
16 Evaluation Framework for Model-Driven Product
Line Engineering Tools

J. Oldevik, A. Solberg , Ø. Haugen, and B. Møller-Pedersen

Abstract
Both the model-driven development (MDD) approach and the product line engineering
(PLE) approach envisage more efficient system development capable of delivering high-
quality products by means of reuse, abstraction, configuration, and transformation. In
order to succeed with model-driven product line engineering we need tools that support
architects and engineers in tasks such as system modeling, variability modeling, model
analysis, model transformation, system derivation, code generation, and model
traceability.

Managing and automating these processes and tasks can be complex processes
themselves. How to solve these complexities is a current topic of research. Unsurprisingly,
no existing tool provides full support for an envisioned model-driven product line
engineering approach. However, MDD and PLE are being paid a great deal of attention by
the software development community, leading to an increasing number of tools emerging
within this area. This is particularly the case for tools supporting Object Management
Groups (OMG) envisioned model-driven engineering approach, Model Driven Architecture
(MDA).

When exploring tool support for the evolving MDD and PLE disciplines, it can be
difficult to know what features to look for and what to expect. This chapter relates
traditional model-driven engineering to product line engineering and establishes a general
framework for evaluation of tools in this area. The framework is defined in terms of desired
characteristics, based on elicited requirements for model-driven product line engineering. It
adheres to the general tool selection process described in the ISO 14102 standard. Some
example MDD/PLE tools are evaluated using the framework to show its applicability and
results.

16.1 Introduction

variability [35]. Chapter 6 defines an approach toward a standard way of representing
commonality and variability of product lines. Based on the product line, specific systems
are derived by resolution of variability and abstractions. This task is often called product

such as model transformation, code generation, and variability resolution. Examples are
the approach described in Chap. 15, which looks at using UML for describing static and
dynamic PL aspects and deriving products from these, and the approaches described in

In model-driven system engineering, system development is performed in an integrated
environment where models are the main instrument for development and integration. In

models at different abstraction levels is developed. These models may range from
business models, requirements models, and design models to deployment models and
code. MDD envisions efficiency through modeling at different abstraction levels and
automatic transformations between abstractions, including the generation of executable
code. Thus, an advanced framework for MDD should provide well-structured support for
modeling at different abstraction levels, traceability between model elements at different
abstraction levels, model transformations, code generation and model synchronization.

MDD and PLE are currently being paid a great deal of attention by both academia and
industry. A growing number of tools supporting MDD and PLE tasks are becoming
available. In [4], Gartner predicts that model-driven service frameworks with architecture-
based code generators will become as prevalent as traditional fourth-generation languages
were in the 1990s. Furthermore, the Gartner Group recognizes portfolio management of
product lines becoming a peak technology by 2004 [9].

MDD and PLE have similarities and differences, which in combination can provide
mutual benefits. For instance, [14] suggests using PLE principles and techniques to define
appropriate modeling concepts and thus obtaining proper scoping in an MDD
environment, and using MDD principles to model the product line and derive systems. A

Within testing, PLE and MDD share many of the needs. Chapters 11 and 12 show this in
their applications of testing product line requirements.

Performing MDD and PLE tasks can be very complex, and tool support is essential to
success. Since MDD and PLE are evolving and are relatively recent software system
engineering disciplines, there are no well-established guidelines on how to evaluate and
select proper MDD and PLE tools. In this chapter, we present an evaluation framework to
support evaluation and selection of MDD and PLE tools.

The following sections justify, define, and exemplify the evaluation framework.
Section 16.2 describes the relationships that exist between model-driven development and
product line engineering. Section 16.3 elicits characteristics for tools and defines the
evaluation framework. Section 16.4 shows an example of an evaluation of a selection of
tools. Section 16.5 evaluates the tool evaluation framework and draws conclusions.

590 J. Oldevik et al.

model-driven development (MDD) processes, an extensive set of different interrelated

[1,2,17].

combined approach has also been investigated in the FAMILIES [11] project [17,34].

In product line engineering (PLE), the philosophy is to specify a general product line from
which specific products can be derived or configured. The product line is specified at a

derivation. There exists a set of various techniques for performing product derivation,

higher abstraction level than the specific product, and it encompasses commonalities and

16.2 Combining Model-Driven Development and Product Line
Engineering

The product line engineering approach brings concepts such as scoping, product line
architecture, definition of domain concepts and components, variation, and product

To combine MDD and product line engineering, it is necessary to specify the product
line by models. Models can be specified using a standard modeling language such as
Unified Modeling Language (UML). Another trend in MDD is to specify the models

the profile mechanism [33] provides a means of defining DSM languages, for instance by
defining stereotypes of domain specific concepts.

In addition to product specifications the model specifications typically describe the
product line reference architecture, domain concepts, patterns, variability specifications,
etc. By viewing product line derivation as a special case of model transformation [17],
tools supporting MDD should in principle be able to support essential PLE tasks.

Many MDD and PLE approaches are based on component frameworks [8], in which
abstractions, concepts, transformations, etc. are defined as part of the framework. The
MDD/PLE combination can be implemented as a component framework, in which the
product line defines the scope and MDD technologies, such as for instance UML and
Meta Object Facility (MOF) [27], are used for specification of the framework. Model
transformation technology may be used to perform model transformation and product
derivation.

An example of a generic MDD framework that can be customized to support PLE is
described in [36]. It provides tailoring to specific domains by means of UML profiles,
reusable models, and patterns. UML profiles are used for defining domain concepts and
reference architectures. Existing models are prepared for reuse if applicable. Patterns
describe standard solutions of recurring problems within the domain. Using a product line
to scope the domain, the framework will provide an environment of (a) domain concepts
relevant for the actual product line, (b) the product line architecture, (c) common
components and artifacts represented as reusable models at the product line level, and
(d) variability mechanisms and variability that can be specified by patterns. Table 16.1
shows some parallels between activities of PLE and MDD.

16 Evaluation Framework for Model-Driven Product Line Engineering Tools 591

approach [24], Microsoft’s software factory approach [14,24], or Xactium [38]. In UML,

Combining model-driven development (MDD) and product line engineering implies
that the set of artifacts developed is based on models. In MDD, models are actively
used in the development process, both as first-class artifacts and for producing docu-
mentation, code, etc.

derivation into play [1,2,3,5,6,14]. A well-defined product line inherently specifies
the scope of ones domain and defines the common architecture for the set of products in
the product line. The variation spans the set of systems that may be derived. The product
line approach aims to gain extensive reusability by generalizing a set of related products

using Domain Specific Modeling (DSM) languages, for example using the MetaCase

in a product line.

Table 16.1. Parallels between the product line and MDD approaches

scoping elicitation of requirements

model of product line high-level model of system

variability resolution and product derivation model refinement and transformation

model of product model of system

transformation of product model transformation of system model

testing of product testing of system

executable product executable system

There are many overlaps between activities in PLE and traditional MDD approaches.
The major difference is the reuse aspect of a single product line model, the scoping of this
model, and the management of variability and commonality within it. The product line
model is used for each production of new products. However, this is similar to the reuse of
domain libraries (and models) in traditional development. Reuse is the main motivation
for product lines. The main differentiating technical factor is the explicit usage of
variability and variability resolution in the development process in PLE.

Variability resolution can be viewed as a kind of transformation process, or part of a
transformation process, whereby decisions regarding variability in a Product Line Model
are taken. The result is a new model, with less (or no) variability. The main difference
between variability resolution and traditional MDD transformations is that the latter
traditionally has no human interactions during the process.

