
2 Numerical Bifurcation Techniques 

2.1 Various Types of Bifurcation 

Nonlinear phenomena relate to the processes that involve physical vari­
ables which are governed by nonlinear equations. The models which are 
described by these equations have been obtained by some approximate 
projection rationale from presumably more fundamental microscopic dy­
namics of the system. In some cases a reasonable projection may yield 
simple linear equations in some approximations. 

To demonstrate the basic concepts of nonlinear dynamical systems, we 
consider a pair of first order coupled ordinary autonomous differential 
equations. The bases of the classification of these equations are well 
known and have received much attention in many text books on ordinary 
differential equations [1,2]. 

^ _ . . . (2.1) 

at 

The equilibrium points are given by / i = 0 and /2 = 0 . Perturb the 

equilibrium point by AXj and l^^ > expand the resulting equations in the 

Taylor Series, and linearize the equations near this equilibrium point. The 

solutions of Axj and Ax:2 are then given by 

/^,=C,e'^' + C,e'^' (2.3) 

Ax^^C^e^^+Qe-^^ (2.4) 
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The constants Cj, C2, C3, C4 are determined by the initial conditions. The 

exponents X\ and X2 are the eigenvalues of the Jacobian matrix 
[a b 

J = \ 
\_c d_ 

and can be obtained by solving | J - A/ |= 0 (where a, b, c, d are the par­
tial derivatives of/i a n d ^ evaluated w.r.t. xi and xi at the equilibrium 
point). 

Tr{J) ^a^d\^^ discriminant = Tr{jf - 4det(J) 

There are a number of possibilities for the sign and character of Ai and X2, 
depending on the signs and relative magnitudes of Tr{J) and det{J) . Dif­
ferent possible cases are briefly described below: 

Case (i): Tr{J^ < 0 , det(J) > 0 , A > 0: for these conditions Xi and X2 
are both real and negative. The stationary state is stable and the perturba­
tions decay. It belongs to stable node. 

Case (ii): Tr(J) > 0 , det(J) > 0 , A > 0: Xi and X2 are both real and posi­
tive. The exponential terms in Eqs.2.3 and 2.4 increase monotonically with 
time. The perturbations grow exponentially. It belongs to unstable node. 

Case (iii): Tr(J) < 0 , det(J) > 0 , A < 0 : Xi and X2 are complex and 

the real part of X\ and X2 is negative. For this case the perturbations are 
given by 

Ax = c,e^'^^'^ cos(Im(AO + 0,) (2.3a) 

Ay = c^e^<^'^ cos(Im(;iO + 6^) (2.4a) 

The decaying terms ensure a return to the original stationary state because 
of the cosine functions. This is a damped oscillatory motion. It belongs to 
stable focus. 

Case (iv): Tr{J) > 0 , det(J) > 0 , A < 0: here X\ and X2 are complex and 
the real part of X\ and X2 is positive. The perturbations grow in a diver­
gent oscillatory manner. It is an unstable focus. 
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Case (v): Tr{J) >or<0 , d e t ( / ) < 0 , A > 0 : 2i and X2 are real. 
Aj = -i-ve and A2 = -ve. One of the exponential term in each of AXj 
and AX2 decrease exponentially. The other with the positive root will in­
crease with time. The growing term will eventually dominate and the sys­
tem will move away from the stationary state. It leads to saddle point be­
havior. 

SPECIAL CASES 
Case (vi): det(J) - 0 : here /li and X2 are both real. 

Ai>0 

For Tr(7) > 0 

^2 = 0 

A, = 0 
For Tr(J) < 0 

h<0 

This leads to saddle node bifurcation or fold. To capture the true system 
behavior, we have to consider nonlinear terms. 

Case (vii):rr(J) = 0 ,de t (J ) > 0 , A < 0 : here A 1 and A2 are both 

complex and the real part of these eigenvalues is zero. For this case also, to 
capture true system behavior, we have to consider the nonlinear terms. 
This may lead to Hopf bifurcation. 

Except for three critical cases: (vi) det(j) = 0; (vii) Tr(J) =0; det(J) >0; 
and a special case where both det(J) =0; Tr{J)=0\ the integral curves of the 
nonlinear system have the same behavior as those of linearized systems in 
the neighborhood of the equilibrium. These results are summarized with 
the values of the trace and determinant of the corresponding Jacobian ma­
trix as shown in the phase diagram (Fig.2.1). For linear systems in 7?̂  [3] 
make sound classification and arrangement of phase portraits. 

However, in the three critical cases mentioned before, the structure of or­
bits in the state space will change qualitatively. Such a qualitative change 
in called a bifurcation. This bifurcation may be due to variation of certain 
parameters in the system. The critical value of the parameter where the bi­
furcation occurs is the bifurcation value of the parameter. 



