of F'*;
(3) the special representations ¢ - Stg, where ¢ ranges over the characters
of F*.
The classes in this list are all distinct except that, in (1), we have Lgx ~
G . w
LB X"
Proof. The examples in 9.10 show that every irreducible, non-cuspidal rep-
resentation of G appears in this list. The relations between the irreducibly
induced ones are given by 9.10 Proposition. The same result also implies that

no special representation ¢ - Stg can be equivalent to ¢’ - Stg, ¢’ # ¢, or any
irreducibly induced representation. O

10. Cuspidal Representations and Coefficients
In 9.1, we defined an irreducible smooth representation (7, V) of GLy(F') to

be cuspidal if its Jacquet module (7, Viy) is trivial or, equivalently, if it is not
isomorphic to a composition factor of an induced representation Indg X, for
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any character x of T'. Such a negative and exclusive approach yields essentially
no information about this particularly important class of representations. We
now give an alternative definition, valid in a much wider context, and show it
is equivalent to the original one. It provides the starting point for a method
of constructing cuspidal representations.

From this new viewpoint, irreducible cuspidal representations have a strik-
ing algebraic property: they are projective objects in the appropriate sub-
category of Rep(G). We have no direct need for this result, but we have
included it as an appendix.

10.1. Let (m,V) be a smooth representation of G = GLo(F'); from vectors
veV,v eV, we get asmooth function on G by

Yoww + g+ (0, 7(g)v).

We let C() be the vector space spanned by the functions vsgy, VQv € VeV.
The functions f € C(w) are called the (matriz) coefficients of .

The space V@V carries a smooth representation of the group G x G, while
G x G acts on the function space C(r) by translation: the first factor acts by
left translation and the second by right translation. The map ¥ ® v — Vygq 1S
then a surjective G x G-homomorphism V @ V — C().

The space C(r) is primarily, but not exclusively, of interest in the case
where 7 is irreducible. When 7 is irreducible, the centre Z of G acts on V via
the central character w, of m and

V(zg9) = wr(2)v(9), 2€Z,g€G,yeC(m).
The support of a coefficient is therefore invariant under translation by Z.

Definition. Let (7, V') be an irreducible smooth representation of G; one says
that  is vy-cuspidal if every v € C(m) is compactly supported modulo Z.

The term “v-cuspidal” is a convenient, but temporary, expedient.

Convention. To save adjectives, if a representation is described as cuspidal
or y-cuspidal, it is implicitly assumed to be smooth.

We first achieve some technical control:
Proposition.

(1) If (m,V) is an irreducible v-cuspidal representation of G, then w is
admisstble.

(2) Let (m,V) be an irreducible admissible representation of G, and suppose
that some non-zero coefficient of w is compactly supported modulo Z;
then 7 is y-cuspidal.
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Proof. In part (1), we suppose for a contradiction that 7 is not admissible. We
choose a compact open subgroup K such that VX has infinite dimension. This
dimension, we note, is countable (2.6). The dimension of VX 2 Hom¢(VE, C)
is therefore uncountable.

We fix a non-zero v € VE and consider the map I, : VK — C(n) given
by ¥ — Ysgu. Since the translates gv, g € G, span V, the map I, is injective.
Its image is a space of functions f on G, satisfying

f(zkgk’) = w(2)f(g), 9€G, z€Z, kk €K, (10.1.1)

and supported on a finite union of cosets ZKgK. The dimension of I',(VX) is
therefore at most countable, while I', is injective and dim V¥ is uncountable.
This gives the desired contradiction.

We turn to part (2). The smooth dual (%, V) is irreducible and admissible
(2.10). We view the space V ® V as a smooth representation of G x G, and
hence as a smooth module over H(G x G) = H(G) @ H(G).

If K is a compact open subgroup of G, we have

VeaV)KE = (exex)x(VaV)=VEgVE,
( )

If K is sufficiently small, the spaces VX, VK are finite-dimensional simple
modules over H(G, K). The Jacobson Density Theorem implies that VX @V K
is a simple module over H(G, K) ® H(G, K) =2 H(G x G, K x K). This holds
for all sufficiently small K, so V ® V is an irreducible admissible G x G-space
(4.3 Corollary).

