CHAPTER 1

Fundamentals—
Concepts and Logic

Die Welt ist alles, was der Fall ist.
Ludwig Wittgenstein

“The world is everything that is the case” — this is the first tractatus in
Ludwig Wittgenstein’s Tractatus Logico-Philosophicus.

In science, we want to know what is true, i.e., what is the case, and what is
not. Propositions are the theorems of our language, they are to describe
or denote what is the case. If they do, they are called true, otherwise they
are called false. This sounds a bit clumsy, but actually it is pretty much
what our common sense tells us about true and false statements. Some
examples may help to clarify things:

“This sentence contains five words”
This proposition describes something which is the case, therefore it
is a true statement.

“Every human being has three heads”
Since I myself have only one head (and I assume this is the case with
you as well), this proposition describes a situation which is not the
case, therefore it is false.

In order to handle propositions precisely, science makes use of two fun-
damental tools of thought:
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e Propositional Logic

e Architecture of Concepts

These tools aid a scientist to construct accurate concepts and to formu-
late new true propositions from old ones.

The following sections may appear quite diffuse to the reader; some
things will seem to be obviously true, other things will perhaps not make
much sense to start with. The problem is that we have to use our natural
language for the task of defining things in a precise way. It is only by
using these tools that we can define in a clear way what a set is, what
numbers are, etc.

1.1 Propositional Logic

Propositional logic helps us to navigate in a world painted in black and
white, a world in which there is only truth or falsehood, but nothing in
between. It is a boiled down version of common sense reasoning. It is the
essence of Sherlock Holmes’ way of deducing that Professor Moriarty was
the mastermind behind a criminal organization (“Elementary, my dear
Watson”). Propositional logic builds on the following two propositions,
which are declared to be true as basic principles (and they seem to make
sense...):

Principle of contradiction (principium contradictionis)
A proposition is never true and false at the same time.

Principle of the excluded third (tertium non datur)
A proposition is either true or false—there is no third possibility.

In other words, in propositional logic we work with statements that are
either true (T) or false (F), no more and no less. Such a logic is also known
as absolute logic.

In propositional logic there are also some operations which are used to
create new propositions from old ones:

Logical Negation
The negation of a true proposition is a false proposition, the negation
of a false proposition is a true proposition. This operation is also
called ‘NOT".
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Logical Conjunction
The conjunction of two propositions is true if and only if both pro-
positions are true. In all other cases it is false. This operation is also
called ‘AND’.

Logical Disjunction
The disjunction of two propositions is true if at least one of the
propositions is true. If both propositions are false, the disjunction
is false, too. This operation is also known as ‘OR’.

Logical Implication
A proposition P; implies another proposition 27, if P, is true when-
ever P, is true. This operation is also known as ‘IMPLIES’.

Often one uses so-called truth tables to show the workings of these oper-
ations. In these tables, A stands for the possible truth values of a propo-
sition A, and B stands for the possible truth values of a proposition B.
The rows labeled “A AND B” and “A OR B” contain the truth value of the
conjunction and disjunction of the propositions.

A NOT A A B AANDB A B AORB A B AIMPLIES B
F F F F F F F F F T
T F F T F F T T F T T

T F F T F T T F F

T T T T T T T T T

Let us look at a few examples.

1. Let proposition A be “The ball is red”. The negation of A, (i.e.,, NOT
A) is “It is not the case that the ball is red”. So, if the ball is actually
green, that means that A is false and that NOT A is true.

2. Let proposition A be “All balls are round” and proposition B “All
balls are green”. Then the conjunction /A AND B of A and B is false,
because there are balls that are not green.

