2 Numerical Bifurcation Techniques

2.1 Various Types of Bifurcation

Nonlinear phenomena relate to the processes that involve physical vari-
ables which are governed by nonlinear equations. The models which are
described by these equations have been obtained by some approximate
projection rationale from presumably more fundamental microscopic dy-
namics of the system. In some cases a reasonable projection may yield
simple linear equations in some approximations.

To demonstrate the basic concepts of nonlinear dynamical systems, we
consider a pair of first order coupled ordinary autonomous differential
equations. The bases of the classification of these equations are well
known and have received much attention in many text books on ordinary
differential equations [1, 2].
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The equilibrium points are given by f, =0 and f, =0. Perturb the

equilibrium point by Ax, and Ax,, expand the resulting equations in the
Taylor Series, and linearize the equations near this equilibrium point. The
solutions of Ax, and Ax, are then given by

Ax, =C,e™ + C,e™ (2.3)

Ax, = Cle’l" + Czeh' (2.4)
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The constants C,,C,,C,,C, are determined by the initial conditions. The
exponents A; and A, are the eigenvalues of the Jacobian matrix
a b
J=
and can be obtained by solving | J — Al |=0 (where g, b, ¢, d are the par-

tial derivatives of f; and f, evaluated w.r.t. x; and x; at the equilibrium
point).

1
Pap =S ITr(J) +A]
Tr(J) = a+d; A = discriminant = Tr(J)* — 4det(J)

There are a number of possibilities for the sign and character of 4; and 4,,
depending on the signs and relative magnitudes of 77(J) and det(J) . Dif-
ferent possible cases are briefly described below:

Case (i):Tr(J) < 0,det(J) >0, A>0: for these conditions 4, and 4,

are both real and negative. The stationary state is stable and the perturba-
tions decay. It belongs to stable node.

Case (ii): 7r(J) > 0,det(J)>0,A > 0: 4, and 1, are both real and posi-
tive. The exponential terms in Egs.2.3 and 2.4 increase monotonically with
time. The perturbations grow exponentially. It belongs to unstable node.

Case (iii): 7r(J)<0,det(J)>0, A<O0 : 4, and A, are complex and
the real part of 1, and 4, is negative. For this case the perturbations are
given by

Ax = ¢, ™™ cos(Im(Af) + 6,) (2.3a)

Ay = c,e™™ cos(Im(Af) + 6,) (2.4a)

The decaying terms ensure a return to the original stationary state because
of the cosine functions. This is a damped oscillatory motion. It belongs to
stable focus.

Case (iv): 7r(J) > 0,det(J) >0,A <0: here A, and A, are complex and

the real part of A, and A, is positive. The perturbations grow in a diver-
gent oscillatory manner. It is an unstable focus.
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Case (v): Tr(J)>or<0,det(J)<0,A>0: A and A, are real.
A, =+ve and A, =—ve. One of the exponential term in each of Ax,

and Ax, decrease exponentially. The other with the positive root will in-

crease with time. The growing term will eventually dominate and the sys-
tem will move away from the stationary state. It leads to saddle point be-
havior.

SPECIAL CASES
Case (vi): det(/)=0: here 4, and 1, are both real.

A1>0
For Tr(J) > 0

For Tr(J) <0
2, <0

This leads to saddle node bifurcation or fold. To capture the true system
behavior, we have to consider nonlinear terms.

Case (vii): Tr(J)=0,det(J)>0,A<0: here A1 and A2 are both

complex and the real part of these eigenvalues is zero. For this case also, to
capture true system behavior, we have to consider the nonlinear terms.
This may lead to Hopf bifurcation.

Except for three critical cases: (vi) det(y) = 0; (vii) Tr(J) =0; det(J) >0,
and a special case where both de#(J) =0; Tr(J)=0; the integral curves of the
nonlinear system have the same behavior as those of linearized systems in
the neighborhood of the equilibrium. These results are summarized with
the values of the trace and determinant of the corresponding Jacobian ma-
trix as shown in the phase diagram (Fig.2.1). For linear systems in R* [3]
make sound classification and arrangement of phase portraits.

However, in the three critical cases mentioned before, the structure of or-
bits in the state space will change qualitatively. Such a qualitative change
in called a bifurcation. This bifurcation may be due to variation of certain
parameters in the system. The critical value of the parameter where the bi-
furcation occurs is the bifurcation value of the parameter.
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The chapter is organized as follows: Section 2.2 describes the general
principles involved in the study of bifurcation behavior of an n dimen-
sional dynamical system. Sections 2.3, 2.4 and 2.5 discuss the continuation
based numerical techniques that can be effectively used to identify various

bifurcation points.
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Fig.2.1 Phase diagram [4]

2.2 Bifurcation of Dynamical Systems

del (J)

Consider a dynamical model of a system [5] described by autonomous dif-

ferential equations of the vector form in n-dimensional space
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x=F(x,A),xeR",AeR" 2.5)

