16. Inflation-Indexed Swaps

Given a set of dates T1,..., Ty, an Inflation-Indexed Swap (IIS) is a swap
where, on each payment date, Party A pays Party B the inflation rate over
a predefined period, while Party B pays Party A a fixed rate. The inflation
rate is calculated as the percentage return of the CPI index over the time
interval it applies to. Two are the main IIS traded in the market: the zero
coupon (ZC) swap and the year-on-year (YY) swap.

In a ZCIIS, at the final time Ty, assuming Ty = M years, Party B pays
Party A the fixed amount

N[(1+ EK)™ —1], (16.1)

where K and N are, respectively, the contract fixed rate and nominal value.
In exchange for this fixed payment, Party A pays Party B, at the final time
Ty, the floating amount

(T
N{ ( M)—1}. (16.2)
Iy
In a YYIIS, at each time T;, Party B pays Party A the fixed amount
N(sz,

where ¢; is the contract fixed-leg year fraction for the interval [T;_1, T;], while
Party A pays Party B the (floating) amount

I(T;)
I(Tic1) 1} ’

Ny [ (16.3)
where 1; is the floating-leg year fraction for the interval [T;_1,T;], To := 0
and N is again the contract nominal value.

Both ZC and YY swaps are quoted, in the market, in terms of the corre-
sponding fixed rate K. The ZCIIS and YYIIS (mid) fixed-rate quotes in the
Euro market on October 7th 2004 are shown in Figure 16.1, for maturities
up to twenty years. The reference CPI is the Euro-zone ex-tobacco index.

16.1 Pricing of a ZCIIS

Standard no-arbitrage pricing theory implies that the value at time ¢, 0 <
t < Ty, of the inflation-indexed leg of the ZCIIS is
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Fig. 16.1. Euro inflation swap rates as of October 7, 2004.

ZCIIS(t, Ty, Iy, N) = NE, {e SN n(w) du {I(fm - 1} ]]-‘t} . (16.4)
0

where F; denotes the o-algebra generated by the relevant underlying pro-
cesses up to time t.

By the foreign-currency analogy, the nominal price of a real zero-coupon
bond equals the nominal price of the contract paying off one unit of the CPI

index at bond maturity, see also the general formula (2.31). In formulas, for
each t < T

I(t)P.(t,T) = I(t)E;, {e— e du|ft} - B, {e— S d“I(T)]]-"t} .

(16.5)
Therefore, (16.4) becomes
I(t)
ZCIIS(t, Ty, o, N) = N| S Po(t,Tar) = Pult, Tar) | (16.6)
0
which at time ¢ = 0 simplifies to
ZCIIS(0, Ths, N) = N[P.(0, Tas) — Po(0, Tas)]. (16.7)

Formulas (16.6) and (16.7) yield model-independent prices, which are not
based on specific assumptions on the evolution of the interest rate market,
but simply follow from the absence of arbitrage. This result is extremely
important since it enables us to strip, with no ambiguity, real zero-coupon
bond prices from the quoted prices of zero-coupon inflation-indexed swaps.
In fact, the market quotes values of K = K (T;) for some given maturities
T, so that equating (16.7) with the (nominal) present value of (16.1), and
getting the discount factor P, (0, Tys) from the current (nominal) zero-coupon
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curve, we can solve for the unknown P,.(0,Ths). We thus obtain the discount
factor for maturity Ths in the real economy:!

Pr(0,Tar) = Po(0, Tag) (14 K (Tag))M. (16.8)

Remark 16.1.1. (ZCIIS and Forward CPI). Kazziha (1999) defines the
T-forward CPI at time ¢ as the fixed amount X to be exchanged at time T
for the CPI I(T), for which such a swap has zero value at time ¢, in analogy
with the definition of a forward LIBOR rate we gave in Chapter 1. From
formula (16.5), we immediately obtain

I()P.(t,T) = XP,(t,T).