3. Using the same propositions, the disjunction of A and B, A OR B is
true.

4. For any proposition A4, A AND (NOT A) is always false (principle of
contradiction).

5. For any proposition A4, A OR (NOT A) is always true (principle of
excluded third).
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In practice it is cumbersome to say: “The proposition It rains is true”.
Instead, one just says: “It rains.” Also, since the formal combination of
propositions by the above operators is often an overhead, we mostly use
the common language denotation, such as: “2 = 3 is false” instead of
“NOT (2 = 3)” or: “It’s raining or/and I am tired.” instead of “It’s rain-
ing OR/AND I am tired”, or: “If it’s raining, then I am tired” instead of
“It’s raining IMPLIES I am tired.” Moreover, we use the mathematical ab-
breviation “A iff B” for “(A IMPLIES B) AND (B IMPLIES A)”. Observe that
brackets (...) are used in order to make the grouping of symbols clear if
necessary.

The operations NOT, AND, OR, and IMPLIES have a number of properties
which are very useful for simplifying complex combinations of these op-
erations. Let P, Q, and R be truth values. Then the following properties
hold:

Commutativity of AND
P AND Q is the same as Q AND P.

Commutativity of OR
P OR Q is the same as Q OR P.

Associativity of AND
(P AND Q) AND R is the same as P AND (Q AND R).
One usually omits the parentheses and writes P AND Q AND
R.

Associativity of OR
(P OR Q) OR R is the same as P OR (Q OR R).
One usually omits the parentheses and writes P OR Q OR R.

De Morgan’s Law for AND
NOT (P AND Q) is the same as (NOT P) OR (NOT Q).

De Morgan’s Law for OR
NOT (P OR Q) is the same as (NOT P) AND (NOT Q).

Distributivity of AND over OR
P AND (Q OR R) is the same as (P AND Q) OR (P AND R).

Distributivity of OR over AND
P OR (Q AND R) is the same as (P OR Q) AND (P OR R).

Contraposition
P IMPLIES Q is the same as (NOT Q) IMPLIES (NOT P).
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Idempotency of AND
P is the same as P AND P.

Idempotency of OR
P is the same as P OR P.

The validity of these properties can be verified by using the truth tables.
We will show how this is done for the example of “Distributivity of OR
over AND”.

We want to show that P OR (Q AND R) is the same as (P OR Q) AND (P
OR R), for every choice of P, Q, and R. To do so we first write a big truth
table which shows the values for P, Q, and R as well as Q AND R and P
OR (Q AND R) :

P Q R QANDR P OR(Q AND R)
F F F F F
F F T F F
FTF F F
FTT T T
T F F F T
TF T F T
T T F F T
TTT T T

Then we write a truth table which shows the values for P, Q, and R as
well as P OR Q, P OR R, and (P OR Q) AND (P OR R):

o

PORQ PORR (POR Q)AND (P ORR)
F F

R
F
T
F
T
F
T
F
T
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The truth values of the two expressions we are interested in (shown in
bold face) are indeed equal for every possible combination of P, Q, and
R.
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The verification of the remaining properties is left as an exercise for the
reader.

1.2 Architecture of Concepts

In order to formulate unambiguous propositions, we need a way to de-
scribe the concepts we want to make statements about. An architecture of
concepts deals with the question: “How does one build a concept?” Such
an architecture defines ways to build new concepts from already existing
concepts. Of course one has to deal with the question where to anchor
the architecture, in other words, what are the basic concepts and how
are they introduced. This can be achieved in two different ways. The first
uses the classical approach of undefined primary concepts, the second
avoids primary concepts by circular construction. This second approach
is the one that is used for building the architecture of set theory in this
book.

1. A concept has a name, for example, “Number” or “Set” are names of
certain concepts.

2. Concepts have components, which are concepts, too.
These components are used to construct a concept.

3. There are three fundamental principles of how to combine such com-
ponents:

e (Conceptual Selection: requires one component
e (Conceptual Conjunction: requires one or two components
e (Conceptual Disjunction: requires two components

4. Concepts have instances (examples), which have the following prop-
erties:

e Instances have a name

e Instances have a value

The construction principles mentioned above are best described using
instances:

The value of an instance of a concept constructed as a selection is the
collection of the references to selected instances of the component.
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The value of an instance of a concept constructed as a conjunction is the
sequence of the references to the instances of each component.

The value of an instance of a concept constructed as a disjunction is a
reference to an instance of one of the components.

Perhaps some examples will clarify those three construction principles.

A selection is really a selection in its common sense meaning: You point
at a thing and say, “I select this”, you point at another thing and say “I
select this, too” and so on.

One example for a conjunction are persons’ names which (at least in the
western world) always consists of a first name and a family name. An-
other example is given by the points in the plane: every point is defined
by an x- and a y-coordinate.

A disjunction is a simple kind of “addition”: An instance of the disjunc-
tion of all fruits and all animals is either a fruit or an animal.

Notation

If we want to write about concepts and instances, we need an expressive
and precise notation.

Concept: ConceptName.ConstructionPrinciple(Component(s))
This means that we first write the concept’s name followed by a dot.
After the dot we write the construction principle (Selection, Conjunc-
tion, or Disjunction) used to construct the concept. Finally we add
the component or components which were used for the construction
enclosed in brackets.

Instance: InstanceName@ConceptName(Value)
In order to write down an instance, we write the instance’s name fol-
lowed by an ‘@’. After this, the name of the concept is added, followed
by a value enclosed in brackets. In the case of a disjunction, a semi-
colon directly following the value denotes the first component, and a
semicolon preceding the value denotes the second component.

Very often it is not possible to write down the entire information needed
to define a concept. In most cases one cannot write down components
and values explicitly. Therefore, instead of writing the concept or in-
stance, one only writes its name. Of course, this presupposes that these
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objects can be identified by a name, i.e., there are enough names to distin-
guish these objects from one another. Thus if two concepts have identi-
cal names, then they have identical construction principles and identical
components. The same holds for instances: identicals name mean identi-
cal concepts and identical values.

By identifying names with objects one can say “let X be a concept” or “let
z be an instance”, meaning that X and z are the names of such objects
that refer to those objects in a unique way.

Here are some simple examples for concepts and instances:

CitrusFruits.Disjunction(Lemons, Oranges)
The concept CitrusFruit consists of the concepts Lemons and Or-
anges.

MyLemon@Citrusfruits(Lemon2; )
MyLemon is an instance of the concept CitrusFruit, and has the value
Lemon2 (which is itself an instance of the concept Lemons).

YourOrange@Citrusfruits(; Orange?7)
YourOrange is an instance of the concept CitrusFruits, and has the
value Orange7 (which is itself an instance of the concept Oranges).

CompleteNames.Conjunction(FirstNames, FamilyNames)
The concept CompleteNames is a conjunction of the concept First-
Names and FamilyNames.

MyName@CompleteNames(John; Doe)
MyName is an instance of the concept CompleteNames, and has the
value John; Doe.

SmallAnimals.Selection(Animals)
The concept SmallAnimals is a selection of the concept Animals.

SomelInsects@SmallAnimals(Ant, Ladybug, Grasshopper)
Somelnsects is an instance of the concept SmallAnimals and has the
value Ant, Ladybug, Grasshopper.

Mathematics

The environment in which this large variety of concepts and propositions
is handled is Mathematics.
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With the aid of set theory Mathematics is made conceptually precise and
becomes the foundation for all formal tools. Especially formal logic is
only possible on this foundation.

In Mathematics the existence of a concept means that it is conceivable
without any contradiction. For instance, a set exists if it is conceivable
without contradiction. Most of the useful sets exist (i.e., are conceiv-
able without contradiction), but one may conceive sets which don’t ex-
ist. An example of such a set is the subject of the famous paradox ad-
vanced by Bertrand Russell: the set containing all sets that do not contain
themselves—does this set contain itself, or not?

Set theory must be constructed successively to form an edifice of con-
cepts which is conceivable without any contradictions.

In this section we will first show how one defines natural numbers using
concepts and instances. After that, we go on to create set theory from
“nothing”.

Naive Natural Numbers
The natural numbers can be conceptualized as follows:

Number.Disjunction(Number, Terminator)
Terminator.Conjunction(Terminator)

The concept Number is defined as a disjunction of itself with a concept
Terminator, the concept Terminator is defined as a conjunction of itself
(and nothing else). The basic idea is to define a specific natural number
as the successor of another natural number. This works out for 34, which
is the successor of 33, and also for 786657, which is the successor of
786656. But what about 0? The number zero is not the successor of any
other natural number. So in a way we use the Terminator concept as a
starting point, and successively define each number (apart from 0) as the
successor of the preceding number. The fact that the concept Termina-
tor is defined as a conjunction of itself simply means: “Terminator is a
thing”. This is a first example of a circular construction used as an artifice
to ground the definition of natural numbers.

Now let us look at some instances of these concepts:
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t@Terminator(t)
In natural language: the value of the instance t of Terminator is itself.
This is a second application of circularity.

O0@Number(; t)
The instance of Number which we call 0 has the value t;.

1@Number(0; )
The instance of Number which we call 1 has the value 0;.

2@Number(1;)
The instance of Number which we call 2 has the value 1;.

If we expand the values of the numbers which are neither 0 nor t, we get

e the value of 1 is 0;

e the value of 2 is 1; which is 0;;

o the value of 3 is 2; which is 0;;;

e eftc.

This could be interpreted by letting the semicolon stand for the operation

“successor of”, thus 3 is the successor of the successor of the successor
of 0.

Pure Sets
The pure sets are defined in the following circular way:
Set.Selection(Set)

Here, we say that a set is a selection of sets. Since one is allowed to
select nothing in a conceptual selection, there is a starting point for this
circularity. Let us look at some instances again:

D@Set()
Here we select nothing from the concept Set. We therefore end up
with the empty set.

1@Set(D)
Since ¢ is a set we can select it from the concept Set. The value of 1
is a set consisting of one set.



1.2 Architecture of Concepts 13

2@Set(J, 1)
Here we select the two sets we have previously defined. The value of
2 is a set consisting of two sets.

Elements of the Mathematical Prose

In Mathematics, there is a “catechism” of true statements, which are
named after their relevance in the development of the theory.

An axiom is a statement which is not proved to be true, but supposed
to be so. In a second understanding, a theory is called axiomatic if its
concepts are abstractions from examples which are put into generic defi-
nitions in order to develop a theory from a given type of concepts.

A definition is used for building—and mostly also for introducing a sym-
bolic notation for—a concept which is described using already defined
concepts and building rules.

A lemma is an auxiliary statement which is proved as a truth prelimi-
nary to some more important subsequent true statement. A corollary is
a true statement which follows without significant effort from an already
proved statement. Ideally, a corollary should be a straightforward conse-
quence of a more difficult statement. A sorite is a true statement, which
follows without significant effort from a given definition. A proposition is
an important true statement, but less important than a theorem, which is
the top spot in this nomenclature.

A mathematical proof is the logical deduction of a true statement B from
another true statement C. Logical deduction means that the theorems
of absolute logic are applied to establish the truth of B, knowing the
truth of C. The most frequent procedure is to use as the true statement
C the truth of A and the truth of /A IMPLIES B, in short, the truth of
A AND (A IMPLIES B). Then B is true since the truth of the implica-
tion with the true antecedent A can only hold with B also being true.
This is the so-called modus ponens. This scheme is also applied for indi-
rect proofs, i.e., we use the true fact (NOT ‘B) IMPLIES (NOT A), which is
equivalent to A IMPLIES B (contraposition, see also properties on page 6).
Now, by the principle of the excluded third and the principle of contra-
diction, either B or NOT B will be true, but not both at the same time.
Then the truth of NOT B enforces the truth of NOT A. But by the princi-
ple of contradiction, A and NOT A cannot be both true, and since A is
true, NOT B cannot hold, and therefore, by the principles of the excluded
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third and of contradiction, B is true. There are also more technical proof
techniques, such as the proof by induction, but logically speaking, they
are all special cases of the general scheme just described.

In this book, the end of a proof is marked by the symbol 0.
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