Here x denotes the state variables. For power system models these are:
generator angles, generator angular velocities, load voltage magnitudes, or
angles etc. A is a vector of time invariant scalar parameters. At an equilib-

rium point (x,,4,), the left hand term X of equation becomes zero, i.e.,

the steady state solution of Eq.2.5 satisfies the set of nonlinear algebraic
equations F(x,,4,) =0. If the eigenvalues of the Jacobian OF/Ox be-

come non-zero, then according to implicit function theorem the equilibria
of Eq.2.5 can be expressed as the smooth function of x = x(2). The func-
tion x(4) is called the branch of equilibria. However if the Jacobian has an
cigenvalue with zero real part occurring at some A, say A., the system

x=F(x,,A.) is structurally unstable and several branches of x = x(1)
can come together at (x,,4.) in R™*. The parameter set 1. where the

system loses its stability is called a bifurcation set. The point (x_,4.) is

called bifurcation point. (In general, in engineering systems a one-
parameter family with -1 relations between the parameters u, ya, pa,. . . .
can be represented as a curve, 4, in the k-dimensional parameter space.)
Thus the principle of linear stability differentiates between two categories
of equilibrium solutions. For the hyperbolic fixed points (where the eigen-
values have non-zero real parts), linear stability analysis suffices com-
pletely. For non-hyperbolic fixed points (the points where at least one ei-
genvalue has zero real part), a linear stability analysis is not applicable and
a full nonlinear analysis has to be carried out. There are techniques avail-
able to simplify, without any significant loss of information, the represen-
tation of the flow in the nonlinear dynamical systems in the neighborhood
of non-hyperbolic points. One of these techniques is the center manifold
theory. This theory closes the gap left by Hartman-Grobman theorem
(HGT). According to HGT, if the Jacobian 0F/0x has no eigenvalues with
zero real part, then the family of trajectories near an equilibrium point

(x4, 4,) of a nonlinear system Xx= F(x, 1), and those of the locally lin-
earized system have the same topological structure, which means that in
the neighborhood of (x,,A,) there exist homeomorphic mappings which
map trajectories of the nonlinear system into trajectories of the linear sys-

tem. Should, however, an eigenvalue with a zero real part exist, the open
question arises how this effects the flow in the neighborhood of the equi-



24  Numerical Bifurcation Techniques

librium point. It is this gap left open by HGT that is closed by the center
manifold theory.

2.2.1 Center manifold [6]

Let (x,,A4,)be the equilibrium point of F(x, 1), and E*, E" and E* the cor-

responding generalized eigenspaces of the Jacobian matrix OF/0x ] X0,
where the real part of the eigenvalues (u) defines the eigenspaces,

<Q0—-F°
Re(y)=<=0—-E°
>0—-E"

Then there exist stable W, unstable W* and center manifold W°,
which are tangential to E’, E*, E° respectively at (x,,4,) . If one is inter-

ested in the long term behavior (i.e., £=> ) the overall dynamics in the
neighborhood of an equilibrium point are reproduced by the flow on the
center manifold W °. This reduction of the dynamics to those in the W*
subspace is the subject of center manifold theory. In order to calculate the

flow of the reduced dynamics on W ¢, the nonlinear vector field can be
transformed to the following form. We can assume that unstable manifold

W* is empty. This makes the presentation simple, without loss of gener-
ality.

x, =A4Ax + f(x,x,); X, e R (2.6)

x,=Ax, +g(x,x,); X, eR"” (2.7)

The matrix A.(n., n.) contains ., eigenvalues with zero real parts. 4;, ma-
trix (ng, 1) contains »; eigenvalues with negative real parts. The nonlinear
functions f'and g should be continuously differentiable at least twice and
vanish together with their first derivatives at the equilibrium point. X, cor-
respond to center manifold and are sometimes called active variables. X
correspond to stable manifold and are called passive variables. Due to
nonlinear couplings the influence of x; in the equation for x, cannot be ig-
nored. Hence the correct way of analysis is to compute the center mani-
fold.



2.2 Bifurcation of Dynamical Systems 25

x, = h(x,) (2.8)

by expressing the dependence of x; on x, from Eq.2.8 and then to eliminate
from Eq.2.6 to obtain the bifurcation equation

x,=Ax + f(x,,h(x,)) (2.9

Then the equivalence theorem [5] states that for #=> oo, the dynamics of
Eq.2.9 in the neighborhood of the equilibrium point is equivalent to the
dynamics of the initial system Xx = F(x, A) with A fixed at the value A. In
order to solve Eq.2.9, one has to know the function A(x.). This can be ob-
tained as follows

dy, _d(x) _oh dv @10
dt dt  ox, dt

from Eqs.2.6 and 2.7, Eq.2.10 can be written as

Ah(x,) + g(x, h(x,)) = [%)[Acxc + O h(x))] (2.11)

c

or [%J[Acxc + f(xc,h(xc)] -4dx -g(x,,h))=0
X

c

The functions 4 and (Oh/Ox.) are zero at the equilibrium point. Eq.2.11 is in
general a partial differential equation which cannot be solved exactly in
most cases. But its solution can sometimes be approximated by a series
expansion near the equilibrium point. The aforementioned reduction tech-
nique of the center manifold theory is similar to its physical counterpart in
the slaving principle associated with the synergetic approach proposed by
the physicist Herman Haken in the early seventies [7].

