
1 Topological Foundations

1.1 Manifolds and Differentiable Manifolds

Definition 1.1.1 A manifold of dimension n is a connected Hausdorff space
M for which every point has a neighbourhood U that is homeomorphic to an
open subset V of R

n. Such a homeomorphism

f : U → V

is called a (coordinate) chart.
An atlas is a family of charts {Uα, fα} for which the Uα constitute an open
covering of M .

Remarks. – The condition that M is Hausdorff means that any two dis-
tinct points of M have disjoint neighbourhoods.

– A point p ∈ Uα is uniquely determined by fα(p) and will often be identified
with fα(p). And we may even omit the index α, and call the components
of f(p) ∈ R

n the coordinates of p.
– We shall be mainly interested in the case n = 2. A manifold of dimension

2 is usually called a surface.

Definition 1.1.2 An atlas {Uα, fα} on a manifold is called differentiable if
all chart transitions

fβ ◦ f−1
α : fα(Uα ∩ Uβ) → fβ(Uα ∩ Uβ)

are differentiable of class C∞ (in case Uα ∩ Uβ �= ∅).
A chart is called compatible with a differentiable atlas if adding this chart
to the atlas yields again a differentiable atlas. Taking all charts compatible
with a given differentiable atlas yields a differentiable structure. A differen-
tiable manifold of dimension d is a manifold of dimension d together with a
differentiable structure.

Remark. One could impose a weaker differentiability condition than C∞.

Definition 1.1.3 A continuous map h : M → M ′ between differentiable
manifolds M and M ′ with charts {Uα, fα} and {U ′

α, f
′
α} is said to be differ-

entiable if all the maps f ′
β ◦ h ◦ f−1

α are differentiable (of class C∞) wherever
they are defined.
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If h is a homeomorphism and if both h and h−1 are differentiable, then h is
called a diffeomorphism.

Examples. 1) The sphere

Sn := {(x1, . . . , xn+1) ∈ R
n+1 :

n+1∑
i=1

x2
i = 1}

is a differentiable manifold of dimension n. Charts can be given as follows:

On U1 := Sn\{(0, . . . , 0, 1)}, we set

f1(x1, . . . , xn+1) := (f1
1 (x1, . . . , xn+1), . . . , fn

1 (x1, . . . , xn+1))

:=
(

x1

1− xn+1
, . . . ,

xn

1− xn+1

)
,

and on U2 := Sn\{(0, . . . , 0,−1)}

f2(x1, . . . , xn+1) := (f1
2 , . . . , f

n
2 )

:=
(

x1

1 + xn+1
, . . . ,

xn

1 + xn+1

)
.

2) Let w1, w2 ∈ C\{0}, w1
w2
�∈ R. We call z1, z2 ∈ C equivalent if there exist

m,n ∈ Z such that
z1 − z2 = nw1 + mw2.

Let π be the projection which maps z ∈ C to its equivalence class. The torus
T := π(C) can then be made a differentiable manifold (of dimension two) as
follows: Let ∆α ⊂ C be an open set of which no two points are equivalent.
Then we set

Uα := π(∆α) and fα := (π | ∆α)−1.

3) Note that the manifolds of both foregoing examples are compact. Naturally,
there exist non-compact manifolds. The simplest example is R

n. Generally,
every open subset of a (differentiable) manifold is again a (differentiable)
manifold.

Exercises for § 1.1

1) Show that the dimension of a differentiable manifold is uniquely de-
termined. (This requires to prove that if M1 and M2 are differentiable
manifolds, and f : M1 → M2 is a diffeomorphism, meaning that f
is invertible and both f and f−1 are differentiable, then dimension
M1 = dimension M2).
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2) Generalize the construction of example 2 following Definition 1.1.3 to
define an n-dimensional real torus through an appropriate equivalence
relation on R

n. Try also to define a complex n-dimensional torus via an
equivalence relation on C

n (of course, this torus then will have 2n (real)
dimensions). Examples of such complex tori will be encountered in § 5.3
as Jacobian varieties.

1.2 Homotopy of Maps. The Fundamental Group

For the considerations of this section, no differentiability is needed, so that
the manifolds and maps which occur need not to be differentiable.

Definition 1.2.1 Two continuous maps f1, f2 : S →M between manifolds
S and M are homotopic, if there exists a continuous map

F : S × [0, 1] →M

with

F |S×{0} = f1,

F |S×{1} = f2.

We write: f1 ≈ f2.

In what follows, we need to consider curves in M (or paths - we use the two
words interchangeably); these are continuous maps g : [0, 1] →M . We define
the notion of homotopy of curves with the same end-points:

Definition 1.2.2 Let gi : [0, 1] →M, i = 1, 2, be curves with

g1(0) = g2(0) = p0,

g1(1) = g2(1) = p1.

We say that g1 and g2 are homotopic, if there exists a continuous map

G : [0, 1]× [0, 1] →M

such that

G|{0}×[0,1] = p0, G|{1}×[0,1] = p1,

G|[0,1]×{0} = g1, G|[0,1]×{1} = g2.

We again write: g1 ≈ g2.

Thus the homotopy must keep the endpoints fixed.
For example, any two curves g1, g2 : [0, 1] → R

n with the same end-points
are homotopic, namely via the homotopy
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G(t, s) := (1− s) g1(t) + s g2(t).

Furthermore, two paths which are reparametrisations of each other are
homotopic:
if τ : [0, 1] → [0, 1] is continuous and strictly increasing g2(t) = g1(τ(t)), we
can set

G(t, s) := g1

(
(1− s)t + s τ(t)

)
.

The homotopy class of a map f (or a curve g) is the equivalence class con-
sisting of all maps homotopic to f (or all paths with the same end-points,
homotopic to g); we denote it by {f} (resp. {g}). In particular, as we have
just seen, the homotopy class of g does not change under reparametrisation.

Definition 1.2.3 Let g1, g2 : [0, 1] →M be curves with

g1(1) = g2(0)

(i.e. the terminal point of g1 is the initial point of g2). Then the product
g2g1 := g is defined by

g(t) :=

{
g1(2t) for t ∈ [0, 1

2 ]
g2(2t− 1) for t ∈ [ 12 , 1].

It follows from the definition that g1 ≈ g1
′, g2 ≈ g2

′ implies

g2g1 ≈ g′2g
′
1.

Thus the homotopy class of g1g2 depends only on the homotopy classes of g1

and g2; we can therefore define a multiplication of homotopy classes as well,
namely by

{g1} · {g2} = {g1g2}.

Definition 1.2.4 For any p0 ∈M , the fundamental group π1(M,p0) is the
group of homotopy classes of paths g : [0, 1] →M with g(0) = g(1) = p0, i.e.
closed paths with p0 as initial and terminal point.

To justify this definition, we must show that, for closed paths with the same
initial and terminal point, the multiplication of homotopy classes does in fact
define a group:

Theorem 1.2.1 π1(M,p0) is a group with respect to the operation of multi-
plication of homotopy classes. The identity element is the class of the constant
path g0 ≡ p0.

Proof. Since all the paths have the same initial and terminal point, the
product of two homotopy classes is always defined. It is clear that the class
of the constant path g0 acts as the identity element, and that the product is
associative. The inverse of a path g is given by the same path described in
the opposite direction:
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g−1(t) := g(1− t), t ∈ [0, 1].

We then have

{g−1} · {g} = 1 (the identity element).

A homotopy of g0 with g−1 · g is given e.g. by

g(t, s) :=

{
g(2st), t ∈ [0, 1

2 ]
g−1(1 + 2s(t− 1)) = g(2s(1− t)), t ∈ [12 , 1].


�

Remark. In the sequal, we shall often write g in place of {g}, hoping that
this will not confuse the reader.

Lemma 1.2.1 For any p0, p1 ∈M , the groups π1(M,p0) and π1(M,p1) are
isomorphic.

Proof. We pick a curve γ with γ(0) = p0, γ(1) = p1. The map sending a
path g with g(0) = g(1) = p1 to the path γ−1gγ induces a map

π1(M,p1) → π1(M,p0).

This map is an isomorphism of groups. 
�

Definition 1.2.5 The abstract group π1(M) defined in view of Lemma 1.2.1
is called the fundamental group of M .

Remark. It is important to observe that the isomorphism between π1(M,p0)
and π1(M,p1) constructed in Lemma 1.2.1 is not canonical, since it depends
on the choice of the path γ.
A different path not homotopic to γ could give rise to a different isomor-
phism.
In particular, consider the case p0 = p1, so that γ ∈ π1(M,p0). Then conju-
gation by γ

g �→ γ−1gγ

is in general a non-trivial automorphism of π1(M,p0).

Definition 1.2.6 We say that M is simply-connected if π1(M) = {1}.

Lemma 1.2.2 If M is simply-connected, then any two paths g1, g2 in M
with
g1(0) = g2(0) and g1(1) = g2(1) are homotopic.

This follows easily from the definitions. 
�
Example 1 R

n is simply-connected, so is Sn for n ≥ 2 (Exercise).

Definition 1.2.7 A path g : [0, 1] → M with g(0) = g(1) = p0 which is
homotopic to the constant path g0(t) ≡ p0 is called null-homotopic.
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Remark. This is generally accepted terminology although it might be more
appropriate to call such a path one-homotopic as the neutral element of our
group is denoted by 1.

