Principles of Interactive Computation

Dina Goldin and Peter Wegner

Brown University, Providence, RI, USA

Summary. This chapter explores the authors’ 10-year contributions to interactive
computing, with special emphasis on the philosophical question of how truth has
been used and misused in computing and other disciplines. We explore the role of
rationalism and empiricism in formulating true principles of computer science, pol-
itics, and religion. We show that interaction is an empiricist rather than rationalist
principle, and that rationalist proponents of computing have been the strongest op-
ponents of our belief that interaction provides an empirical foundation for both com-
puter problem solving and human behavior. The rationalist position was adopted
by Pythagoras, Descartes, Kant, and many modern philosophers; our interactive
approach to computing suggests that empiricism provides a better framework for
understanding principles of computing.

We provide an empirical analysis of questions like “can machines think”, and
“why interaction is more powerful than algorithms”. We discuss persistent Tur-
ing machines as a model of sequential interaction that formally proves the greater
power of interaction over algorithms and Turing machines. We explain that the
Strong Church—Turing Thesis, formulated by theorists in the 1960s, violates Tur-
ing’s original thesis about unsolvability of the decision problem and is a myth, in
the sense that it departs from the principles of Turing’s unsolvability result in his
1936 paper. Our analysis contributes to the book’s goals towards the acceptance
of interactive computing as a principle that goes beyond Turing machine models of
computer problem solving.

1 Scientific, Political, and Religious Truth

Alan Turing’s 1936 paper “On computable numbers with an application to
the Entscheidungsproblem (decision problem)” [12] played a central role in the
1960s in establishing a mathematical paradigm of computation. Turing’s goal
was to show that Hilbert’s decision problem was unsolvable in the sense that
computers could not prove the truth or falsity of mathematical theorems. His
paper strengthened Godel’s earlier proof that mathematical theorems were
not provable by logic, and weakened the belief in strong mental mathematical



26 D. Goldin and P. Wegner

ability, showing that human mathematical theorem proving through logic or
computing was mentally incomplete.

However, such weakness in modeling mathematics was unwelcome to math-
ematical thinkers who believed that human reasoning could completely express
mathematical ideas about the world. They believed that mathematics was a
widespread scientific method for reasoning about physics and computation
and that human thought provided a basis for scientific, philosophical, polit-
ical, and religious understanding. They reinterpreted Turing’s paper proving
that computers could not solve all mathematical theorems, wrongly assert-
ing that computers could in fact solve all computable problems (including
mathematical problems), and that all computation could be done by Tur-
ing machines through algorithmic solution methods. Though Turing clearly
showed this to be untrue, the desire to believe that computers and rationalist
humans could solve a complete range of problems was so strong that Turing’s
counterarguments could easily be brushed aside and ignored.

There are many applications where humans consider it more important
to adopt and justify principles rather than to prove them true. This is so
in politics, where politicians have tenaciously preserved dubious principles in
order to consolidate their power, regardless of whether the principles are true
or ethical. This occurred in Germany under Hitler’s Nazi principles, which he
retained as a justification for dominating Germany and Europe until he was
defeated in a costly war. It occurred under Stalin, who used Communist prin-
ciples to eliminate his adversaries until he was himself eliminated, and more
recently under Saddam Hussein and other democratically elected dictators. It
has led to a decline of European scientific principles about the world in favor
of extraneous political ideas.

Religions also seek to retain strongly established a priori beliefs indepen-
dently of their truth. Christianity, Judaism, and Islam preserve their belief in
God and in the validity of biblical texts that distinguish their religion from
other religions, and can eliminate and kill nonbelievers simply because their
beliefs differ, independently of their truth. Truth is adjusted so that religious
belief is inherently true and is used to destroy alternative ideas about society
independently of the truth or falsity of religious or secular ideas. For exam-
ple it is appropriate to discredit Darwin’s evolution theory because it negates
the biblical account of creation in spite of its experimental validity, just as
Copernican and Galilean models were discredited three hundred years earlier.