This is consistent with definition (15.1), which was directly based on the
foreign-currency analogy.

The advantage of Kazziha’s approach is that no foreign-currency analogy
is required for the definition of the forward CPI’s Z;, and the pricing system
she defines is only based on nominal zero-coupon bonds and forward CPI’s.
In her setting, the value at time zero of a Tjs-forward CPI can be obtained
from the market quote K (Ts) by applying this simple formula

I (0) = 1(0)(1 + K(Tnn)) ™,

which is perfectly equivalent to (16.8).

16.2 Pricing of a YYIIS

Compared to that of a ZCIIS, the valuation of a YYIIS is more involved.
Notice, in fact, that the value at time ¢ < T; of the payoff (16.3) at time T; is

YYTIS(t, T, 1, T,, ¢, N) = N, E, {e_ ST (u) du LI(T) - 1} \ft},

(Ti-1)
(16.9)
which, assuming ¢ < T;_; (otherwise we fall back to the previous case), can
be calculated as

Ti—1 — % n(u) du %
Nszn {e_ft n(u)duEn |:6 sz‘—l (u)d ( I(T) o 1) ‘fTi1:| ‘ft} )

I(T;-1)
(16.10)
The inner expectation is nothing but ZCIIS(T;_1,T;, I(T;—1), 1), so that we
obtain

T;_

Ny, E, {e_ Jet ntw) WP(Ti—1, T;) — Pn(ﬂ—lvﬂ)”]:t} 16.11)
T;_ .

_ NuiE, {e_ 5 iy dq‘PT(Ti_l’Ti)‘ft} — NP (8, T}).

! The real discount factors for intermediate maturities can be inferred by taking
into account the typical seasonality effects in inflation.
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The last expectation can be viewed as the nominal price of a derivative paying
off, in nominal units, the real zero-coupon bond price P.(T;-1,T;) at time
T;_1. If real rates were deterministic, then this price would simply be the
present value, in nominal terms, of the forward price of the real bond. In this
case, in fact, we would have:

T;
By {em I O Mp (T, )| Ff = Pr(Tiea, T Pt Tha)

P (t,T)
= — P, (t,T;_1).
Pr(t,TZ;l) n(ta ) 1)

In practice, however, real rates are stochastic and the expected value in
(16.11) is model dependent. For instance, under dynamics (15.2), the forward
price of the real bond must be corrected by a factor depending on both the
nominal and real interest rates volatilities and on the respective correlation.
This is explained in the following.

16.3 Pricing of a YYIIS with the JY Model

Denoting by Q' the nominal T-forward measure for a general maturity 7'
and by ET the associated expectation, we can write:

YYIIS(t, T;—1, Ty, i, N)

. (16.12)
= N P(t, Ty—1) Bl { Po(Ti1, Ty) | Fe } — Napi P (t, Ty).

Remembering formula (3.39) for the zero-coupon bond price in the Hull and
White (1994b) model:
P(t,T) = A, (t,T)e” B-&TIr(®)

B,(t.T) = — [1 - cmorT=0)],

ar
PM(0,T o? 2
Ar(t,T) = PTJ\4((0’t)) exp {Br(t7T)f7{M(07t) - 4ar (1 — € 2 Tt)BT(t,T)2} 3

(16.13)

and noting that, by the change-of-numeraire toolkit in Section 2.3, and for-
mula (2.12) in particular, the real instantaneous rate evolves under Q' "
according to

dr(t) = [~pnr0norBu(t, Tim1) + 9,:(t) — pr1o10, — apr(t)] dt 4+ o, AW, =1 ()

(16.14)
with W,/"' a Qg"’l—Brownian motion, we have that the real bond price
P,(T,_1,T;) is lognormally distributed under Q.'"", since r(T;_;) is still a
normal random variable under this (nominal) forward measure. After some
tedious, but straightforward, algebra we finally obtain
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YYIIS(t,T;—1,T;,%i, N)
PT(t7 TZ)
Pr(t7 E—l)

(16.15)

= N Po(t,Ti—1) COTi=rT) _ Ny, P, (¢, Ty),

where
C(tv Ti—la Tz) :O—T’Br(zri—la E) |:Br(t7 Ti—l) (pr,IO—I - %O—TB’I”(t7 Ti—l)

Pn,rOn

Ay + ap

Pn,rOn

ay + ap

+ (14 arBa(t, Ti-1)) ) — Ba(t,Ti1)|.
The expectation of a real zero-coupon bond price under a nominal forward
measure, in the JY model, is thus equal to the current forward price of the
real bond multiplied by a correction factor, which depends on the (instan-
taneous) volatilities of the nominal rate, the real rate and the CPI, on the
(instantaneous) correlation between nominal and real rates, and on the (in-
stantaneous) correlation between the real rate and the CPIL

The exponential of C' is the correction term we mentioned above. This
term accounts for the stochasticity of real rates and, indeed, vanishes for
o, =0.

The value at time ¢ of the inflation-indexed leg of the swap is simply
obtained by summing up the values of all floating payments. We thus get

1(t)

u(t)—

Pr(t7 TL(t)) - P’n(t7 Tb(t)):|

(16.16)

M
BT o )
N il P (b, Ty q) ——2 =2 (4T 1,T3) PLT,
: i_%;+1w [ . 1)Pr(taTi—1)e t,Ti)|,

where we set T :={T1,..., Ty}, ¥ :={¢1,...,¥n} and ¢(t) = min{i : T; >

t},2 and where the first payment after time ¢ has been priced according to
(16.6). In particular at ¢ = 0,

YYIIS(0,7,%,N) = N1 [P(0,T1) — Po(0,T})]

P(0,T;)

M
NN 4 | Py(0, T 1) 5ot €O T T P (0, T,
¥ Zw[ R 0.1,

(16.17)

M L+ 70 (0: 11, T3) oy 1)
_N;%P’L(O’m{HnFr(O;TZ—1,E)e 1]
The advantage of using Gaussian models for nominal and real rates is clear as
far as analytical tractability is concerned. However, the possibility of negative
rates and the difficulty in estimating historically the real rate parameters led
to alternative approaches. We now illustrate two different market models that
have been proposed for alternative valuations of a YYIIS and other inflation-
indexed derivatives.

? By definition, T,;y—1 <t < Ty).
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16.4 Pricing of a YYIIS with a First Market Model

For an alternative pricing of the above YYIIS, we notice that we can change
measure and, as explained in Section 2.8, re-write the expectation in (16.12)
as

Pult. T EE= (P (T, T2} = Pote TS { = 1 |

Pn(ﬂ—h
1+ nFo(Tio1; T, 1) |]__
L+ B (T Ty, Th) "0

= Pn(t,Ti)Effi{
(16.18)

which can be calculated as soon as we specify the distribution of both forward
rates under the nominal T;-forward measure.

It seems natural, therefore, to resort to a LFM, which postulates the
evolution of simply-compounded forward rates, namely the variables that
explicitly enter the last expectation, see Section 6.3. This approach, followed
by Mercurio (2005), is detailed in the following.

Since I(t)P,(t,T;) is the price of an asset in the nominal economy, we
have that the forward CPI

P (t,T;)

LW =105 T)

is a martingale under Q* by the definition itself of Q1. Assuming lognormal
dynamics for Z;,
dZ;(t) = o1,Zi(t) AW/ (t), (16.19)

where o7, is a positive constant and W} is a QTi-Brownian motion, and
assuming also that both nominal and real forward rates follow a LFM, the
analogy with cross-currency derivatives pricing implies that the dynamics of

F.(Ti—1,T;) and F,.(-;T;_1,T;) under QLi are given by (see Section 14.4)
AF, (4 Ti—1,T;) = o i B (t; Ty, T;) AW (t),

(16.20)
dF,(t; T;—1,T;) = Fr(; Tie1, T;) [ — pr,rior,iori dt + o AW/ (1)],

where o, ; and o0,; are positive constants, W;* and W, are two Brownian
motions with instantaneous correlation p;, and pr,; is the instantaneous
correlation between Z;(+) and F,.(+; Ti—1,T3), i.e. dW/] (t) dW] (t) = pr.; dt.