Finally, we have:

Lemma 1.2.3 Let f : M → N be a continuous map, and q0 := f(p0). Then
f induces a homomorphism

f∗ : π1(M,p0) → π1(N, q0)

of fundamental groups.

Proof. If g1 ≈ g2, then we also have f(g1) ≈ f(g2), since f is continuous.
Thus we obtain a well-defined map between fundamental groups. Clearly,

f(g−1
2 · g1) ≈ (f(g2))−1 · f(g1). 
�

Exercises for § 1.2

– Show that R
n is simply connected, and so is Sn for n ≥ 2.

– Determine the fundamental group of S1.
Outline of the solution:
Let S1 = {z ∈ C : |z| = 1} =

{
eiθ ∈ C; with θ ∈ R, 0 ≤ θ ≤ 2π

}
.

Then paths γn in π1(S1, 1) are given by

t �→ e2π i n t ( t ∈ [0, 1])

for each n ∈ Z.
Show that γn and γm are not homotopic for n �= m and that on the other
hand each γ ∈ π1(S1, 1) is homotopic to some γn.

– Having solved 2), determine the fundamental group of a torus (as defined
in example 2) after Def. 1.1.3). After having read § 1.3, you will know an
argument that gives the result immediately.

1.3 Coverings

Definition 1.3.1 Let M ′ and M be manifolds. A map π : M ′ →M is said
to be a local homeomorphism if each x ∈ M ′ has a neighbourhood U such
that π(U) is open in M and π | U is a homeomorphism (onto π(U)).

If M is a differentiable manifold with charts {Uα, fα}, and π : M ′ → M
a local homeomorphism, then we can introduce charts {Vβ , gβ} on M ′ by
requiring that π | Vβ be a homeomorphism and that all fα ◦ π ◦ g−1

β be
diffeomorphisms whenever they are defined. In this way, M ′ too becomes a
differentiable manifold: the differentiable structure of M can be pulled back
to M ′. π then becomes a local diffeomorphism.
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Definition 1.3.2 A local homeomorphism π : M ′ →M is called a covering
if each x ∈M has a (connected) neighbourhood V such that every connected
component of π−1(V ) is mapped by π homeomorphically onto V . (If π is
clear from the context, we sometimes also call M ′ a covering of M .)

Remarks. 1) In the literature on Complex Analysis, often a local homeo-
morphism is already referred to as a covering. A covering in the sense of
Definition 1.3.2 is then called a perfect, or unlimited, covering.
2) The preceding definitions are still meaningful if M ′ and M are just topo-
logical spaces instead of manifolds.

Lemma 1.3.1 If π : M ′ →M is a covering, then each point of M is covered
the same number of times, i.e. π−1(x) has the same number of elements for
each x ∈M .

Proof. Let n ∈ N. Then one easily sees that the set of points in M with
precisely n inverse images is both open and closed in M . Since M is connected,
this set is either empty or all of M . Thus either there is an n ∈ N for which
this set is all of M , or every point of M has infinitely many inverse images.


�

Theorem 1.3.1 Let π : M ′ → M be a covering, S a simply-connected
manifold, and f : S →M a continuous map. Then there exists a continuous
f ′ : S →M ′ with

π ◦ f ′ = f.

Definition 1.3.3 An f ′ as in the above theorem is called a lift of f .

Remark. Lifts are typically not unique.

We also say in this case that the diagram

M ′

f ′

↗ ↓ π

S
−→
f M

is commutative. For the proof of Theorem 1.3.1, we shall first prove two
lemmas.

Lemma 1.3.2 Let π : M ′ → M be a covering, p0 ∈ M, p′0 ∈ π−1(p0), and
g : [0, 1] →M a curve with g(0) = p0. Then g can be lifted (as in Def. 1.3.3)
to a curve g′ : [0, 1] →M ′ with g′(0) = p′0, so that

π ◦ g′ = g.