The surjective G x G-homomorphism v : V ® V' — C(n) is therefore an
isomorphism and C() is irreducible over G x G. If v € C(r)
~" € C(x) is a finite linear combination of functions (g, h)v, (g,h) € G x G. If
~ is compactly supported modulo Z, then so is /. O

is non-zero, any

Remark 1. All of the preceding definitions and arguments apply in the general
case, where G is a unimodular locally profinite group satisfying 2.6 Hypothesis.
Indeed, 2.6 is only used at one point, in the proof of part (1) of the proposition.
Even this can be avoided by noting that the dual of a vector space W has
dimension strictly greater than dim W except when dim W is finite.

Remark 2. In the general context of Remark 1, part (2) of the proposition fails
when the irreducible smooth representation (m, V') is not admissible. An ex-
ample is given by the representation c—Ind%I ¥ considered in 8.2: see especially
8.2 Remark.

10.2. The reason for introducing the notion of y-cuspidality is explained by:

Theorem. Let (w,V) be an irreducible smooth representation of G; then 7 is
cuspidal if and only if it is ~y-cuspidal.
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Proof. We first assume that 7 is cuspidal, and show it is «-cuspidal. Let @ be
a prime element of F', and put
(=0
t= (0 1) .

The set T of powers t"*, n > 0, then provides a family of representatives for
ZK\G/K, K = GLy(0) (7.2.2).

Lemma. Let v € V, 0 € V. There exists m > 0 such that yse.,(t") = 0, for
allmn > m.

Proof. We choose a compact open subgroup N7 of N which fixes ©. Since
VN = 0, we have v € V(N) and (8.1) there is a compact open subgroup N

of N such that
/ m(x)vdr = 0.
No

/ m(x)vdr =0,
No

for any compact open subgroup Ny of N containing No. However, there exists
m > 0 such that t*Nyt~=* C N for all a > m. For such a we have (for certain
positive constants ki, k)

We then have

(0, 7(£7)0) :kl/ ((a=1)5, 7 (t7)0) da

kl/N (Tt~ Mo, w(t™at®)v) dx

ko /t—aN . (7t~ Mo, m(x)v) dz
Oa

since t7*N;1t® D Ny. 0O

Continuing with the proof of the theorem, we fix a non-zero coefficient
f = voge of m. We write K = GLy(0) and let K’ be an open normal subgroup
of K fixing both v and v. We let kq, ko, . .., k, be a set of coset representatives
for K/K'. Thus, if g € G, there exists n > 0 such that

ZKgK = ZKt"K = | J ZK'k; 't"k; K'.
,J
It follows that

supp f C U ZK' (supp fi; NTT) K,

1<i,5<r
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where f;; denotes the coefficient function x — f (kzmkj_l) This set is compact
modulo Z, by the lemma. It follows that all coefficients g, of ™ are compactly
supported modulo Z, and 7 is therefore y-cuspidal.

Combining this argument with 9.4 Proposition and 10.1 Proposition, we
have shown:

Corollary. Every irreducible smooth representation of G = GLy(F) is admis-
sible.

We now prove the converse statement in the theorem. Let (m, V) be an
irreducible «-cuspidal representation of G. In particular, (7, V') is admissible.
By 2.10 Proposition, the dual (7, V) is irreducible and admissible. Let K,
denote the group 14+p™"Ma(0), n = 1. We take v € V and choose n > 1 so that
v is fixed by 7(K,,). We take ¢ as before.

For ¢ € VX», the function g — (9, 7(g)v) is compactly supported modulo
Z; we deduce that (0, 7(t*)v) = 0 for all a € Z sufficiently large. Since V»
is of finite dimension there is a constant ¢ such that (0,7 (t*)v) = 0 for all
o € VEn and all @ > ¢. This implies 7(eg, )7 (t*)v = 0 for a > c. We write,
for j € Z,

5=(3%) M=(31). T-snr

so that K,, = N, T,N’. Set K\ = t=9K,t* = N,,_,T,, N

nta; We then have,

for a > ¢,

0=m(ek,)m(t*)v = W(ta)’l'('(eK”(La))'U

=7(t*) Y w@)mlegwag v

2ENp_o/Nn

However, v is fixed by Kéa) N K, so this equation reduces to

0=Fkm(t") /N 7(x)v dz,

n—a

for a constant k£ > 0 depending on the choice of a Haar measure dx on V.
We deduce that v € V(N) (8.1 Lemma). This applies to all v € V, so 7 is
cuspidal, as required. O

10a. Appendix: Projectivity Theorem
We give another property of y-cuspidal representations. We will not use this

result, but we have included it for its power and beauty. It also holds in a
very general context.
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10a.1. Let G be a locally profinite group with centre Z. Let x be a character
of Z and let (m, V') be a smooth representation of G. We recall that = admits
X as central character if w(z)v = x(z)v, for z € Z, v € V.

Projectivity Theorem. Let G be a unimodular locally profinite group, satis-
fying (2.6) and with centre Z. Assume that any character x : Z — R} extends
to a character G — R%.

Let (7, V) be an irreducible y-cuspidal representation of G, and let (1,U) be
a smooth representation of G admitting w, as central character. Let f : U — V'
be a surjective G-homomorphism. There exists a G-homomorphism ¢ : V — U
such that fo¢=1y.
10a.2. The group G/Z is locally profinite. One sees easily that it is uni-
modular. Indeed, let pg, pz be Haar measures on G, Z respectively. By 3.4
Proposition, there is a unique right Haar measure (i on G/Z such that

/ £(9) duc(g) = / / f(20) duz(2) dilg), | € C2(G).
G Gz Jz

Symmetrically, i is also a left Haar measure on G/Z.

Schur’s orthogonality relation. Let dg be a Haar measure on G/Z, and
let vi,v9 € V, 1,09 € V. The function

g — (7(g)01,v1)(02, m(g)v2), g€ G,

is invariant under translation by Z and
/ (7(g)01,v1) (B, m(g)v2) dg = d(m) ™" (1, v2) (B2, 1),
Gz

for a constant d(m) > 0 depending only on m and the measure dg.

Proof. Since m is y-cuspidal, the integrand has compact support in G/Z and
the integral converges. If we fix, say, 01 and vs, the integral determines a G-
invariant pairing V x V — C. Such a pairing is given by a G-homomorphism
6 :V — V (cf. Exercise 2.10). Since V is admissible (10.1 Proposition) and
irreducible, the same applies to V' (2.10) and Schur’s Lemma (2.6) implies
that any G-invariant pairing V x V — C is a scalar multiple of the standard
one. Therefore, there is a constant c¢;, ,, such that

/ (7951, v0) (B2, 7 (g)va) G = Con g (52 01).
a/z

The function (91, v2) — ¢y, v, is again a G-invariant bilinear pairing V. xV —
C, so
Ciy,ve = Cr (01, v2),

for a constant c;.
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It remains only to prove that ¢, > 0. The assumption on G allows us to
replace 7 by a twist and assume that |w,| = 1. The space V then admits a
positive definite, G-invariant Hermitian form h, constructed as follows. One
chooses a nonzero element ¢ € V and sets

h(v1, 02) = /G R o)) i

There is then a complex anti-linear G-isomorphism © : (7,V) — (&, V) such
that h(vy,v2) = (Ovy,va). Schur’s Lemma again implies that h is the unique
G-invariant, positive definite Hermitian form on V', up to a positive constant
factor.

Going through the same argument, one sees that

[ hlnlgyorsoe) s, m(g)on) dg = be hon,vn) s, ),
G/z

for a constant b;. On taking vy = vy = v3 = v4 # 0, one sees that b, > 0. On
the other hand,

h(n(g)vr, v2) h(vs, w(g)vs) dg = /G OO, 12) (Os) (g)en) d

= ¢ (O(v1),v4)(O(v3), v2)
= ¢p h(v1,v4) h(v3,v2).

G/Z

Therefore ¢, = b, > 0, as required. 0O

Remark. Let (m,V) be an irreducible smooth representation of G such that
|wr| = 1. One says that 7 is square-integrable modulo Z if

/ (&, 7(g)0) 2 dj < oo
G/zZ

for all ® € V, v € V. The orthogonality relation then holds for =, with
exactly the same proof. The positive constant d(r) is called the formal degree
of 7, relative to the measure dg. (For a full discussion of square-integrable
representations of GLo(F'), see 17.4 et seq. below.)