Looking at the forthcoming standard transformation specification language in OMG,

model transformation are not allowed. However, provision of such interactions has been
suggested in an evaluation report on QVT [15]. QVT is in the final stages of
standardization at the time of writing. It defines a metamodel for transformations and
concrete notations for expressing transformations. Two main parts are defined: a relational
part that provides a declarative way of specifying and enforcing relationships between
metamodels, and an operational part that offers imperative constructs for writing trans-
formations in a procedural style. Another related process in OMG is the standardization of
MOF Model to Text Transformations [29]. This process addresses the generation of text
from MOF-based models, for example generating code or documentation from UML
models. Standards such as these are likely to become key technologies in MDD and play
important roles in model-driven product line engineering processes.

An example of a process in which a product line approach is combined with model-
driven techniques is illustrated in Fig. 16.1. Here, it is assumed that the product line model
is defined by a formal model, e.g., in UML. This model describes different aspects of the
product line, such as business aspects, requirements, architecture, design, platform details,
and the variability of the product line.

592 J. Oldevik et al.

product line approach model-driven development approach

the Query/View/Transformation language (QVT) [30,32], human interactions during the

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

Product
Line

Model

Business
model

Requirements
model

Architecture
model

Platform
model

Design
model

Variation
points

Derived
Product

Model (PIM)

Business
model

Initial
Requirements

model

Initial
Architecture

model

New product
requirements

New product
requirements

Variation
points?

Transformed
Product

Model (PIM)

Business
model

Requirements
model

Architecture
model

Refined
Product

Model (PSM)

Business
model

Requirements
model

Architecture
model

Design
model

Platform
model

Runtime
Product
(Model)

Business
model

Requirements
model

Architecture
model

Design
model

Platform
model

Executable
model / code

Variation
points?

Variation
points?

Variation
points?

Product Derivation

Transformation and configuration

Transformation, configuration

Transformation,
code generation

Fig. 16.1. Model-driven product line engineering – example process

When the process of developing a new system is initiated, it is based on a product
derivation from the Product Line Model. This derivation and the model of the variability
in the product line are the main factors that differentiate PLE and MDD. The variability
defines a space of possible systems that can be derived. Once this process is completed
and the Product Model has been defined, PLE can use the same techniques as traditional
MDD.

During the development process, there may be unresolved variabilities from the
original Product Line Model at different levels, which can be resolved at some point in the
process. Consequently, a product line can be resolved, or configured, through a set of
steps toward a more specific system.

Following the product derivation come phases that allow for system extension as well
as refinement and configuration toward the final runtime system, starting with the Derived
Product Model. Here, MDD techniques such as transformation and configuration may be
used. New model elements, driven by new requirements, may be introduced on the way.
In this kind of process, there may be any number of refinement steps toward different
levels of model abstraction. In the example, the terms platform-independent model (PIM)
and platform-specific model (PSM) are used to describe the abstractions.

The terms PIM and PSM are relative to some definition of the platform. For example,
defining middleware as the platform (e.g., J2EE, CORBA and .Net), separation of
platform-independent and platform-specific concerns occurs when a middleware-independent

593

model (a PIM) and a corresponding middleware-specific model (a PSM) are defined for a
particular application. Since the PIM and PSM are relative to the chosen platform, these
concepts form a recursive structure, in which a PSM in one context may be a PIM in
another. (This terminology is compliant with the MDA [31] definitions of these concepts.)
MDD and PLE tools need to provide support for specifying systems at different levels of
abstraction. Techniques for model transformation, product derivation, and configuration
are keys to the provision of model-driven product line engineering.

16.3 Tool Evaluation Framework

This section defines the evaluation framework by discussing elicited characteristics for
model-driven product line engineering (Sect. 16.3.1). The elicited characteristics are
analyzed in order to derive the evaluation framework table shown in Sect. 16.3.2. The
usage of the evaluation framework is exemplified by evaluating a set of tools (Sect. 16.4).

MODELWARE [26], and through our own experience gained in the course of

16.3.1 Characteristics Elicitation

The following subsections offer motivation for the evaluation framework characteristics.

Support for MDD and PLE Mechanisms

Combining model-driven development (MDD) and product line engineering implies some
prerequisites. First, it is required that the set of artifacts developed is in the form of
models. Furthermore, model specifications of both the product line and the specific
products need to be available. In MDD, the engineering process is driven by the set of
prescribed models that need to be developed. Thus, tool support for modeling should be
provided, and modeling languages such as UML should be supported.

Providing tailoring and configuration of the tool to better support a specific domain
such as support for defining DSM languages (e.g., UML profiling) is important. In [10],
several advantages of DSM languages over general purpose modeling languages are
discussed. For instance, a DSM language raises the level of abstraction using constructs
directly related to the application domain and provides notation close to practitioners’
natural way of thinking.

In a combined MDD and PLE approach, the domain should be scoped by the product
line. Variability specification and support for transformations and product derivation are
other key mechanisms that ought to be in place.

594 J. Oldevik et al.

12,15,30,38], through case studies in projects like FAMILIES, COMBINE [7], and

development and provision of the UML Model Transformation open source tool [16,37].

The characteristics have been elicited via a survey of relevant literature, such as [1,2,5,8,

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

Support for Standards

In many cases, it is important that a tool should support standards, as this caters for open
architectures, easy integration, tool interoperability, and tool migration. For a business
that is investing in model-driven tool technologies, this is important in order to avoid
vendor locking.

The Object Management Group (OMG) is a major standardization organization in the
MDD area. It operates through the promotion of MDA, which is based on standard
modeling technologies such as the Unified Modeling Language (UML) [33], Meta Object
Facility (MOF) [27], and XML Metadata Interchange (XMI) [28]. Ongoing standardi-
zation efforts like QVT and MOF Model to Text Transformation are also expected to be
key technologies for realizing the MDA vision. These standards target languages for
specifying model transformations and code generation, respectively.

MDD and PLE tools should provide mechanisms that support the separation of
concerns, such as abstraction levels and views. Most graphical modeling languages
provide a set of views through its set of diagram types (e.g., UML, which provides class
diagram, interaction diagram, deployment diagram, etc.). Furthermore, the modeling
language should support modeling of standardized viewpoints such as ISO RM-ODP [18],
as well as any number of user-defined views. Also, features for modeling of PLE
variability should be provided. General modeling languages like UML enable modeling of
standardized and user-defined views. UML also support modeling of PLE variability to
some extent, and UML profiles can be defined to extend the support for variability

Product Line Support

Currently, MDD does not address all aspects needed for product line engineering, such as
specification and resolution of variability, which are key tasks for PLE.

In PLE, the timing for resolving variabilities may vary. For example, some variation
elements may be resolved when deriving architecture models from business and
requirements models, others when deriving detailed design models. When deriving
implementations as executable code, some variabilities may still remain unresolved. These
can be resolved at run time (runtime variability), for instance in order to gain context
adaptation of the running system.

A tool should provide a flexible way of handling variability resolution. Variability
should be permitted to be resolved at different stages in the development lifecycle, and
also during run time.

Variation specifications may be inter-related. This may imply that a specific resolution
of a variation may conflict with a set of possible resolutions of other specified variations.
A resolution of a variation can depend on resolutions of a set of other variation
specifications. Management of these kinds of dependences needs to be handled.

The consolidated meta-model for variability described in Chap. 6 provides valuable
input for model-driven product line engineering, as it brings forward standard concepts for
representing variability. It aims to provide a common basis for implementation by PLE
tools.

595

modeling [17,39].

Process Support

Process support is important in software engineering. Many general-purpose system
development process frameworks are available and can be chosen in a combined MDD
and PLE approach, for example the Rational Unified Process [22]. In addition to support

In order to support a consistent development process, iterative and incremental
development should be supported. In comparison with a waterfall-oriented process,
iterative and incremental development caters better for change and for the fact that

and incremental processes have become mainstream in the software engineering
discipline, and tool chains used in software development should provide support for this
paradigm. For MDD and PLE tools, this includes features such as:

• Support for roundtrip engineering
• Management of traces and relationships between models
• Management of change propagation between model abstraction levels without

distorting model consistency

Model Transformation

Providing general refinements of abstract system specifications to more concrete specifi-
cations, and eventually to executable artifacts that meet expectations in terms of provided
functionality and quality is a complex process.