22 Numerical Bifurcation Techniques 

The chapter is organized as follows: Section 2.2 describes the general 
principles involved in the study of bifurcation behavior of an n dimen­
sional dynamical system. Sections 2.3, 2.4 and 2.5 discuss the continuation 
based numerical techniques that can be effectively used to identify various 
bifurcation points. 

saddle 
point 

saddle 
point 

nonlinearity governs 
the stability 

Fig.2.1 Phase diagram [4] 

2.2 Bifurcation of Dynamical Systems 

Consider a dynamical model of a system [5] described by autonomous dif­
ferential equations of the vector form in n-dimensional space 
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X = F{X,X),XGR\X^R' (2.5) 

Here x denotes the state variables. For power system models these are: 
generator angles, generator angular velocities, load voltage magnitudes, or 
angles etc. A is a vector of time invariant scalar parameters. At an equilib­
rium point (XO,/IQ) , the left hand term x of equation becomes zero, i.e., 
the steady state solution of Eq.2.5 satisfies the set of nonlinear algebraic 
equations F (XQ, / IQ) = 0. If the eigenvalues of the Jacobian dFldx be­
come non-zero, then according to implicit function theorem the equilibria 
of Eq.2.5 can be expressed as the smooth function oix = x(X). The func­
tion x(X) is called the branch of equilibria. However if the Jacobian has an 
eigenvalue with zero real part occurring at some A, say Ac, the system 
X = F(x^,^^) is structurally unstable and several branches of x = x(A) 

can come together at (x^^X^) in 7?"^^ . The parameter set Xc where the 

system loses its stability is called a bifurcation set. The point (x^^A^) is 

called bifurcation point. (In general, in engineering systems a one-
parameter family with k-l relations between the parameters jui, jU2, ju^,. . . . 
can be represented as a curve, 1, in the ^-dimensional parameter space.) 
Thus the principle of linear stability differentiates between two categories 
of equilibrium solutions. For the hyperbolic fixed points (where the eigen­
values have non-zero real parts), linear stability analysis suffices com­
pletely. For non-hyperbolic fixed points (the points where at least one ei­
genvalue has zero real part), a linear stability analysis is not applicable and 
a full nonlinear analysis has to be carried out. There are techniques avail­
able to simpHfy, without any significant loss of information, the represen­
tation of the flow in the nonlinear dynamical systems in the neighborhood 
of non-hyperbohc points. One of these techniques is the center manifold 
theory. This theory closes the gap left by Hartman-Grobman theorem 
(HGT). According to HOT, if the Jacobian dF/dx has no eigenvalues with 
zero real part, then the family of trajectories near an equilibrium point 
(XQ,/IQ) of a nonlinear system x= F(x, A), and those of the locally lin­
earized system have the same topological structure, which means that in 
the neighborhood of (XQ , X^) there exist homeomorphic mappings which 

map trajectories of the nonlinear system into trajectories of the linear sys­
tem. Should, however, an eigenvalue with a zero real part exist, the open 
question arises how this effects the flow in the neighborhood of the equi-
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librium point. It is this gap left open by HGT that is closed by the center 
manifold theory. 

2.2.1 Center manifold [6] 

Let (XQ , AQ ) be the equilibrium point ofF(x, X), and E^, E' and E^ the cor­
responding generalized eigenspaces of the Jacobian matrix dFldx \ xo, 
where the real part of the eigenvalues (//) defines the eigenspaces, 

Re(//) = 

Then there exist stable W, unstable W^' and center manifold W, 
which are tangential to Ef, E^, E^ respectively at (XQ , /IQ ) . If one is inter­
ested in the long term behavior (i.e., /=> oo) the overall dynamics in the 
neighborhood of an equilibrium point are reproduced by the flow on the 
center manifold W^. This reduction of the dynamics to those in the W^ 
subspace is the subject of center manifold theory. In order to calculate the 

flow of the reduced dynamics on W^, the nonlinear vector field can be 
transformed to the following form. We can assume that unstable manifold 
W* is empty. This makes the presentation simple, without loss of gener­
ality. 

K-Ax.^fix,,xy,X^^R- (2.6) 

K=A\-^gi^c^^sy^X^eR- (2.7) 

The matrix Adfic, n^ contains ric, eigenvalues with zero real parts. As, ma­
trix {fis, Us) contains Us eigenvalues with negative real parts. The nonhnear 
functions / and g should be continuously differentiable at least twice and 
vanish together with their first derivatives at the equilibrium point. Xc cor­
respond to center manifold and are sometimes called active variables. Xs 
correspond to stable manifold and are called passive variables. Due to 
nonlinear couplings the influence of x̂  in the equation for Xc cannot be ig­
nored. Hence the correct way of analysis is to compute the center mani­
fold. 
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x^-Kx^) (2.8) 

by expressing the dependence of x̂  on Xc from Eq.2.8 and then to eliminate 
from Eq.2.6 to obtain the bifurcation equation 

K = A\+fi^cMxJ) (2-9) 

Then the equivalence theorem [5] states that for r=> oo, the dynamics of 
Eq.2.9 in the neighborhood of the equilibrium point is equivalent to the 
dynamics of the initial system x = F{x, X) with X fixed at the value X. In 
order to solve Eq.2.9, one has to know the function h{x^. This can be ob­
tained as follows 

ck^ _ dhjxj _ dh dx (2.10) 

dt dt dx„ dt 

from Eqs.2.6 and 2.7, Eq.2.10 can be written as 

AKXc) + g{x^MXc)) 
'dh^ 

v^^cy 
[A^x^+f(x^,h(x^))] (2.11) 

or 
^ dh] 

The functions h and (dh/dxc) are zero at the equilibrium point. Eq.2.11 is in 
general a partial differential equation which cannot be solved exactly in 
most cases. But its solution can sometimes be approximated by a series 
expansion near the equilibrium point. The aforementioned reduction tech­
nique of the center manifold theory is similar to its physical counterpart in 
the slaving principle associated with the synergetic approach proposed by 
the physicist Herman Haken in the early seventies [7]. 

