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 This document is designed to supplement the book “Transducers and Arrays for 

Underwater Sound” by providing specific exercises that illustrate and amplify the 

material in the text.  The degree of difficulty and effort required by these exercises varies 

from easy and quick to difficult and time consuming, and is indicated only roughly by: 

*lowest, **moderate, ***highest.  Some of the exercises require a simple calculation 

with a specific numerical answer, but the solution often requires the reader to become 

familiar with use of the data in the Appendix.  Other exercises are more complex and 

may require use of simplifying assumptions and approximations that are usually 

discussed in the text.  Some exercises also call for more extensive computations to be 

attempted depending on the reader’s interests and the availability of specialized computer 

programs for transducer analysis or finite element modeling programs (see references in 

Chapter 7). A set of answers is given in a separate section after the exercises.  In some 

cases, when the exercises require considerable effort to complete all the numerical and 

graphical work, it is not practical to present the answers in complete detail.  In these cases 

the answers consist of some discussion of the main issues, some directions for 

approaching the problem and enough numerical results to allow the reader to evaluate his 

understanding.  In many cases the answers also contain additional discussion related to 

the practical relevance of the exercise. 

 

 

                                                       EXERCISES 

 

Chapter 1 

 

        1.1 ** The free simple harmonic oscillator is basic to most transducers.   Its equation 

of motion is given by Eq. (1.1) with the external mechanical and electrical forces 

removed by setting F = 0 and V = 0.  Show that the solution for the displacement of the 

mass represents oscillations at the angular frequency 2 1/ 2

m[(K / M) (R / 2M) ]− , and that 

these oscillations diminish in amplitude exponentially with time with a decay factor 

R/2M. 

 

1.2 ** Calculate the directivity factor of a transducer that has a far field intensity 

directivity function of (A + Bcos θ )
2
.  What is the DI if A = B =1?  What value of the 



ratio B/A gives the maximum DI?  Sketch the directivity pattern for some specific values 

of A and B.  See Section 4.56 for other examples of similar directivity patterns. 

 

      1.3 * Calculate the time average of the product of the two harmonically time varying 

quantities x1 = X1 1j( t )e ω +φ  and x2 = X2 2j( t )e ω +φ  (see Appendix A.3), and show that it is 

equal to ½ Re (x1x2*). 

 

1.4 ** A ship approaching a harbor in poor visibility, before the invention of radio 

direction finders, Loran or GPS, knows its position only within a circle of two mile 

diameter.  At the harbor entrance are a bell buoy and a nearby foghorn and underwater 

sound source located close together that blast simultaneously at one minute intervals. The 

navigator has his eyes, ears and an omnidirectional underwater listening device. Derive a 

formula for the distance of the ship from the buoy, d , in terms of the speeds of sound in 

water, cw , and air, ca , and the time interval between hearing the two sounds.   

 

       1.5 *** For magnetic field transducers the equations 

  

 H

b mr emF Z u N I= +  

 

 me 0V N u Z I= +  

 

correspond to Eqs. (1.8) and (1.9) for electric field transducers, where H is the magnetic 

field (proportional to I), Z0 is the clamped electrical impedance and Zmr
H 

 is the open 

circuit mechanical impedance.  Go through the steps following Eqs. (1.8) and (1.9) to 

derive the short circuit mechanical impedance, Zmr
B
 = Zmr

H
 +N

2
/Z0 , and the free electrical 

impedance, Zf = Z0  +N
2 

/Zmr
H 

.  Then follow the steps in Section 1.41 to derive the 

expressions for the coupling coefficient squared, k
2 

,
 
for magnetic field transducers in Eq. 

(1.18). 

           

         1.6 ** Use Table A.2 of the Appendix and list the ratio of the ρc values to that of 

water for tungsten, steel, PZT-4, aluminum and magnesium. Consider a sandwich 

transducer with PZT-4 in the center as described in Section 3.41. Of the listed materials 

which would you put on the water side and which on the opposite side for the best match 

to water and, separately,  for a less expensive “cost effective” match to water? 

 

        1.7* Show that Eq. (1.25) may be written as the expression given in Appendix A.13, 

Eq. (A13.28). Calculate the source level for a transducer with an input power of 1,000 

watts and efficiency of 50% operating as an omnidirectional radiator with DI = 0 dB and 

also as a directional radiator with DI = 6 dB. What is the reduced value of power needed 

in the directional case to achieve the source level of the omnidirectional case? 

 

       1.8* Show that we may write the far field intensity as I0 = DfW/4πr
2
 and also as I0 = 

Dfur
2
Rr/4πr

2
 where ur is the rms velocity. 

 

       1.9**Use the pressure expression for a piston in a rigid baffle, Appendix A.13, Eq. 

(A13.31), to obtain the on axis (θ = 0) intensity expression. For the case of a piezoelectric 



ceramic transducer, eliminate the velocity and write the expression in terms of the 

voltage, mechanical impedance and the electromechanical turns ratio. 

 

       1.10** Of the two intensity expressions, given in Exercises 1.8 and 1.9, one is 

directly dependent on the directivity factor while the other is not, but depends on the 

velocity or voltage. Does this mean that if the intensity is calculated using the velocity or 

voltage that the Df should not be additionally used?  Show that both expressions are 

equivalent by use of Appendix A.13, Eq. (A13.17) for a piston in a rigid baffle. 

 

Chapter 2   

 

2.1 * Perform a few calculations to become familiar with some of the important 

parameters of transducers.  Consider an ideal transducer operating in the 33 mode of 

piezoelectric ceramic Type I material (PZT-4, see Appendix A.5) of bar length 1.27 cm 

and cross sectional area 1.6 cm
2
 with rigid backing on the rear end and an ideal piston of 

area 8 cm
2
 on the front end.  Assume the piston face radiates into the water and the 

remaining part is isolated from the water by a water-tight housing.  Calculate the free, Cf 

= ε33
T
A0/L, and clamped, C0, capacitance.  

 

2.2 * Ignore the mass of the piezoelectric ceramic of Ex. 2.1 and calculate the short 

circuit mechanical compliance C
E
 = s

E
33L/A0, the open circuit compliance C

D
, the short 

circuit resonance frequency, fr, and open circuit anti-resonance frequency, fa, for a total 

piston mass and radiation mass of M = 0.1 kg. Also, calculate the effective coupling 

coefficient from fr and fa.  Why does keff  = k33   in this case? 

 

2.3 ** Calculate the electromechanical turns ratio, N, and the corresponding 

mechanical force, F, for 1 volt and 5 kV drive for the transducer of Ex. 2.1. Then 

determine the piston velocity, u, at mechanical resonance for a total mechanical loss 

resistance R = 1.2x10
3
 and radiation resistance Rr = 1.2x10

3
 Ns/m. What is the 

mechanoacoustic efficiency?  

 

2.4 ** Calculate the power output, W, and average surface intensity, Is = W/A0, at 

resonance for 5 kV for the transducer of Ex. 2.1. Assume a directivity factor of Df = 2 

and calculate the source level in dB re 1 µPa and the far field intensity, I0, at 1 meter and 

compare with the surface intensity. Explain the difference in the values of the intensities 

Is and I0.  

  

 2.5 * To gain a little more familiarity with transduction consider Eq. (2.9) with 

external force Fb = 0 and at low frequency where the mass and resistance terms are 

negligible compared with the stiffness term in the impedance.  Show that under the usual 

linear case where x3 << L the strain S3 = d33E3 and the displacement x3 = d33V. Calculate 

this linear strain for Type I piezoelectric ceramic with typical maximum electric field of 

E3 = 4 kV/cm (10.2 kV/inch). 

 

 2.6 * Using the results of Exercise 2.5 calculate the corresponding displacement and 

voltage for a length, L, of 1.27 cm.  



 

 2.7 * Consider the piezoelectric and magnetostrictive cases of Table 2.1 and show 

that the third column can be obtained from the first and second columns.  

 

 2.8 * Calculate the values of the electromechanical turns ratio N for piezoelectric and 

magnetostrictive cases of Table 2.1 with A0 = 1.6 cm
2
 and L = 1.27 cm for Type I 

piezoelectric material (see Appendix A5) and Terfenol – D magnetostrictive material (see 

Appendix A.7) with n = 100 coil turns.   

 

 2.9 * Calculate the piezoelectric force for voltage V = 10 volts and the 

magnetostrictive force for current I = 0.10 amps for the N values of Exercise 2.8.  

 

      2.10** Derive Eq. (2.82), Qm = ωrM/R , from the definition Qm = 2π(Total 

Energy)/(Energy dissipated per cycle at resonance). See Eq. (8.5) and Section 8.2 for 

further discussion of Qm. 

 

      2.11* Show that, on using resonance relations, the expression Qm = ωrM/R may also 

be written as Qm = 1/ωrRCm
E
  or Qm = (M/Cm

E
 )

1/2
/R = (MKm

E
)
1/2

/R  where Cm
E
 is the 

short circuit mechanical compliance and Km
E
 is the short circuit mechanical stiffness .  

 

      2.12 *  Although the mechanical Q may be calculated for a 100% efficient transducer, 

the mechanoacoustical efficiency, ηma , usually must be measured or estimated because 

the internal mechanical resistance is not known.  Accordingly, show that the mechanical 

Q may be written as  Qm = Qm’ηma where Qm’ = ωr(M + Mr)/Rr is the mechanical Q for 

ηma = 100%.  If the calculated transducer Qm’ is 5 what is Qm for ηma = 80% ?  

 

      2.13 ** Show that the mechanical Q may be written as Qm  = [ωrM/Rr + ωrMr /Rr] ηma 

where the first term in the brackets is the Qm of  the transducer without radiation mass 

loading and the second term is called the radiation Q and is due to the radiation mass and 

radiation resistance alone. Also show that for the case of a spherical radiator that the 

second term may be written as 1/kra where the wave number kr = ωr/c and a is the radius 

of the sphere. Determine the Qm for a spherical transducer where ωrM/Rr = 4 and  ηma = 

80% for the cases where kra = 0.1, 1 and 10.  

 

        2.14* Calculate the electroacoustic efficiency of an electric field transducer at 

resonance for ηma = 80%, keff = 0.5, for Qm = 1 and 10 for tan δ = 0.01 and, under high 

electric drive conditions, for tan δ = 0.10.  Make the same calculation for a 

magnetostrictive transducer with coil Q0 = 100 and 10 (instead of tan δ = 0.01 and 0.10 

respectively) but with negligible eddy current losses.  

 

        2.15* Construct a table or graph of the power factor, Pf, as a function of B/G from 0 

to 10.  Show that in particular for B/G = 0, 1 and 10 the power factor  Pf = 1, 0.707 and ≈ 

0.1 respectively. Show that in the limit Pf ≈ 1 for B/G << 1 and Pf ≈ G/B for G/B << 1. 

 



   2.16 ** The effective coupling coefficient may be obtained from measurable 

quantities by use of the equations k
2
 = 1 – (fr/fa)

2
 or k

2
 = 1/(1 + QmQe).  Prove the last 

very important equation.  

 

   2.17 * Calculate the input power at resonance for a transducer with k = 0.5, Cf = 10 

nF, Qm = 5 and fr = 10 kHz for an RMS input voltage of 1 and 100 volts assuming that 

electrical losses are negligible.  What is the efficiency and output power if the internal 

mechanical resistance is one half the radiation resistance? 

 

Chapter 3 

 

 3.1. * Calculate the in-air ring mode short circuit resonance frequencies of a thin-

walled, 0.508 cm (0.2 inches) Type 1 (PZT-4) piezoelectric ceramic ring transducer of 

mean diameter 10.16 cm (4 inches) and height 5.08 cm (2 inches) operating in the 31 

mode.  Compare the result with the resonance frequency of a thin walled spherical 

transducer operating in the planar mode with the same diameter and wall thickness.  Use 

the frequency constants in Appendix A.6.  

 

 3.2. ** Calculate the in–air short circuit resonance frequencies for the ring transducer 

of Exercise 3.1 operating in the 33 mode. Calculate the change in resonance frequency 

and coupling coefficient if the 33 mode is obtained by electrode striping the ring, 

replacing 10 % of the active circumferential length of short circuit elastic modulus, s
E

33 , 

by Type I material, but with open circuit modulus s
D

33. Use equations in Section 3.22. 

 

 3.3. * Calculate the approximate in–water resonance short-circuit frequencies and 

mechanical Qm’s for the ring and spherical transducers of Exercise 3.1. This resonance is 

the frequency of maximum output for a constant voltage transmitting response.  Assume 

the ring has end caps that are mechanically isolated from the ring with air on the inside 

and approximate spherical loading to obtain the water mass loading for the ring. 

 

 3.4. *** Evaluate the ring parameters of Exercise 3.1 for the equivalent circuit of Fig. 

3.4 and compute the TVR. Compare the results with a finite element model if available.  

  

 3.5. * Calculate the volume and mass figures of merit (FOMv and FOMm) for the 

transducer of Exercise 3.1.  

 

 3.6. ** Determine the Helmholtz  resonance frequency (often called cavity resonance) 

of the ring of Exercise 3.1. Assume the ring is small compared to the wavelength at this 

frequency and use the piston in a rigid baffle low frequency radiation mass loading Mr = 

8ρa
3
/3 or use the water field added tube length ∆L = 8a/3π (see Exercise 3.7).  Assume 

symmetry about a plane midway through the ring; thus the effective cavity depth is L/2 

not L.   

 

 3.7. * Show that the water load added length, ∆L = 8a/3π, is equivalent to the low 

frequency radiation mass loading Mr = 8ρa
3
/3. Justify the Exercise 3.6 statement “We 



assume symmetry about a plane midway through the ring; thus the effective cavity depth 

is L/2 not L.”  

 

 3.8. *** Consider the Tonpilz projector illustrated in Fig. 3.17 with piston area 

0.0162 m
2
, head mass Mh = 10 kg, tail mass Mt = 40 kg and a drive stack consisting of 

four Type 1 (PZT-4) piezoelectric ceramic rings of mean diameter 10.16 cm (4 inches), 

height 0.508 cm (0.2 inches) and wall thickness 1.016 cm (0.4inches) operating in the 33 

mode and wired as illustrated in Fig. 3.17.   Also assume a tie rod with one-tenth the 

stiffness of the stack and insulators plus glue joints with a total of 10 times the stiffness 

of the stack. Calculate the in-air short circuit resonance frequency, the turns ratio N, the 

free capacitance Cf and the effective coupling coefficient. 

A) Ignore the effects of the tie rod, insulator, glue joints and mass of the stack. 

B) Ignore the effects of the tie rod, insulator, glue joints, but include stack mass. 

C) Include effects of the tie rod, insulator, glue joints and stack mass. 

 

 3.9. *** Use the equivalent circuit of Fig. 3.20 to calculate the response of the 

projector of Exercise 3.8, case A. Then use the equivalent circuit of Fig. 3.19 to calculate 

the TVR and maximum SPL response of the projector of Exercise 3.8. Assume 

equivalent sphere radiation loading and piston in a rigid baffle radiation loading. 

Compare results. Assume 100 % and then 80% mechanoacoustic efficiency. Determine 

keff and Qm. Compare results from circuit model with transmission line, matrix or FEA 

models.  Calculate the maximum power output and the FOMv for maximum electric field 

voltage drive.  

 

      3.10* Determine the in-air frequency diameter constants, fD, for thin walled 

Terfenol-D and Galfenol magnetostrictive ring transducers under open, f
H
, and short, f

B
, 

circuit  conditions (see Appendix A.7).    

 

      3.11* Calculate the in-air ring mode open circuit and short circuit resonance 

frequencies and free inductances of  thin walled, 0.508 (0.2 inches) ideally biased 

magnetostrictive Terfenol-D and Galfenol ring transducers of mean diameter 10.16 cm (4 

inches) and height 5.08 cm (2 inches) operating in the 33 mode with a coil of 100 turns. 

Compare the resonance frequency results with the PZT - 4 ring of Exercise 3.1.  

 

      3.12*** In Section 3.32 an equation for estimating the effective coupling coefficient, 

ke
2

  = 2k
2
/(1 + k

2
) was given for the hybrid transducer for the case where the piezoelectric 

ceramic and magnetostrictive drivers have the same coupling coefficient.  This approach 

evaluated the coupling coefficient from the total mechanical energy stored and the shared 

electrical energy at resonance for the two sections wired in parallel.  Using the same 

approach develop an expression for ke
2
 where the drivers have two different coupling 

coefficients, k1 and k2 , and show that it reduces to the original expression for k1 = k2. 

 

 

 

 

 



Chapter 4 

 

 4.1. ** Calculate the in-air ring-mode open-circuit resonance frequency and the low 

frequency receiving response and free capacitance of a thin-walled, 0.508 cm (0.2 inches) 

Type 1 (PZT-4) piezoelectric ceramic ring hydrophone of mean diameter 10.16 cm (4 

inches) and height 5.08 cm (2 inches) operating in the 31mode.   Compare results with a 

thin walled spherical hydrophone operating in the planar mode, with the same wall 

thickness and diameter. What is the length mode resonance frequency of the ring?  

Assume air backing with isolated end caps on the ends of the ring. 

 

 4.2. *** Determine the receiving response through the anti-resonance of the ring 

hydrophone of Exercise 4.1. Assume equivalent sphere radiation loading and spherical 

diffraction constant.  Calculate the electrical impedance and use reciprocity to determine 

the TVR. Compare with the TVR obtained directly in Exercise 3.4. 

 

 4.3. *** Consider two small ring Type I hydrophones one-tenth the size of the one in 

Exercise 4.1 and separated by 5.08 cm (2 inches). First, calculate anti-resonance and the 

low frequency RVS value for each alone. Are these results scalable from the results of 

Exercise 4.1? Next, determine the low frequency summed sensitivity and the low 

frequency differenced sensitivity for a plane wave incident in the axial direction. 

Calculate the frequency at which you would expect this vector sensor to differ from an 

expected cosine beam pattern.  Calculate the frequencies at which the summed and 

differenced modes yield a null in the axial direction. 

 

 4.4. *** Determine the low frequency electrical noise voltage, equivalent noise 

pressure and signal to noise ratio for a 1 µ Pa plane wave signal on the MRA  for the ring 

hydrophone of Exercise 4.1. Repeat for the wide band noise response through anti- 

resonance.  Assume an electrical dissipation factor of 0.004, equivalent sphere radiation 

loading and diffraction constant.  

 

 4.5. ** Determine the low frequency electrical noise voltage and equivalent noise 

pressure for the summed and differenced dual hydrophones of Exercise 4.3. Assume an 

electrical dissipation factor of 0.004.  

 

 4.6. ** The Tonpilz of Exercise 3.8 (case A), as shown in Fig. 3.13, is to be also used 

as a hydrophone. Calculate the low frequency signal sensitivity and equivalent noise 

pressure for a dissipation factor of 0.004. Assume array baffle conditions and that Da =2. 

Sketch and explain the operation of the TR switch for achieving transmit and receive 

operation from a single transducer.  

 

 4.7. ** Calculate the first four short circuit extensional ring mode resonance 

frequencies of the hydrophone of Exercise 4.1 for Type I material operating in the 31 

mode. How many electrodes are needed to detect (or excite) each of these four modes?  

What is the highest mode that can be excited below the length mode resonance?   

 

 



 4.8. *** The internal thermal noise for a 100% efficient hydrophone can be 

represented by the mechanical radiation resistance of the hydrophone, although it is 

caused by a thermal noise pressure in the medium acting on the surface of the 

hydrophone, as described by Mellen [48].  Radiation resistance is usually thought of as a 

measure of how a transducer radiates, but in this case, it is also a measure of how the 

transducer receives.  What is the basic physical reason for this dual role of radiation 

resistance? 

 

      4.9. * As an example of the usefulness of Eq. (4.56) use the known radiation 

resistance in Eq. (10.44) and directivity factor for a monopole sphere to find the 

diffraction constant for a spherical hydrophone. 

 

 

Chapter 5 

 

 5.1. * Consider two small pistons of radius, a, with ka << 1, separated by a center-to-

center distance, d, in a large rigid baffle.  Show that the total radiation resistance of each 

approaches 2Rii as kd becomes small. Why is this case similar to the case of a single 

piston approaching a rigid wall?   

 

 5.2. * Show that Eq. (5.20c) follows from Eqs. (5.20a) and (5.20b). 

 

 5.3. * Consider a large array of square pistons of side length L and with spacing L/10 

between the pistons. What is the packing factor?  What is the average radiation resistance 

of the individual pistons?  What is the total radiation resistance of an array of N pistons? 

 

 5.4. * Show that Eq. (5.29) reduces to Z = F/U for a uniform velocity distribution.  

 

 5.5. * Explain why the product theorem is useful in array beam pattern analysis? 

Would it be useful in determining the DI or the radiation impedance?  

 

 5.6. *** A close packed array of ideal square pistons shows no grating lobes when it 

is not steered, because the individual piston patterns null out the array grating lobes.  But 

when the array is steered grating lobes appear at angles such that they are only partially 

nulled out.  Show this by calculating the beam pattern for a line array of ten close packed, 

square pistons with side length of one-wavelength and center-to-center spacing of one 

wavelength steered to 45
0
 (see Eqs. (5.10a) and (5.10b)). 

 

 5.7. ** Show that Sinc (kd/2) = 2sin(kd/2)/kd approaches 1 for kd/2 << 1. Likewise 

show that J1(ka) goes to ka/2 for ka << 1; and thus, 2J1(ka)/ka also approaches 1 for ka 

<< 1.  

 

 5.8. ** Determine the value of α/kd required for a parametric array full beam width of 

4
0
 and calculate the corresponding beam pattern.   

 



      5.9. ** To see extreme effects of acoustic coupling consider a small transducer 

located at the center of a circle of radius d of N identical transducers being driven to 

make all have the same velocity.  Use Eqs. (5.16) and (5.23b) and show that the total 

radiation resistance of the center transducer could become negative for N > 5 when 

4d / 3λ < and also in other frequency regions for greater values of N.  What does negative 

radiation resistance mean physically?  What is the total radiation reactance of the center 

transducer when 2dλ = .  

 

     5.10. *** As a simple example of the effects of beam steering on the radiation 

impedance of transducers in an array consider a line array of two small transducers driven 

to have the same velocity amplitude but steered by a velocity phase difference of µ , i.e., 
j

2 1u u e µ= .  How does the total radiation impedance of the two transducers differ, in 

general, and specifically for end fire steering? 

 

Chapter 6  

  

 6.1. ** Show, starting from the Fourier Transform formulation of the array output in 

Eq. (6.5a) (also see Appendix A.11), that a linear phase shift in the array sensitivity 

distribution results in a wave vector displacement that corresponds to steering the beam.  

 

 6.2. * What is a non-acoustic plane wave? Why do we need to consider the wave 

vector response of an array of hydrophones?   

 

 6.3. ** What are the physical situations in which the array gain and the directivity 

index could have the same value? What are the basic reasons why they usually are not the 

same? 

 

      6.4 ***   Use Eq. (6.8b) to calculate the DI of an unshaded line array of small 

hydrophones for N = 6 and kD = , / 2π π  and kD << 1, and for steering angles of 0, 30 

and 90 degrees.   

 

      6.5 **  Show from Eq. (6.8b), for unshaded line arrays for any values of kD and N, 

that the Df  is the same when the array is unsteered and when the array is steered to 90 

degrees at 2kD, i.e., at twice the frequency or twice the spacing. 

 

      6.6.  ** Calculate the array gains for the arrays in Exercise 6.4 in isotropic, incoherent 

noise. 

 

 6.7. ** Calculate the coincidence frequency of a steel plate with thickness 0.635 cm 

(0.25 inches).  At frequencies below the coincidence frequency flexural waves in a 

submerged plate produce evanescent pressure waves in the water traveling parallel to the 

plate that decay with distance from the plate.  At 20 kHz how much does the evanescent 

wave amplitude decay at 1 cm from the surface of the plate? 

 

 6.8. *** Develop the spatial correlation function for isotropic noise given by Eq. 

(6.16). 



 

 6.9. ** The discussion of the triaxial vector sensor (see Fig. 6.24) makes use of 

certain relationships between angles.  Show that in general cos γn = cos θ cos θn +  sin θ 

sin θn cos (φ - φn) and that specifically for φ = φn , cos γn = cos (θ – θn).  

 

 6.10. *** Consider Eq. (6.29) for an array of N hydrophones under conditions where 

all four types of noise have the same intensity at each hydrophone, i.e., fa = fs = ff = fh = 

¼.  Also consider the structural, flow and hydrophone internal noise to be incoherent, 

while ambient noise is isotropic and partially coherent with spatial correlation given by 

Eq. (6.16), and the signal is a plane wave from the broadside direction.  What is the array 

gain: 1) for any configuration of N hydrophones?   2) for a line array of N with half 

wavelength spacing?   3) for a line array of N = 3 with spacing D?   4)  for a line array of 

N = 3 with quarter wavelength spacing? 

 

       6.11 *** Note that the development of the generalized diffraction constant in Section 

11.31 suggests that Eq. (4.56) holds for arrays as well as individual transducers, although 

it does not explicitly show it.     Investigate the validity of this suggestion by considering 

a simple array of two small circular pistons in a plane, rigid baffle and calculating the 

total radiation resistance of the array, the diffraction constant of the array and the 

directivity factor of the array and showing that they satisfy Eq. (4.56). 

 

Chapter 7 

 

 7.1. ** Consider the dual mass mechanical resonator of Fig. 7.4. Assume loss 

resistance R1 is negligible and R2 << ωrM1. Calculate the approximate resonance 

frequency for stiffness K = 4 x 10
10

 N/m and head mass M2 = 1 kg for tail masses M1 = 1, 

2, 4 and 8 kg.  Also calculate the mechanical Qm with R2 = 6 x 10
4
 Ns/m for the above 

values of M1. Does there appear to be much benefit gained in doubling the tail mass from 

4 kg to 8 kg, considering the weight increase in the transducer?  

 

 7.2. * The equivalent circuits of Fig. 7.12a and 7.13 show a single resonance under 

short circuit conditions (or constant voltage drive) at the mechanical resonance frequency 

where ωrM = 1/ωrC
E
.  Show that anti resonance, ωa = ωr/(1 – k

2
)
1/2

 is obtained under open 

circuit conditions where, in this case, C0/N
2
 is now in series with C

E
 reducing the 

compliance to C
D  

raising the stiffness and the resonance frequency to the value ωa. 

 

 7.3. ** Expand the function –jρcA0/sin(kL) and obtain –jρcA0(1/kL + kL/6) for small 

kL using trigonometric and binomial expansions; and thus, verify the –M/6 in Fig. 7.25.  

 

 7.4. * