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Abstract. This chapter introduces recent application of the Distinct Element
Method (DEM) to geomechanics. Different contact laws were introduced and used
to investigate the noncoaxiality of granular materials, effective stress in unsaturated
soils, bonding effect in natural soils and penetration mechanism in granular ground.
The study shows that DEM is a promising tool to solve some difficult problems not
only in fundamental geomechanics but also in complex boundary value problems in
geotechnical engineering.

1 Introduction

Soils consist of particles, macropores, micropores, pore fluids (air, water, oth-
ers), assembled possibly with interparticle bonding to form a fabric. Although
soils are in essence a kind of discrete materials, they have been traditionally
treated as continuum material in theoretical, constitutive modelling and nu-
merical analyses within continuum mechanics. This method plays important
role and is widely used in geotechnical engineering. However, the behaviour
of soils is so complex that, although some general features are agreed upon,
no particular model or theory has received universal acceptance yet.

Two types of ways have been used to consider the discrete feature of soils.
The first method is to revise the available continuum models or theories by
introducing additional laws which reflects the change of microstructure of
soils, such as fabric [32], or by improving existing constitutive laws based
on the available micromechanical studies on soils [29]. The method is usu-
ally employed by continuum constitutive modellers. In contrast, the second
method treats soils as an assembly of discrete materials directly, while its
macroscopic–microscopic responses under loading are obtained analytically,
numerically or experimentally. This method is widely used by micromechani-
cal researchers [5, 6, 10,28].

In this latter method, the Distinct Element Method (DEM) becomes
more and more popular, which is a numerical simulation technique originally
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developed for dry granular materials by Cundall and Strack [10]. The main
feature of DEM is that complex responses of an assembly of discrete mate-
rials can be controlled by very simple contact laws at interparticle contacts.
For example, the Mohr–Coulomb criterion is used to control shear behav-
iour at contacts for dry granular materials. DEM has been used for exam-
ining several aspects of soil behaviour. Table 1 provides some application of
DEM to fundamental geomechanics. Table 1 shows that DEM has been used
in granular mechanics [30], creep theory [35], anisotropy of clay [33], particle
crushing [7, 26], strain localization [1, 14] and dynamic behaviour or lique-
faction of sands [25, 27]. To illustrate if these topics are still interesting to
modern georesearchers, Table 2 presents main topics in this workshop (Mod-
ern Trends in Geomechanics workshop, 26–29 June 2005, Vienna, Austria).
Table 2 shows that these topics are all discussed in this workshop. In addi-
tion, many researchers in this workshop discuss four other aspects in geome-
chanics: constitutive modelling, unsaturated soils, natural soils and bound-
ary value problems. All the topics reflect the trends in geomechanics in the
21st century.

Table 1. Some application of DEM to fundamental geomechanics

topics features of the study investigators

granular
mechanics

examining failure criteria of granular
material; standard contact laws for
granular material

Thornton (2000)
[30]

creep
theory

examining the theory of rate
processes; contact laws
incorporating creep theory

Kuhn and
Mitchell [35]

anisotropy
of clay

examining the mechanism of
anisotropic behaviour of clay;
contact laws incorporating repulsive
force

Anandarajah (2000)
[33]

particle
crushing

examining the mechanism of particle
fracture and crushing; contact laws
for cementation incorporated in
PFC3D

McDowell and
Harireche (2002);
Cheng et al.
(2003) [7, 26]

strain local-
ization

examining the mechanism of shear
banding process; standard contact
laws or that incorporating rolling
resistance for granular material

Bardet and
Proubet (1991);
Iwashita and Oda
(1998, 2000) [1,14]

dynamic
behav-
iour or
liquefac-
tion

regularly-packed disk assemblies
considering motion of pore water or
randomly-packed disk assemblies
using the “quasi-pore pressure”
method

Kiyama et al.
(1994); Ng and
Dobry (1994)
[25,27]
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Table 2. Main topics in this workshop (Modern Trends in Geomechanics workshop,
26–29 June 2005, Vienna, Austria)

topics presenters

granular
mechanics

Bolton M, Borja R, Doanh T, Harris D, Hill J, Huang A-B,
Jiang MJ, Lade P, McDowell G, Ooi J, Spencer T,
Tagmanini C, Viggiani C, Wu W, Yu H-S

creep theory Gudehus G, Yin J-H.
anisotropy Bolton M, Doanh T, Shao J-F, Wu W
particle crushing Bolton M, McDowell G, Vardoulakis I
strain localization Bauer E, Bolton M, Borja R, Chambon R, Darve F
dynamic

behaviour or
liquefaction

Bauer E, Bolton M, Huang A-B, Niemunis A, Zhang J-M

constitutive
modelling

Bolton M, Collins I, Darve F, Gens A, Gudehus G, Harris D,
Herle I, Houlsby, Jiang MJ, Lade P, Niemunis A, Nova R,
Puzrin AM, Selvadurai APS, Shao JF, Shen ZJ,
Tagmanini C, Viggiani C, Wu W, Yin J-H, Yu H-S

unsaturated soils Gens A, Jiang MJ, Molenkamp F, Shen ZJ, Yu H-S
natural soils Bolton M, Huang A-B, Jiang MJ, Nova R, Shen ZJ, Yu H-S
boundary value

problem
Bolton M, Harris D, Jiang MJ, Moore I, Ponter A, Salgado

R, Shen ZJ, Spencer T, Yu H-S, Zhang J-M
others Bolton M, Cristescu ND, Dafalias Y, Jiang MJ, Ooi J,

Ponter A, Selvadurai APS, Shao JF, Sheng Y, Sikora Z,
Triantafyllidis T, Vermeer P

The main objective of this chapter is to introduce the application of DEM
to these latter four aspects in geomechanics. The introduction is limited to
those related to the first author’s two postdoctoral fellowships in Canada and
UK. After introducing the DEM code developed by the first author, we shall
present its application to noncoaxiality of granular materials, effective stress in
unsaturated soils, bonding effect in natural soils and penetration mechanism
in granular ground. We shall mainly introduce the target, contact models and
main results in each application. The reader is referred to the references for
their further detail.

2 Discrete Element Method (DEM)

The two-dimensional (2-D) DEM code used has techniques similar to those
proposed by Cundall and Strack [10]. The code was first developed in Canada
[19–21] and improved further in UK [16–18,23,24] by the first author and his
co-workers, namely NS2D hereafter. Each particle of the soil mass is a rigid
disk that is identified independently with its own mass, m, moment of inertia,
I0 and contact properties as illustrated in Figs. 1, 4 and 8 later. The total



244 M. Jiang, H.-S. Yu

(a) (b)

Normal direction Tangential direction

Spring

Divider

Dashpot Spring
Divider

Dashpot

Slider

Fig. 1. Standard contact models of two rigid disks used in DEM for examining
noncoaxial continuum model

unbalanced force for motion F
(m)
i (i represents x or y direction) and moment

M0 acting on each particle are computed and then used to estimate the in-
stantaneous acceleration of each particle, a, based on Newton’s second law.
The acceleration a is used to calculate velocities and then displacements in
the x and y directions. This is repeated at each time increment until the sim-
ulation is stopped. For each particle, the normal and tangential contact forces
for motion, denoted by F

(m)
n and F

(m)
s , respectively, are summed up over the

p neighbours, giving:

∂2xi
∂t2

=
1
m

p∑
r=1

F
(m)r
i ;

∂2θ

∂t2
=

1
I0

p∑
r=1

Mr
0 . (1)

In the NS2D code, F (m)
n is calculated by a function fn

F (m)
n = fn(Fn,Dn, Rn), (2)

where Fn is the normal contact force calculated from the overlaps of particles.
Dn is the normal damping force andRn is the normal bonding strength that re-
sults from capillary water (CW) for unsaturated soil or from cementatious ma-
terial for natural soils. Note that Rn is always zero for dry granular material.
A typical function in (2) for unsaturated or natural soils can be expressed as

F (m)
n = Fn +Dn −Rn, (3)

which is termed as “translational-axis method” for bonded material [20,24].
F
(m)
s is determined by

F (m)
s = Fs +Ds, (4)

where Fs is the tangential contact force and Ds is the tangential damping
force. Ds = 0 stands in the case that Fs exceeds the peak shear strength F peak

s
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for contacts with intact bonds or residual shear strength F resid
s for contacts

without intact bonds.
F peak
s (F resid

s ) can be described by a function fps (frs )

F peak
s = fps (Fn, tanϕµ, Rt); F resid

s = frs (Fn, tanϕµ), (5a,b)

where tan ϕµ is called the interparticle friction coefficient. Rt is the tangential
bonding strength that results from CW for unsaturated soil or from cemen-
tatious material for natural soils. Typical functions in (5) for dry granular
material and natural soils can be respectively expressed as

F peak
s = Fn tan ϕµ = F resid

s for dry granular material, (6a,b)

F peak
s = Fn tan ϕµ +Rt;F resid

s = Fn tanϕµ for natural soils (6c,d)

Equation (6) are the Mohr–Coulomb criterion. If two particles are separated
due to normal tension force in excess of Rn, then F

(m)
n = 0, F

(m)
s = 0.

Damping, as well as frictional sliding, is used in DEM analyses to dissipate
energy due to the dynamic formulation of the model.

The strain tensor is obtained by the position change of rigid boundaries
as follows:

εij = ∆hi/hj , (7)

where ∆hi is the deformation of specimen in i direction and hj is total length
of specimen in j direction at time t.

The stress tensor is defined on the rigid boundaries as follows:

σij = (
∑

fi)/hj , (8)

where fi is the contact force acting on the boundary with the normal direction
as i. In addition, a unit of length (m) is implicitly included in (8) in the
direction vertical to the plane.

Because NS2D is a 2-D DEM code, the density of specimen is described
in term of planar void ratio ep by

ep = (A−Ag)/Ag, (9)

where A and Ag are the total area of the specimen and the sum of the area
of all grains (disks), respectively.