Allowing oy ;, op,; and o, ; to be deterministic functions of time does not
complicate the calculations below. We assume hereafter that such volatilities
are constant for ease of notation only. In practice, however, the implications
of using constant or time-dependent coefficients should be carefully analyzed.
See also Chapter 7 and Remark 18.0.1 below.

The expectation in (16.18) can then be easily calculated with a numerical
integration by noting that, under Q% and conditional on F;, the pair®

3 To lighten the notation, we simply write (X;,Y;) instead of (X;(t), Yi(t)).
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Fn(TifﬂTithi) Fr(Til;TihTi)>

X, V) =1 ,1 16.21
(X, ¥o) (n Fo(tTi1,T)  F(6T-1,Th) (16:21)

is distributed as a bivariate normal random variable with mean vector and
variance-covariance matrix, respectively, given by

_ | Bai(t) _ o2 i(t) pi0zi(t)oy.i(t)
MXin - |:/14y,z(t):| 5 VX@,Yi - |:pi0—:v,i(t)o—y’i(t) Jijz(t) :| s (1622)

where
Ha,i(t) = _%07217i(ﬂ—1 =), 04,i(t) =oniv/ i1 — t,
fy,i(t) = [_ %UE

It is well known that the density fx, y;(x,y) of (X;,Y;) can be decomposed

as4

= prrionior | (Ticn — 1), 0yi(t) = ori/Tio1 — ¢

in,Yi, (ZE, y) = inlYi (x’y)fyi (y)7

where

2
T—pri(t) Yy —py(t)
( Jw,i(t) pl Oy, z(t) )

1
in\Yi(zyy) = Uz,i(t)\/ﬂm P~ 2(1 - pi)

_ X 1 w 2
sz(y) = 0y (t)\/ﬂe P [ < Jy,i(t) > ‘| .

(16.23)
The last expectation in (16.18) can thus be calculated as
e LIS A nP T T)e) f(e)de
. L+ b (6T, Ty) e vy
T+ P (6T, Th) e“"’i(t)“"”“(t)yo:f(z()t)sz i (OA=p) ;
7/700 T 1,T-)ey fri(y) dy
- /+Oo ]. +7—1F (t CZ—"L 1, T)ePzO'z 1(t) 2 Tl(t)p? 1 —%ZQd
a —0o 1 + TiFr(t,Ti,hTi) 6'“14’1( )Foy.i(t)z vV 21 ¢ .
yielding:
YYIIS(¢,T;—1,T;, ¢, N)
+ooq B (6T, T, pi0z,i(t)z— 2 N(t)Pf 1 1
= Ntpi Py ( )/ *nflifon T e 2% dz
oo L+ 7 Ep (T, Ty) etwiOtoni(z fon
— Nt P (t, T;).
(16.24)

4 See also Appendix E for a similar calculation.
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To value the whole inflation-indexed leg of the swap some care is needed, since
we cannot simply sum up the values (16.24) of the single floating payments. In
fact, as noted by Schlogl (2002) in a multi-currency version of the LFM,® we
cannot assume that the volatilities o7 ;, 0, ; and o, ; are positive constants for
all 4, because there exists a precise relation between two consecutive forward
CPIs and the corresponding nominal and real forward rates, namely:

11;1(15) 1 +7—iFr(t§Ti71>Ti)'

(16.25)

Clearly, if we assume that oy ;, 0, and o,; are positive constants, oy ;1
cannot be constant as well, and its admissible values are obtained by equating
the (instantaneous) quadratic variations on both sides of (16.25).