In summary, if x is non-hyperbolic then there exist invariant center mani­
folds tangential to the center subspace and its dimension is equal to the 
number of eigenvalues of the Jacobian matrix having zero real parts. Then 
the practically interesting local stability behavior is completely governed 
by the flow on the center manifold. 

Effect of small perturbations of the critical parameters around the bifurca­
tion point can also be studied by unfolding the center manifold. This can 
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be achieved via the method of normal forms [8, 9]. Normal forms play an 
essential role in bifurcation theory because they provide the simplest sys­
tem of equations that describe the dynamics of the original system close to 
the bifurcation points. Even away from the bifurcation point Poincare's 
theory of normal forms reduces the initial nonlinear equations into the 
simplest possible forms without distorting the dynamic behavior in the 
neighborhood of fixed points or periodic solutions. The transformations, 
which yield to a reduction to normal forms, can be generated by develop­
ing the deviations from a state of equilibrium or from periodic motion into 
power series. Symbolic manipulation packages like MACSYMA, and 
MAPLE, are helpful in the development of normal forms. Application of 
normal form away form the bifurcation points to power system examples is 
given by [10, 11] and examples of the application of center-manifold the­
ory to power systems are given by [12, 13, 14]. 

The number of possible types of bifurcation increases rapidly with increas­
ing dimension of the parameter space. The bifurcations are organized hier­
archically with increasing co-dimension, where co-dimension is the lowest 
dimension of a parameter space which is necessary to observe a given bi­
furcation phenomenon. In this book we discuss only the dynamical system 
with a single parameter variation. Changing this parameter may drive the 
system into a critical state at which (i) a real eigenvalue becomes zero or 
(ii) a pair of complex conjugate eigenvalues becomes imaginary. In case 
(i) new branches of stationary solutions usually arise and are called static 
bifurcations. (Typical static bifurcations are (i) saddle node or fold, (ii) 
trans-critical, and (iii) pitchfork.) Case (ii) may lead to the birth of a 
branch of periodic solutions called dynamic bifurcations. Typical dynami­
cal bifurcation is Hopf. 

In many practical engineering problems, identification of these bifurca­
tions is important. For example, buckling load of elastic structures [15] and 
voltage collapse in power systems [12, 13, 16, and 17] is related to saddle-
node bifurcations. Hopf bifurcation and bifurcation of periodic solutions 
are observed in chemical engineering [18], mechanical engineering [19, 
20] and electrical engineering [21, 22, and 50] to name a few. The next 
section concentrates on the numerical identification of these bifurcations. 
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2.3 Detection of Bifurcation Points 

2.3.1 Static bifurcations 

The problem of determining the roots of nonhnear equations is of frequent 
occurrence in scientific work. Such equations arise typically in connec­
tion with equilibrium problems. When describing a real life problem, the 
nonlinear equations usually involve one or more parameters. Denoting 
one such parameter by 2, the nonlinear equations read: 

F(x,Z) = 0 (2.12) 

where F: R^xR -^ R^ is a, mapping which is assumed smooth. In 
Eq.2.12, X=0 usually corresponds to the base case solution. If a priori 
knowledge concerning zero points of F is available, it is advisable to cal­
culate X via a Newton type algorithm defined by an iteration formula such 
as: 

= X, A7'F{x.fi) / - O , 1,. . .^ (2.13) 

where Af is some reasonable approximation of the Jacobian F^ixfi). 
However, if an adequate starting value for a Newton type iteration method 
is not available, we must seek other remedies. In Section 2.3.2, we will in­
troduce how the lack of knowledge for an initial guess can be tackled by 
the homotopy method. 

Because the systems F(x, X) =0 depends on X, we speak of a family of 
nonlinear equations. Solutions now depend on the parameter 2, i.e., x(X). 
Upon varying the parameter 2, we will get a series of solutions. This is 
often called a solution curve. At each point corresponding to a certain Xk, 
if we keep solving F(x, X) =0 via the conventional Newton type iteration, 
i.e. by formula (2.13), we may run into difficulty due to the singularity of 
the Jacobian Fx(x, X^). The singularity occurs at a so-called turning point 
(or it is also identified with fold and saddle node) and when the equation is 
parameterized with respect to X. In the subsequent sections, we will dis­
cuss the interesting topic of curve tracing via the continuations method. 
We will show how the problem of singularity of the Jacobian can be 
solved, namely, by switching the continuation parameter. 
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2.3.2 Homotopy Method 

We center our discussion on obtaining a solution to a system of n nonlinear 
equations in n variables described by Eq.2.12 when /I is at a fixed value. 
Homotopy method (also some times called embedding method) first de­
fines an easy problem for which a solution is known. Then it defines a path 
between the easy problem and the problem we actually want to solve. The 
easy problem, with which the homotopy method starts, is gradually trans­
formed to the solution of the hard problem. Mathematically, this means 
that one has to define a homotopy or deformation: R^xR-^ R^ such that 

H(x,0) = g(x), H(x,l) = F(x) (2.14) 

where g is a trivial smooth map having known zero points and H is also 
smooth. Typically one may choose a convex homotopy such as 

H(x,t) = (1 - t)g(x) + tF(x) (2.15) 

The problem H(x,t)=^0 is then solved for values of t between 0 and 1. 