NS2D can form an assembly of particles according to its grain size distri-
bution. The number of particles of each specific radius was calculated in the
DEM by

N(i) =
P(i)

rs(i) · P
·N, (10)

where N(i) is the total number of particle i with specific radius r(i) and P(i)
is weight percentage of particle i. N is total number of particles of different
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radii used in the DEM analyses. Parameter s is 2 for disk. P is a variable
obtained by

P =
np∑
i=1

P(i)

rs(i)
, (11)

where np is the type number for particles.
We shall in Sect. 3 introduce the application of NS2D to geomechanics,

which are related to the four topics in this workshop.

3 Application of DEM to Geomechanics

In this section, we shall present the application of DEM to noncoaxiality of
granular materials, effective stress in unsaturated soils, bonding effect in nat-
ural soils and penetration mechanism in granular ground. We shall introduce
each application by its target, contact model and main results

3.1 Noncoaxiality of Granular Materials

Noncoaxiality means the noncoincidence of the principal stress tensor and
the principal plastic deformation-rate tensor, a known feature of granular
material. Since granular materials are inherently discrete with particle rotation
and a grain length scale, we shall examine if these features can be included in
a noncoaxial continuum model. The detailed information can be found in the
references [17,18].

Given a randomly packed assembly composed of particles of different sizes,
a novel kinematic variable, the “averaged micropure rotation-rate” (APR),
denoted by ωc

3, was proposed as follows [17]

ωc
3 =

1
N

N∑
k=1

θ̇p =
1
N

N∑
k=1

[
1
rk

(
θ̇k1r

k
1 + θ̇k2r

k
2

)]
, (12)

where the summations are over the N contacts in the mass body, by counting
each contact k, which is shared by two particles of radii rk1 and rk2 , the angular
velocity θ̇k1 and θ̇k2 . The common radius is rk = 2rk1r

k
2

/
(rk1 + rk2 ). ω

c
3 can also

be expressed in terms of a sum over particles instead of contacts [21]. It is
a kinematic variable generally related to particle rotations and particle sizes,
which does not appear in classical continuum mechanics yet. But, it can be
unified with kinematic variables in standard continuum mechanics, see later.

In standard continuum mechanics, the Eulerian velocity field v is con-
sidered. The deformation rate Dij and the spin tensor Wij are then defined
by

Dij =
1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
; Wij =

1
2

(
∂vi
∂xj

− ∂vj
∂xi

)
, (13a,b)
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where vi denotes the velocity components, with i or j = 1, 2 in the 2-D case.
We propose a tensor Rij as follows:

Rij =
∂vi
∂xj

+ e3ijω
c
3, where e3ij =

[
0 1
−1 0

]
, (14a,b)

which leads to the symmetric (skew-symmetric) tensor dij (wij) by

dij =
1
2
(Rij +Rji); wij =

1
2
(Rij −Rji) (15a,b)

Relationships amongst Dij , Wij , dij and wij can be obtained from (13)–
(15)

dij = Dij ; wij = Wij + e3ijω
c
3 (16a,b)

which shows that dij indeed is deformation rate tensor. wij is a frame indif-
ferent tensor composed of both Wij and ωc

3, even though none of then is an
objective continuum variable. When ωc

3 = 0, the tensor wij will reduce to Wij .
We shall present a new noncoaxial continuum model for granular material

[17], which is based the unified double-slip plasticity model [36] and the dij
and wij . The unified kinematic equations governing the velocity field proposed
by Harris (1995) are

(D11 +D22) cos
(
ν + ξ

2

)
= [(D11 −D22) cos 2ψσ + 2D12 sin 2ψσ]

× sin
(
ν − ξ

2

)
, (17a)

2 (ϑ+W12) sin
(
ν + ξ

2

)
= [(D11 −D22) sin 2ψσ − 2D12 cos 2ψσ]

× cos
(
ν − ξ

2

)
, (17b)

where the quantities ν and ξ are material parameters, and ϑ is an angular
velocity which may be given a number of physical interpretations. Dij and
Wij are the deformation rate tensor and the spin tensor respectively as shown
in (13). The principal stress inclination ψσ is defined as the angle of major
principal stress axis to x-axis, in terms of Cauchy stress tensor σij

ψσ =
1
2
arctan

(
2σ12

σ11 − σ22

)
. (18)

The new continuum model was proposed in essence by identifying the
quantity ϑ in (17) with ωc

3. By further choosing ν = φ, the angle of internal
friction, ξ = φ−2χ where χ is a dilatancy parameter, and (15), the new model
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for a class of dilatant materials, becomes

(d11 + d22) cos (φ− χ) = [(d11 − d22) cos 2ψσ + 2d12 sin 2ψσ] sinχ, (19a)

2w12 sin (φ− χ) = [(d11 − d22) sin 2ψσ − 2d12 cos 2ψσ] cosχ, (19b)

or further reduced for incompressible materials,

d11 + d22 = 0; 2w12 sinφ = (d11 − d22) sin 2ψσ − 2d12 cos 2ψσ (20a,b)

Equations (19b) or (20b) show that, generally, the constitutive equations
for granular materials presented here are noncoaxial due to the presence of
wij . Since the original unified plasticity model is called the double-slip model
and now is extended by ωc

3, the new model may be called the “double-slip and
rotation-rate model” (DSR2 model).

The NS2D was used to carry out tests to verify the DSR2 model, since no
geolab technology is available to measure ωc

3 yet. The contact model used is a
standard contact laws shown in Fig. 1. This simple contact model consists of
a normal (tangential) contact model to resist traction (shear) force. They are
similar in their principle: both include a spring reflecting an elastic behaviour
of the contact before failure and a dashpot that allows energy dissipation
and quasi-static deformations in DEM analyses. The normal contact model
includes a divider to simulate the fact that no traction force is transmitted
through the contact when the particles are separated. The tangential contact
model includes a slider that provides the contact a shear resistance controlled
by the Mohr–Coulomb criterion.

The granular material used has a distribution of particle size shown in
Fig. 2a. The material is composed of discs with a maximum diameter of
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Fig. 2. Distribution of grain size used in DEM verification on noncoaxial models
(a); boundary conditions in simple shear stage (b)
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9.0mm, and a minimum diameter of 6.0mm, an average grain diameter
d50 = 7.6mm and uniformity coefficient d60/d10 = 1.3. For simplicity, sim-
ple shear tests were simulated for the verifications, in which the specimens
are regarded to be “incompressibile”, i.e. their volume change is zero under
shear. The incompressibility is targeted by (a) selecting specimens that in-
ternally tends to perfect plasticity with its dilatancy–contractancy close to
zero; (b) controlling boundary condition that the volumetric strain rate is
zero under shear. The samples were prepared by the under-compaction tech-
nique [19], which efficiently provided homogeneous loose/medium-dense sam-
ples (ep = 0.32/0.30). The boundary condition in the simple shear stage is
shown in Fig. 2b. The particle-wall friction coefficient was set to a value of 0.5,
the same value as the interparticle friction coefficient, followed by simple shear
under constant volume. The top and bottom rigid walls were vertically fixed,
but moved horizontally by following the side rigid walls which rotated with
rotation rate θ̇. Monotonic and cyclic simple shear tests were carried out with
different variations of θ̇. Using (13), (16), (20b) and theoretical description of
velocity field under simple shear, the theoretical APR predicted by the DSR2

model may be written:

APR =
(
cos 2ψσ
2 sin φ

+
1
2

)
θ̇, (21)

which, as well as ωc
3, can be obtained in the DEM tests [18].

Figure 3a provides the APRs measured and predicted by the DSR2 model
for the medium-dense specimen in the monotonic DEM tests, and their respec-
tive average values for all specimens deduced from all the monotonic DEM
tests. For the predicted values, φ = 30◦ was used in (21), which is very close
to that measured in experiments on granular materials. Figure 3a shows that
although there is very slight difference between the predicted and measured
APRs, a good agreement appears between these quantities during the DEM
tests. Both of them are positive, and decrease slightly with the shear strain
in the tests. Good agreement is also observed between the predicted and the
measured APRs in the tests on all the other specimens of different density.
For conciseness, the average values of the predicted and the measured APRs
are provided in Fig. 3a to represent these results. Again, a good agreement is
evidently observed in Fig. 3a between the predicted and the measured values.

Figure 3b presents the APRs measured and predicted by the DSR2 model
in the cyclic DEM simple shear tests on loose/medium-dense specimens. Fig-
ure 3b shows that there is also a good agreement between these predicted and
measured quantities in the DEM tests. They are both periodic, varying be-
tween 0.0025 and −0.0025 rad s−1 with the same period during cyclic shear
tests on the different specimens. Hence, the numerical results in Fig. 3 con-
firm that: (a) DSR2 model is a reasonable extension of the unified double-slip
plasticity model; (b) DEM is a useful tool in examining the noncoaxiality of
granular mateials.
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Fig. 3. The APRs measured and predicted by noncoaxial models (DSR2 model) for
the medium-dense specimen, and their respective average values for all specimens
in the all monotonic DEM simple shear tests (a); the measured and the predicted
APRs in the cyclic DEM simple shear tests on loose/medium-dense specimens (b)

3.2 Effective Stress in Unsaturated Soils

One of long-term arguable topics in unsaturated soils is the existence and
applicability of effective stress [13,15]. We shall here introduce micromechan-
ically defined effective stress and its verification by DEM from the viewpoint
of strength. In the definition, the interparticle force due to CW is composed of
two components: one due to suction and the other due to the surface tension
which is missing in unsaturated soil mechanics.