In summary, if x is non-hyperbolic then there exist invariant center mani-
folds tangential to the center subspace and its dimension is equal to the
number of eigenvalues of the Jacobian matrix having zero real parts. Then
the practically interesting local stability behavior is completely governed
by the flow on the center manifold.

Effect of small perturbations of the critical parameters around the bifurca-
tion point can also be studied by unfolding the center manifold. This can
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be achieved via the method of normal forms [8, 9]. Normal forms play an
essential role in bifurcation theory because they provide the simplest sys-
tem of equations that describe the dynamics of the original system close to
the bifurcation points. Even away from the bifurcation point Poincare’s
theory of normal forms reduces the initial nonlinear equations into the
simplest possible forms without distorting the dynamic behavior in the
neighborhood of fixed points or periodic solutions. The transformations,
which yield to a reduction to normal forms, can be generated by develop-
ing the deviations from a state of equilibrium or from periodic motion into
power series. Symbolic manipulation packages like MACSYMA, and
MAPLE, are helpful in the development of normal forms. Application of
normal form away form the bifurcation points to power system examples is
given by [10, 11] and examples of the application of center-manifold the-
ory to power systems are given by [12, 13, 14].

The number of possible types of bifurcation increases rapidly with increas-
ing dimension of the parameter space. The bifurcations are organized hier-
archically with increasing co-dimension, where co-dimension is the lowest
dimension of a parameter space which is necessary to observe a given bi-
furcation phenomenon. In this book we discuss only the dynamical system
with a single parameter variation. Changing this parameter may drive the
system into a critical state at which (i) a real eigenvalue becomes zero or
(1) a pair of complex conjugate eigenvalues becomes imaginary. In case
(1) new branches of stationary solutions usually arise and are called static
bifurcations. (Typical static bifurcations are (i) saddle node or fold, (ii)
trans-critical, and (iii) pitchfork.) Case (ii) may lead to the birth of a
branch of periodic solutions called dynamic bifurcations. Typical dynami-
cal bifurcation is Hopf.

In many practical engineering problems, identification of these bifurca-
tions is important. For example, buckling load of elastic structures [15] and
voltage collapse in power systems [12, 13, 16, and 17] is related to saddle-
node bifurcations. Hopf bifurcation and bifurcation of periodic solutions
are observed in chemical engineering [18], mechanical engineering [19,
20] and electrical engineering [21, 22, and 50] to name a few. The next
section concentrates on the numerical identification of these bifurcations.



2.3 Detection of Bifurcation Points 27

2.3 Detection of Bifurcation Points

2.3.1 Static bifurcations

The problem of determining the roots of nonlinear equations is of frequent
occurrence in scientific work. Such equations arise typically in connec-
tion with equilibrium problems. When describing a real life problem, the
nonlinear equations usually involve one or more parameters. Denoting
one such parameter by A, the nonlinear equations read:

F(x,2)=0 2.12)

where F: R"XR — R" is a mapping which is assumed smooth. In

Eq.2.12, A=0 usually corresponds to the base case solution. If a priori
knowledge concerning zero points of F is available, it is advisable to cal-
culate x via a Newton type algorithm defined by an iteration formula such
as:

X,y =X, — A F(x,,0)  i=0,1,..n (2.13)

where A4; i1s some reasonable approximation of the Jacobian F,(x,0).
However, if an adequate starting value for a Newton type iteration method
is not available, we must seek other remedies. In Section 2.3.2, we will in-
troduce how the lack of knowledge for an initial guess can be tackled by
the homotopy method.

Because the systems F(x, 4) =0 depends on A, we speak of a family of
nonlinear equations. Solutions now depend on the parameter 4, i.e., x(4).
Upon varying the parameter A, we will get a series of solutions. This is
often called a solution curve. At each point corresponding to a certain 4,,
if we keep solving F(x, 4) =0 via the conventional Newton type iteration,
1.e. by formula (2.13), we may run into difficulty due to the singularity of
the Jacobian Fi(x, ;). The singularity occurs at a so-called turning point
(or it 1s also identified with fold and saddle node) and when the equation is
parameterized with respect to A. In the subsequent sections, we will dis-
cuss the interesting topic of curve tracing via the continuations method.
We will show how the problem of singularity of the Jacobian can be
solved, namely, by switching the continuation parameter.
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2.3.2 Homotopy Method

We center our discussion on obtaining a solution to a system of n nonlinear
equations in » variables described by Eq.2.12 when 4 is at a fixed value.
Homotopy method (also some times called embedding method) first de-
fines an easy problem for which a solution is known. Then it defines a path
between the easy problem and the problem we actually want to solve. The
easy problem, with which the homotopy method starts, is gradually trans-
formed to the solution of the hard problem. Mathematically, this means
that one has to define a homotopy or deformation: R"x R — R" such that