Tools supporting a combined MDD and PLE approach should offer the capability to
specify and execute transformations between models at different abstraction levels, as well
as between models and implementation code. The standardization of model transformation
technologies within OMG (QVT and the MOF model to text transformation) will coerce a
new level of maturity in this field. Related aspects, such as traceability support in
transformations and bidirectionality, will be of importance in many model transformation
scenarios.

When performing model transformation and code generation it is essential to produce the
desired results in terms of derived models and code. An important consideration in this
respect is production of expected functionality; another key aspect is to deliver models and
code that specify systems that will adhere to the required quality of the provided services.
Thus, the specification and consideration of quality of service (QoS) when deriving product
models are significant. Quality aspects such as usability, availability, performance, and
security need to be managed throughout the system development process. For this reason,
the support provided by tools in this respect needs to be evaluated.

Nonfunctional Properties

Nonfunctional tool properties will also be of importance for selecting the appropriate tool.
Aspects such as tool pricing, availability, licensing, and maturity of the tool are important
properties that affect decisions and the selection of tools. In [20], a more extensive set of
nonfunctional properties is defined; subsets of these may be considered relevant
dependent on the particular needs of the user.

596 J. Oldevik et al.

MDD and PLE tasks, a model-driven product line engineering tool should enable inte-

knowledge of the system and its purpose is typically evolving as it is developed. Iterative

gration and interoperability with standard tool portfolios used in software engineering
 processes.

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

16.3.2 Evaluation Characteristics

This section presents the evaluation characteristics for MDD tools in general and MDD
tools that support PLE in particular. The previous section suggested a number of
characteristics that were analyzed with the aim of identifying appropriate criteria within
the evaluation framework.

The evaluation characteristics define a set of desired properties. The justification for
each of them is indicated by a question, which needs to be answered during an evaluation.
The output domain of permitted answers is defined for each question. Some questions
have Yes or No as the output domain while others have a range of possible answers. An
evaluation framework can hardly be complete, as is also argued in [23]. This framework
includes common characteristics derived from a survey of relevant literature, case studies
and own experience. However, the user can extend or modify the framework. For
instance, more details of a characteristic can be explored by adding subcharacteristics with
associated questions. Answers can be extended to include more options, and the weighting
and criticality may be altered. Finally, characteristics can be added or removed by users.
Each answer may also be accompanied by a more elaborate description of the specific
issues concerning that feature of a tool. Table 16.2 shows the characteristics of the
evaluation framework.

Table 16.2. Evaluation characteristics

CID
x.y

characteristic description/question weight
1–5

critical
Y/N

1 model specification does the tool support specification of systems
as graphical models? {Yes/No}

4 N

2 graphical notation for
model transformation

does the tool support graphical specification of
transformation? {Yes/No}

1 N

3 lexical notation for model
transformation

does the tool support lexical specification of
transformation? {Yes/No}

5 N

4 model-to-model
transformation support

does the tool support model-to-model
transformation? (e.g., from one UML model to
another?) {Yes/No}

4 N

5 model-to-text
transformation support

does the tool support model-to-text transforma-
tion, such as generation of source code?
{Yes/No}

5 Y

6 support for model analy-
sis

is there any support for model analysis?
{Yes/No}

1 N

7 support for QoS
management

is there any support for managing QoS during
model specification and transformation?
{Yes/No}

1 N

597

8 metamodel-based is the tool based on explicit descriptions of the
metamodels of source and target
transformation? {Yes/No}

3 N

9 MOF integration is the tool integrated with a MOF (or other
metamodel-based repository)? {Yes/No}

4 N

10 XMI integration is the tool integrated with XMI? {Yes/No}
which version(s) of XMI is supported? {list
of versions}

4 Y

11 based on UML is the tool based on UML models as source
and/or target models for transformation?
{Yes/No}

2 N

12 UML specification does the tool provide support for UML
modeling {Yes/No}

4 N

13 UML tool integration can the tool be integrated with existing UML
tools? either directly, as active plug-ins in
UML tools, or indirectly through model
exchange via, e.g., XMI? {Yes/No}or{names
of the set of techniques}

4 N

14 iterative and incremental
transformation support

does the tool handle reapplication of
transformation after model updates? {Yes/No}

3 N

15 bidirectional
transformations

does the tool support bidirectional transforma-
tions? {Yes/No}

1 N

16 traceability does the tool handle traceability of
transformations, i.e., can it maintain traces of
the source and targets of a transformation?
{Yes/No}

4 N

17 product line variability
modeling

is there support for modeling product line
variability? {Yes/No}

4 N

18 product line variability
Resolution

is there support for variability resolution?
{Yes/No}

5 Y

19 DSM language support is there support for defining domain-specific
modeling languages (e.g., UML profiling) and
DSM transformations? {Yes (1)/DSM
Transformations (0,5)/No.(0)}

4 N

20 QoS variability is there support for modeling and resolving
QoS variability? {Yes/No}

3 N

21 decision process support is there support for a decision process?
{Yes/No}

5 N

598 J. Oldevik et al.

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

22 maturity what is the maturity of the tool?
 {Mature (0.7–1), medium(0.4–0.6), under
development (0–0.3)}

2 N

23 usability what is the usability level of the tool? is it
{Easy and intuitive (0.7–1), medium learning

curve (0.4–0.6), steep learning curve (0–0.3)}

1 N

24 availability and license what is the license for the tool?
{Open source (1), freeware (0.4–0.9),

 commercial(0–0.3)}

2 N

25 pricing what is the pricing of the tool?
{the approximate pricing (0–0.9), N/A (1)}

4 N

Characteristics 1–6 evaluate general support for MDD and to what extent a tool
supports model specification and transformation. The support for model analysis
characteristic will evaluate support for analysis and checking of model consistency,
correctness, etc. Management of QoS during system specification and transformation is
evaluated through characteristic 7. Flexibility and the extent to which the tool supports
standards and enables easy integration and interoperability are the focus of characteristics
8–13. Supporting an iterative and incremental process model is evaluated through
characteristics 14–16. Characteristics 17–21 are specifically tuned to supporting the
specific requirements of product line engineering. General nonfunctional properties of the
evaluated tool are the focus of characteristics 22–25. Many additional nonfunctional
properties such as the extensive set presented in [20] may be relevant in particular cases.
This framework only includes some of the important ones that will typically be
considered. The user can add more nonfunctional properties if needed.

The Characteristic Identification (CID) field is used to number the characteristics for
later reference. The numbering can be flat as shown in Table 16.2. The CID field can also
be used to define a hierarchy of categories and characteristics. For instance, defining a
category five named Support for Product Line Techniques would appear as shown in the table
below.

5 support for product line specific techniques

5.1 product line variability model-
ing

is there support for modeling product line vari-
ability? {Yes/No}

5.2 DSM language support is there support for defining domain specific
modeling languages (e.g., UML profiling) and
DSM transformations? {Yes (1)/DSM Transfor-
mations (0.5)/No(0)}

5.3 product line variability resolu-
tion

is there support for variability resolution?
{Yes/No}

5.4 decision process support is there support for a decision process? {Yes/No}

599

This allows categories of characteristics to be summed separately. The CID field can
also be used to add subcharacteristics using a similar technique. The weights and critical
fields of the table are optional and are used to perform more advanced evaluations. The
values assigned are used for the purpose of exemplification. The weight field is used to
indicate how important a particular feature is for a particular user/domain. The weight
function is used to cater for different users with various preferences and different problem
categories requiring different types of support. The answers to the set of questions are
normalized to a figure ranging from zero to one. For yes/no answers, yes can be
normalized to 1 and no to 0. The weight may be a number from 1 to 5, and the final value
of the characteristic is the product of weight and normalized value. If all features have the
same importance, the weighting function is superfluous.