10a.3. We now prove the Projectivity Theorem. First, we need to generalize
the constructions of 4.1, 4.2. Let x be a character of F*. Let H,(G) be the
space of locally constant functions f : G — C, which are compactly supported
modulo Z, such that f(zg) = x(2) "' f(g9), z € Z, g € G. Using a Haar measure
on G/Z, we define convolution on H,(G) as in (4.1). If (o, W) is a smooth
representation of G' admitting x as central character, we extend the action of
G on W to one of H,(G), just as in 4.2.
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We let (7,V) be an irreducible ~-cuspidal representation of G, as in the
theorem. We abbreviate w = w,. We take a smooth representation (7,U)
of G, admitting w as central character, and a G-surjection f : U — V. If
u € U satisfies f(u) # 0, the restriction of f to the G-space 7(H,(G))u
generated by w is still surjective. Composing it with the obvious G-surjection
Ho(G) — 7(Ho(G))u, we get a G-surjection

I:H,(G) —V,
¢ — f(T(P)u) = m(d)vo,

where vg = f(u). It is enough to show that IT splits over G.
We choose a vector 99 € V such that d(m)~'(©i,v9) = 1. The function
@y 2 g (7(g)0g,v) lies in H,(G) and the map

is a G-homomorphism. The composite map I o @ is given by

w — T(py )vg = /G/Z m(9)pw(g)vodg, weV.

For w € V, this gives

(0, T (w)) = /G o Fa)un) ), ) d = i),

whence IT®(w) = w, as required. O

11. Intertwining, Compact Induction and Cuspidal
Representations

We describe a method for constructing irreducible cuspidal representations of
G = GLa(F), using compact induction from open subgroups. At this stage,
it is a purely formal matter: it is not clear that the necessary hypotheses are
satisfied sufficiently often to give useful results. Such issues are the subject of
the next chapter. Here, we have to be content with one interesting example.

11.1. We start with general considerations so, for the time being, G is a uni-
modular locally profinite group with the countability property 2.6. Through-
out, Z denotes the centre of G. If K is a compact open subgroup of G, we
write K for the set of isomorphism classes of irreducible smooth representa-
tions of K.
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Definition 1. For i = 1,2, let K; be a compact open subgroup of G and let
pi € K;. Let g € G. The element g intertwines p; with ps if

HomeﬂKg (pgly’ P2) 7é 07

where p] denotes the representation x — p1(grg=') of the group Ki =
-1
9 Kig.

As a property of g, this depends only on the double coset K1gKo.

The definition applies equally if the K; are just closed subgroups of G; we
will often need it in the case where the K; are open and compact modulo the
centre of G.

Definition 2. Let K be a compact open subgroup of G, and let (mw,V) be a
smooth representation of G. We say that w contains p, or p occurs in 7, if
Hompg (p, ) # 0.

Again, we can use the same definition in more general contexts, for ex-
ample, if K is open and compact modulo the centre of G and 7 admits a
central character (see 2.7). We also use it when G is compact and K is a
closed subgroup of G.

Remaining with the compact open case for the time being, the significance
of the concept of intertwining is first indicated by the following.

Proposition 1. For i = 1,2, let K; be a compact open subgroup of G and
let p; € K;. Let (m,V) be an irreducible smooth representation of G which
contains both p1 and ps. There then exists g € G which intertwines py with

p2-

Proof. For each i, we have the decomposition of V into Kj;-isotypic components
(2.3 Proposition). The hypothesis is equivalent to Vi £ 0, i = 1,2.

Let es denote the Ks-projection V' — VP2, Since 7 is irreducible and
VPL £ 0, the spaces (g~ 1)VPr = Vel g € G, span V. We can therefore
choose g € G such that e; o m(¢g~!) induces a non-zero map V** — V*2: this
is the required element g. O

Take (K, p;) as in the Proposition. The representations p?, ps of K{ N K»
are semisimple, so the spaces
—1

HomeﬁKz (p!{apQ)a HomeﬂKz (,02,/7!{) = HomKlﬂKérﬁl (pg apl)

have the same dimension. Therefore g intertwines p; with po if and only if
g~ ! intertwines po with p;.
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Language.