H(x,0)=g(x),H(x,]) = F(x) (2.14)

where g is a trivial smooth map having known zero points and H is also
smooth. Typically one may choose a convex homotopy such as

H(x,t)=(1-)g(x)+tF(x) (2.15)

The problem H(x,f)=0 is then solved for values of ¢ between 0 and 1.
This is equivalent to tracing an implicitly defined curve c(s) e H'(0)
(i.e. H(c(s))=0) for a starting point ( x,,0) to a solution point (x,,1). Under
certain conditions, c¢(s) can be defined as (see Fig2.2):

x (1) = ~(H (6, (D))" H,(t, x(£)) (2.16)

If this succeeds, then a zero point of F is obtained, i.e. H(x,1) = F(x). How-
ever, the reader may suspect that this is an unnatural approach, since
Eq.2.16 seems to be a more complicated problem than to solve H(c(s))=0
as a stabilizer. This is the general idea in the continuation methods with a
predictor and corrector tracing scheme.
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g(x)=0 H{x,t)=0 f(x)7::\

Fig.2.2 Homotopy solution

The relationship Eq.2.15, which embeds the original problem in a family
of problems, gives an example of a homotopy that connects the two func-
tions " and g. In general a homotopy can be any continuous connection
between £ and g. If such a map H exists, we say that F' is homotropic to
g. A simple two-dimensional nonlinear problem is given here to illustrate
how the homotopy method works. The details of this method are given in
[23].

Numerical example 1 :[24]

)= {fl(x)} _ {xf ~3x2 + 3}
1o (x) XX, +6

X
SN
X,

Define the homotopy function as:

H(x,t)=tF(x)+(1-1)g(x)
=tF(x)+(1-0)F(x)-F(x,)
=F(x)+({-DF(x)

Then we get a curve (from Eq.2.5) defined by:
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x,(t) 1 x o6x |1 1 x 42x

L0 | Al-x, 2x||7] Al-x, 14x
where A=2x,*+6x,, with x¢= (1,1). After tracing the implicitly defined
curve via some continuation method, we arrive at a solution when ¢ = 1:
x'=(-2.961, 1.978). A real root of Fis (-3, 2). Reasonably we can ex-

pect that Newton’s method would work well with x" as the initial guess.
After one step of Newton-Raphson iteration, we get x;= (-3.0003, 2.0003).

However, if we start the Newton’s methods directly with the initial guess
xo= (1, 1), it takes more than 5 iterations to get the answer x;. For a more
complicated practical nonlinear problem, the conventional Newton’s
method might not work at all due to the poor selection of the initial values.

Whether or not the tracing of a curve can succeed depends on the continua-
tion strategy employed. If the curve can be parameterized with respect to
the parameter t, then the classical embedding algorithm [23] can be ap-
plied. In the following sections, we will discuss how a parameterization
is done and how vital this procedure is in the continuation, or say the curve
tracing process. Particularly, we will show how the continuation is car-
ried on even when the curve is not parameterizeable with respect to a cer-
tain parameter.

2.3.3 Continuation methods

General description of different aspects of continuation methods with
minimum mathematical details in curve tracing is given below. For de-
tailed explanation and mathematical proofs of these methods, please refer
to the mathematical references provided in this section. Brief but more per-
tinent exploration of applying the methodology to power system studies is
given in Chapter 3. The system of nonlinear equations in the form of equa-
tion Eq.2.12 serves as a basis for discussion. One note to make here is that,
for the tracing of a curve defined by Eq.2.15, the discussion is the same as
for the curve defined by Eq.2.12. Here, x denotes an n-dimensional vec-
tor.

Continuation methods usually consist of the following [25]: predictor,
parameterization strategy, corrector and step length control. Assume that at
least one solution of equation Eq.2.12 has been calculated, for instance, by
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the homotopy method. For the tracing of a curve defined by Eq.2.15, this
corresponds to the assumption that g has a known zero point. The

continuation step starts from a solution (x; /1j) of Eq.2.12 and attempts

+12

to calculate the next solution (x;,,,,

A;,1), for the next A, namely 4 ., .

With a predictor-corrector method, the step j to step j+1 is split into two
parts, with (x,,, ,/1j) produced in between by the prediction. In general,

the predictor merely provides an initial guess for the corrector iterations
that home in a solution of equations Eq.2.12. The distance between two
consecutive solutions is called the step size. In addition to equation
Eq.2.12, a relation that identifies the location of a solution on the branch is
needed. This identification is closely related to the kind of parameteriza-
tion strategy chosen to trace the curve.