This is equivalent to tracing an implicitly defined curve c(s) E:H~\0) 

(i.e. H(c(s))=0) for a starting point (XQ ,0) to a solution point (Xn,l). Under 

certain conditions, c(s) can be defined as (see Fig2.2): 

x(t) = -(H,(t,x(tW'H,(t,x{t)) (2.16) 

If this succeeds, then a zero point of F is obtained, i.e. H(x,l) = F(x). How­
ever, the reader may suspect that this is an unnatural approach, since 
Eq.2.16 seems to be a more compHcated problem than to solve H(c(s))=0 
as a stabilizer. This is the general idea in the continuation methods with a 
predictor and corrector tracing scheme. 
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t = l 

Fig.2,2 Homotopy solution 

The relationship Eq.2.15, which embeds the original problem in a family 
of problems, gives an example of a homotopy that connects the two func­
tions F and g. In general a homotopy can be any continuous connection 
between F and g. If such a map H exists, we say that F is homotropic to 
g. A simple two-dimensional nonlinear problem is given here to illustrate 
how the homotopy method works. The details of this method are given in 
[23]. 

Numerical example 1 .[24] 

Fix) 
/2W 

;cf-3x2+3 

X^X2 + 6 

Define the homotopy function as: 

H{x,t) = tF(x) + (1 - t)g(x) 

^tF(x) + (l-t)F(x)-F(xo) 

= F(x) + (t-l)F(x) 

Then we get a curve (from Eq.2.5) defined by: 
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]_ 

"A 2x A -x^ 

42x2 

14x 

where A=2xiV6x2^, with Xo= (1,1). After tracing the implicitly defined 
curve via some continuation method, we arrive at a solution when t = I: 
x*= (-2.961, 1.978). A real root of F is (-3, 2). Reasonably we can ex­
pect that Newton's method would work well with x* as the initial guess. 
After one step of Newton-Raphson iteration, we getxi= (-3.0003, 2.0003). 

However, if we start the Newton's methods directly with the initial guess 
xo= (1, 1), it takes more than 5 iterations to get the answer x\. For a more 
complicated practical nonlinear problem, the conventional Newton's 
method might not work at all due to the poor selection of the initial values. 

Whether or not the tracing of a curve can succeed depends on the continua­
tion strategy employed. If the curve can be parameterized with respect to 
the parameter t, then the classical embedding algorithm [23] can be ap­
plied. In the following sections, we will discuss how a parameterization 
is done and how vital this procedure is in the continuation, or say the curve 
tracing process. Particularly, we will show how the continuation is car­
ried on even when the curve is not parameterizeable with respect to a cer­
tain parameter. 

2.3.3 Continuation methods 

General description of different aspects of continuation methods with 
minimum mathematical details in curve tracing is given below. For de­
tailed explanation and mathematical proofs of these methods, please refer 
to the mathematical references provided in this section. Brief but more per­
tinent exploration of applying the methodology to power system studies is 
given in Chapter 3. The system of nonlinear equations in the form of equa­
tion Eq.2.12 serves as a basis for discussion. One note to make here is that, 
for the tracing of a curve defined by Eq.2.15, the discussion is the same as 
for the curve defined by Eq.2.12. Here, x denotes an /^-dimensional vec­
tor. 

Continuation methods usually consist of the following [25]: predictor, 
parameterization strategy, corrector and step length control. Assume that at 
least one solution of equation Eq.2.12 has been calculated, for instance, by 
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the homotopy method. For the tracing of a curve defined by Eq.2.15, this 

corresponds to the assumption that g has a known zero point. The f 

continuation step starts from a solution (x^+i ,/ly) of Eq.2.12 and attempts 

to calculate the next solution {Xj^^.Xj^^), for the next 2, namely/L^.^j. 

With a predictor-corrector method, the stepy to step 7+1 is split into two 

parts, with (Xj^^, Xj) produced in between by the prediction. In general, 

the predictor merely provides an initial guess for the corrector iterations 
that home in a solution of equations Eq.2.12. The distance between two 
consecutive solutions is called the step size. In addition to equation 
Eq.2.12, a relation that identifies the location of a solution on the branch is 
needed. This identification is closely related to the kind of parameteriza­
tion strategy chosen to trace the curve. 