(1) We say that the p; intertwine in G if there exists g € G which inter-
twines p; with ps. The relation of G-intertwining between pairs (K, p;)
is therefore symmetric and reflexive; it is not transitive.

(2) If we have a single pair (K, p), we say that g intertwines p if it inter-
twines p with itself.

Remark. We will often wish to use this approach when K is not compact,
but only an open subgroup of G which is compact modulo Z. One cannot, in
general, decompose a smooth representation (7, V') of G into a direct sum of
K-isotypic components. Such a decomposition does exist (2.7) if (r, V) admits
a central character w;, in particular, if 7 is irreducible. With this caveat, we
can treat open, compact modulo centre subgroups of G in the same way as
compact open subgroups.

We will later (in Chapter VI) need another intertwining criterion. (We use
the notation of 4.4 here.)

Proposition 2. Let K be a compact open subgroup of G, let g € G, and
p € K. The following are equivalent:

(1) there ezists f € e, *x H(G) * e, such that f | KgK # 0;
(2) g intertwines p.

Proof. Consider the space C*°(KgK) of G-smooth functions on the coset
KgK. This carries a smooth representation of K x K by

(kv ko) f s f(ky tks).

Let H denote the group of pairs (k,g 'kg) € K x K, k € KN gKg L.
The map f — f(g) is then an H-homomorphism C*°(KgK) — C (with
H acting trivially). By Frobenius Reciprocity (2.4), this induces a K x K-
homomorphism

C®(KgK) — Imd®*%(1p). (11.1.1)
We show this is an isomorphism.

The space V = Ind5*® (1) consists, by definition, of smooth functions
¢ : KxK — Csuch that ¢(hky, g~ hgks) = ¢(k1, k2), ki € K, h € KNgKg~*.
Given such a function ¢, we can define f, € C°(KgK) by setting fy(k1gkz) =
(kT ko); the map ¢ — fo is the inverse of the map (11.1.1).

In these terms, condition (1) amounts to e, * C®(KgK) xe, = Vr,®P £ ().
Equivalently,

Hompgxx (p® p, V) = Hompy (p ® p, 1) # 0.

The last relation is equivalent to the representation k — p(k) ® p(g~'kg)
of KN gKg~! having a fixed vector, that is, Homgngxg—1(p, pg_l) # 0, as
required. 0O
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11.2. Let K be an open subgroup of G, containing and compact modulo the
centre Z of G. Let (p, W) be an irreducible smooth representation of K. Let
H(G, p) be the space of functions f : G — Endc(W) which are compactly
supported modulo Z and satisfy

f(kighks) = p(k1) f(g)p(k2), ki€ K, g€G.

Observe that the support of any f € H(G, p) is a finite union of double cosets
KgK.
Let [t be a Haar measure on G/Z. For ¢1,¢2 € H(G, p), we set

o1 % d2(g) = o1 (x)p2(x™ g) df(z), g€ G.
G/z
The function ¢ * ¢ lies in H(G, p) and, under this operation of convolution,
the space H(G, p) is an associative C-algebra with 1.

Remark. The algebra H(G, p) is called the p-spherical Hecke algebra of G,
or the intertwining algebra of p in G. It is closely related to the algebra e, *
H(G) *e,: there is a canonical algebra isomorphism e, *H(G) xe, = H(G, p) @
Endc(W). (In the literature, the algebra we have defined is sometimes denoted
H(G, p).)

Lemma. Let g € G; there exists ¢ € H(G, p) with support KgK if and only
if g intertwines p.