Equation (8) is widely used in geolabs to measure stresses. This stress ten-
sor is equivalent to net stress (σij − ua) used in unsaturated soil mechanics
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because the pore air pressure ua is used as a reference pressure and is effec-
tively zero in many practical problems. In contrast, in micromechanics on dry
granular media, there are several expressions of the stress tensor, and contro-
versies still exist on such topics as the asymmetry [2,6,11]. We consider three
symmetric average stress tensors with all defined within the volume V :

σij =
1
V

N∑
k=1

Rk

p∑
c=1

lciT
c
j ; σij =

1
V

M∑
a=1

T a
i l

a
j ; σij =

1
V

2M∑
a=1

xai T
a
j (22a,b,c)

where T c
i and lcj are the contact force vector and the contact orientation vector

at contact c of particle k. Rk is the radius of particle k. N is the number of
particles in V and p is the number of contacts on particle k [10]. M is the
number of contacts in V . T a

i and laj are the contact force vector and the
contact orientation vector at contact a in V [8]. xai defines the coordinates of
contact a referenced to the particle centroid [31].

Nevertheless, the average stress tensors in (22) are all equivalent to that
by computing the forces exerted upon the peripheral particles along the as-
sembly’s boundary S.

σij =
1
V

∑
β∈S

T β
i lβj . (23)

Based on (22)–(23) and the concepts proposed by one of the authors [22],
two new stress tensors have been defined by Jiang et al [16, 21]. The first
one is defined as the stress tensor in (22) or (23) when T c

i (T a
i or T β

i ) is the
interparticle force due to both load and CW, then σij = σ′′

ij . It is termed gen-
eralized effective stress (GES) and denoted by σ′′

ij here to distinguish it from
the effective stress σ′

ij used in saturated soil mechanics. The second one is
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defined as the stress tensor in (22) or (23) when T c
i (T a

i or T β
i ) is equal to

interparticle force solely due to CW, then σij = σij(eq). It is termed the GES
due to suction (GESS) here to follow the habit in geomechanics. The GES
due to suction indeed should be referred to as the GES due to CW since the
interparticle force component due to the surface tension is included, based on
the theoretical work by Fisher [12]. The stress σij(eq), in principle, is similar to
other terms, such as “normal stress”, “equivalent effective stress”, “effective
boundary stress” etc. used in the literature to describe the effect of suction on
shear strength. We use a subscript “eq” in σij(eq) to note that GESS is simi-
lar to “equivalent effective stress” in essence. Note that both GES and GESS
are defined explicitly in terms of interparticle forces via (22) or (23) here.
More importantly, interparticle force due to CW is a theoretical solution [12],
composed of components due to both the suction and the surface tension. We
shall next introduce DEM examination on the strength envelopes of unsatu-
rated soils described in different stress tensors, since no geolab technology is
available for this task yet.

The contact model used for unsaturated soils is illustrated in Fig. 4, which
was proposed by Jiang et al. [21]. It also consists of a normal (tangential) con-
tact model to resist traction (shear) force. Compared with the standard model
in Fig. 1, the normal contact model introduces additionally a bond element to
represent the action of CW whereas the tangential contact model includes a
CW slider. No traction/repulsive force is transmitted when the CW bond is
broken and the particles are separated. The tangential contact model includes
two sliders that provide the contact a shear resistance controlled by the Mohr–
Coulomb criterion, with one component linked to the CW and the other to
the load. The introduction of the CW slider comes from the fact that the in-
terparticle force due to CW increases the normal contact force at contact and
thus consequently its shear resistance. Note that the CW bond is recoverable
after its breakage, i.e. the CW bond recovers once particles contact again. The
introduction of the CW bond and slider will lead to mechanical performance
at the contact as elasto-brittle-plastic in normal and elasto-plastic in shear
directions [21].

The particle assemblies of grain size distributions shown in Fig. 5 were
used. They are fine-sized materials of the same mean diameter d50 as
0.0078mm, but of different uniformity coefficients d60/d10 as 1.3 for Distrib-
ution A and as 1.8 for Distribution B. A series of biaxial compression tests
were carried out on the unsaturated granulates under different suctions and
different confining stress. Note that, during the tests, the disappearance of
manusci is simulated [21].

The peak shear strength envelopes described by net stresses (total stress
over air pressure), i.e. the stresses defined in (8), are plotted in Fig. 6a, which
are deduced from the biaxial compression tests on material A. Figure 6a shows
that, for the material with zero suction (Su), the shear strength envelope
almost passes through the origin, confirming that the material is cohesion-
less. The peak shear strength envelopes move parallel to each other with the
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increase of Su in the direction of increasing peak shear strength. A nonlinear
relationship is observed between the deduced apparent cohesion and Su in
Fig. 6b, which is in agreement with the observations from experiments.

The peak shear strength envelope described by the GES are illustrated in
Fig. 7a, which are deduced from the same tests on material A as in Fig. 6.
Figure 7a indicates that there appears to be a unique peak strength envelope
for all the tests on the same material, even with different consolidation stress
or different suction (Su). In addition, the peak friction angle deduced from this
envelope is equal to 27.4◦, very close to that deduced from the zero-suction
envelope (26.5◦) for the same material shown in Fig. 7a. In addition, Fig. 7b
provides the peak strength envelope described by GES, deduced from 12 tests
on material B. Figure 7b demonstrates that the results obtained from material
B support the observations made for material A. Furthermore, Fig. 7 shows
that there is also a unique residual shear strength envelope for each material
if it is described in terms of GES. These observations seem to support the
existence of “effective stress” for unsaturated soils [3] in controlling the shear
strength. However, it is easy to realize that there is a difference between
the original definition [3] and the definition given via (22) or (23). Since the
applicability of the principle of effective stress has been debated for a long
time [13, 15], it is beyond the purpose of this chapter to give any comments
on the topic here. Hence, Figs. 6 and 7 show that DEM is a useful tool in
examining the effective stress in unsaturated granular materials.

3.3 Bonding Effect in Natural Soils

Natural soils are sometimes named as “problematic soil”, since their me-
chanical behaviour are evidently distinct from the reconstituted soils usu-
ally employed in laboratory. Their peculiar behaviour results from their
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microstructure which is mainly characterized with bonding materials between
particles or aggregates (bonds) and fabric. In this subsection, we shall present
our most recent DEM application to natural sands: the link between the yield-
ing and bond breakage; the Coop and Willson criteria on weak bonding and
strong bonding [9]. The reader is referred to the reference [24] for further de-
tail and other information. We chose DEM, because no geolab technology is
available to measure bond information quantitatively and continuously yet.

The contact model used for bonds in natural soils is shown in Fig. 8, which
was proposed by Jiang et al. [20, 24]. In comparison to the standard contact
model in Fig. 1, the bond contact model introduces irrecoverable rigid-plastic
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unsaturated specimens of distribution A (a) and distribution B (b)

bond elements into the normal and tangential directions, respectively. Unlike
the recoverable CW bond shown in Fig. 4, the bond here is irrecoverable, i.e.
the bond will never recover its strength once the bond breaks. The rigid bond
element is set to be parallel with divider (slider) in the normal (tangential)
contact model to produce tension (shear) resistance, which represents the
main action of bonding materials. The introduction of the bonds will lead to
mechanical performance at the contact as elasto-brittle-plastic in both normal
and shear directions [20,24].
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The DEM material used has a distribution of particle size shown in Fig. 2a.
The samples were prepared by the under-compaction technique [19] at very
loose (planar void ratio ep = 0.34), loose (0.32), medium-dense (0.30) and
dense (0.28) states, followed by bonding at contacts with different bonding
strength. Isotropic consolidation tests were carried out on these bonded ma-
terial, by following the procedure in laborotory [24].

For the first target in this subsection, Fig. 9a presents the variation of
planar void ratio ep with applied mean stress σ′

m, whereas Fig. 9b provides
the broken contact ratio as a function of σ′

m, for the very-loose DEM materials
of the bonding strength R = 0, 1, 5, 10, 20, 30 MN. The broken contact ratio is
the proportion of the initially-bonded contacts that have been broken and can
be regarded as a damage index of the bond breakage. The numerical curve
obtained for the very-loose unbonded material in Fig. 9a provides a reference
curve (normal compression line, NCL) for the other DEM tests. This numerical
reference curve shows three features: there is a significant reduction in void
ratio (ep) against σ′

m when the pressure is relatively small (< 0.4MPa); once
σ′
m exceeds this value, the rate of void ratio reduction becomes smaller; this is

true until the pressure is close to 10MPa when the void ratio reduction rate
increases again. The second feature in the DEM data comes from that that
there is a little space for the assembly to be compacted further as it arrives
at a relative dense state. The third feature of the numerical reference curve
appears to be unusual. This peculiar feature is largely due to the fact that
overlap between particles is excluded from calculating ep by (9). Nevertheless,
such ignorance does not affect the difference between bonded and unbonded
materials.
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contact ratio

The bonded materials in Fig. 9a shows that the gross-yielding stress is well
defined in light of volumetric strain (also known as preconsolidated pressure
in the geotechnical community). They are able to go in part of the ep − σ′

m

space that is not accessible to the unbonded material. At a given consolidation
pressure, their void ratio is generally larger than unbonded counterpart. The
preyield deformation is small; deformation increases abruptly if consolidation
pressure is larger than the yield stress. Given a void ratio, the gross-yielding
stress increases with the bonding strength. These are in agreement with the
recent understanding on natural soils.
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Micromechanically, Fig. 9b shows that the yielding can also be well defined
for the samples in terms of breakage of bonds (the most-gradient point on the
curve) for bonded specimens, which namely the microyielding hereafter. There
is no or few bond breakage when σ′

m is smaller than the microyielding stress.
Once σ′

m exceeds the microyielding stress, a large amount of bonds break. By
comparing Fig. 9a with Fig. 9b, with the help of the dotted lines 1–5 in Fig. 9,
it is observed that the microyielding stress appears to be equal to or slightly
smaller than the respective gross yielding stress. Hence, the DEM results con-
firm that the gross yielding of natural sands must be related to bond breakage.