Further, g′ is uniquely determined by the choice of its initial point p′0.
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Proof. Let
T := {t ∈ [0, 1] : g|[0, t] can be lifted to a unique curve g′|[0, t] with g′(0) =
p′0}.
We have 0 ∈ T , hence T �= ∅.
If t ∈ T , we choose a neighbourhood V of g(t) as in Definition 1.3.2, so
that π maps each component of π−1(V ) homeomorphically onto V . Let V ′

denote the component of π−1(V ) containing g′(t). We can choose τ > 0 so
small that g([t, t+ τ ]) ⊂ V . It is then clear that g′ can be uniquely extended
as a lift of g to [t, t + τ ], since π : V ′ → V is a homeomorphism. This proves
that T is open in [0,1].
Suppose now that (tn) ⊂ T , and tn → t0 ∈ [0, 1]. We choose a neighbourhood
V of g(t0) as before. Then there exists n0 ∈ N with g([tn0 , t0]) ⊂ V . We let V ′

be the component of π−1(V ) containing g′(tn0). We can extend g′ to [tn0 , t0].
Hence t0 ∈ T , so that T is also closed. Thus T = [0, 1]. 
�

Lemma 1.3.3 Let π : M ′ → M be a covering, and Γ : [0, 1] × [0, 1] → M
a homotopy between the paths γ0 := Γ (· , 0) and γ1 := Γ (· , 1) with fixed end
points p0 = γ0(0) = γ1(0) and p1 = γ0(1) = γ1(1). Let p′0 ∈ π−1(p0).
Then Γ can be lifted to a homotopy Γ ′ : [0, 1] × [0, 1] → M ′ with initial
point p′0 (i.e. Γ ′(0, s) = p′0 for all s ∈ [0, 1]); thus π ◦ Γ ′ = Γ . In particular,
the lifted paths γ′

0 and γ′
1 with initial point p′0 have the same terminal point

p′1 ∈ π−1(p1), and are homotopic.

Proof. Each path Γ (· , s) can be lifted to a path γ′
s with initial point p′0 by

Lemma 1.3.2. We set
Γ ′(t, s) := γ′

s(t),

and we must show that Γ is continuous.
Let Σ := {(t, s) ∈ [0, 1] × [0, 1] : Γ ′ is continuous at (t, s)}. We first take a
neighbourhood U ′ of p′0 such that π : U ′ → U is a homeomorphism onto a
neighbourhood U of p0; let ϕ : U → U ′ be its inverse. Since Γ ({0}× [0, 1]) =
p0 and Γ is continuous, there exists an ε > 0 such that Γ ([0, ε]× [0, 1]) ⊂ U ′.
By the uniqueness assertion of Lemma 1.3.2, we have

γ′
s | [0, ε] = ϕ ◦ γs | [0, ε]

for all s ∈ [0, 1]. Hence

Γ ′ = ϕ ◦ Γ on [0, ε]× [0, 1].

In particular, (0, 0) ∈ Σ.
Now let (t0, s0) ∈ Σ. We choose a neighbourhood U ′ of Γ ′(t0, s0) for which
π : U ′ → U is a homeomorphism onto a neighbourhood U of Γ (t0, s0); we
denote its inverse again by ϕ : U → U ′.
Since Γ ′ is continuous at (s0, t0), we have Γ ′(t, s) ∈ U ′ for |t−t0| < ε, |s−s0| <
ε if ε > 0 is small enough. By the uniqueness of lifting we again have
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γ′
s(t) = ϕ ◦ γs(t) for |t− t0|, |s− s0| < ε,

so that
Γ ′ = ϕ ◦ Γ on {|t− t0| < ε} × {|s− s0| < ε}.

In particular, Γ ′ is continuous in a neighbourhood of (t0, s0). Thus Σ is open.
The proof that Σ is closed is similar. It follows that Σ = [0, 1]× [0, 1], i.e. Γ ′

is continuous.
Since Γ ({1} × [0, 1]) = p1 and π ◦ Γ ′ = Γ , we must have Γ ′({1} × [0, 1]) ⊂
π−1(p1). But π−1(p1) is discrete since π is a covering and Γ ′({1} × [0, 1]) is
connected, hence the latter must reduce to a single point.
Thus, all the curves γ′

s have the same end point. 
�

Proof of Theorem 1.3.1 We pick a y0 ∈ S, put p0 := f(y0), and choose a
p′0 ∈ π−1(p0).
For any y ∈ S, we can find a path γ : [0, 1] → S with γ(0) = y0, γ(1) = y.
By Lemma 1.3.2, the path g := f ◦ γ can be lifted to a path g′ starting at p′0.
We set f ′(y) := g′(1). Since S is simply-connected, any two paths γ1 and γ2

in S with γ1(0) = γ2(0) = y0 and γ1(1) = γ2(1) = y are homotopic. Hence
f(γ1) and f(γ2) are also homotopic, since f is continuous. Thus, it follows
from Lemma 1.3.3 that the point f ′(y) obtained above is independent of the
choice of the path γ joining y0 to y1. The continuity of f ′ can be proved
exactly as in the proof of Lemma 1.3.3. 
�

Corollary 1.3.1 Let π′ : M ′ → M be a covering, g : [0, 1] → M a curve
with g(0) = g(1) = p0, and g′ : [0, 1] →M ′ a lift of g. Suppose g is homotopic
to the constant curve γ(t) ≡ p0. Then g′ is closed and homotopic to the
constant curve.

Proof. This follows directly from Lemma 1.3.2. 
�

Definition 1.3.4 Let π1 : M ′
1 →M and π2 : M ′

2 →M be two coverings. We
say that (π2,M

′
2) dominates (π1,M

′
1) if there exists a covering π21 : M ′

2 →M ′
1

such that π2 = π1 ◦ π21. The two coverings are said to be equivalent if there
exists a homeomorphism π21 : M ′

2 →M ′
1 such that π2 = π1 ◦ π21.

Let π : M ′ →M be a covering, p0 ∈M, p′0 ∈ π−1(p0), g : [0, 1] →M a path
with g(0) = g(1) = p0, and g′ : [0, 1] → M ′ the lift of g with g′(0) = p′0. By
Corollary 1.3.1, if g is null-homotopic, then g′ is closed and null-homotopic.

Lemma 1.3.4 Gπ := {{g} : g′ is closed} is a subgroup of π1(M,p0).

Proof. If {g1}, {g2} lie in Gπ, so do {g−1
1 } and {g1g2}. 
�

The Gπ defined above depends on the choice of p′0 ∈ π−1(p0), hence we denote
it by Gπ(p′0) when we want to be precise. If p′′0 is another point of π−1(p0),
and γ′ is a path from p′0 to p′′0 , then γ := π(γ′) is a closed path at p0.
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If g is a closed path at p0, then the lift of g starting at p′0 is closed precisely
when the lift of γgγ−1 starting at p′′0 is closed. Hence

Gπ(p′′0) = {γ} ·Gπ(p′0) · {γ−1}.

Thus Gπ(p′0) and Gπ(p′′0) are conjugate subgroups of π1(M,p0). Conversely,
every subgroup conjugate to Gπ(p′0) can be obtained in this way. It is also
easy to see that equivalent coverings lead to the same conjugacy class of
subgroups of π1(M,p0).

Theorem 1.3.2 π1(M ′) is isomorphic to Gπ, and we obtain in this way
a bijective correspondence between conjugacy classes of subgroups of π1(M)
and equivalence classes of coverings π : M ′ →M .

Proof. Let γ′ ∈ π1(M ′, p′0), and γ := π(γ′). Since γ′ is closed, we have
γ ∈ Gπ; also, being a continuous map, π maps homotopic curves to homotopic
curves, so that we obtain a map

π∗ : π1(M ′, p′0) → Gπ(p0).

This map is a group homomorphism by Lemma 1.2.3, surjective by the defi-
nition of Gπ, and injective since, by Corollary 1.3.1, γ′ is null-homotopic if
γ is. Thus π∗ is an isomorphism. As already noted, the conjugacy class of Gπ

depends only on the equivalence class of π : M ′ → M . Conversely, given a
subgroup G of π1(M,p0), we now want to construct a corresponding covering
π : M ′ →M . As a set, M ′ will be the set of all equivalence classes [γ] of paths
γ in M with γ(0) = p0, two paths γ1 and γ2 being regarded as equivalent if
γ1(1) = γ2(1) and {γ1γ

−1
2 } ∈ G. The map π : M ′ →M is defined by

π([γ]) = γ(1).

We wish to make M ′ a manifold in such a way that π : M ′ →M is a covering.
Let {Uα, fα} be the charts for M . By covering the Uα by smaller open sets
if necessary, we may assume that all the Uα are homeomorphic to the ball
{x ∈ R

n : ‖x‖ < 1}. Let q0 ∈ Uα, and q′0 = [γ0] ∈ π−1(q0). For any q ∈ Uα, we
can find a path g : [0, 1] → Uα with g(0) = q0, g(1) = q. Then [gγ0] depends
on q0 and q, but not on g. Let U ′

α(q′0) be the subset of M ′ consisting of all
such [gγ]. Then π : U ′

α(q′0) → Uα is bijective, and we declare {U ′
α(q′0), fα ◦π}

as the charts for M ′.
Let us show that, if p′1 �= p′2, π(p′1) = π(p′2), and p′1 ∈ U ′

α(q′1), p
′
2 ∈ U ′

β(q′2),

U ′
α(q′1) ∩ U ′

β(q′2) = ∅. (1.3.1)

Thus, let p′1 = [g′γ], p′2 = [g′′γ2], where γ1(0) = γ2(0) = p0, γ1(1) = q1, and
γ2(1) = q2. Then γ−1