Proof. Let f € Endc(W); for a fixed g € G, the assignment kgk’ — p(k) fp(k'),
k., k' € K, gives an element of H(G, p) if and only if, for k € K9 N K, we
have f o p(k) = p9(k) o f. That is, if and only if f € Homgeng (p, p?). The
representations p, p9 of KNKY are semisimple, so the spaces Homgonx (p, p?),
Hompgong (p?, p) have the same dimension. The Lemma now follows. O

We have actually shown that the space of functions f € H(G, p) supported
on KgK is canonically isomorphic to Homgeng (p, p9).
11.3. With (K, p) as in 11.2, we consider the compactly induced representa-
tion c—Ind?( p, as in 2.5. The space X underlying this representation consists
of the functions f : G — W, which are compactly supported modulo Z, and
satisfy f(kg) = p(k)f(g), k € K, g € G. The group G acts by right transla-
tion. (All functions f € X are G-smooth for this action, since K is open: see
2.5 Exercise 2.)

For ¢ € H(G, p) and f € c-Ind p, we define

¢ flg) = (z)f (" g) djs(x), g€G.

G/Z

Clearly, ¢ x f € X, and this action gives a homomorphism of C-algebras
H(G, p) — Endg(c-Ind p). (11.3.1)
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Proposition. The map (11.3.1) is an isomorphism of C-algebras.

Proof. We use the relation Endg(c-Ind p) = Homg (p, c-Ind p) of (2.5.2). Let
#° : w — ¢ be the canonical map W — ¢-Ind p, corresponding to the identity
endomorphism of c-Ind p: the function ¢9 has support K and ¢9 (k) = p(k)w.
The isomorphism Endg(c-Ind p) — Homg (p, c-Ind p) is composition with ¢°.
Composing (11.3.1) with ¢°, we get a map H(G, p) — Homg (W, c-Ind p). We
write down its inverse. Let

¢: W — c-Ind p,

W Py,
be a K-homomorphism. We define a function @ : G — Endc (W) by

P(g) : w > du(g).

For k € K, we have ®(kg) : w — ¢y (kg) = p(k)dw(g), so P(kg) = p(k)P(g).
Also, D(gk) : w — ¢u(gk) = dpryw(9), since ¢ is a K-map. Therefore ¢ ¢
H(G, p) and ¢ — 1(K/Z)~1® is the required inverse map. 0O

11.4. The central result of this section is:

Theorem. Let K be an open subgroup of G = GLy(F'), containing and com-
pact modulo Z. Let (p, W) be an irreducible smooth representation of K and
suppose that an element g € G intertwines p if and only if g € K. The com-
pactly induced representation c—Ind%p s then irreducible and cuspidal.

Proof. We write (X, X) = ¢-Ind$, p. We first show that the representation X
has a non-zero coefficient which is compactly supported modulo Z. To see
this, we use the canonical K-embedding ¢° : W — X of the preceding proof,
which identifies W with the space of functions in X that are supported in K
(2.5 Lemma).

The groups K, G are unimodular, so the Duality Theorem of 3.5 implies
that X = Indf( p. The induced representation Ind% p contains c—Indf( p as
G-subspace. The canonical K-embedding W — c—Indf( p identifies W with
the space of functions in X with support contained in K. We take non-zero
functions w € W ¢ X and w € W C X: the coefficient Yoew 1S then non-zero
and supported in K.

Consequently, we need only prove that X is irreducible: it is then admis-
sible (10.2 Corollary) and we can apply 10.1 Proposition (2) to show it is
~-cuspidal, hence cuspidal.

The centre Z of G acts on X via the character w,, where p(2)w = w,(z)w,
z € Z, w € W. Therefore X is the direct sum of its K-isotypic components
(2.7). Any K-map W — X has image contained in X*, so:
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Hom g (W, X?) = Homg (W, X) 2 Endg(X) =2 H(G, p).

However, the intertwining condition implies that dim H(G, p) = 1. The space
Hom g (W, X?) therefore has dimension 1, and we conclude that W = X?.
Let Y be a non-zero G-subspace of X. Therefore

0 # Homg(Y, X) C Homg(Y, Ind?( p) = Homg (Y, p).

Since Y is semisimple over K (2.7), we have Y” # 0. Thus Y D W = X7,
since W is irreducible over K. As W generates X over G, we conclude that
Y = X. Thus X is irreducible, as required. O

Remark 1. The theorem holds (with the conclusion that ¢-Ind p is y-cuspidal),
with the same proof, in considerable generality. It is valid for a unimodular
locally profinite group G, satisfying 2.6 Hypothesis, and such that any irre-
ducible smooth representation of G is admissible.

Remark 2. The converse of the theorem also holds. If p is intertwined by some
g € G~ K, then H(G, p) =2 Endg(c-Ind p) has dimension > 1. Thus ¢-Ind p
has a non-scalar endomorphism and cannot be irreducible.

Remark 3. In the situation of the theorem, the smooth dual (¢-Ind p)V is irre-
ducible. It is, however, isomorphic to Ind p. We deduce that Ind p = ¢-Ind p =
(c-Ind p)V. Since these representations are all admissible, we can dualize again
to get ¢-Ind p = Ind p.

11.5. We give an example illustrative of the above procedures. Let G =
GLy(F), K = GLg(0) and K; = 14+pMsy(0). Thus K; is an open normal
subgroup of K and K/K; = GLa(k). We also let I; denote the group of

matrices
po
I =1+ .
' <pp>

Thus [; is the inverse image in K of the standard group N (k) of upper
triangular unipotent matrices in GL2 (k).

Theorem. Let (m,V) be an irreducible smooth representation of G, and sup-
pose that m contains the trivial character of K1. Ezxactly one of the following
holds:

(1) 7 contains a representation A of K, inflated from an irreducible cuspidal
representation \ of GLa(k);
(2) m contains the trivial character of I.

In the first case, 7 is cuspidal, and there exists a representation A of ZK such
that A | K 2 X\ and
72 e-IndG . A.
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Proof. The group K stabilizes the space V1, which is therefore a direct sum
of irreducible representations of K which are trivial on Kj, that is, they are
inflated from GLa(k). Let A be one of these, inflated from \. Either X is
cuspidal (in the sense of §6), or it is not. In the latter case, it contains the
trivial character of N(k), whence A contains the trivial character of I;.

We have to show that the two cases cannot occur together. To do this, we
interpolate a useful general lemma.

Lemma. Fori=1,2, let p; be an irreducible representation of GLa(k), and
let p; denote the inflation of p; to a representation of K. Suppose that py is
cuspidal.

(1) The representations p; intertwine in G if and only if p1 = pa.
(2) An element g € G intertwines p1 if and only if g € ZK.

Proof. Let g € G intertwine py with p;. It is only the coset KgZK which
intervenes, so we can take g of the form

_ [=*0
g_<0 1)7

for some a > 0. If @ = 0, we have ¢ = 1 and there is nothing to do. We
therefore assume a > 1. The group K{ N K contains the group

g
No=(51) < (ih)

on which pj is trivial. Since py is cuspidal, p; does not contain the trivial
character of Ny, so g cannot intertwine the p;. All assertions now follow. 0O

It follows from 11.1 Proposition 1 that, in the theorem, the two cases
cannot occur together. We now assume that X is cuspidal. Surely 7 contains
some representation A of ZK extending A. Thus we have a non-trivial Z K-
homomorphism A — m, giving a non-trivial G-homomorphism c-IndgK A—
. However, by part (2) of the lemma and 11.4 Theorem, the representation
c-Ind A is irreducible, so m & ¢-Ind A, as desired. O

Remark. We will eventually see (14.5) that the theorem has a kind of converse.
If (m, V) is an irreducible representation of G' containing the trivial character
of K7, then it is cuspidal if and only if it satisfies condition (1) of the theorem.

Further reading.

Although we have focused exclusively on G = GLy(F), many elements reflect
the much more general discussions in the papers [5,6] of Bernstein and Zelevin-
sky. These apply in the context of connected reductive algebraic groups over
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F and centre on general versions of the Restriction-Induction Lemma (9.3)
and the homomorphism theorem in the form 9.11 Lemma 2. That programme
culminates in a classification of the non-cuspidal representations of GL,, (F),
[90]. Rodier’s report [71] is a helpful introduction. The eternal pre-print [25]
is also written in these terms, from a slightly different point of view. Only in
very few cases, however, does one have a good command of the non-cuspidal
representations of groups besides GL,,(F).

The initial analysis of cuspidal representations in this chapter is quite
general in tone, and holds very widely. Even 11.5 and its converse have close
analogues for completely general reductive groups [67], [64].
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