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Introduction

Martin Pelikan1, Kumara Sastry2, and Erick Cantú-Paz3

Summary. This chapter provides motivation for estimation of distribution algo-
rithms and discusses the scope of this book. Additionally, the chapter provides a
road map to the book and pointers to additional information.

1.1 Motivation for EDAs

Estimation of distribution algorithms (EDAs) [1, 5, 8, 11] address broad classes
of optimization problems by learning explicit probabilistic models of promising
solutions found so far and sampling the built models to generate new candi-
date solutions. By incorporating advanced machine learning techniques into
genetic and evolutionary algorithms, EDAs can scalably solve many challeng-
ing problems, significantly outperforming standard genetic and evolutionary
algorithms and other optimization techniques. In the recent decade, many im-
pressive results have been produced in the design, theoretical investigation,
and applications of EDAs.

An EDA evolves a population of candidate solutions to the given prob-
lem. Each iteration starts by evaluating the candidate solutions and selecting
promising solutions so that solutions of higher quality are given more copies
than solutions of lower quality. EDAs can use any standard selection method
of genetic and evolutionary algorithms, such as binary tournament selection.
Next, a probabilistic model is build for the selected solutions and new solutions
are generated by sampling the built probabilistic model. New solutions are
then incorporated into the original population using some replacement strat-
egy, and the next iteration is executed unless the termination criteria have
been met. EDAs usually differ in the representation of candidate solutions,
the considered class of probabilistic models, or the procedures for learning
and sampling probabilistic models. The pseudocode of an EDA follows:
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Estimation of Distribution Algorithm (EDA)
t := 0;
generate initial population P(0);
while (not done) {
select population of promising solutions S(t);
build probabilistic model P(t) for S(t);
sample P(t) to generate O(t);
incorporate O(t) into P(t);
t := t+1;

}

EDAs derive inspiration from two areas: genetic and evolutionary compu-
tation and machine learning. The remainder of this section discusses these
two sources of inspiration.

1.1.1 Motivation from Genetic and Evolutionary Computation

EDAs borrow two important concepts from genetic and evolutionary compu-
tation:

1. Population-based search
2. Exploration by combining and perturbing promising solutions

Using a population of solutions as opposed to a single solution has sev-
eral advantages; for example, it enables simultaneous exploration of multiple
regions in the search space, it can help to alleviate the effects of noise in
evaluation, and it allows the use of statistical and learning techniques to au-
tomatically identify problem regularities.

Exploration of the search space by combining and perturbing promising
solutions can be effective because in most real-world problems, high quality
solutions are expected to share features. By effective identification of impor-
tant features and their juxtaposition, the global optimum can be identified
even in problems where local operators fail because of exponentially many
local optima and strong large-order interactions between problem variables.

1.1.2 Motivation from Machine Learning

EDAs use probabilistic models to guide exploration of the search space. Using
probabilistic models enables the use of rigorous statistical modeling and sam-
pling techniques to automatically discover and exploit problem regularities for
effective exploration.

In most EDAs, probabilistic models are represented by graphical mod-
els [2, 4, 9], which combine graph theory, modularity and statistics to provide
a flexible tool for learning and sampling probability distributions, and prob-
abilistic inference. Graphical models provide EDAs with a powerful tool for
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identifying and exploiting problem decomposition, whereas evolutionary algo-
rithms provide EDAs with robust operators for maintaining diverse popula-
tions of promising candidate solutions. Since most complex real-world systems
are nearly decomposable and hierarchical [16], the combination of machine
learning techniques and evolutionary algorithms should enable EDAs to solve
broad classes of difficult real-world problems in a robust and scalable manner.
This hypothesis was supported with a number of theoretical and empirical
results [3, 6, 7, 10, 12–15].

1.2 Scope and Road Map

This book provides a selection of some of the important contributions to
research and application of EDAs. There are three main areas covered in this
book:

1. Design of robust and scalable EDAs. (Chaps. 2–6, 10 and 11)
2. Efficiency enhancement of EDAs. (Chaps. 7–9, 11, 13, and 15)
3. Applications of EDAs. (Chaps. 12–15)

The content of each chapter is discussed next.

Chapter 2. The Factorized Distribution Algorithm and the Minimum Rela-
tive Entropy Principle by Heinz Mühlenbein and Robin Höns.
In this chapter, Mühlenbein and Höns discuss major design issues of
EDAs using an interdisciplinary framework: The minimum relative en-
tropy (MinRel) approximation. They demonstrate the relation between
the Factorized Distribution Algorithm (FDA) and the MinRel approxi-
mation. Mühlenbein and Höns propose an EDA derived from the Bethe–
Kikuchi approach developed in statistical physics and present details of a
concave–convex minimization algorithm to solve optimization problems.
The two algorithms are compared using popular benchmark problems –
2-d grid problems, 2-d Ising spin glasses, and Kaufman’s n− k function –
with instances of up to 900 variables.