However, by freezing the forward rates at their time 0 value in the diffusion
coefficients of the right-hand-side of (16.25), we can still get forward CPI
volatilities that are approximately constant. For instance, in the one-factor
model case,

G = 4o by (6T T) o b (6T, T
L O R (G T, Th) " L T (6T, )
Fr (0,11, T, iFn(0; T, T;
ROri+ 0O il Skt — O ( L %)

14+ 7F-(0;T;,-1,T;) "1+ 1F (0T, T;)

Therefore, applying this “freezing” procedure for each i < M starting from
or,m, or equivalently for each ¢ > 2 starting from oy 1, we can still assume
that the volatilities oy ; are all constant and set to one of their admissible
values. The value at time ¢ of the inflation-indexed leg of the swap is thus
given by

I(t
YYIIS(t,7,¥,N) = Nty I(Tft))l)Pr(t’ T,t)) — Pal(t, TL(@)}

M
+N Y Pt T))
i=u(t)+1

1
/+oo 1+ 7F,(t:Ti1, T)) ePiUz,i(t)Zfﬁgi,i(t)P? 1
— 00 1 + TiFr (ty 1—’7;71, /—TZ) euy’i(t)+gy’i(t)z \% 2m

1
e 2% dz — 1] )
(16.26)

In particular at ¢ =0,

5 See also Section 14.5.4.
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M
YYIIS(0,7,%,N) = N¢y [Po(0,T1) — Po(0,T0)] + N > P, (0,T3)

=2
1
/+oo 1+ 7, (0; Tyy, T) ePiUz,i(O)Zfia'z,i(O)p? 1 67%22 g1
coo LATF(0; Ty, T;) etw i O Fouaz /o7

M
=N ¢iP.(0,T)
1=1

1
T b F(0: Ty, T;) €= (02290000 1 1,
. e 2% dz—1].
e 14+ 7 F.(0; Ty, T;) et (0 +oy,i(0)z - /on
(16.27)

This YYTIS price depends on the following parameters: the (instantaneous)
volatilities of nominal and real forward rates and their correlations, for each
payment time T3, i = 2,..., M; the (instantaneous) volatilities of forward
inflation indices and their correlations with real forward rates, again for each
1=2,..., M.

Compared with expression (16.17), formula (16.27) looks more compli-
cated both in terms of input parameters and in terms of the calculations
involved. However, one-dimensional numerical integrations are not so cum-
bersome and time consuming. Moreover, as is typical in a market model, the
input parameters can be determined more easily than those coming from the
previous short-rate approach. In this respect, formula (16.27) is preferable to
(16.17).

Asin the JY case, valuing a YYIIS with a LEM has the drawback that the
volatility of real rates may be hard to estimate, especially when resorting to
a historical calibration. This is why, in the literature, a second market model
has been proposed, which enables us to overcome this estimation issue. In the
following section we will review this approach, which has been independently
developed by Kazziha (1999), Belgrade, Benhamou and Koehler (2004) and
Mercurio (2005).

16.5 Pricing of a YYIIS with a Second Market Model

Applying the definition of forward CPI and using the fact that Z; is a mar-
tingale under Q%¢, we can also write, for t < T;_1,

n o

) oy — ) AY 5Lk I(Tl) _
YYIIS(¢t, T;-1,T;,¢:i, N) = Ny, P(t,T;)E,, {I(Ti_l) 1|.7:t}

Z,(T;)
Zi—1(Ti—1)

1
: Iz(Ti—l) }
= Ny P(t,T;))EL § 22 1| Fp .
viPT) {Lﬂﬂﬂ 17

= N, P(t,T;)EL: { - 1|]-'t} (16.28)
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The dynamics of Z; under QX is given by (16.19) and an analogous evolution
holds for Z;,_; under Qﬁ '. The dynamics of Z;_1 under Qi can be derived

by applying the change-of-numeraire toolkit in Section 2.3. We get:
7i0n,i 0 (6 Ti1, T;)
L+ 7 Fy (4T, Th)

dZ; 1 (t) =Z;—1(t)or,i—1 prnidt+dWL ()],

(16.29)
where o7 ;_1 is a positive constant, W _,1s a QT -Brownian motion with
AWl (t)dWl(t) = p;;dt, and pr,p ; is the instantaneous correlation between
Zi—1(-) and F,(T;-1,T3).