For the second target in this subsection, Fig. 10 provides schematic rep-
resentation of the factors that might influence the effect of inter-particle ce-
menting on the compression behaviour of a natural sand, proposed by Coop
and Willson [9]. Figure 10 shows that a yield point in compression may be
above (outside) or below (inside) NCL. The former one is termed as strong
bonding (s), while the latter as weak bonding (w). They believe that whether
the bonding is weak or strong depends on three factors, which, if regardless
of particle breakage/crushing, are:

(a) The amount and strength of the cement deposited, with a smaller amount
clearly being present for the weak bonding while a larger amount for the
strong bonding, as indicated in Fig. 10a;

(b) The position of NCL. The same yield stress may be regarded as strong
bonding if NCL is inside it, or weak bonding if NCL is outside, as shown
in Fig. 10b;

(c) The initial density. A denser bonded material, even though it has the
higher yield stress in compression, may show the weak mode of behaviour,
whereas a looser bonded material of the lower yield stress may show the
strong mode, as demonstrated in Fig. 10c.

Figure 11 presents the variation of ep with σ′
m in the isotropic DEM com-

pression tests, showing the three factors influencing the effect of bonds on the
compression behaviour. Note that all materials are of the same coefficient of
interparticle friction as µ = 0.5, except specifically stated below. It can be
seen:

(a) In Fig. 11a that the DEM medium-dense material predicts a weak bonding
behaviour at bonding strength R =1 MN but a strong bonding behaviour
at R = 10 MN. This confirms the first Coop and Willson criterion con-
cerned with the amount and strength of the cement.

(b) In Fig. 11b that the response of the two unbonded very loose materials
shows that NCL of µ = 0.5 (NCL1 in the figure) is well above that of
µ = 0.2 (NCL2 in the figure), which is reasonable since larger µ pro-
duces larger resistance against compaction under a give pressure. The two
bonded DEM medium-dense materials, which have R = 1 MN for µ = 0.5
(Material 1) and R = 1.5 MN for µ = 0.2 (Material 2), respectively, pre-
dict almost the same gross yielding stress, with the compression curves
approaching their own NCL after yielding. In addition, the gross yielding
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stress of the two bonded materials lies between NCL1 and NCL2, indi-
cating that Material 1 should be regarded as a weak bonding since NCL1
is outside it, while Material 2 a strong bonding since NCL2 is inside it.
This confirms the second Coop and Willson criterion concerned with the
position of the intrinsic NCL.
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(c) In Fig. 11c that the very-loose bonded DEM material, even though it has
the lower yield stress in compression, shows the strong mode of behav-
iour, whereas the medium-dense bonded material of the higher yield stress
shows the weak mode (these two bonded materials both have R = 1 MN).
Hence, Fig. 11c confirms the third Coop and Willson criterion concerned
with initial density.

Figures 10 and 11 show that DEM is a useful tool in examining the bonding
effect in natural soils.

3.4 Penetration Mechanism in Granular Ground

The cone-penetration test is an insitu test in geotechnical engineering, in
which a cone-shaped penetrometer is pushed into the ground at a constant
rate. The resistance on the cone tip is measured and is then related to soil
classification and soil properties. However, the penetration mechanism is still
not very clear, due to the complex of the boundary-value problem which
involves: (a) large relative sliding on the soil-penetrometer interface; (b) large
deformation of the soil; (c) the high gradient of the field variables around
the penetrometer, and (d) the soil involved undergoing an complex stress-
path which is evidently different from that representative of the conventional
laboratory tests. We shall introduce some plane-strain penetration mechanism
in granular material using DEM, which is described in terms of displacement
path and stress field. The detailed observation can be found in the reference
[23]. We use DEM, because it can capture the aforementioned four features
easily.

The contact mode used is a standard contact laws shown in Fig. 1. The
material used is composed of 20 types of disks with a maximum diameter
of 3.525mm, a minimium diameter of 2.25mm, an average grain diameter
d50 = 2.925mm and uniformity coefficient d60/d10 = 1.25 [23]. Take advantage
of the geometric symmetry of the problem, only half of the ground and half of
the penetrometer are considered in the analyses. The target ground consists
of 10,000 particles with planar void ratio of about 0.24, and has a depth and
width as 16R and 17.5R, respectively, where R represents the half-width of
the penetrometer. The multi-layer under-compaction method [19] was used
to generate the ground. After the ground is generated, half of a standard
penetrometer with its radius asR = 18mm and its apex angle as 60◦, is formed
over the ground, as shown in Fig. 12. The penetrometer is described with three
rigid walls, i.e. a frictional wall to simulate penetrometer tip, vertical frictional
and frictionless walls to simulate penetrometer sleeves. The effect of tip-soil
friction is to be clarified by choosing different frictional coefficient µ between
the tip (or frictional sleeve) and particles. For simplicity, a perfectly-smooth
(P-S) and a perfectly-rough (P-R), i.e. µ = 0 and µ = tanφµ, respectively,
are considered. The penetrometer is pushed downward at 2mms−1 (around
0.1R s−1). The K0 boundaries are used reduce possible boundary effects [23].
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Figure 13 provides the tip resistances (qc) and their normalized values by
the initial vertical stress (qc/σv0), measured continually during the penetra-
tion in both P-R and P-S cases. Figure 13a shows that qc increases with pene-
tration depth with its initial gradient larger than the latter one in both cases.
At the same depth, the P-R leads to qc larger than the P-S as expected.
Figure 13b shows that qc/σv0 initially increases, then decreases, and finally
approaches a constant with depth. This is in agreement with that observed in
centrifuge modelling [4].
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Figure 14 presents the displacement paths of the grid nodes on lines 1–3
(see Fig. 12). The vertical displacement is shown on an amplified scale in the
figure. Figure 14 shows that:

(a) The final positions of the nodes on line 1 are all above their initial posi-
tions in both the perfectly-rough (P-R) and perfectly-smooth (P-S) cases.
The nodes of X/R > 2 move upward and sideward, and their final position
moves down with X/R. In contrast, those grid nodes of X/R ≤ 2 initially
moves downward and then upward while moving sideward (“hook” shape),
and their final position moves up with X/R. The tip-soil friction shows
evident influence on the displacement path of the nodes of X/R ≤ 2,
with the P-R leading to a larger downward displacement than the P-S.
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Furthermore, the P-R leads to a smaller upward displacement within
X/R ≤ 6 but a larger upward displacement for X/R ≥ 6 than the P-S.

(b) On line 2, the final positions of the nodes are all above their initial po-
sitions in both P-R and P-S cases except for those nodes of X/R ≤ 1.
In addition, the final position of the nodes moves up with the increas-
ing of X/R until X/R = 4, then moves down with X/R. The nodes of
X/R ≤ 9 show “hook” shape displacement path, while the grid nodes
of X/R > 9 undergo only upward and sideward motions. The magnitude
of downward motion is as large as about R for the node at X/R = 1,
and decrease greatly with the increasing of X/R. Again, the tip-soil fric-
tion shows evident influence on the displacement path of the nodes of
X/R ≤ 2. Generally, the P-R leads to a smaller upward displacement
within X/R ≤ 6 but a larger upward displacement X/R ≥ 6 than the P-S.

(c) The behaviour of grid nodes on line 3 is similar to that on line 2. However,
all the nodes show evidently larger downward motions. The final positions
of the grid nodes of X/R ≤ 3 are all below their initial positions in both
the P-R and P-S cases, while others are above the corresponding initial
positions. The “hook” shape range is up to X/R = 11 and moreover the
nodes of X/R = 1 move only downward and sideward.

Figure 15 provides the distributions of major and minor principal stress
vectors during the tests. In the figure, the maximum major stresses are plotted
by a vector of a constant length in order to illustrate the distributions clearly,
although the maximum major stress differs in the perfectly-rough (P-R)
and perfectly-smooth (P-S) cases and changes with penetration depth.
Figure 15 shows that

(a) The penetration has great effect on the stress distribution in the area near
the penetrometer, where high gradient of stresses including the values and
directions is observed as expected. The maximum stresses occur near the
tip, with its major principal stress nearly perpendicular to the tip;

(b) In the area close to the penetrometer, all the major principal stresses tend
to be in a direction to the penetrometer centre. In the area far from the
penetrometer, the penetration effect is very small, and hence the principal
stresses are prodominatly controlled by the self-gravity with the major
principal stress in the vertical directon as expected.

(c) The stresses beneath the tip point are larger in the P-R than in the P-
S. This is consistent with the observation in Fig. 14 that the P-R leads
to larger downward motion of the particles beneath the tip point than
the P-S. In addition, the major principal stress near the tip has a larger
inclination to Y -axis in the P-R than in the P-S, probably due to the
shear force on the tip which is induced by the tip-soil friction.

Figures 13–15 show that DEM is also a useful tool to some complex bound-
ary value problems in geotechnical engineering.
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4 Concluding Remarks

This chapter introduced recent application of the DEM to geomechanics,
which is limited to the work related to the first author’s two postdoctoral
fellowships in Canada and UK and which are concerned with main topics in
this workshop. It can be drawn from these application examples that:

(a) DEM is a numerical simulation technique that treats soils as an assem-
bly of discrete materials, and can efficiently provide their macroscopic–
microscopic responses under loading. The behaviour of assemblies can be
controlled rigorously by very simple contact laws at interparticle contacts.

(b) One of the key issues on DEM is the contact laws at interparticle con-
tacts. Different contact laws have been introduced and are found useful
for investigating noncoaxiality of granular materials, effective stress in un-
saturated soils, bonding effect in natural soils and penetration mechanism
in granular ground.

(c) DEM is a very promising tool to solve some problems not only in fun-
damental geomechanics but also in complex boundary value problems in
geotechnical engineering, which are difficult to solve by other geomethods.
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