In the curve tracing process, at some critical points (e.g. turning or fold
points), the singularity of the Jacobian matrix F, often causes trouble either
in the prediction or in the correction process. This means that the current
continuation parameter has become ill-suited for parameterizing the curve.
One way of overcoming this difficulty at turning points is to parameterize
the curve by arc length. The augmented Jacobian can be nonsingular
throughout the tracing process. However, in practical power system
analysis, we always want to get as much useful information as possible
during the continuation process. The arc length usually has a geometrical
rather than physical meaning, therefore we are often more interested in an-
other important ODE-based predictor, i.e., the tangent parameterized at
each step. This is deferred to Section 2.3.4.
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Fig.2.3 Homotopy vs. continuation

Fig.2.3 provides a conceptual view point of homotopy in combination with
continuation. Homotopy can be used to get an initial point on the curve of
original interest. Continuation method can use this solution to further trace
the curve of original interest. As mentioned before homotopy method uses
artificial parameter (¢ in Fig.2.3) to get a solution on the curve of original
interest. Continuation method in general uses a natural or physical parame-
ter for the continuation. The efficiency in curve tracing is closely related to
the step length control strategy. It is not difficult to choose a workable step
size in practice, though some trial and error is often required before the
appropriate step size can be found. Step control can often be based on the
estimated of the convergence quality of the corrector iteration. In [25] se-
lects step size according to the number of corrector iterations. In general,
the step length control scheme is problem dependent.

In practical situations, such as in power systems, saddle node bifurcation,
to which out attention will mainly be given, are generic with the collapse
type voltage problems. However, in some other situations, other bifurca-
tions might occur more frequently and thus will be of greater interest.
For instance, the type of bifurcation that connects equilibria with periodic
motion, i.e., Hopf bifurcation, is also generic. Readers interested in prob-
lems, such as how to locate Hopf bifurcation point on the traced branch
and the related topics are referred to reference [25].
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2.3.4 Curve Tracing

Davidenko in his seminal paper [26] proposed that the solving equation
Eq.2.12 is equivalent to solving the following differential equation.

F.(x,A)dx/dA =~F,(x, 1) (2.17a)

With the initial conditions x(4) = x,, where F(xo , 49) = 0. One can generate
a sequence of solutions for changing 4 by numerically solving the differen-
tial Eq.2.17b with an appropriate initial value.

dx -
2 JFT'F
dﬂ, [ x] A

(2.17b)

However, here, the singularity of F, creates numerical problems. Continua-
tion methods can well alleviate this problem.

The continuation algorithm starts from a known solution and uses a predic-
tor—corrector scheme to find subsequent solutions at different A values.

The Eq.2.17a can be rearranged in the following form

F.(x,A)dx+ F,(x,A)dA=0 (2.17¢)
F.2) Fnll “|=o
x('x’ ) l(‘x’ ) di -

LetT=[dx dA ]T ,where Tisa n+l dimensional vector with 7,.;,=
A. T is tangent to the solution branch of Eq.2.17c. Eq.2.17c consists of n
equations and (#+1) unknowns. To get a unique solution a normalization
of T is needed. For this one can fix one of the elements of 7 at particular
value. For example one can use e/ T = T; =1.0, where ¢; is (n+1) dimen-
sional unit vector with #” element equals to unity [25]

The tangent 7'is the solution of the linear system:

{F;Fz} (2.18)
z= en+1
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Provided the full rank condition rank (F,,F,)=n holds along the whole

branch, the above equation has a unique solution at any point on the
branch (k may have to be changed to select a different continuation pa-
rameter at a particular step, especially at or near the turning point). Once
the tangent vector has been found, the prediction can be easily made. If we
define Y = (x, 1), then:

T =F)+o,T (2.192)

where o designates the step size.

Parameterization and the corrector: Now that a prediction has been made, a
method of correcting the approximate solution is needed. Actually the best
way to present this corrector is to expand on parameterization, which is vi-
tal to the process. Various parameterization techniques are proposed in the
mathematical literature. Local parameterization proposed by [27, 28] looks
promising and is described here. In local parameterization, the local
original set of equations is augmented by one equation that specifies the
value of one of the state variables or 4. In local parameterization one can

fix Z =75 (1 <k <ntl). Then we have to solve the following set of
equations:

F(¥)=0 (2.19b)
Y,-n=0

Selection of the continuation parameter corresponds to the variable that

has the largest tangent vector component. Therefore Yk at a particular

step is the maximum of (|7} |,| 7, |,---| 7., |)- Now, once a suitable index

+1
k and value of # are chosen, a slightly modified Newton-Raphson iterative
process can be used to solve the above set of equations. The general form
of the iterative corrector process at the /" step is:

j J 2.20
el

€
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The corrector Jacobian can be seen to have the same form as the predicted
Jacobian. Actually the index & used in the corrector is the same as that of

used in the predictor and # will be equal tof’k_ , the predicted value Y;. In

the predictor it is made to have a non zero differential change (d Z =T

= =+ 1) and in the corrector its value is specified so that the values of other
variables can be found.

The step length in Eq.2.19a can be determined by various approaches. The
simplest one is by keeping the step length constant. However if we choose
very small step length the number of steps needed may be vary large. On
the other hand large step lengths may lead to convergence problems. [25]
proposed a simple approach for step length selection. Based on this ap-
proach the new step length is given by:

(o- j )new = (O-j){)/d N()pf /N]

J

where N,,,= optimal number of corrector iterations (this number is 6 for an
error tolerance of 10™*) and N; = Number of iterations needed to approxi-
mate the previous continuation step.

With this the Yk value # in Eq.2.19 can be calculated as:
n=Y'+(c))

new

For most of the cases 4 is the ideal parameter to choose for tracing. How-
ever this parameter creates problems near the fold points. Near the fold
point the tangent is normal to the parameter axis. However with local
parameterization, near the fold point one can choose the parameter other
than 4 to avoid these singularity problems. The identification of critical
point can be realized by observing the sign change of dA.

A one dimensional nonlinear problem is used here to show the basic steps
involved in continuation (see Fig.2.4):

Numerical example 2: Consider the following simple example with a sin-
gle unknown x

F(x,))=x>-3x+A=0 (2.21a)
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The Jacobian is

I Y| e
[Gx az} (@x=3) 1]

Let the base solution (xo, 4g) be (3, 0). Then the series of solutions (x;, A1),
()2, A2), can be found using predictor-corrector continuation as below:

Continuation step 1.
Predictor

To start with, let 4 be the continuation parameter. Calculate the tangent
vector as below: (here the index k is equal to 2).

(2x,-3) 1][dx] [0
0 11ldr] |1
o L)

- =
0 1{|di| |1

:>dx=~l and dA =1

3

Predict the next solution by solving:

X, X, dx
= +0o
A Ay dA
where ¢ is a scalar designating step size (say 0.5). Thus the predicted so-

lution (X,4,) becomes (2.8333, 0.5).

Continuation step 2:
Corrector

Correct the predicted solution by solving:

| @x=-3) 1| Ax] | LA
0 1lar] | o

N 2.6666 1][Ax] [0.0277768
0 1]|Ad]| 0

= Ax=-0.0104165and AL =0
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Repeat these correction iterations until reasonable accuracy is obtained
(say &=0.0001). Now, max{Ax,A?L} >g . So update x; and A, and repeat

the corrector iteration.
=> )?,,new =X, +Ax=2.8229164

X = +AL=0.5

Continuation step 3:
Corrector iteration:

@ =3 V| A | F (R s A )
0 1|ar] 0

= Ax =-0.00004075and AA =0

Now, max{Ax,Ak} <g. So stop the corrector iterations. After the first

continuation step, the point (x; 4;) is equal to (2.8228757, 0.5). Repeat the
entire process until we reach the critical point. For this example, the criti-
cal point it (1.5, 2.25).

A versus x curve for the example is shown in the Fig.2.4. For the pre-
dicted solutions at points (1) and (2), we can choose A as the continuation
parameter (i.e., fix A at that particular value) and converge on to the curve
with corrector iterations. But at (3), 4 can not be a continuation parame-
ter, as there is no solution for that value of 4. At this point (i.e. when we
are close to the critical point), we use local parameterization technique and
choose x as the continuation parameter and solve for the system. This
can be clearly observed in the example we considered. We know the so-
lution at the fold point as (1.5, 2.25). Consider the augmented Jacobian of

the continuation process
2x-3) 1
Jo- ( )
¢ 0 1

Atx = 1.5, det{J,,s} =0. So the method diverges near the critical point, if
A is the continuation parameter. If we fix the value of x, instead of A, then

J :[(Zx—3) 1}
¢ 1 0

det{Jug} # 0. Then we can solve for the system.
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Fig.2.4 Illustration of predictor-corrector scheme

2.3.5 Direct method in computing the Saddle node bifurcation
point: a one step continuation

In Section 2.3.4, discussion has been given to show that the tracing of a
curve can be done via continuation. We’ve noticed that, on the traced
curve, a particular point, namely, the critical point, or sometimes called the
fold point (also related to saddle node bifurcation), is often of greater in-
terest. If we are only interested in locating this point with respect to A., or
say, we are interested in the maxim allowable variation of A where the cor-
responding linearization (Jacobian) is singular, we have yet another ap-
proach available, i.e., the direct method.

When the Jacobian becomes singular, F(x, A) =0 can not be solved by regu-
lar Newton—Raphson method in the present form. To avoid this singularity
several methods have been published in the mathematical literature [29,
30, 31]. In these references the authors cleverly augmented the original
system of equations in such a way that that for this enlarged system, the
fold point becomes regular. If the fold point is mathematically character-
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ized by the steady state Jacobian F, having a simple and unique zero ei-
genvalue, with nonzero right eigenvector h and left eigenvector w, then

F(x,A) (2.21b)
G(Y)=| h -1 |=0
F.(x,A)h

where (x., 4.) is a fold point of F(x,, 1) = 0. This procedure basically aug-
ments the original equations of F(x, 1) =0 by Fy(x, A)h =0, with &, = 1. This
augmentation makes the Jacobian G, of enlarged system G(Y) non-singular
and guarantees a solution. The proof can be found in [32]. This approach
has some drawbacks. The dimension of the nonlinear set of equations to be
solved is twice that of the original number. The approach requires a good
estimate for the vector #. However, convergence of the direct method is
very fast if the initial operating point is close to the turning point. The
enlarged system can be solved in such a way that it requires the solution of
nxn (n is the dimension of the Jacobian F,(x, 1)) linear systems, each
with the same matrix. This method needs only one LU decomposition. At
this turning point, rank F,(x, A)=n-1 and F, (x., i) € range F\ (x. A.), that
is rank F, (x., AJ/ Fy (x., A;) = n. These are called transversality conditions.
Depending on the type of transversality condition, different types of static
bifurcations can occur. Fold or saddle node is generic or the most com-
monly occurring static bifurcation. Table 2.1 summarizes the type of static
bifurcation and corresponding transversality condition for a one-
dimensional scalar system. Details can be found in Wiggins book [33]. The
application of this method to power system voltage stability is reported by
[34, 35].

Table 2.1 Static bifurcation types

Bifurcation Transversality Con- Prototype Bifurcation  Dia-
Type dition Equation gram
Fold aF 62F l_XZ :O x

— 0,—2 #0 K"—

0A Ox

Transcriti- O*F 0iF dx—x2=0
cal #0,—F#0
OAOx ox
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Pitch Fork O'F O'F dx—x>=0
# 0; #0
0A0x ox’

>

“— T Unstable mode ™" Stable mode

Numerical example 3: In Eq.2.21b, the original system of equations is
augmented in such a way that for the enlarged system, the turning point
becomes regular. Solving for Eq.2.21b will yield the desired fold point.
Related to numerical example 2 given above, the enlarged system of equa-
tions 1s:

x*=3x+1=0 et -0 (2.22)
x=3=0 =¥ TFTAT

2x-3=90
v=1

Solving the above two equations, we directly get the critical point (x., )"
= (1.5, 2.25)".

Advantages:

The direct method can find the critical point where the Jacobian is singular
by solving the enlarged system of power flow equations in one step. The
left and right eigenvectors produced in the direct approach carry very im-
portant information. For instance, it was shown that, at saddle node bifur-
cations, the right eigenvector corresponding to the zero eigenvalue gives
the trajectory of the system state variables [16]. The left eigenvector can be
used to construct a normal vector [17, 36, 37, 38] at the bifurcations hyper-
surface.

Limitations:

In the direct approach, for a successful convergence, a good initial guess is
needed. This method basically doubles the number of equations to be
solved. However, some of these shortcomings can be overcome by fol-
lowing the approach proposed in reference [30]. In that paper, the authors
explored the structure of equation Eq.2.21b. It’s shown that the whole sys-
tem can be resolved into four linear subsystems with the same coefficient
matrix. Reference [34] applied this method to power system voltage stabil-
ity studies.
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When one is beset with the lack of good starting points for the Newton
type iterative methods in solving nonlinear equations, or when one needs
to lead a parameter study of nonlinear system equilibrium problems, it
would probably be advisable to turn homotopy and continuation methods.
Examples shown in this section manifests the applicability of the technique
to engineering problems. This review does not present and exhaustive sur-
vey but a compact text on continuation methods. Readers interested in con-
tinuation, bifurcation, and related numerical methods may find the follow-
ing references [25, 27, 39, 40] very helpful.

2.4 Hopf Bifurcation

2.4.1 Existence of Hopf bifurcation point

If 1) F(x., A) = 0, (i) the Jacobian matrix (OF/Ox) has a simple pair of
purely imaginary eigenvalues, u(4.) = jw, (iii) d(Re(u(A.)))/dA # 0.
(Marsden & McCracken [41], Hassard et al [42].)

Then there is a birth or death of limit cycles at (x., 4.) depending on the
sign of derivative in (iii). A. is the value of the parameter at which Hopf bi-
furcation occurs. Requirement (iii) guarantees there is a transversal cross-
ing of the imaginary axis by the pair of complex conjugate eigenvalues.
Numerical determination of the Hopf bifurcation point involves estimation
of the point (x., 4.). A costly way of identifying the point is to evaluate all
the eigenvalues of the Jacobian matrix. However, as in the static approach
there are efficient ways of identifying the Hopf point by direct methods as
well as by indirect methods.

2.4.1.1 Direct methods

Direct methods [40] calculate the Hopf point by solving one single suitably
chosen equation. At the Hopf point, one pair of complex eigenvalues
crosses the imaginary axis. Let this pair be:

p(A) =a(d) - jp(A)

a(4,)=0; B(A,) = 0; da(4,)/dA =0

with
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For an eigenvalue 4 of the Jacobian matrix F [=OF /0x], the follow-

ing equation is valid

FW = uw (2.23)

where W = u +jv is an eigenvector corresponding to the eigenvalue s .
Since a(X,)=0, Eq.2.23 can be written as

F (u+ jv)=(+jp)(u+ jv)
Fu+ jFv=-pv+jpu
Fov+ Bu=0 (2.24)

Fv-Bu=0 (2.25)

where u and v are vectors of dimension n. We have in fact 3n nonlinear al-
gebraic Egs.2.24 and 2.25 and F(x,A)=0 with 3n+2 unknowns (x,,x,, -,

X, Uy Uy U,V Va0, Y, , A, B). However the other two unknowns

can be obtained by putting two normalizing conditions that force W to be
non-zero. This means that practically we can choose two components of
the vectors u and v arbitrarily. The Newton iterations method can be effec-
tively used to solve this 3# by the 3x system to get the Hopf point. An effi-
cient algorithm based on the direct approach is provided by [43]. The ap-
plication of the boundary value problem for direct computation of the Hopf
points was proposed by Seydel [25].

2.4.1.2 Indirect methods

The Hopf bifurcation point (x_, A, ) can also be located by an indirect ap-

proach. This can be achieved by obtaining the information collected during
any continuation method described before, i.e., an iteration technique is
used to solve the algebraic equation Re(z£(4)) =0 by means of the secant

method. A change of sign of the real part «a(A) indicates that A, has
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been passed. Therefore the check a(4j) a(4j —1) <0 should be per-

formed after each continuation step A > A i

A good comparison of various methods of computing Hopf bifurcating
points is given by [44]. Application of Hopf bifurcation to power system
problems can be found in [12, 14, 22, 45].

2.5 Complex Bifurcation

Further variation of the parameter beyond the Hopf point may lead to other
complex phenomena; basically one has to trace the monodromy matrix of a
periodic orbit for different values of the parameter. The stability of peri-
odic solution is determined by Floquet multipliers which are the eigenval-
ues of the monodromy matrix. For a particular value of 4, the monodromy
matrix has n-Floquet multipliers. The magnitude of one of them is always
equal to unity. The other #-1 Floquet multipliers determine (local) stability
by the following rule [25, 46].

e x(?) is stable if | K |<1, forj=l1,..., n-1;

e x(?) is unstable if | 4, [>1, for some .

On the stable periodic orbit, the n-1 multipliers are always inside the unit
circle. The multipliers are the functions of the parameter under considera-
tion. When we vary the parameter, some of the multipliers may cross the
unit circle. The multiplier crossing the unit circle is called the critical mul-
tiplier. Different types of branching occur depending on where a critical
multiplier or pair of complex conjugate multipliers leaves the unit circle.
Three associated types of branching are (i) the critical multiplier goes out-

side the unit circle along the positive real axis, with| #(p,)|=1, (ii) the
multiplier goes outside the unit circle along the negative real axis with
| (p.)|=—1 and (iii) a pair of complex conjugate multipliers crosses the
unit circle with a non-zero imaginary part. All these types refer to a loss of
stability when A passes through A_. (On the other hand, if a critical multi-
plier enters the unit circle, the system gains stability.) In the case (i) typi-
cally, turning points of the periodic orbit occur with a gain or loss of stabil-
ity. Transcritical or pitchfork type bifurcations in periodic orbits are also

possible for this case. In the case (ii), the system oscillates with period
two. In the case (iii), the phenomenon of bifurcation into a torus occurs,
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which is also called secondary Hopf bifurcation, or generalized Hopf bi-
furcation. The period doubling bifurcation often occurs repeatedly which
generally leads to chaos. Lyapunov exponents are generally used to iden-
tify the chaos [47]. The exponential serves as a measure for exponential
divergence or contraction of nearby trajectories. Chaos is characterized by
at least one positive Lyapunov exponent, which reflects a stretching into
one or more directions. In general, chaos has the following ingredients
[47]: (i) the underlying dynamics is deterministic, (ii) no external noise has
been introduced, (iii) seemingly erratic behavior of individual trajectories
depends sensitively on small changes of initial conditions; (iv) in contrast
to a single trajectory, some global characteristics are obtained by averaging
over many trajectories or over a long time (e.g., a positive Lyapunov ex-
ponent) that do not depend on initial conditions; (v) when a parameter is
tuned, the erratic state is reached via a sequence of events, including the
appearance of one or more sub-harmonics. In the last few years, a great
number of conferences and workshops devoted to chaotic dynamics have
been organized. In most of them, papers by researchers from various
branches of science and engineering have been presented. Research in
chaos is well documented by [47]. Numerical methods to identify chaos
can be found in [48]. Observations of chaos in power systems are reported
in [12, 13, 49]. Fig2.5 gives the overall possible bifurcation scenario.

p——wsaddle node

statie transcritical
stationary e .pitchfork
point
dynamic
Hop

—~homoclinic'
periodic—wl———o-t0rUs «—emchaos

——uae-period doubling

Fig. 2.5 List of possible bifurcations
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