The critical field is used to indicate if a feature is critical. If the normalized answer
appears to be 0 for a critical characteristic, the tool is not usable for the particular case.
The evaluation framework characteristics in Table 16.2 define example instances of

In the following section, the evaluation framework is applied on a set of MDA-oriented
tools.

16.4 Examples of Tool Evaluations

This section presents a selection of existing tools in the MDD/PLE area, examining their
characteristics and seeing how they support the characteristics described in Sect. 16.3.2.
The evaluations apply the weights for each characteristic and calculate the weighted score,
which are summed up for each tool.

16.4.1 The Evaluated Tools

Since variability, domain concepts, and reference architectures can be specified in
modeling languages like UML and product derivation can be viewed as a special case of
model transformation [17], tools supporting MDD should in principle be able to support
essential PLE tasks. Most of the relevant tools currently on the market are promoted as
MDD tools. However, the evaluation framework explores the extent to which tools are
able to support essential PLE tasks and to which they can be used in a model-based PLE
approach.

The focus has been on evaluating a selection of tools, some of them commercial and
some open-source based, which are positioned within the MDD arena and that focus on
model transformation and code generation. In consequence, they should in principle
support product derivation to some extent. Pure modeling tools such as traditional UML
tools have not been evaluated, since we are interested in evaluating tools that provide
support for the distinctive software engineering tasks that have appeared with the
introduction of the MDD and PLE approaches, such as model transformation and system
derivation.

The list below gives a brief overview of the tools evaluated:

600 J. Oldevik et al.

weights for each characteristic and set some of them to be critical [5,10,18].

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

• Atlas Transformation Language (ATL). An open-source MOF-based model
transformation tool, which is part of the Eclipse GMT project (Sect. 16.4.3).

• UML Model Transformation Tool (UMT). An open-source UML/XMI-based tool
for model transformation and code generation (Sect. 16.4.4).

• ArcStyler. A commercial MDA tool from Interactive Objects, which is bundled
with the UML tool Magic Draw (Sect. 16.4.5).

• XMF-Mosaic. A commercial tool from Xactium, which provides a meta-
programming environment (Sect. 16.4.6).

16.4.2 A Common Example

This chapter introduces a common example used in the evaluation of the tools – the watch
example – a simple application representing a software wrist watch, described in terms of
a UML-based feature model as shown in Fig. 16.2.

Fig. 16.2. The Watch example UML model

The Watch model represents a Watch product line (a general watch application), with a
set of commonalities (such as the Time feature) and a set of variabilities (such as the
Alarm and StopWatch feature). We recommend specifying a concrete domain example
relevant for the particular product line, and using this actively when performing tool
evaluation and selection. The watch example used here is defined in full detail in Chap. 6.

In the evaluation process, the Watch example has been used as a common basis for
investigating tool characteristics. It has typically been used as an input model for testing
transformation and product derivation capabilities, which has been valuable input for
performing evaluation of the set of characteristics specified by the framework.

Alarm
<<property>> alarm_number : int
<<range>> volume_max : double = {0.1 - 5.0}

setAlarm()
activate()
deactivate()

Time

setTime()

Timer

StopWatchWaterProof
<<alternative>> depthResistance : int = {0, 100, 200}

Button

Speaker
<<alternative>>

Watch
<<property>> name : String
brand : String

0.1

stopwatch

<<optional>>

+speaker

<<optional>>

1. *
+buttons

<<cardinality>>

0.1

timer

<<optional>>

0.1

alarm

<<optional>>

0.1 world Time

<<optional>>

time

+water Proof

<<optional>>

Polyphonic SpeakerBasic Speaker

601

<<P roduct line>>

16.4.3 Atlas Transformation Language (ATL)

The Atlas Transformation Language (ATL) was developed by INRIA/University of
Nantes as open source under the Eclipse (Generative Model Transformer GMT –
http://www.eclipse.org/gmt) project. It is a hybrid language (a mix of declarative and
imperative constructions) designed to express model-to-model transformations. ATL is
similar to the QVT submission in terms of semantics, but differs in syntax. It is based on
declarative rule definitions, which define mapping between source models and target
models. The example below illustrates the ATL syntax in a transformation from a product
line model to a product model, which could take as input, the Watch model.

module ProductLineDerivation;
create OUT:ProductMdl from IN:ProductLineMdl, IN2:VariabiliyMdl;

--
-- Product Line Model to Product Model rule
--
rule ProductLineMdl2ProductModel {

from lineMdl : ProductLineMdl!Model
to prodMdl : ProductMdl!Model

 (
 name <- lineMdl.name,
 classes <- lineMdl.modelElements
)
}
--
-- Optional classes
--
rule ClassToClass {

from lineClass :
ProductLineMdl!Class[lineClass.getVariability('Optional')

 and lineClass.variabilityIsSelected()]
to productClass : ProductMdl!Class

 (
 name <- lineClass.name,
 description <- lineClass.description,
 attributes <- lineClass.attributes
)
}

ATL provides no direct support for product line derivation. One possible way of
supporting this would be to use a variability resolution metamodel as input for

this combination of models to derive product models. The ATL code shown above
illustrates this process. Two separate models are defined as input models; one defining the
product line; the other the variability resolutions. Table 16.3 describes the characteristics
of ATL.

602 J. Oldevik et al.

transformations together with the Product Line Model. The transformations could then use

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

Table 16.3. ATL characteristics

CID characteristic score/evaluation weighted
score

1 model specification no. ATL cannot be used to specify models. It uses
models as input for transformations and can
generate new models

0

2 graphical notation for
model transformation

no. ATL only provides lexical syntax for
transformation

0

3 lexical notation for model
transformation

yes. ATL lexical language, a declarative (hybrid)
language

5

4 model-to-model transfor-
mation support

yes. ATL’s main functional purpose is model-to-
model transformation.

4

5 model-to-text transforma-
tion support

yes. Model-to-text transformation can be supported
by streaming mechanisms of models to textual
format.

5

6 support for model analysis no. There is no direct support for model analysis.
However, queries on models may be used to
perform different analytical tasks

0

7 support for QoS manage-
ment

no. There is no support for quality of service in
ATL

0

8 metamodel-based yes. ATL is based on MOF metamodels. It
provides integration with several metamodel
repository implementations

3

9 MOF integration yes. ATL integrates with Netbeans Metadata
Repository (MDR) and Eclipse Modeling
Framework (EMF)

4

10 XMI integration yes. ATL imports XMI files for metamodels and
models, using support in underlying MOF/XMI
frameworks, such as EMF

4

11 based on UML yes. ATL supports transformation on UML models
through MOF and XMI support

2

12 UML specification no. There is no support for UML specification in
ATL

0

13 UML tool integration no. There is no direct integration with UML tools.
There is indirect integration through MOF/XMI

0

14 iterative and incremental
transformation support

no. There is no specific support for handling
aspects such management of retransformations,
reverse transformations, etc.

0

15 bidirectional
transformations

no. There is no support for bidirection
transformations

0

16 traceability no. Traceability is not handled explicitly 0

603

17 product line variability
modeling

no. There is no support for variability modeling
in ATL

0

18 product line variability
resolution

no. There is no support for variability resolution in
ATL, but it may be supported through
transformations based on input models that
represent resolutions

1

19 DSM language support the tool does not provide support for defining
DSM languages. It provides support for
transformations of DSM languages.
E.g., transforming one DSM-based model to
another DSM-based model

2

20 QoS variability no. There is no support for variability of QoS
aspects

0

21 decision process support no. There is no support for handling a decision
process. This would require human interaction
during the transformation process

0

22 maturity medium/underdevelopment 0.8

23 usability steep learning curve 0.2

24 availability and license open source (Eclipse Public License) 2

25 pricing N/A 4

Summary. ATL provides a transformation language and tool that supports very general
and flexible means of transforming between model abstractions defined by metamodels. It
is open source, with an increasing user community, and currently under continuous
development. However, it provides poor support for product line characteristics, such as
the critical characteristic 18. The total weighted score using the defined weighting system
is 37.