Chapter 3. Linkage Learning via Probabilistic Modeling in the Extended
Compact Genetic Algorithm (ECGA) by Georges R. Harik, Fernando
G. Lobo, and Kumara Sastry.
The first-generation genetic algorithms (GAs) are not very successful in
automatically identifying and exchanging structures consisting of sev-
eral correlated genes. This problem, referred in the literature as the
linkage-learning problem, has been the subject of extensive research over
the last few decades. Harik et al. explore the relationship between the
linkage-learning problem and that of learning probability distributions
over multivariate spaces. They argue that the linkage-learning problem
and learning probability distributions are equivalent. Using a simple yet
effective approach to learning distributions, and by implication linkage,



4 Martin Pelikan, Kumara Sastry, and Erick Cantú-Paz

Harik et al. propose a GA-like algorithm – the extended compact GA
– that is potentially orders of magnitude faster and more accurate than
simple GAs.

Chapter 4. Hierarchical Bayesian Optimization Algorithm by Martin Pe-
likan and David E. Goldberg.
Pelikan and Goldberg describe the hierarchical Bayesian optimization al-
gorithm (hBOA) and its predecessor, the Bayesian optimization algorithm
(BOA), and outline some of the important theoretical and empirical re-
sults in this line of research. The hierarchical Bayesian optimization algo-
rithm (hBOA) solves nearly decomposable and hierarchical optimization
problems scalably by combining concepts from evolutionary computation,
machine learning and statistics. Since many complex real-world systems
are nearly decomposable and hierarchical, hBOA is expected to provide
scalable solutions for many complex real-world problems.

Chapter 5. Numerical Optimization with Real–Valued Estimation-of-
Distribution Algorithms by Peter A.N. Bosman and Dirk Thierens.
In this chapter, Bosman and Thierens focus on the design of real-valued
EDAs for the task of numerical optimization. Here, both the problem
variables as well as their encoding are real values, and concordantly, the
type of probability distribution to be used for estimation and sampling in
the EDA is continuous. Bosman and Thierens indicate the main challenges
in real-valued EDAs and review the existing literature to indicate the
current EDA practice for real-valued numerical optimization. They draw
conclusions about the feasibility of existing EDA approaches and provide
an explanation for some observed deficiencies of continuous EDAs as well
as possible improvements and future directions of research in this branch
of EDAs.

Chapter 6. A Survey of Probabilistic Model Building Genetic Programming
by Yin Shan, Robert I. McKay, Daryl Essam, and Hussein A. Abbass.
While the previous chapters address EDAs that mainly operate on vari-
ables encoded into fixed-length chromosomes, there has been growing in-
terest in extending EDAs to operate on variable-length representations,
especially for evolving computer programs. In this chapter, Shan et al.
provide a critical and comprehensive review of EDAs for automated pro-
gramming. They discuss important lessons learned from genetic program-
ming (GP) for better design of probabilistic models for GP. Shan et al.
also present key strengths and limitations of existing EDAs for GP.

Chapter 7. Efficiency Enhancement of Estimation of Distribution Algo-
rithms by Kumara Sastry, Martin Pelikan, and David E. Goldberg.
Estimation of distributions have taken problems that were intractable with
first generation GAs and rendered them tractable, whereas efficiency-
enhancement take EDAs from tractability to practicality . That is,
efficiency-enhancement techniques speedup the search process of estima-
tion of distribution algorithms (EDAs) and thereby enable EDAs to solve
hard problems in practical time. Sastry et al. provide a decomposition and
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a review of different efficiency-enhancement techniques for EDAs. They
illustrate a principled approach for designing efficiency enhancement tech-
niques by developing an evaluation-relaxation scheme in the Bayesian op-
timization algorithm, and a time-continuation method in the extended
compact genetic algorithm.

Chapter 8. Design of Parallel Estimation of Distribution Algorithms by Jiri
Ocenasek, Erick Cantú-Paz, Martin Pelikan, and Josef Schwarz.
In this chapter, Ocenasek et al. focus on the parallelization of Estima-
tion of Distribution Algorithms (EDAs) and present guidelines for de-
signing efficient parallel EDAs that employ parallel fitness evaluation and
parallel model building. They employ scalability analysis techniques to
identify and parallelize the main performance bottlenecks to ensure that
the achieved speedup grows almost linearly with the number of utilized
processors. Ocenasek et al. demonstrate their proposed approach on the
parallel Mixed Bayesian Optimization Algorithm (MBOA) and verify it
with experiments on the problem of finding ground states of 2-d Ising spin
glasses.

Chapter 9. Incorporating a priori Knowledge in Probabilistic-Model Based
Optimization by Shumeet Baluja.
Complex dependency networks that can account for the interactions be-
tween parameters are often used in advanced EDAs; however, they may
necessitate enormous amounts of sampling. In this chapter, Baluja demon-
strates how a priori knowledge of parameter dependencies, even incom-
plete knowledge, can be incorporated to efficiently obtain accurate models
that account for parameter interdependencies. This is achieved by effec-
tively putting priors on the network structures that are created. These
more accurate models yield improved results when used to guide the sam-
ple generation process for search. Baluja demonstrates the results on a
variety of graph coloring problems, and examines the benefits of a priori
knowledge as problem difficulty increases.

Chapter 10. Multiobjective Estimation of Distribution Algorithms by Mar-
tin Pelikan, Kumara Sastry, and David E. Goldberg.
Many real-world optimization problems contain multiple competing ob-
jectives and that is why the design of optimization techniques that can
scalably discover an optimal tradeoff between given objectives (Pareto-
optimal solutions) represents an important challenge. Pelikan et al. discuss
EDAs that address this challenge. The primary focus is on scalability on
discrete multiobjective decomposable problems and the multiobjective hi-
erarchical BOA (mohBOA), but other approaches to multiobjective EDAs
are also discussed.

Chapter 11. Effective and Reliable Online Classification Combining XCS
with EDA Mechanisms by Martin Butz, Martin Pelikan, Xavier Llorà,
and David E. Goldberg.
Learning Classifier Systems (LCSs), such as XCS and other accuracy-
based classifier systems, evolve a distributed problem solution online.
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During the learning process, rule quality is assessed iteratively using tech-
niques based on gradient-descent, while the rule structure is evolved using
selection and variation operators of evolutionary algorithms. While using
standard variation operators suffices for solving some problems, it does
not assure an effective evolutionary search in many difficult problems
that contain strong interactions between features. Butz et al. describe
how advanced EDAs can be integrated into XCS in order to ensure effec-
tive exploration even for problems in which features strongly interact and
standard variation operators lead to poor XCS performance. In particular,
they incorporate the model building and sampling techniques from BOA
and ECGA into XCS and show that the two proposed algorithms ensure
that the solution is found efficiently and reliably. The results thus sug-
gest that the research on combining standard LCSs with advanced EDAs
holds a big promise and represents an important area for future research
on LCSs and EDAs.

Chapter 12. Military Antenna Design Using a Simple Genetic Algorithm
and hBOA by Tian-Li Yu, Scott Santarelli, and David E. Goldberg.
In this chapter, Yu et al. describe the optimization of an antenna de-
sign problem via a simple genetic algorithm (SGA) and the hierarchical
Bayesian optimization algorithm (hBOA). Three objective functions are
designed in an effort to find a solution that meets the system require-
ments/specifications. Yu et al. show empirical results that indicate that
the SGA and hBOA perform comparably when the objective function is
“easy” (that is, traditional mask). When the objective function more ac-
curately reflects the true objective of the problem (that is, “difficult”),
however, hBOA consistently outperforms the SGA both computationally
and the optimal antenna design obtained via hBOA also outperforms that
obtained via the SGA.

Chapter 13. Feature Subset Selection with Hybrids of Filters and Evolution-
ary Algorithms by Erick Cantú-Paz.
The performance of classification algorithms is affected by the features
used to describe the labeled examples presented to the inducers. There-
fore, the problem of feature subset selection has received considerable
attention. Approaches to this problem based on evolutionary algorithms
typically use the wrapper method, treating the inducer as a black box
that is used to evaluate candidate feature subsets. However, the evalua-
tions might take a considerable time and the wrapper approach might be
impractical for large data sets. Alternative filter methods use heuristics
to select feature subsets from the data and are usually considered more
scalable than wrappers to the dimensionality and volume of the data. In
this chapter, Cantú-Paz describes hybrids of evolutionary algorithms and
filter methods applied to the selection of feature subsets for classification
problems. The proposed hybrids are compared against each of their com-
ponents, two feature selection wrappers that are in wide use, and another
filter-wrapper hybrid. Cantú-Paz investigates if the proposed evolutionary
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hybrids present advantages over the other methods in terms of accuracy or
speed. He uses decision tree and naive Bayes classifiers on public-domain
and artificial data sets. The experimental results in this chapter suggest
that the evolutionary hybrids usually find compact feature subsets that
result in the most accurate classifiers, while beating the execution time of
the other wrappers.