2 g′′−1g′γ1 is closed, and does not lie in Gπ. If now q
is any point of U ′

α(q′1) ∩ U ′
β(q′2), then q has two representations [h′γ1] and

[h′γ2], with γ−1
2 g′′−1g′γ1 ∈ Gπ. However, the Uα are simply connected, hence
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h′′−1h′ ≈ g′′−1g′, so we get γ−1
2 g′′−1g′γ1 ∈ Gπ, a contradiction. This proves

(1.3.1). If now r′1 �= r′2 ∈ M ′ with π(r′1) = π(r′2), it is obvious that r′1 and
r′2 have disjoint neighbourhoods. If on the other hand π(r′1) = π(r′2), this
follows from (1.3.1), so that M ′ is a Hausdorff space.
It also follows from (1.3.1) that two distinct sets U ′

α(q′1), U
′
α(q′2) are disjoint.

Hence the U ′
α(q′) are the connected components of π−1(Uα) and π maps each

of them homeomorphically onto Uα. It follows that π : M ′ →M is a covering.
It remains only to show the covering π : M ′ → M we have constructed has
Gπ = G. Let then p′0 = [1], and γ : [0, 1] → M a closed path at p0. Then
the lift γ′ of γ starting at p′0 is given by γ′(t) = [γ | [0, t]]. Hence γ′ is closed
precisely when γ ∈ G. 
�

Corollary 1.3.2 If M is simply connected, then every covering M ′ → M
is a homeomorphism.

Proof. Since π1(M) = {1}, the only subgroup is {1} itself. This subgroup
corresponds to the identity covering id : M → M . From Theorem 1.3.2 we
conclude that M ′ then is homeomorphic to M . 
�

Corollary 1.3.3 If G = {1}, and π : M̃ → M the corresponding covering,
then π1(M̃) = {1}, and a path γ̃ in M̃ is closed precisely when π(γ̃) is closed
and null-homotopic.
If π1(M) = {1}, then M̃ = M .

Definition 1.3.5 The covering M̃ of M with π1(M̃) = {1} - which exists
by Corollary 1.3.2 - is called the universal covering of M .

Theorem 1.3.3 Let f : M → N be a continuous map, and π : M̃ →M, π′ :
Ñ → N the universal coverings. Then there exists a lift f̃ : M̃ → Ñ , i.e. a
continuous map such that the diagram

M̃
f̃−→ Ñ

π ↓ ↓ π′

M
f−→ N

is commutative (so that f ◦ π = π′ ◦ f̃).

Proof. This follows from Theorem 1.3.1, applied to f ◦ π. 
�

Definition 1.3.6 Let π : M ′ → M be a local homeomorphism. Then a
homeomorphism ϕ : M ′ →M ′ is called a covering transformation if π◦ϕ = π.
The covering transformations form a group Hπ.

Lemma 1.3.5 If ϕ �= Id is a covering transformation, then ϕ has no fixed
point.
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Proof. Let Σ := {p ∈ M ′ : ϕ(p) = p} be the set of fixed points of ϕ. Let
p ∈ Σ, and U ′ a neighbourhood of p such that π : U ′ → U := π(U ′) is a
homeomorphism. Let V ′ ⊂ U ′ be a neighbourhood of p with ϕ(V ′) ⊂ U ′. For
q ∈ V ′, we have π(ϕ(q)) = π(q) ∈ U , hence ϕ(q) = q, since both q and ϕ(q)
lie in U ′. Thus Σ is open. Since Σ is obviously closed, we must have Σ = ∅
or Σ = M ′. In the latter case, ϕ = Id. 
�

It follows in particular from Lemma 1.3.5 that two covering transformations
ϕ1 and ϕ2 with ϕ1(p) = ϕ2(p) for one p ∈ M ′ must be identical. We recall
from group theory:

Definition 1.3.7 Let G ⊂ H be groups. Then N(G) = {g ∈ H : g−1Gg =
G} is called the normaliser of G in H. G is called a normal subgroup of H if
N(G) = H.

Theorem 1.3.4 For any covering π : M ′ → M , the group of covering
transformations Hπ is isomorphic to N(Gπ)/Gπ. Thus, if π : M̃ →M is the
universal covering of M , then

Hπ ≈ π1(M) (“≈” means isomorphic as groups).

Proof. We choose a base point p0 ∈ M and a p′0 ∈ π−1(p0). Let γ ∈
N(Gπ(p0)). For any p′ ∈ M ′, let g′ : [0, 1] → M ′ be a path joining p′0 to
p′. We put with g := π(g′)

ϕγ(p′) = (gγ)′(1).

If g′1 is another path in M ′ from p′0 to p′, then g−1
1 g ∈ Gπ, hence γ−1g−1

1 gγ ∈
Gπ, since γ ∈ N(Gπ). Thus (g1γ)′(1) = (gγ)′(1), i.e. the definition of ϕγ(p′)
does not depend on the choice of g′. We have

π(ϕγ(p′)) = π((gγ)′(1)) = π(g′(1)) = π(p′),

so that ϕγ is a covering transformation. Also,

ϕγ2γ1(p
′
0) = (γ2γ1)′(1) = ϕγ2 ◦ ϕγ1(p

′
0),

hence ϕγ2γ1 = ϕγ2 ◦ ϕγ1 by Lemma (1.3.5), and

ϕγ = Id ⇐⇒ ϕγ(p′0) = p′0 (by Lemma (1.3.5))
⇐⇒ γ′(1) = p′0 ⇐⇒ γ ∈ Gπ.

Thus, we have defined a homomorphism of N(Gπ) into Hπ with kernel Gπ.
Now let ϕ ∈ Hπ, and let γ′ : [0, 1] → M ′ be a path from p′0 to ϕ(p′0). We
set γ := π(γ′). Then {γ} ∈ N(Gπ), and ϕγ(p′0) = ϕ(p′0). Hence ϕγ = ϕ by
Lemma 1.3.5. Hence our homomorphism is also surjective, and our assertion
follows. 
�
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Corollary 1.3.4 Let G be a normal subgroup of π1(M,p0) and π : M ′ →M
the covering corresponding to G according to Theorem 1.3.2. Let p′0 ∈
π−1(p0). Then, for every p′′0 ∈ π−1(p0), there exists precisely one covering
transformation ϕ with ϕ(p′0) = p′′0 . This ϕ corresponds (under the isomor-
phism of Theorem 1.3.4) to π(γ′) ∈ π1(M,p0), where γ′ is any path from p′0
to p′′0 .

Remark. Hπ operates properly discontinuously in the sense of Def. 2.4.1
below, and
M = M ′/Hπ in the sense of Def. 2.4.2.

Example 2 We consider the torus T of Example 2) in § 1.1. By construction

π : C → T

is a covering. We have
π1(C) = {1}

as C ( = R
2 as a manifold) is simply connected, see the Example after Lemma

1.2.2.
Therefore

π : C → T

is the universal covering of T . The corresponding covering transformations
are given by

z �→ z + nw1 + mw2

for n,m ∈ Z. Thus, the group Hπ of covering transformations is Z
2. From

Theorem 1.3.4, we therefore conclude

π1(T ) = Z
2 .

Since Z
2 is an abelian group, conjugate subgroups are identical and therefore

the equivalence classes of coverings of T are in bijective correspondance with
the subgroups of Z

2, by Theorem 1.3.2.
Let us consider the subgroup

Gp,q := {(pn, qm) : n,m ∈ Z} for given p, q ∈ Z\{0}.

This group corresponds to the covering

πp,q : Tp,q → T

where Tp,q is the torus generated by pw1 and qw2 (in the same way as our
original torus T is generated by w1, w2). By Theorem 1.3.4, the group of
covering transformations is Z

2/Gp,q = Zp×Zq. (α, β) ∈ Zp×Zq operates on
Tp,q via

z �→ z + αw1 + βw2
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(here, we consider α as an element of {0, 1, . . . , p − 1}, β as an element of
{0, 1, . . . , q − 1} and the addition is the one induced from C.)
Let us consider the subgroup

G := {(n, 0) : n ∈ Z} of Z
2.

The corresponding covering this time is a cylinder C constructed as follows:
We call z1, z2 ∈ C equivalent if there exists n ∈ Z with

z1 − z2 = nw1.

Let π′ be the projection which maps z ∈ C to its equivalence class. C := π′(C)
then becomes a differentiable manifold as in the construction of T . The group
of covering transformations is Z

2/G = Z, again by Theorem 1.3.4. m ∈ Z

here operates on C by
z �→ z + mw2,

with the addition induced from C.
More generally, consider the subgroup

Gp := {(pn, 0) : n ∈ Z} for p ∈ Z\{0}.

The corresponding covering now is the cylinder Cp generated by pw1, and
the group of covering transformations is

Z
2/Gp = Zp × Z.

For α ∈ Zp, q ∈ Z, the operations on Cp is

z �→ z + αw1 + qw2

as above, with α considered as an element of {0, 1, . . . , p− 1}.

Exercises for § 1.3

1) Determine all equivalence classes of coverings of a torus and their covering
transformations.

2) Construct a manifold M with a (nontrivial) covering map π : S3 →M .
Hint: The group SO(4) operates on S3 considered as the unit sphere in
R

4. Find a discrete subgroup Γ of SO(4) for which no γ ∈ Γ\{identity}
has a fixed point on S3.

3) Let

Γ :=
{(

a b
c d

)
, a, b, c, d ∈ Z,

(
a b
c d

)
≡
(

1 0
0 1

)
mod 3, ad− bc = 1

}
operate on



1.4 Global Continuation of Functions on Simply-Connected Manifolds 15

H := {z = x + iy ∈ C, y > 0}
via

z �→ az + b

cz + d
.

Show that if γ ∈ Γ is different from
(

1 0
0 1

)
, then γ has no fixed points

in H. Interpret Γ as the group of covering transformations associated
with a manifold H/Γ and a covering π : H → H/Γ . Construct different
coverings of H/Γ associated with conjugacy classes of subgroups of Γ .

1.4 Global Continuation of Functions on
Simply-Connected Manifolds

Later on, in §2.2, we shall need the following lemma. The reader might wish
to read §2.2 before the present one, in order to understand the motivation
for this lemma.

Lemma 1.4.1 Let M be a simply connected manifold, and {Uα} an open
covering of M , assume that all the Uα are connected. Suppose given on each
Uα a family Fα of functions (not satisfying Fα = ∅ for all α) with the follow-
ing properties: i) if fα ∈ Fα, fβ ∈ Fβ and Vαβ is a component of Uα ∩ Uβ,
then

fα ≡ fβ in a neighbourhood of some p ∈ Vαβ

implies
fα ≡ fβ on Vαβ ;

ii) if fα ∈ Fα and Vαβ is a component of Uα∩Uβ, then there exists a function
fβ ∈ Fβ with

fα ≡ fβ on Vαβ .

Then there exists a function f on M such that f|Uα
∈ Fα for all α. Indeed,

given fα0 ∈ Fα0 , there exists a unique such f with f|Uα0
= f .

Proof. We consider the set of all pairs (p, f) with p ∈ Uα, f ∈ Fα (α arbi-
trary).
We set

(p, f) ∼ (q, g) ⇐⇒ p = q and f = g in some neighbourhood of p.

Let [p, f ] be the equivalence class of (p, f), and M∗ the set of such equivalence
classes; define π : M∗ →M by π([p, f ]) = p.
For fα ∈ Fα, let U ′(α, fα) := {[p, fα] : p ∈ Uα}. Then π : U ′(α, fα) → Uα is
bijective. By (i), π(U ′(α, fα)∩U ′(β, fβ)) is a union of connected components
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of Uα ∩ Uβ , hence open in M . Thus the U ′(α, fα) define a topology on M∗.
(Ω ⊂ U ′(α, fα) is by definition open, if π(Ω) ⊂ Uα is open. An arbitrary
Ω ∈M∗ is open if Ω∩U ′(α, fα) is open for each α.) This topology is Hausdorff
by (i).
Now let M ′ be a connected component of M∗. We assert that π : M ′ → M
is a covering. To see this, let p∗ = (p, f) ∈ π−1(Uα), i.e. π(p∗) = p ∈ Uα. By
definition of M∗, there is a β such that p ∈ Uβ and f ∈ Fβ . Thus p ∈ Uα∩Uβ .
By (ii), there exists g ∈ Fα with f(p) = g(p). Thus p∗ ∈ U ′(α, g). Conversely,
each U ′(α, g) is contained in π−1(Uα). Hence

π−1(Uα) =
⋃

fα∈Fα

U ′(α, fα).

The U ′(α, fα) are open, and connected because they are homeomorphic to the
Uα under π. By (i), for distinct f1

α, f
2
α ∈ Fα, we have U ′(α, f1

α)∩U ′(α, f2
α) = ∅.

Hence the U ′(α, fα) are the connected components of π−1(Uα), and those of
them which are contained in M ′ are the components of M ′ ∩ π−1(Uα). It
follows that π : M ′ →M is a covering.
But M is simply connected by assumption, hence π : M ′ →M is a homeomor-
phism by Corollary 1.3.2.. Hence each π−1(Uα) is a single U ′(α, fα), fα ∈ Fα.
If Uα ∩ Uβ �= ∅, we must have fα = fβ on Uα ∩ Uβ , so that there is a well-
defined function f on M with

f|Uα
= fα ∈ Fα for all α,

using (ii). If fα0 ∈ Fα0 is prescribed, we choose M ′ as the connected com-
ponent of M∗ containing U ′(α0, f0), so that the f obtained above satisfies
f|Uα0

= fα0 . 
�

Remark. Constructions of the above kind (the space M∗ with its topology)
arise frequently in complex analysis under the name “Sheaf Theory”. For our
purposes, the above lemma is sufficient, so there is no need to introduce these
general concepts here.
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