16.4.4 UML Model Transformation Tool (UMT)

on reading UML models via XMI from different UML tools, such as Rational Rose,
Together, ArgoUML, Poseidon, and Objecteering. Currently, it supports structural models
(class) and activity models. It uses Java and XSLT as code generation/model trans-
formation language and provides several example transformations toward EJB, WSDL,
XML Schema, IDL, SQL, and more. The process of installing new transformations is
quite simple.

UMT provides a graphical environment to install generators and run transformations on
UML models. It uses a simplified XMI-like representation as the internal format, which is
the structure used as input by transformations. There is no explicit basis in metamodels of

604 J. Oldevik et al.

UMT is an open-source tool for code generation from UML models [34,37]. It is based

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

target and source models. Transformations are thus based on ad hoc assumptions
regarding input and output. It has support for a crude representation of profiles, which to
some extent can be used to check model compliance. Figure 16.3 shows a snapshot of the
UMT GUI after the product line model (the Watch model) has been loaded. The left field
shows the model tree, with different model features and properties. The right field shows
the variations and provides the user with resolution options.

In addition to code generation support, UMT supports variability resolution of UML
product line models based on profiles and constraints on the source models. It provides a
GUI that allows the user to resolve variabilities and generate configurations or products
based on the decisions taken. Variability can be expressed within a UML model according
to a simple UML profile. It supports selection of values (resolution of variability) and
generation of new model configurations or concrete product models. Table 16.4 describes
the characteristics of UMT.

Summary. UMT is an open-source, XMI-based tool tuned to code generation through
XSLT or Java. It provides support for UML-based models, but not general MOF models.
It provides support for product line variability based on a UML profile. Product line
functionality is currently limited to using UML models that are according to a predefined
UML profile. All the critical characteristics are supported. The total weighted score using
the defined weighting system is 35.5.

Fig. 16.3. UMT with variability resolution support

605

Table 16.4. UMT characteristics

score/evaluation weighted
score

1 model specification no. There is no support for specifying models in
UMT. It relies entirely on exported models from
UML tools

0

2 graphical notation for model
transformation

no. There is no graphical notation for model
transformation

0

3 lexical notation for model
transformation

yes. UMT uses XSLT and Java as transformation
languages, with possibilities of extending to
support other languages

5

4 model-to-model
transformation support

no. There is no real support for model-to-model
transformations. There is, however, possibility to
generate “new” XMI models based on existing
ones

0

5 model-to-text transformation
support

yes. Model-to-text transformation is the main
functional domain for UMT

5

6 support for model analysis no. There is no support for model analysis, except
for very simple support for checking of a model’s
conformance to simple profiles

0

7 support for QoS
management

no. There is no support for management of QoS 0

8 metamodel-based no. UMT only targets the UML metamodel and is
not flexible with respect to changing this

0

9 MOF integration no. There is no integration with MOF 0

10 XMI integration yes. UMT imports UML/XMI files from different
UML tools

4

11 based on UML yes. UMT supports UML through XMI integration. 2

12 UML specification no. There is no support for specifying UML mod-
els. UMT relies wholly on model input from exter-
nal UML tools

0

13 UML tool integration no. There is no direct UML tool integration.
Integration is indirect through XMI

0

14 iterative and incremental
transformation support

yes/no. There is lightweight support for regenerat-
ing code without overwriting previously generated
and modified code

1

CID characteristic

606 J. Oldevik et al.

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

15 bidirectional transformations no. There is no direct support for bidirectional
transformation. However, there is some support for
reverse engineering of code to XMI models

0

16 traceability no. There is no support for traceability in UMT 0

no. There is no modeling support, but active
support for loading UML models in which
variability is specified

0

yes. There is support for resolution of variability
specified in a UML model. This is supported for
models that adhere to a product line profile,
provided by a specialized tool for variability
resolution.

5

19 DSM language support the tool does not provide support for defining
DSM languages. It provides support for
transformations of DSM languages.
E.g., transforming one DSM-based model to
another DSM-based model

2

20 QoS variability no. There is no support for QoS variability 0

21 decision process support yes. A decision process is partly guided by the
variability resolution part of the tool

4

22 maturity medium 1

23 usability medium learning curve 0.5

24 availability and license open source (LGPL) 2

25 pricing N/A 4

16.4.5 ArcStyler

ArcStyler is a commercial MDA tool bundled with the MagicDraw UML tool. ArcStyler
is tuned to code generation, based on what are called MDA Cartridges, which have been
developed in the MDA Cartridge Architecture – CARAT. A cartridge is essentially a
specification and implementation of a transformation.

In ArcStyler, a set of predefined cartridges for common platforms is provided (e.g.,
J2EE, .NET). A user can also develop his own cartridges or adapt existing ones. A special
model and code-based editing environment is provided for cartridge development.

Cartridges are designed partly on the basis of cartridge models, which specify the high-
level structure of a cartridge in terms of artifacts and sets of artifacts. These specify which
metamodel elements to work on. The details of cartridge transformations are implemented
in Jython (previously JPython). Table 16.5 describes the characteristics for ArcStyler.

modeling
17 product line variability

resolution
18 product line variability

607

Table 16.5. ArcStyler characteristics

CID characteristic score/evaluation weighted
score

1 model specification yes. Model specification is provided in a bundled
UML environment (MagicDraw)

4

2 graphical notation for model
transformation

yes. The overall structure of a cartridge is
specified as a graphical model structure. The de-
tails of a transformation, however, are specified
textually

1

3 lexical notation for model
transformation

yes. The Jython language is used for lexical
transformations

5

4 model-to-model
transformation support

yes. There is some support for specifying and
executing model-to-model transformations

4

5 model-to-text transformation
support

yes. Generation of code is supported via the MDA
Cartridges and the Jython language. This is the
main functional area of ArcStyler

5

6 support for model analysis no. There is no specific support for model analysis 0

7 support for QoS management no. There is no specific support for QoS
management

0

8 metamodel-based yes. In some sense, ArcStyler is based on
metamodels. The elements of a Cartridge use
metamodel elements as input

3

9 MOF integration no. There is no MOF integration 0

10 XMI integration yes. The XMI capabilities provided by
MagicDraw are supported

4

11 based on UML yes. UML models from the bundled MagicDraw
tool are the basis of generation

2

12 UML specification yes, through the bundled UML tool 4

13 UML tool integration yes. ArcStyler is bundled with MagicDraw.
Integration with other UML tools is also possible
through plug-ins

4

14 iterative and incremental
transformation support

yes/no. Does not protect code areas in the built-in
editor. Regeneration operates on the basis of
commented tags. There is support for
re-engineering through a Harvesting component

2

608 J. Oldevik et al.

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

15 bidirectional transformations no. There is no support for bidirectional
transformation. However, there is support for
harvesting code and regeneration

0

16 traceability yes. Traces model elements to code using ID’s in
code comments

3

no. There is no support for variability modeling.
However, this can be supported by applying a
product line profile

0

no. There is no support for variability resolving 0

19 DSM language support yes. Since it is bundled with MagicDraw, DSM
language definitions can be specified using UML
profiles

4

20 QoS variability no. There is no support for QoS variability 0

21 decision process support no. There is no support for a decision process in
transformations

0

1.6

23 usability steep learning curve. Medium usability when just
applying built-in cartridges. Cartridge develop-
ment requires more time/has a quite steep learning
curve

0.2

24 availability and license commercial. Free “Community Architect Edition” 0.6

25 pricing from €0 for the Community Edition to €9,800 for
the full Architect Edition

0.4

Summary. The transformation capabilities of ArcStyler are powerful with respect to
structuring, definition, and reuse of transformations. However, it is not possible to define
points in a transformation where user decisions can control a transformation during
progress. It thus seems difficult to support product line derivation using variation
elements. The evaluation reveals a lack of support of critical characteristics [18]. The total
weighted score using the defined weighting system is 47.8.