The questionable manipulation of truth in politics and religion is widely
acknowledged, but is nevertheless accepted and practiced by particular polit-
ical and religious organizations. Scientists have assumed that truth is more
often falsified by philosophical experts than by scientific researchers, but care-
ful analysis shows that this is not always the case and that truth claims among
scientists like Newton and Einstein, or mathematicians like Hilbert, can be as
false as the truth claims of political and religious experts. Newtonian physics
was assumed indubitably true for 200 years until modified by Einstein’s the-
ory of relativity, while Descartes philosophical assumption that “Cogito Ergo



Principles of Interactive Computation 27

Sum” is indubitably true is seen in retrospect as a questionable assumption
that has been used to support many untrue beliefs on the basis of rationalist
principles that can be easily disproved by empiricism.

2 Rationalism Versus Empiricism

Rationalism holds that truth is determined by the human mind in terms of
“a priori” (predetermined) insight about knowledge, while empiricism holds
that knowledge is confirmed only by experience of actual perceptions that
determine knowledge. Rationalism implies that people can strongly advocate
scientific, political, or religious knowledge through “a priori” mental properties
of the brain that are inherently true and cannot be changed by experiments,
while empiricism implies that experiments are more effective than predeter-
mined a priori properties of the brain in determining scientific, political, or
religious knowledge. Since rationalists believe humans have smarter forms of
understanding than do empiricists, and can ignore empirical forms of knowl-
edge, rationalism is often adopted as a broader and more complete form of
knowledge, even though it can support wrong and sometimes disastrous prin-
ciples.

The adoption of rationalism by Pythagoras as an a priori basis for math-
ematical truth led to its adoption by Plato, who focused on geometry as a
central rationalist discipline whose a priori truth implied that a priori prin-
ciples were a central justification of human knowledge. Aristotle accepted
Plato’s rationalist view of truth, though his idea of the syllogism was in part
empiricist (Socrates mortality was due to the empirical fact that all men are
mortal). Though some scientists and philosophers accepted empiricism, the
much greater practical power of rationalism helped to establish its role as a
primary basis for knowledge about the world and society. This was strength-
ened by the choice of rationalism as a primary basis for religious beliefs like
the existence of God, and the truth of biblical narrative (which could not be
proved by empiricism though easily acceptable through rationalism).

St. Augustine (fifth century) and St. Thomas Aquinas (thirteenth century)
developed rationalist philosophical models of religion that redefined Christian
beliefs in ways that are still accepted today. Descartes is considered the world’s
greatest modern philosopher primarily because his Jesuit upbringing allowed
him to define philosophy in terms of rationalist religious principles at a time
when it was being questioned both by scientists like Galileo and by religious
dissenters like Martin Luther. Newton solidified scientific principles of Galileo,
but spent the last 30 years of his life studying religion. Detailed analysis
of philosophers like Descartes and Kant makes it clear that the basis for
acceptance of philosophical ideas had more to do with their contributions
to religious thought than with their inherent truth or the strength of their
arguments.



28 D. Goldin and P. Wegner

Locke, Berkeley, and Hume are among the few widely studied empiricist
philosophers who contributed substantially to human and political thought.
All three were strongly challenged by rationalist opponents, but contributed
to the strength of British and US politics though not to European politics.
Locke had to flee to Holland during the short Catholic reign of James II
(1685-88) to avoid imprisonment and potential death in the Tower of London
as a Protestant dissenter. His ideas contributed to the power of the British
Parliament, to the Bank of England, and to the US Constitution. His essay
on religious toleration, written while in exile in Holland to support toleration
between Protestants and Catholics, was used in the US Constitution to sup-
port separation of church and state. Locke’s contributions to both the growth
and power of the British empire and the rise of US democracy suggests that
empiricism properly applied can contribute to both the quality and the per-
sistence of political democracies.

Though empiricism has enhanced both scientific research and political
democracy, it could not displace rationalism in European politics or in
widespread religious beliefs. Kant’s early work was influenced by Hume’s em-
piricism, but his later written Critique of Pure Reason was strongly rationalist,
advocating a priori knowledge over experiment as a basis for acceptance of
reason and truth. Kant’s model led to the rationalist philosophy of Hegel,
which in turn influenced the communist rationalism of Marx and the Nazi
rationalism of Hitler. Contemporary politicians like US president Bush are
strongly rationalist, using a priori political and religious certainty to support
principles like the war in Iraq or the sanctity of marriage in contradicting
empiricist assertions about human nature raised by their opponents.

Mathematicians have traditionally believed that mathematics is justified
by rationalist rather than empiricist principles because properties of numbers,
geometry, and equations are a priori and therefore rational. Hilbert’s assump-
tion that all mathematical assertions could be logically proved was considered
an a priori idea, and its empirical disproof by Godel and Turing was con-
sidered suspect because empiricism should not intrude on a priori inherently
rationalist principles. Turing’s proof that computers could not automatically
decide all mathematical theorems was likewise an empiricist disproof of an
a priori rationalist idea, and the fast and loose idea that Turing machines
can solve all computable problems was a return from empiricist to previously
accepted rationalist a priori results.

The choice of interaction as a computational extension of Turing machines
can be viewed as an empiricist model of computing associated with Turing’s
original empiricist assertion. The strong resistance to this view is in part due
to the idea that empiricist models should not intrude on a priori rationalist
assumptions about the nature of computation. It is for this reason that we have
begun this chapter with a philosophical discussion of the role of empiricism
and rationalism in processes of computation and human thought.



Principles of Interactive Computation 29

3 Turing’s 90th Birthday

Turing was born in 1912 and died tragically in 1954 around his 42nd birthday,
committing suicide because he was being prosecuted by the police as a homo-
sexual. His 90th birthday conference in Lausanne in 2002 yielded a book about
his life and legacy [11] with articles by Andrew Hodges, Martin Davis, Daniel
Dennett, Jack Kopeland, Ray Kurzweil, and many other writers including the
editor Christof Teuscher and the authors of this chapter.

Andrew Hodges, author of a comprehensive book on Turing, reviews his
life and examines what Turing might have contributed had he lived longer.
Copeland explores Turing’s contributions to artificial intelligence, artificial
life, and the Turing Test of whether machines can think. Teuscher explores
his contributions to neural networks and unorganized machines. The authors
show that Turing’s contributions are much broader than Turing machines, and
include interaction as a super-Turing model that Turing had already examined
through choice machines, oracles, and unorganized machines.

Several writers used this opportunity to explore the pros and cons of hyper-
computation as an extension of Turing machines. Martin Davis claimed that
hypercomputation simply shows that noncomputable inputs may yield non-
computable outputs and that all computable problems can in fact be solved by
Turing machines. We show that algorithms can express only a subset of com-
putable problems and that interaction provides a framework for expressing
non-algorithmic problems and extending Turing machine models.

Turing machines and algorithms must completely specify all inputs be-
fore they start computing, while interaction machines [17] can add actions
occurring during the course of the computation. Driving home from work is
an example of a computation where actions observed during the course of
driving must be included in deciding how to drive and is therefore an exam-
ple of an interactive non-algorithmic computation. Drivers must observe the
road conditions, the cars in front of them, the traffic lights, and pedestrians
crossing the street in order to decide how to drive and whether to change
the speed or the direction of driving. This eliminates a predefined algorithmic
specification of exactly how and where to drive and shows that interaction is
more expressive than algorithms in the context of driving home.

Other similar extensions of interactive over algorithmic specification in-
clude operating systems, managing a company, fighting opponents in a war,
or even aiding one’s partner in a marriage. Interactive computations are more
powerful than algorithmic computations of Turing machines in many practical
situations that occur frequently in computing. Their power does not depend
on the quality of prior inputs as suggested by Martin Davis, but it does de-
pend on the degree to which the environment can be observed and acted upon
during the course of the computation.



30 D. Goldin and P. Wegner

4 Can Machines Think?

Turing in his 1950 paper “Machinery and intelligence” [14] suggests that intel-
ligence should be defined by the ability of machines to respond to questions
exactly like humans, so that their ability to think and understand cannot
be distinguished from that of humans. Turing not unexpectedly equated “ma-
chines” with “Turing machines”. He permitted machines to delay their answer
to mimic the slower response time of humans in games or mathematical com-
puting, but did not consider that machines can sometimes be inherently slower
than humans, or require hidden interfaces from agents or oracles when they
answer questions.

Skeptics who believe that machines cannot think can be divided into two
classes:

- intentional skeptics who believe that that machines that simulate
thinking cannot think, because their behavior does not completely
capture inner (intentional) awareness or understanding;

- extensional skeptics who believe that machines have inherently
weaker extensional behavior than humans, because they cannot com-
pletely model physics or consciousness.

Searle is an intentional skeptic who argues that passing the test intentionally
did not constitute thinking because competence did not constitute inner un-
derstanding, while Penrose [7] asserts that machines are not extensionally as
expressive as physical or human mental models.

We agree with Penrose that Turing machines cannot model the real world,
but disagree that this implies extensional skepticism because interaction ma-
chines can model physical behavior of the real world and mental behavior of
the brain. Our assertion that interaction is more powerful than algorithms
implies not only greater computing power but also greater thinking power of
interactive machines.

Penrose builds an elaborate house of cards on the noncomputability of
physics by Turing machines. However, this house of cards collapses if we ac-
cept that Turing machines do not model all of computation. Penrose’s argu-
ment that physical systems are subject to elusive noncomputable laws yet to
be discovered is wrong, since interaction is sufficiently expressive to describe
physical phenomena like action at a distance, nondeterminism, and chaos,
which Penrose cites as examples of physical behavior not expressible by com-
puters. Penrose’s error in equating Turing machines with the intuitive notion
of computing is similar to Plato’s identification of reflections on the walls of
a cave with the intuitive richness of the real world. Penrose is s self-described
Platonic rationalist whose arguments based on the acceptance of Church’s the-
sis are disguised forms of rationalism, denying first-class status to empirical
models of interactive computation.

Penrose’s dichotomy between computing on the one hand and physics and
cognition on the other is based on a misconception concerning the nature of



Principles of Interactive Computation 31

computing that was shared by the theorists of the 1960s and has its roots in the
rationalism of Plato and Descartes. The insight that the rationalist/empiricist
dichotomy corresponds to algorithms and interaction and that “machines”
can model physics and cognition through interaction, allows computing to
be classified as empirical along with physics and cognition. By identifying
interaction as an ingredient that distinguishes empiricism from rationalism
and showing that interaction machines express empirical computer science,
we can show that the arguments of Plato, Penrose, and rationalist computer
scientists of the 1960s are rooted in a common fallacy concerning the role of
noninteractive algorithmic abstractions in modeling computation in the real
world.

5 Why Interaction is More Powerful than Algorithms

The paper by this title [16] was a primary early attempt to explore the distinc-
tion between algorithms and interaction. It was widely praised by practical
programmers but criticized by mathematical rationalists who believed that
Turing machines express all forms of problem solving and computation. How-
ever, algorithms yield outputs completely expressible by memoriless, history-
independent inputs, while interactive systems like personal computers, airline
reservation systems, and robots provide history-dependent services over time
that can learn from and adapt to experience.

Algorithms are “sales contracts” that deliver outputs in exchange for an
input, while interactive system specifications are “marriage contracts” that
specify their behavior for all contingencies (in sickness and in health) over the
lifetime of the object (till death do us part). The folk wisdom that marriage
contracts cannot be reduced to sales contracts is made precise by showing
that interaction cannot be reduced to algorithms.

Interaction provides a better model than Turing machines for object-
oriented programming. Objects are interactive agents that can remember their
past and provide time-varying services to their clients not expressible by al-
gorithms. It is fashionable to say that everyone talks about object-oriented
programming but no one knows what it is. But knowing what it is has proved
elusive because of the implicit assumption that explanations must specify
what it is by algorithms, that excludes specifyng what it is through interac-
tion. The better explanation of computational behaviors through interaction
is similar to that used in better expressing the notion “can machines think”,
and occurs also in many other descriptions of computing.

Interactive extensions of Turing machines through dynamic external envi-
ronments can be called interaction machines. Interaction machines may have
single or multiple input streams, synchronous or asynchronous actions, and
can differ along many other dimensions. Interaction machines transform closed
to open systems and express behavior beyond that computable by algorithms
in the following ways:



32 D. Goldin and P. Wegner

Claim: Interaction machine behavior is not expressible by Turing machine
behavior.

Informal evidence of richer behavior: Turing machines cannot handle the pas-
sage of time or interactive events that occur during computation.

Formal evidence of irreducibility: Input streams of interaction machines are
not expressible by finite inputs, since any finite representation can be
dynamically extended by uncontrollable adversaries.

The radical view that Turing machines are not the most powerful comput-
ing mechanism has a distinguished pedigree. It was accepted by Turing who
assumed in 1936 that choice machines were not expressible by Turing machines
and showed in 1939 that oracles for predicting noncomputable functions were
not Turing machines. Milner noticed as early as 1975 that concurrent pro-
cesses cannot be expressed as algorithms, while Manna and Pnueli showed in
1980 that nonterminating reactive processes like operating systems cannot be
modeled by algorithms.

Input and output actions of processes and objects are performed with
logical sensors and effectors that change external data. Objects and robots
have very similar interactive models of computation: robots differ from objects
only in that their sensors and effectors have physical rather than logical effects.
Interaction machines can model objects, software engineering applications,
robots, intelligent agents, distributed systems, and networks like the Internet
and the World-Wide Web.

6 Theory of Sequential Interaction

The hypothesis that interactive computing agents are more expressive than
algorithms requires fundamental assumptions about models of computation
to be reexamined. What are the minimal extensions necessary to Turing ma-
chines to capture the salient aspects of interactive computing? This question
serves as a motivation for a new model of computation called persistent Turing
machines (PTMs), introduced by Goldin et al. [3]; van Leeuwen and Wieder-
mann’s chapter in this book provides a related model, with similar motiva-
tions [15]. PTMs allow us to formally prove Wegner’s hypothesis regarding
the greater expressiveness of interaction.

PTMs are interaction machines that extend Turing machine semantics in
two different ways, with dynamic streams and persistence, capturing sequen-
tial interactive computations. A PTM is a nondeterministic three-tape Turing
machine (N3TM) with a read-only input tape, a read/write work tape, and
a write-only output tape. Its input is a stream of tokens (strings) that are
generated dynamically by the PTM’s environment during the computation.

A PTM computation is an infinite sequence of macrosteps; the i'th
macrostep consumes the ¢’th input token a; from the input stream, and pro-
duces the i’th output token for the output stream. Each macrostep is an



Principles of Interactive Computation 33

N3TM computation consisting of multiple N3TM transitions (microsteps),
just as each input and output token is a string consisting of multiple charac-
ters. The input and output tokens are temporally interleaved, resulting in the
interaction stream {(a1,01), (a2,02),...}. This stream represents the observed
behavior of the PTM during the computation.

PTM computations are persistent in the sense that a notion of “memory”
(work-tape contents) is maintained from one macrostep to the next. Thus
the output of each macrostep o; depends both on the input a; and on the
work tape contents at the beginning of the macrostep. However, the contents
of the worktape is hidden internally, and is not considered observable. Thus
this contents is not part of interaction streams, which only reflect input and
output (observable) values.

Persistence extends the effect of inputs. An input token affects the com-
putation of its corresponding macrostep, including the work tape. The work
tape in turn affects subsequent computation steps. If the work tape were
erased, then the input token could not affect subsequent macrosteps, but only
“its own” macrostep. With persistence, a macrostep can be affected by all
preceeding input tokens; this property is known as history dependence.

Three results concerning the expressiveness of PTMs are discussed below.
The first result is that the class of PTMs is isomorphic to interactive tran-
sition systems (ITSs), which are effective transition systems whose actions
consist of input/output pairs, thereby allowing one to view PTMs as ITSs “in
disguise”. This result addresses an open question concerning the relative ex-
pressive power of Turing machines and transition systems. It has been known
that transition systems are capable of simulating Turing machines. The other
direction, namely “What extensions are required of Turing machines so they
can simulate transitions systems?”, is solved by PTMs.

The second result is the greater expressiveness of PTMs over amnesic
Turing machines (ATMs), which are a subclass of PTMs that do not have
persistence, in effect by erasing their work tape. ATMs extend Turing ma-
chines with dynamic streams but without memory. An example is a squaring
machine, whose input and output are streams of numbers; at i’th macrostep,
if the input number is a;, the output is its square a?. While some have found
it tempting to think that only dynamic streams are needed to model interac-
tion, such as [9], our results show that persistence (memory) is also necessary.
Furthermore, since ATMS are an extension of Turing machines, the strictly
greater expressiveness of PTMs over ATMs also implies that PTMs are more
expressive than Turing machines.

The third result proves the existence of a universal PTM; similarly to a
universal Turing machine, a universal PTM can simulate the behavior of any
arbitrary PTM.

PTMs perform sequential interactive computations, defined as follows:

Sequential Interactive Computation: A sequential interactive computation
continuously interacts with its environment by alternately accepting an



34 D. Goldin and P. Wegner

input string and computing a corresponding output string. Each output-
string computation may be both nondeterministic and history-dependent,
with the resultant output string depending not only on the current input
string, but also on all previous input strings.

PTMs do not capture all forms of interactive computation. Interaction
encompasses nonsequential computation as well, specifically multistream, or
multiagent, computation [17]. However, examples of sequential interactive
computation abound, including Java objects, static C routines, single-user
databases, and network protocols. A “simulator PTM” can be constructed for
each of these examples, similarly to the construction of the universal PTM.
The result is a sequential interactive analogue to the Church—Turing thesis,
stating that PTMs capture all sequential interaction:

Sequential Interaction Thesis: Any sequential interactive computation can be
performed by a persistent Turing machine.

This hypothesis establishes the foundation of the theory of sequential in-
teraction, with PTMs and ITSs as its alternative canonical models of com-
putation. Since PTMs are more expressive than amnesic TMs and Turing
machines, this theory represents a more powerful problem-solving paradigm
than the traditional theory of computation (TOC), confirming the conjecture
that “interaction is more powerful than algorithms”. We also expect that this
theory will prove as robust as TOC, with appropriate analogues to fundamen-
tal TOC concepts such as logic and complexity.

7 The Church—Turing Thesis Myth

The greater expressiveness of interaction over Turing machines is often viewed
as violating the Church—Turing thesis (CTT). This is a misconception, due to
the fact that the Church-Turing thesis has been commonly reinterpreted;
we call this reinterpretation the Strong Church—Turing thesis (SCT). In this
section, we show that the equivalence of the two theses is a myth; a longer
discussion can be found in [4]. Our work disproves SCT, without challenging
the original Church—Turing thesis.

The Church-Turing thesis, developed when Turing visited Church in
Princeton in 1937-38 and included in the opening section of [13], asserted
that Turing machines and the lambda calculus could compute all algorithms
for effectively computable, recursive, mathematical functions.

Church-Turing thesis (CTT): Whenever there is an effective algorithm for
computing a mathematical function it can be computed by a Turing ma-
chine or by the lambda calculus.

While effectiveness was a common notion among mathematicians and lo-
gicians of early twentieth century, it lacked a formal definition. By identifying



Principles of Interactive Computation 35

the notion of effective function computability with the computation of Tur-
ing machines (as well as the lambda calculus and recursive functions), the
Church—Turing thesis serves to provide a formal definition in the case of effec-
tive computation of functions, based on transformations of inputs to outputs.
However this thesis was extended in the 1960s to a broader notion of com-
putability, which we call the Strong Church—Turing thesis.

Strong Church—Turing thesis (SCT): A Turing machine can compute any-
thing that any computer can compute. It can solve all problems that
are expressible as computations (well beyond computable functions).

While the Church—Turing thesis is correct, this later version is not equiv-
alent to it; in fact, PTMs prove it wrong. Since they are inequivalent, a proof
that SCT is wrong does not challenge the original thesis. However, the Strong
Church—Turing thesis is still widely accepted as an axiom that underlies the-
oretical computer science, and establishes a mathematical principle for com-
puting analogous to those underlying physics and other sciences.

The equivalence of the Strong Church—Turing thesis to the original is a
myth, clearly refuted by interactive models of computation. The widespread
acceptance of this myth rests on the following beliefs:

1. All computable problems are mathematical problems expressible by func-
tions from integers to integers, and therefore captured by Turing machines.

2. All computable problems can be described by algorithms (the primary
form of all computation).

3. Algorithms are what computers do.

The first of these beliefs views computer science as a mathematical dis-
cipline. According to this world-view, mathematics strengthens the form of
computing just as it has strengthened scientific models of physics and other
disciplines. Though Turing was educated as a mathematician, he did not share
the mathematical world-view [1]. However, mathematicians like Martin Davis,
Von Neumann, Karp, Rabin, Scott, and Knuth accepted the mathematical
ideas of Pythagoras, Descartes, Hilbert, and others that mathematics was an
a priori rationalist principle that lay at the root of philosophy and science.
They ignored Godel and Turing’s proofs that mathematics was too week to
be a universal problem solving principle in favor of the old a priori belief that
mathematics was at the foundation of science in general and computer science
in particular.

The second of these beliefs positions algorithms at the center of computer
science; it ties the first and the third beliefs together, resulting in the Strong
Church—Turing thesis. This central position of algorithms was a deliberate
historical development of the 1960s, when the discipline of computer science
was still in its formative stages. While there was an agreement on the strong
role of algorithms, there was no agreement on their definition; two distinct and
incompatible interpretations can be identified. The first interpretation, found
in Knuth [5], defines algorithms as function-based transformations of inputs



36 D. Goldin and P. Wegner

to outputs; the second, found in less theoretical textbooks such as [8], defines
them as abstract descriptions of the behavior of a program. Yuri Gurevich’s
chapter in this book [2] also reflects this second view of algorithms.

While the former interpretation of the notion of algorithm is consistent
with the rationalist approach of the first belief, the latter interpretation is
consistent with the empiricist approach of the third belief. The incompatibility
of these interpretations pulls apart the three beliefs, bringing down the Strong
Church—Turing thesis.

Hoare, Milner, and other Turing award winners realized in the 1970s that
Turing machines do not model all problem solving, but believed it was not
yet appropriate to challenge TMs as a complete model of computation. They
separated interaction from computation, thereby avoiding the view that inter-
action was an expanded form of computation, raised by Wegner in 1997 [16].

The interactive view of computation is now widely accepted by many pro-
grammers, but is strongly disputed by adherents of the Turing machine model
who regard the interaction model as an unnecessary and unproven paradigm
shift. We believe it is now appropriate to accept the legitimacy of interactive
models of computation, since new applications of agents, embedded systems,
and the Internet expand the role of interaction as a fundamental part of com-
putation.

8 Conclusion

Interaction provides an expanded model of computing that extends the class
of computable problems from algorithms computable by Turing machines to
interactive adaptive behavior of airline reservation systems or automatic cars.
The paradigm shift from algorithms to interaction requires a change in modes
of thought from a priori rationalism to empiricist testing that impacts scien-
tific models of physics, mathematics, or computing, political models of human
behavior, and religious models of belief. The substantive shift in modes of
thought has led in the past to strong criticism by rationalist critics of em-
piricist models of Darwinian evolution or Galilean astronomy. Our chapter
goes beyond the establishment of interaction as an extension of algorithms
computable by Turing machines to the question of empiricist over rationalist
modes of thought.

This chapter contributes to goals of this book by establishing interaction as
an expanded form of computational problem solving, and to the exploration
of principles that should underlie our acceptance of new modes of thought
and behavior. Our section on persistent Turing machines (PTMs) examines
the proof that sequential interaction is more expressive than Turing machine
computation, while our section on the Church—Turing thesis shows that the
Strong version of this thesis, with its assumption that Turing machines com-
pletely express computation, is both inaccurate and a denial of Turing’s 1936

paper.



Principles of Interactive Computation 37

Our chapter has been influenced by Russell’s History of Western Philos-

ophy [10], whose articles on Descartes, Kant, and other philosophers support
our philosophical arguments, and by Kuhn, whose book on scientific revolu-
tions [6] supports the view that paradigm changes in scientific disciplines may
require changes in modes of thought about the nature of truth.

References

1.

10.
11.

12.

13.

14.
15.

16.

17.

E. Eberbach, D. Goldin, P. Wegner. Turing’s Ideas and Models of Computation.
In Alan Turing: Life and Legacy of a Great Thinker, ed. Christof Teuscher.
Springer 2004.

Y. Gurevich. Interactive Algorithms 2005. In current book.

D. Goldin, S. Smolka, P. Attie, E. Sonderegger. Turing Machines, Transition
Systems, and Interaction. Information & Computation J., Nov. 2004.

D. Goldin, P. Wegner. The Church-Turing Thesis: Breaking the Myth. LNCS
8526, Springer, June 2005, pp. 152-168.

D. Knuth. The Art of Computer Programming, Vol. 1: Fundamental Algorithms.
Addison-Wesley, 1968.

T. S. Kuhn. The Structure of Scientific Revolutions. University of Chicago
Press, 1962.

R. Penrose. The Emperor’s New Mind, Oxford, 1989.

J. K. Rice, J. N. Rice. Computer Science: Problems, Algorithms, Languages,
Information and Computers. Holt, Rinehart and Winston, 1969.

M. Prasse, P. Rittgen. Why Church’s Thesis Still Holds - Some Notes on Peter
Wegner’s Tracts on Interaction and Computability, Computer Journal 41:6,
1998, pp. 357-362.

B. Russell. History of Western Philosophy. Simon and Schuster, 1945.

C. Teuscher, editor. Alan Turing: Life and Legacy of a Great Thinker. Springer
2004

A. Turing. On Computable Numbers, with an Application to the Entschei-
dungsproblem, Proc. London Math. Soc., 42:2, 1936, pp. 230-265; A correction,
ibid, 43, 1937, 544-546.

A. Turing. Systems of logic based on ordinals, Proc. London Math. Soc., 45:2,
1939, 161-228.

A. Turing. Computing Machinery and Intelligence, Mind, 1950.

J. van Leeuwen, J. Wiedermann. A Theory of Interactive Computation. In
current book.

P. Wegner. Why Interaction is More Powerful Than Algorithms. Comm. ACM,
May 1997.

P. Wegner. Interactive Foundations of Computing. Theoretical Computer Sci-
ence 192, Feb. 1998.



2 Springer
http://www.springer.com/978-3-540-34666-1

Interactive Computation

The New Paradigm

Goldin, D.; Smolka, S.A.; Wegner, P. (Eds.)
20086, XV, 487 p. 84 illus., Hardcowver
ISEMN: 978-3-540-34666-1