In the curve tracing process, at some critical points (e.g. turning or fold 
points), the singularity of the Jacobian matrix Fx often causes trouble either 
in the prediction or in the correction process. This means that the current 
continuation parameter has become ill-suited for parameterizing the curve. 
One way of overcoming this difficulty at turning points is to parameterize 
the curve by arc length. The augmented Jacobian can be nonsingular 
throughout the tracing process. However, in practical power system 
analysis, we always want to get as much useful information as possible 
during the continuation process. The arc length usually has a geometrical 
rather than physical meaning, therefore we are often more interested in an­
other important ODE-based predictor, i.e., the tangent parameterized at 
each step. This is deferred to Section 2.3.4. 
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A^ 

Homotopy 

H(x,t) = 0 

F(x,0) = 0 
Curve of original 

/interest 

F(x,a)\0 
Apply continuation 
method 

^ 

Fig.2.3 Homotopy vs. continuation 

Fig.2.3 provides a conceptual VIQW point of homotopy in combination w îth 
continuation. Homotopy can be used to get an initial point on the curve of 
original interest. Continuation method can use this solution to further trace 
the curve of original interest. As mentioned before homotopy method uses 
artificial parameter (/ in Fig.2.3) to get a solution on the curve of original 
interest. Continuation method in general uses a natural or physical parame­
ter for the continuation. The efficiency in curve tracing is closely related to 
the step length control strategy. It is not difficult to choose a w^orkable step 
size in practice, though some trial and error is often required before the 
appropriate step size can be found. Step control can often be based on the 
estimated of the convergence quality of the corrector iteration. In [25] se­
lects step size according to the number of corrector iterations. In general, 
the step length control scheme is problem dependent. 

In practical situations, such as in powder systems, saddle node bifurcation, 
to w^hich out attention w îll mainly be given, are generic with the collapse 
type voltage problems. However, in some other situations, other bifurca­
tions might occur more frequently and thus will be of greater interest. 
For instance, the type of bifurcation that connects equilibria with periodic 
motion, i.e., Hopf bifurcation, is also generic. Readers interested in prob­
lems, such as how to locate Hopf bifiircation point on the traced branch 
and the related topics are referred to reference [25]. 
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2.3.4 Curve Tracing 

Davidenko in his seminal paper [26] proposed that the solving equation 
Eq.2.12 is equivalent to solving the following differential equation. 

F^ {x, X) dxl dk~ -F^ {x, X) (2.17a) 

With the initial conditions x{X) = xo, where F(xo, Ao) = 0. One can generate 
a sequence of solutions for changing X by numerically solving the differen­
tial Eq.2.17b with an appropriate initial value. 

dx 

dX 
= -[F.VF, 

(2.17b) 

However, here, the singularity ofFx creates numerical problems. Continua­
tion methods can well alleviate this problem. 

The continuation algorithm starts from a known solution and uses a predic­
tor-corrector scheme to find subsequent solutions at different 1 values. 

The Eq.2.17a can be rearranged in the following form 

F^ (x, /l)dx + F^ (x, A)d/l = 0 

dx 

(2.17c) 

[F^(X,A) F,(xa)] 
dX 

= 0 

Let T=[dx d XY, where T is a n+\ dimensional vector with Tn+i = 
X. T is tangent to the solution branch of Eq.2.17c. Eq.2.17c consists oin 
equations and («+l) unknowns. To get a unique solution a normalization 
of T is needed. For this one can fix one of the elements of T at particular 
value. For example one can use ej T = Tt =1.0, where Ck is {n+\) dimen­
sional unit vector with Z:̂^ element equals to unity [25] 
The tangent Tis the solution of the linear system: 

FF (2.18) 
z = e n+\ 
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Provided the full rank condition rank (F^,F;^) = n holds along the whole 

branch, the above equation has a unique solution at any point on the 
branch (k may have to be changed to select a different continuation pa­
rameter at a particular step, especially at or near the turning point). Once 
the tangent vector has been found, the prediction can be easily made. If we 
define Y= (x, X), then: 

where a*. designates the step size. 

(2.19a) 

Parameterization and the corrector: Now that a prediction has been made, a 
method of correcting the approximate solution is needed. Actually the best 
way to present this corrector is to expand on parameterization, which is vi­
tal to the process. Various parameterization techniques are proposed in the 
mathematical literature. Local parameterization proposed by [27, 28] looks 
promising and is described here. In local parameterization, the local 
original set of equations is augmented by one equation that specifies the 
value of one of the state variables or L In local parameterization one can 

fix Yf^ = r/ (I < k < n-^l). Then we have to solve the following set of 

equations: 

F(Y) = 0 

7,-77 = 0 
(2.19b) 

Selection of the continuation parameter corresponds to the variable that 

has the largest tangent vector component. Therefore 7, at a particular 

step is the maximum of (| Tj \,\T2 |, • • • | T^^^ \). Now, once a suitable index 

k and value of rj are chosen, a slightly modified Newton-Raphson iterative 
process can be used to solve the above set of equations. The general form 
of the iterative corrector process at the/^ step is: 

' ' 0 
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The corrector Jacobian can be seen to have the same form as the predicted 
Jacobian. Actually the index k used in the corrector is the same as that of 

used in the predictor and rj will be equal to 7^ , the predicted value Yk. In 

the predictor it is made to have a non zero differential change (J 7^ = Tk 

= ±1) and in the corrector its value is specified so that the values of other 
variables can be found. 

The step length in Eq.2.19a can be determined by various approaches. The 
simplest one is by keeping the step length constant. However if we choose 
very small step length the number of steps needed may be vary large. On 
the other hand large step lengths may lead to convergence problems. [25] 
proposed a simple approach for step length selection. Based on this ap­
proach the new step length is given by: 

i^j)ne.=i^j)oldNoptl^j 

where Nopt= optimal number of corrector iterations (this number is 6 for an 
error tolerance of lO""̂ ) and Â  = Number of iterations needed to approxi­
mate the previous continuation step. 

With this the F̂  value tj in Eq.2.19 can be calculated as: 

For most of the cases X is the ideal parameter to choose for tracing. How­
ever this parameter creates problems near the fold points. Near the fold 
point the tangent is normal to the parameter axis. However with local 
parameterization, near the fold point one can choose the parameter other 
than X to avoid these singularity problems. The identification of critical 
point can be realized by observing the sign change oidX, 

A one dimensional nonlinear problem is used here to show the basic steps 
involved in continuation (see Fig.2.4): 

Numerical example 2: Consider the following simple example with a sin­
gle unknown x 

F{x,X) = x^ - 3 x + /l = 0 (2.21a) 
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The Jacobian is 

dx dX 
= [ ( 2 x - 3 ) 1] 

Let the base solution (JCQ, XQ) be (3, 0). Then the series of solutions (xi, X\), 
{x2,X'2), can be found using predictor-corrector continuation as below: 

Continuation step 1: 

Predictor 

To start with, let X be the continuation parameter. Calculate the tangent 
vector as below: (here the index k is equal to 2). 

"(2xo-3) 1 

0 1 

=> 
3 iir 

0 lj[ 

ir^ici 
J \jdA,\ 

dx 

dX 
n: 

lo 

1 1 

0' 

1 

dx = — and dX-X 
3 

Predict the next solution by solving: 

X^ 

K 
Z=. 

XQ 

K 
+ 0" 

dx 

dX 

where cr is a scalar designating step size (say 0.5). Thus the predicted so­

lution (Xi,Ij) becomes (2.8333, 0.5). 

Continuation step ^ 
Corrector 

2: 

Correct the predicted solution by solving: 

= > -

"(23c,-3) 1" 

0 1 

[2.6666 1] 

0 1 

TAX 

[A/1_ 

[ A X I 

AA 
= 

r/(x„;i,)1 

L 0 J 
"0.0277768 

0 

Ax = -0.0104165 and A;1 = 0 
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Repeat these correction iterations until reasonable accuracy is obtained 

(say 6* =0.0001). Now, max{Ax,AX}>8 . So update x\ and X\ and repeat 

the corrector iteration. 
x , „ , ,=Xi+Ax = 2.8229164 

\ . e . = ^ + A ; i = o.5 

Continuation step 3: 
Corrector iteration: 

0 

• 3 ) 1 Ax 

AA 0 

=> Ax =-0.00004075 and A;1 = 0 

Now, max|Ax,AX,}<8. So stop the corrector iterations. After the first 

continuation step, the point (xî Ai) is equal to (2.8228757, 0.5). Repeat the 
entire process until we reach the critical point. For this example, the criti­
cal point it (1.5, 2.25). 

A versus x curve for the example is shown in the Fig.2.4. For the pre­
dicted solutions at points (1) and (2), we can choose X as the continuation 
parameter (i.e., fix X at that particular value) and converge on to the curve 
with corrector iterations. But at (3), A can not be a continuation parame­
ter, as there is no solution for that value of/I. At this point (i.e. when we 
are close to the critical point), we use local parameterization technique and 
choose X as the continuation parameter and solve for the system. This 
can be clearly observed in the example we considered. We know the so­
lution at the fold point as (1.5, 2.25). Consider the augmented Jacobian of 
the continuation process 

72x-3) r 
0 1 

-^aug -

At X = 1.5, det{Jaug} =0. So the method diverges near the critical point, if 
1 is the continuation parameter. If we fix the value of x, instead of A, then 

^aug -

(2JC-3) 1 

1 0 

det{Jaug} "^ 0. Then we can solve for the system. 
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^ — \ 
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1 

-

-
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Critical point 

-

1 
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Fig.2,4 Illustration of predictor-corrector scheme 

2.3.5 Direct method in computing the Saddle node bifurcation 
point: a one step continuation 

In Section 2.3.4, discussion has been given to show that the tracing of a 
curve can be done via continuation. We've noticed that, on the traced 
curve, a particular point, namely, the critical point, or sometimes called the 
fold point (also related to saddle node bifurcation), is often of greater in­
terest. If we are only interested in locating this point with respect to Ac, or 
say, we are interested in the maxim allowable variation ofX where the cor­
responding linearization (Jacobian) is singular, we have yet another ap­
proach available, i.e., the direct method. 

When the Jacobian becomes singular, F(x, X) =0 can not be solved by regu­
lar Newton-Raphson method in the present form. To avoid this singularity 
several methods have been published in the mathematical literature [29, 
30, 31]. In these references the authors cleverly augmented the original 
system of equations in such a way that that for this enlarged system, the 
fold point becomes regular. If the fold point is mathematically character-
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ized by the steady state Jacobian F^ having a simple and unique zero ei­
genvalue, with nonzero right eigenvector h and left eigenvector w, then 

G(Y) = 

F(x,A) ' (2.21b) 

= 0 

where {xc, Xc) is a fold point oiF^Xc, X) = 0. This procedure basically aug­
ments the original equations oiF(x, X) =0 by Fx(x, X)h =0, with hk= I. This 
augmentation makes the Jacobian G^ of enlarged system G{Y) non-singular 
and guarantees a solution. The proof can be found in [32]. This approach 
has some drawbacks. The dimension of the nonlinear set of equations to be 
solved is twice that of the original number. The approach requires a good 
estimate for the vector h. However, convergence of the direct method is 
very fast if the initial operating point is close to the turning point. The 
enlarged system can be solved in such a way that it requires the solution of 
nxn (n is the dimension of the Jacobian Fx(x, X)) linear systems, each 
with the same matrix. This method needs only one LU decomposition. At 
this turning point, rank F^ix, X)=nA and F^ (Xc, Xc) 8 range Fx(xc, Xc), that 
is rank F^ (Xc, Xc)/ Fx (x^ Xc) = n. These are called transversality conditions. 
Depending on the type of transversality condition, different types of static 
bifurcations can occur. Fold or saddle node is generic or the most com­
monly occurring static bifurcation. Table 2.1 summarizes the type of static 
bifurcation and corresponding transversahty condition for a one-
dimensional scalar system. Details can be found in Wiggins book [33]. The 
application of this method to power system voltage stability is reported by 
[34, 35]. 

Table 2.1 Static bifurcation types 

Bifurcation Transversality Con- Prototype Bifurcation Dia-
Type 
Fold 

Transcriti-
cal 

dition 

dF ^ d^F ^ 

dX dx" 

Equation 
X-x^ =0 

A x - x ^ = 0 

gram 
X 

d?^x dx' 
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Unstable mode Stable mode 

Numerical example 3: In Eq.2.21b, the original system of equations is 
augmented in such a way that for the enlarged system, the turning point 
becomes regular. Solving for Eq.2.21b will yield the desired fold point. 
Related to numerical example 2 given above, the enlarged system of equa­
tions is: 

x^-3x + A = 0 r . (2-22) 

2 x - 3 = 0 = 

Solving the above two equations, we directly get the critical point (xc, l^^'' 
= (1.5,2.25/^ 

Advantages: 

The direct method can find the critical point where the Jacobian is singular 
by solving the enlarged system of power flow equations in one step. The 
left and right eigenvectors produced in the direct approach carry very im­
portant information. For instance, it was shown that, at saddle node bifur­
cations, the right eigenvector corresponding to the zero eigenvalue gives 
the trajectory of the system state variables [16]. The left eigenvector can be 
used to construct a normal vector [17, 36, 37, 38] at the bifurcations hyper-
surface. 

Limitations: 

In the direct approach, for a successful convergence, a good initial guess is 
needed. This method basically doubles the number of equations to be 
solved. However, some of these shortcomings can be overcome by fol­
lowing the approach proposed in reference [30]. In that paper, the authors 
explored the structure of equation Eq.2.21b. It's shown that the whole sys­
tem can be resolved into four linear subsystems with the same coefficient 
matrix. Reference [34] applied this method to power system voltage stabil­
ity studies. 
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When one is beset with the lack of good starting points for the Newton 
type iterative methods in solving nonlinear equations, or when one needs 
to lead a parameter study of nonlinear system equilibrium problems, it 
would probably be advisable to turn homotopy and continuation methods. 
Examples shown in this section manifests the applicabihty of the technique 
to engineering problems. This review does not present and exhaustive sur­
vey but a compact text on continuation methods. Readers interested in con­
tinuation, bifurcation, and related numerical methods may find the follow­
ing references [25, 27, 39, 40] very helpful. 

2.4 Hopf Bifurcation 

2.4.1 Existence of Hopf bifurcation point 

If (i) F (Xc, Ac) = 0, (ii) the Jacobian matrix (dF/dx) has a simple pair of 
purely imaginary eigenvalues, ju(Xc) = ^jw, (iii) d(RQ(ju(kc)))/dk ^ 0. 
(Marsden & McCracken [41], Hassard et al [42].) 

Then there is a birth or death of limit cycles at {Xc, Ac) depending on the 
sign of derivative in (iii). Xc is the value of the parameter at which Hopf bi­
furcation occurs. Requirement (iii) guarantees there is a transversal cross­
ing of the imaginary axis by the pair of complex conjugate eigenvalues. 
Numerical determination of the Hopf bifurcation point involves estimation 
of the point {xc, Ac)- A costly way of identifying the point is to evaluate all 
the eigenvalues of the Jacobian matrix. However, as in the static approach 
there are efficient ways of identifying the Hopf point by direct methods as 
well as by indirect methods. 

2A.1.1 Direct methods 

Direct methods [40] calculate the Hopf point by solving one single suitably 
chosen equation. At the Hopf point, one pair of complex eigenvalues 
crosses the imaginary axis. Let this pair be: 

with 
«(4) = 0; ^(AJ = 0; da(AJ/dA = 0 
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For an eigenvalue // of the Jacobian matrix F^ [= dF I dx\, the follow­

ing equation is valid 

FJV^juW (2.23) 

where W = u ^jv is an eigenvector corresponding to the eigenvalue//. 

Since oc{X^) = 0, Eq.2.23 can be written as 

^.(^ + 7v) = (+7/?)(i/ + 7v) 

F^v + J3u = 0 (2.24) 

F^v-J3u = 0 (2.25) 

where u and v are vectors of dimension n. We have in fact 3n nonlinear al­

gebraic Eqs.2.24 and 2.25 and F(x,X)^0 with 3^+2 unknowns (Xj,X2,---, 

v.,V2,"',v ,A,j3). However the other two unknowns 

can be obtained by putting two normalizing conditions that force W to be 
non-zero. This means that practically we can choose two components of 
the vectors u and v arbitrarily. The Newton iterations method can be effec­
tively used to solve this 3n by the 3n system to get the Hopf point. An effi­
cient algorithm based on the direct approach is provided by [43]. The ap­
plication of the boundary value problem for direct computation of the Hopf 
points was proposed by Seydel [25]. 

2.4.1.2 Indirect methods 

The Hopf bifurcation point (x^,X^) can also be located by an indirect ap­
proach. This can be achieved by obtaining the information collected during 
any continuation method described before, i.e., an iteration technique is 
used to solve the algebraic equation Re(//(/l)) = 0 by means of the secant 

method. A change of sign of the real part a(Z) indicates that/l^ has 
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been passed. Therefore the check (x(Xj) a{Xj -1) <0 should be per­

formed after each continuation step Xj_^ -^ Xj. 

A good comparison of various methods of computing Hopf bifurcating 
points is given by [44]. AppHcation of Hopf bifurcation to power system 
problems can be found in [12, 14, 22, 45]. 

2.5 Complex Bifurcation 

Further variation of the parameter beyond the Hopf point may lead to other 
complex phenomena; basically one has to trace the monodromy matrix of a 
periodic orbit for different values of the parameter. The stability of peri­
odic solution is determined by Floquet multipliers which are the eigenval­
ues of the monodromy matrix. For a particular value of A, the monodromy 
matrix has w-Floquet multipliers. The magnitude of one of them is always 
equal to unity. The other n-\ Floquet multipliers determine (local) stabihty 
by the following rule [25, 46]. 

• x{i) is stable if | jUj \< 1, fory =1,..., n-\\ 

• x{i) is unstable if | jUj \> 1, for somey. 

On the stable periodic orbit, the nA multipliers are always inside the unit 
circle. The multipliers are the functions of the parameter under considera­
tion. When we vary the parameter, some of the multipliers may cross the 
unit circle. The multiplier crossing the unit circle is called the critical mul­
tiplier. Different types of branching occur depending on where a critical 
multiplier or pair of complex conjugate multipliers leaves the unit circle. 
Three associated types of branching are (i) the critical multiplier goes out­
side the unit circle along the positive real axis, with| ju^p^) |= 1, (ii) the 
multiplier goes outside the unit circle along the negative real axis with 
I M(PC) | - ~ 1 ^^d (iii) a pair of complex conjugate multipliers crosses the 
unit circle with a non-zero imaginary part. All these types refer to a loss of 
stability when 2 passes through X^. (On the other hand, if a critical multi­
plier enters the unit circle, the system gains stability.) In the case (i) typi­
cally, turning points of the periodic orbit occur with a gain or loss of stabil­
ity. Transcritical or pitchfork type bifurcations in periodic orbits are also 
possible for this case. In the case (ii), the system oscillates with period 
two. In the case (iii), the phenomenon of bifiircation into a torus occurs. 
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which is also called secondary Hopf bifurcation, or generalized Hopf bi­
furcation. The period doubling bifurcation often occurs repeatedly which 
generally leads to chaos. Lyapunov exponents are generally used to iden­
tify the chaos [47]. The exponential serves as a measure for exponential 
divergence or contraction of nearby trajectories. Chaos is characterized by 
at least one positive Lyapunov exponent, which reflects a stretching into 
one or more directions. In general, chaos has the following ingredients 
[47]: (i) the underlying dynamics is deterministic, (ii) no external noise has 
been introduced, (iii) seemingly erratic behavior of individual trajectories 
depends sensitively on small changes of initial conditions; (iv) in contrast 
to a single trajectory, some global characteristics are obtained by averaging 
over many trajectories or over a long time (e.g., a positive Lyapunov ex­
ponent) that do not depend on initial conditions; (v) when a parameter is 
tuned, the erratic state is reached via a sequence of events, including the 
appearance of one or more sub-harmonics. In the last few years, a great 
number of conferences and workshops devoted to chaotic dynamics have 
been organized. In most of them, papers by researchers from various 
branches of science and engineering have been presented. Research in 
chaos is well documented by [47]. Numerical methods to identify chaos 
can be found in [48]. Observations of chaos in power systems are reported 
in [12, 13, 49]. Fig2.5 gives the overall possible bifurcation scenario. 

statjonary 
point 

static 
saddle node 
transcfitjcQl 
pitchfork 

•ii-homocUntc* 
«p4:onjs -chaos 

^period doubting 

Fig. 2.5 List of possible bifurcations 
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