16.4.6 XMF-Mosaic

resolution
18 product line variability

modeling
17 product line variability

609

version 1.0. XMF-Mosaic provides a metaprogramming environment, which aims to
offer freedom to program and model in any language with full support from graphical and
textual editors.

22 maturity mature

XMF-Mosaic has been developed by Xactium. It is a new tool, currently available in

The languages and tools that come with XMF-Mosaic provide general capabilities for
language modeling. The tool is currently based on MDA standards such as MOF, OCL,
and QVT.

XMF-Mosaic provides a modeling interface that is typically used to define the domain
language (metamodel). It may also be used to model mappings. An example is shown in
Fig. 16.4, which shows the definition of a simple interaction metamodel and a mapping to
Corba Interfaces (the arrow symbol in the model). The source and target are specified
using domain and range associations to the anchor concepts of the source and target for
the specific transformation (Lifeline and CORBAInterface in Fig. 16.4).

Fig. 16.4. Modeling interface

XMF-Mosaic provides support for the specification of model transformation through a
language called XMap. XMap is defined using the XOCL language, a metaprogramming
language for constructing languages and environments. It provides facilities for inspecting
and controlling its own behavior and is the key technical feature that allows XMF-Mosaic
to support tool development. The language is an imperative extension of OCL.

XMap is aligned with OMG’s QVT language. An example of XOCL XMap syntax is
as follows:

610 J. Oldevik et al.

@Clause Lifel2ci
 Lifeline[name = name, type = T, messageEnds = ME]

 O = ME->collect(me | me.message.name

 me.message.receiveEvent = me)

 CORBAInterface[name = T.name, operations = O]

end

 where

 and

do

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

Since XMF-Mosaic is a framework with support for defining languages and environments
and for building tools, and almost every technical criteria of our evaluation framework
may be supported. It just has to be built first. However, the current version provides basic
tools that support modeling and model transformations. The following evaluation is partly
based on the provided tools and partly on the fact that characteristics may be developed as
extensions. Table 16.6 describes the characteristics of XMF-Mosaic.

Table 16.6. XMF-Mosaic characteristics

CID characteristic score/evaluation weighted
score

1 model specification yes. The tool supports specification of systems as
graphical models by providing a subset of UML
diagrams and notation

4

2 graphical notation for model
transformation

yes. The downloadable version comes with limited
graphical notation, which is combined with lexical
notation (XMap) to make the specification
complete

1

3 lexical notation for model
transformation

yes. Lexical notation for model transformation is
provided through XMap

5

4 model-to-model
transformation support

yes 4

5 model-to-text
transformation support

yes 5

6 support for model analysis yes. Validity of models can be checked (i.e.,
whether they are according to their metamodel),
both through an editor console and by building
snapshots using the modeling interface. XWalk is
an extension to XOCL, which provides facilities
for efficiently running over large XCore object
structures and evaluating their properties, for
example running constraints or modifying data

1

7 support for QoS
management

no. There is no explicit support for QoS
management. However a QoS profile may be
defined and used to specify QoS. These QoS
profile concepts may also be used to derive
QoS-aware transformation specifications

0

8 metamodel based yes. It is based on XMF XCore, which is a
MOF-like metakernel

3

9 MOF integration yes 4

611

10 XMI integration yes. XMF provides facilities for parsing and
generating XML documents. High-level
grammatical rules can be written, which state how
a specific XML element pattern can be mapped to
an XCore element or trigger the invocation an
XOCL action. These rules can be used to generate
a parser for a specific XML syntax

4

11 based on UML yes. There is support for UML. It may support
arbitrary modeling languages defined using XOCL.
The downloadable version provides UML syntax

2

12 UML specification yes. A subset of UML diagrams and notation is
provided

2

13 UML tool integration no. May use XMI. XMF-Mosaic supports
sophisticated input and output facilities, which
enable data to be streamed to and from files or
other tools in a variety of different data formats

0

14 iterative and incremental
transformation support

no. Process support, configuration management,
etc. are not part of the XMF-Mosaic framework.
XMF-Mosaic comes with the XSync language,
which provides a high-level way of synchronizing
data, where changes in one element cause changes
to be automatically propagated to other elements

0

15 bidirectional
transformations

yes. Languages for specifying bidirectional
transformations may be defined using XOCL

1

16 traceability no 0

17 product line variability
modeling

yes. A product line variability modeling language
may be defined

4

18 product line variability reso-
lution

yes. Product line variability resolution mappings
may be defined

5

19 DSM language support yes. The tool provides support for defining DSM
language through its metaprogramming
environment and performs transformations based
on these language definitions

4

20 QoS variability no. There is no explicit support for QoS variability,
but resolving functional types of QoS such as
security and transaction control will be similar to
defining and resolving functional variability

0

21 decision process support no. There is no explicit support for a decision
process

0

612 J. Oldevik et al.

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

23 usability medium learning curve 0.5

24 availability and license commercial, free evaluation version 0.6

25 pricing according to the web page XMF-Mosaic is
competitively priced and includes 12 months’
support and maintenance as standard. Discounts
are available for bulk purchases and with
consultancy-related packages. A significantly
discounted noncommercial license (for students
and academic departments) is also available

1.2

Summary. XMF-Mosaic is a very flexible tool, due to its meta-architecture providing
functionality for defining relevant metamodels of the actual product line. This flexibility
can appear as a problem as it lays the burden of defining metamodels on the user.
However, some common metamodels and features come with the tool. Due to its
flexibility, the tool can be configured to support many of the MDD and PLE tasks. The
tool is model oriented, and both metamodels and transformations may be specified using

This section evaluates the work done, by analyzing the evaluation framework, the

16.5.1 The Tool Evaluation Framework

The evaluation framework was derived from characteristics discussed in Sect. 16.3. The
evaluation criteria are tuned to model-driven development tools in general with a specific
focus on model transformation. The tool also includes important requirements for product

The resulting criteria are a mix of technical and practical aspects, which can act as a
guide for selecting appropriate tools. The criteria alone do not allow for an easy
comparison. In order to achieve this, the weight and critical properties must be defined
and used in the evaluation. It is not fruitful to predefine these properties, since they will
always be relative to specific domain needs. A set of domain experts should therefore
define these prior to an evaluation.

613

16.5 Evaluation of the Framework

evaluated tools, and the applicability of the results. Then it compares the results with
related works.

22 maturity mature. XMF-Mosaic v1 was released in 2005 1.4

models. The total weighted score using the defined weight system is 52.7.

line engineering, which are essential for supporting PLE in a model-driven context.

16.5.2 The Tools Evaluated

The example evaluation is included to illustrate how the evaluation framework can be
used. A set of state-of-the-art and advanced tools for model-driven development, both
open source and commercial, are evaluated. The particular tools were included on the
basis of their positioning as MDD tools, with a tuning to model transformation and code
generation aspects. However, other tools could as well have been chosen. As part of the
work, several additional tools were evaluated. These were mostly dedicated MDD tools,
most of them lacking support for PLE, but providing different aspects of MDD
functionality. The ones evaluated here were selected on the basis of their maturity and
relevance as open source or commercial tools. Among the tools evaluated but not included
in this chapter were the open source tools MTL Engine, ModFact, and AndroMDA, and
the commercial tools OptimalJ, Codagen Architect, and IQGen.