Chapter 14. BOA for Nurse Scheduling by Jingpeng Li and Uwe Aickelin.
Li and Aickelin have shown that schedules can be built mimicking a hu-
man scheduler by using a set of rules that involve domain knowledge.
Li and Aickelin present a Bayesian Optimization Algorithm (BOA) for
the nurse scheduling problem that chooses such suitable scheduling rules
from a set for each nurse’s assignment. Based on the idea of using proba-
bilistic models, the BOA builds a Bayesian network for the set of promising
solutions and samples these networks to generate new candidate solutions.
Computational results from 52 real data instances demonstrate the success
of this approach. The authors also suggest that the learning mechanism
in the proposed algorithm may be suitable for other scheduling problems.

Chapter 15. Searching for Ground States of Ising Spin Glasses with Hier-
archical BOA and Cluster Exact Approximation by Martin Pelikan and
Alexander K. Hartmann.
In this chapter, Pelikan and Hartmann apply the hierarchical Bayesian
optimization algorithm (hBOA) to the problem of finding ground states
of Ising spin glasses with ±J and Gaussian couplings in two and three di-
mensions. The authors compare the performance of hBOA to that of the
simple genetic algorithm (GA) and the univariate marginal distribution
algorithm (UMDA). The performance of all tested algorithms is improved
by incorporating a deterministic hill climber based on single-bit flips. The
results in the chapter show that hBOA significantly outperforms GA and
UMDA on a broad spectrum of spin glass instances. The authors also de-
scribe and incorporate the cluster exact approximation (CEA) into hBOA
and GA to improve their efficiency. The results show that CEA enables
all tested algorithms to solve larger spin glass instances and that hBOA
significantly outperforms other compared algorithms even in this case.

1.3 Additional Information

1.3.1 Conferences

Most EDA researchers present their results at the following conferences:

– Congress on Evolutionary Computation (CEC); IEEE
– Genetic and Evolutionary Computation Conference (GECCO); SIGEVO,

ACM Special Interest Group for Genetic and Evolutionary Computation
– Parallel Problem Solving from Nature
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1.3.2 Journals

The following journals publish majority of EDA articles:

– Evolutionary Computation; MIT Press
– Genetic Programming and Evolvable Machines; Springer
– IEEE Transactions on Evolutionary Computation; IEEE Press

A number of EDA articles can also be found in the following journals:

– Computational Optimization and Applications (COAP); Kluwer
– Information Sciences; Elsevier
– International Journal of Approximate Reasoning; Elsevier
– New Generation Computing; Springer

1.3.3 World Wide Web

The following search engines can be used to search for many EDA papers:

– CiteSeer, Scientific Literature Digital Library
http://citeseer.ist.psu.edu/

– Google Scholar
http://scholar.google.com/

More papers can be found on personal and institutional Web pages of
the researchers that contributed to this book or were cited in the references
therein.

1.3.4 Online Source Code

Source code of various EDAs can be downloaded from the following sources:

– Extended Compact Genetic Algorithm, C++; F. G. Lobo, G. R. Harik
Bayesian Optimization Algorithm, C++; M. Pelikan
Bayesian Optimization Algorithm with Decision Graphs; M. Pelikan
http://www-illigal.ge.uiuc.edu/

– Learning Factorized Distribution Algorithm (LFDA); H. Mühlenbein, T.
Mahnig; http://www.ais.fraunhofer.de/∼muehlen/

– Adaptive mixed Bayesian optimization algorithm (AMBOA); J. Ocenasek
http://jiri.ocenasek.com/

– Real-coded Bayesian Optimization Algorithm; C.-W. Ahn
http://www.evolution.re.kr/

– Probabilistic Incremental Program Evolution (PIPE); R. P. Salustowicz
http://www.idsia.ch/∼rafal/

– Naive Multi-objective Mixture-based Iterated Density-Estimation Evolu-
tionary Algorithm (MIDEA), Normal IDEA-Induced Chromosome Ele-
ments Exchanger (ICE), Normal Iterated Density-Estimation Evolution-
ary Algorithm (IDEA); P. A. N. Bosman
http://homepages.cwi.nl/∼bosman/
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– Java applets for several real-valued and permutation EDAs; S. Tsutsui
http://www.hannan-u.ac.jp/∼tsutsui/index-e.html
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