The evolution of Z;_1, under QZ, depends on the nominal forward rate
F,.(+;T;—1,T;), so that the calculatlon of (16.28) is rather involved in general.
To avoid unpleasant complications, like those induced by higher-dimensional
integrations, we freeze the drift in (16.29) at its current time-¢ value, so that
Z;—1(T;—1) conditional on F; is lognormally distributed also under Qg This

leads to (T, 7.00)
ETi ? F — v D, (t)
" {L 1(Tia | t} T
where
Ti0n,iFn (6 Ti—1, T;)
1+ 7F (T, Th)

D;(t) =o071,-1 [ Plni — PL,i0OIi + UI,i—1:| (Ti—1 — t),

so that

YYIIS(t,T,_1, T}, bi, N) = Nap; P (¢, T}) [IL-(t()t) Dilt) _ 1}
i—1

Pn(t7ﬂ—l)PT(taTi) eDi(t) _ 1
Pn(t7Ti)Pr(t7T‘i71) .

= NP (t,T)) [
(16.30)

Finally, the value at time ¢ of the inflation-indexed leg of the swap is

Tt
YYIIS(t, T, %, N) = Nt Pn(t,:n(t){ u0)(8) _1]

I(T(t) 1)
P SR ECRETN
i=u(t)+1
= Nohygr) L(ég))l)]?,.(t, T.) — Palt, Tb(t))}
+N Z zz;l{ A t,n_l)me&@) Pn(t,Tz)]

i=u(t)+1

In particular at ¢t = 0,
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M I(O)
YYIIS(0,7,7,N) = N3 4, P,(0,T)) { i0) b _ 1}
1=1

Z;-1(0)
= N1 [P (0, Th) — P, (0,T1)]
M
+NY {PH(O, ﬂ_l)m P _ p (0, T,-)]
i=2 T ) 11—

M
L+ 7Fn (0,71, T3) p,
:NzwiPn(O,Ti){ * F (0 Ty )eDz<0>_1].
i=1

1+ 7 F (0, T30, T;)
(16.32)

This YYIIS price depends on the following parameters: the (instantaneous)
volatilities of forward inflation indices and their correlations; the (instanta-
neous) volatilities of nominal forward rates; the instantaneous correlations
between forward inflation indices and nominal forward rates.

Expression (16.32) looks pretty similar to (16.17) and may be preferred to
(16.27) since it combines the advantage of a fully-analytical formula with that
of a market-model approach. Moreover, contrary to (16.27), the correction
term D does not depend on the volatility of real rates.

A drawback of formula (16.32) is that the approximation it is based on
may be rough for long maturities T;. In fact, such a formula is exact when the
correlations py ,, ; are set to zero and the terms D; are simplified accordingly.
In general, however, such correlations can have a non-negligible impact on the
D;, and non-zero values can be found when calibrating the model to YYIIS
market data.

To visualize the magnitude of the correction terms D; in the pricing for-
mula (16.32), we plot in Figure 16.2 the values of D;(0) corresponding to
setting T; = 4 years, ¢ = 2,3,...,20, or; = 0.006, 0y, ; = 0.22, pr,; = 0.2,
p1,i = 0.6, for each ¢, and where the forward rates F,,(0; T;_1,T;) are stripped
from the Euro nominal zero-coupon curve as of 7 October 2004.

Fig. 16.2. Plot of values D;(0), in percentage points, for i = 2,3,...,20.
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