This study has not included evaluations of dedicated UML tools. To a large extent,
these also provide many aspects of MDD functionality, such as modeling and code
generation. Traditionally, there has been little support for model transformation in this
category of tools, and no direct support for PLE characteristics. At this time, however, we
observe a growing degree of support for model transformation frameworks and even QVT
in commercial UML tools. Examples are the latest Borland Together product, which
implements the QVT specification, and the IBM Rational Software Architect (RSA),
which implements a proprietary model transformation framework. Using built-in
extension mechanisms in these tools, some support for PLE characteristics may be
provided.

The evaluated Xactium tool is a representative of a DSM tool. This category of tools is
characterized by their ability to support specification of domain specific languages. The
language definition is then used to specify appropriate transformation specifications. In a
PLE setting this is appealing, since specifying domain specific languages is an efficient
mechanism for scoping product lines. Examples of other tools in this category are [24,
25].

The V-Manage tool suite from European Software Institute (ESI) has been described in
Chap. 6. It provides an environment for defining and resolving variation models, and
relating this to implementation of specific components. This tool has been excluded
primarily because it is an in-house product not available to external purchasers.

16.5.3 Applicability of Results

The evaluation framework provides a baseline that can be used to evaluate and compare

As shown above, the framework can be applied using selection guidelines and weights
based on user requirements, which would leverage it for practical applications. It can also

purposes. The evaluation examples show how different tools can be evaluated using the
assigned weights. The resulting evaluation sum for a tool can be used to guide the final
tool selection. A clear specification of the characteristics and the weighting is the key to a
good evaluation.

614 J. Oldevik et al.

be integrated with existing case tool evaluation frameworks [20,23] for more holistic

tools in order to make decisions when acquiring tools for model-driven product
line engineering.

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

This framework can be used in tool selection processes for model-driven product line
tools, and will give the users a baseline, which can be modified based on their specific
selection of characteristics. Such a selection would be more easily achieved if the
framework characteristics have assigned weights and criticality.

16.5.4 Related Work

The ISO 14102 standard, guideline for the evaluation and selection of CASE tools [20],
proposes a general standard for evaluation and selection. It defines a broad hierarchy of
characteristics used to evaluate and select case tools in general. As pointed out in [23],
there is a coverage problem with this standard; in any given case, it is not likely that the
standard will cover all relevant characteristics; at the same time, it will probably include
irrelevant characteristics.

This framework has a smaller scope and focuses only on evaluations of MDD- and
PLE-type case tools. In line with experiences presented in [23], this framework is less
extensive than that of ISO 14102, but it includes characteristics not listed there. Reference
[23] also argues that the hierarchy presented in ISO 14102 can be a problem, since there is
an agreed characteristic hierarchy, while most cases will need to deviate from this
hierarchy. This framework provides a flat structure that can be defined as a hierarchy by
the user. This is done by means of the identification number for categorization. (For
example, the identification numbers of characteristics in category 1 is numbered 1[.x]*,
where x is a subnumber and [.x]* implies zero or more subnumbers in order to build a

to those of the ISO 14102 standard.
This framework can be seen as a specialization of ISO 14102, in which the domain of

tools has been narrowed. Moreover, when using this framework, the evaluation and
selection process as described in ISO 14102 can be used. ISO 14102 defines four major
processes: Initiation Process, Structuring Process, Evaluation Process, and Selection
Process.

In [13], the Gartner group suggests a list of recommendations when evaluating and
selecting tools, including (1) do not worship one “hot” technology, (2) do not select tools
before institutionalizing an application architecture and infrastructure, (3) do not acquire
tools without an analysis/design tools acquisition strategy, (4) do not acquire too many or
too few tools, (5) do not make deliberate trade-offs between application portability and
optimization per platform, (6) always consider return on investment (ROI) and time-to-
payback of analysis and design technologies, but extend the ROI model through end-user
costs/benefits, (7) always try to select stable vendors with durable technology, (8) institute
a modern, iterative methodology for analysis and design.

These characteristics are generally valid when evaluating and selecting many kinds of
tools and are somewhat orthogonal and supplementary to guidelines like ISO 14102 and
the framework presented here. One of the criteria (7), however, is in conflict with
selecting open source technology, which is not always good advice. As this evaluation
shows, open-source providers may provide software that supports pieces of model-driven
product line processes, which may not even be supported by commercial tools.

615

multilevel hierarchy.) Other standards in the area such as [19,21] have similar problems

This chapter has offered an overview of model-driven development and product lines and
has looked at how they can be integrated. We have described a framework, based on tool
characteristics that can be used to evaluate and compare the suitability of MDD and PLE
tools. We have also described a set of tools, which we have used as examples for
evaluation, and applied the framework to these in specific evaluations.

tools available today provide specific functionality capable of supporting product line and
MDD concepts out of the box. This is primarily due to lack of acknowledgment of the
need for product line support from traditional MDD tool providers. Looking at the
assessment of the range of tools used as input for this chapter, some tendencies can be
seen: A growing number of tools support model-driven development in both modeling and
transformation. Generally speaking, few of these specifically address PLE at present.
However, the inherent flexibility of many tools permits extensions that may address this to
be built. Looking ahead, we can expect more stability and more possibilities of providing
such extensions. The increasing attention to domain-specific modeling (DSM) languages

domain-specific modeling languages can for instance be used to scope product lines and
provide more efficient support for modeling domain specific concepts.

PLE is predicted to be an important part of modern software engineering. This is
confirmed by recent provisions in Microsoft’s Visual Studio tool suite, such as the
domain-specific language tools and the spec# language [24].

Our experience from projects such as COMBINE [7] and MODELWARE [24] is that
well-defined scoping is essential for success with MDD. Using product line engineering
techniques to provide proper scoping seems appropriate. For this reason, we believe that
PLE techniques and mechanisms will be incorporated in future MDD tools. Initially, this
will happen through suitable configuration and scoping mechanisms, then through the
provision of product line-reusable assets and variability management. Support for more
interactive transformation processes is also needed both for pure MDD [15], and in
model-driven product line engineering approaches.

The market and focus for tools supporting different aspects of MDD are steadily
growing, and the quality and functionality of such tools are improving. Influencing or
initiating standards, e.g., for variability modeling, will improve the chances of achieving
more tool support for PLE, through both open source and commercial tools.

The evaluation framework presented here provides a baseline for evaluating MDD and
PLE tools. It can be extended or supplemented, for example with characteristics defined in
ISO 14102 and tailored to the need of the specific domain, and as such would be applied
to future tools.

616 J. Oldevik et al.

16.6. Conclusions and Future Research

in the MDD area, e.g., [14,24,38] is promising seen from the PLE perspective. Defining

instance in [5,9,35]. In [14], which describes the Microsoft Software Factory concept,

When considering MDD and product lines in light of existing tools, it is clear that few

Product line engineering is currently the subject of much attention, as documented for

16 Evaluation Framework for Model-Driven Product Line Engineering Tools

Acknowledgments

We gratefully acknowledge the extensive reviews of Juan Carlos Dueñas, Alessandro Fan-
techi, Timo Käkölä, Janne Luoma, Juha-Pekka Tolvanen, and Tewfik Ziadi, which sig-
nificantly improved the quality of this chapter.

References

617

1. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Lagua, R., Muthig, D., Peach, B., Wust, J.,
Zettel, J.: Component-based Product Line Engineering with UML (Kobra) (Addison-Wesley, Reading, MA
2001) ISBN 0-201-73791-4. http://www.iese.fhg.de/Kobra_Method/

2. Atlas Transformation Language (ATL) homepage. http://www.sciences.univ-nantes.fr/lina/atl. Cited 24 Nov
2005

3. Becker, M.: Towards a general model of variability in product families. In: Software Variability Management
Workshop (SVM 2003). 25th International Conference on Software Engineering (ICSE, 2003)

4. Blechar, M.J., Driver, M.: Predicts 2004: MDSFs Offset J2EE Complexity, Gartner report, ID Number: SPA-
21-5432

5. Bosch, J.: Design & Use of Software Architectures – Adopting and Evolving a Product-Line Approach
(Addison-Wesley, Reading, MA 2000) ISBN 0-201-67494-7

6. Clauß, M.: Generic modeling using UML extensions for variability. In: Workshop Domain Specific Visual
Languages, OOPSLA, USA, October 2001

7. COMponent-Based INteroperable Enterprise system development (COMBINE), ESPRIT V IST project no.
20893. http://www.opengroup.org/combine/. Cited 16 Nov 2005

8. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In: 2nd Workshop on
Generative Techniques in the Context of Model-Driven Architecture, Conference on Object-Oriented
Programming, Systems, Languages, and Applications 2003 (OOPSLA’03)

9. Duggan, J., Vecchio, D., Plummer, D.C., Driver, M., Natis Y.V., Hotle, M., Feiman, J., James, G.A., Sinur,
J., Pezzini, M., Light, M., Blechar, M.J., Valdes, R., Lanowitz, T.: Hype Cycle for Application Development,
25 June 2004, Gartner report, ID Number: G00120914

10. Estublier, J., Vega, G., Ionita, A.D.: Composing domain-specific languages for wide-scope software
engineering. In: MoDELS 2005 Conference, ed by Briand, L., Williams, C., ISBN3-540-29010-9, pp 69–83

11. FAct-based Maturity through Institutionalisation Lessons-learned and Involved Exploration of System-
family engineering (FAMILIES), ITEA project ip02009, Eureka !2023. http://www.esi.es/en/Projects/
Families/. Cited 16 Nov 2005

12. Gardner, T., Griffin, C., Koehler, J., Hauser, R.: A review of OMG MOF 2.0 Query/Views/Transformations
Submissions and Recommendations towards the final Standard, (MetaModeling for MDA Workshop Nov
2003. York, UK)

13. Gartner Group: Application Development Management – Enterprise Applications Development Tools –
Evaluation and Selection, Strategic analysis report, Gartner Group, Sept 1996

14. Greenfield, J., Short, K., Cook, S., Kent, S., Crupi, J.: Software Factories, Assembling Applications with
Patterns, Models, Frameworks and Tools (Wiley, New York 2004) ISBN 0-471-20284-3

15. Grønmo, R., Aagedal, J., Solberg, A., Belaunde, M., Rosenthal, P., Faugere, M., Ritter, T., Born, M.:
Evaluation of the QVT Merge Language Proposal, MODELWARE project report, SINTEF report number
STF90 A05046, ISBN 82-14-03659-3, OMG document ad/2005-03-05. http://www.omg.org/cgi-
bin/doc?ad/05-03-05

16. Grønmo, R., Oldevik, J.: An empirical study of the UML Model Transformation Tool (UMT). In: The 1st
International Conference on Interoperability of Enterprise Software and Applications (INTEROP-ESA),
Geneva, Switzerland, Feb 2005

17. Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Solberg, A.: An MDA-based framework for model-driven
product derivation. In: The 8th IASTED International Conference on Software Engineering and Applications,
ed by Hamza, M.H. (ACTA, Nov 2004) pp 709–714

18. International Standards Organization (ISO): ISO/IEC 10746-1:1998, Information technology – open distributed
processing – reference model: overview (ISO RM-ODP), ISO/IEC 10746-1:1998 (ISO standard, 1998)

19. International Standards Organization (ISO): ISO/IEC 12119:1994, Information technology – software
packages – quality requirements and testing (ISO Standard 1994)

618 J. Oldevik et al.

20. International Standards Organisation (ISO): ISO 14102:1995, Information technology, guideline for the
evaluation and selection of CASE tools, JTC 1/SC 7 (ISO Standard 1995)

21. International Standards Organization (ISO): ISO/IEC 25000:2005, Software engineering – software product
quality requirements and evaluation (SQuaRE) (ISO Standard, 2005)

22. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process (Addison-Wesley, Reading,
MA 1999) ISBN 0-201-57169-2

23. Lundella, B., Lings, B.: Comments on ISO 14102: the standard for CASE-tool evaluation. Comput.
Standards Interf. 24(5), 381–382 (November 2002)

24. MetaCase Whitepaper: ABC to MetaCase Technoology. http://www.metacase.com/, © 2004 by MetaCase.
Cited 26 Nov 2005

25. Microsoft Corporation: Visual Studio 2005 Team System Modeling Strategy and Faq, In: MSDN Library.
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnvs05/html/vstsmodel.asp. Cited 16 Nov
2005

26. MODELing Solutions for softWARE systems (MODELWARE), ESPRIT VI IST project no. 511731.
http://www.modelware-ist.org. Cited 16 Nov 2005

27. Object Management Group (OMG): Meta Object Facility 2.0 (MOF), Meta Object Facility (MOF) 2.0 Core
Specification, OMG document ptc/03-10-04. http://www.omg.org/cgi-bin/apps/doc?ptc/03-10-04.pdf. Cited
16 Nov 2005

28. Object Management Group (OMG): Meta Object Facility 2.0 XMI Mapping Specification, OMG document
ptc/04-06-11. http://www.omg.org/cgi-bin/apps/doc?ptc/04-06-11.pdf . Cited 16 Nov 2005

29. Object Management Group (OMG): MOF model to text transformation language request for proposal, OMG
document: ad/2004-04-07. http://www.omg.org/cgi-bin/doc?ad/04-04-07. Cited 16 Nov 2005

30. Object Management Group (OMG): MOF Query/Views/Transformations RFP, OMG document: ad/2002-04-
10. http://www.omg.org/cgi-bin/doc?ad/02-04-10. Cited 16 Nov 2005

31. Object Management Group (OMG): OMG MDA Guide v1.0.1, OMG document omg/2003-06-01.
http://www.omg.org/docs/omg/03-06-01.pdf. Cited 16 Nov 2005

33. Object Management Group (OMG): Unified Modeling Language 2.0 (UML 2.0), UML 2.0 infrastructure
final adopted specification. http://www.omg.org/cgi-bin/apps/doc?ptc/03-09-15.pdf. Cited 16 Nov 2005

34. Oldevik, J., Model transformation for system families prototype, FAMILIES consortium-wide deliverable,
CWD4.3:2.3 version 1.0. http://www.esi.es/Families/. Cited 16 Nov 2005

35. Pohl, K., Böckle, G., van der Linden, F.: Software product line engineering – foundations, principles, and
techniques (Springer, Berlin Heidelberg New York 2005) ISBN 3-540-24372-0

36. Solberg, A., Oldevik, J., Jensvoll, A.: A generic framework for defining domain-specific models. In: UML
and the Unified Process, ed by Favre, L. (IRM, Hershey, 2003) pp 23–38

37. UML Model Transformation Tool (UMT). http://umt-qvt.sourceforge.net/. Cited 16 Nov 2005
38. Xactium Limited: Language Driven Development and XMF-Mosaic, Whitepaper. http://www.xactium.com

(2005). Cited 24 Nov 2005
39. Ziadi, T., Hélouët, L., Jézéquel, J.M.: Towards a UML profile for software product lines. In: Software Product-

Family Engineering, ed by van der Linden, F., 5th International Workshop, PFE 2003, Italy, Nov 2003. Lecture
Notes in Computer Science, vol 3014 (Springer, Berlin Heidelberg, New York 2003) pp 129–139

32. Object Management Group (OMG): MOF QVT Final Adopted Specification, OMG Adopted Specification,
OMG document number ptc/05-11-01 http://www.omg.org/cgi-bin/doc?ptc/05-11-01. Cited 9 April 2006

http://www.springer.com/978-3-540-33252-7

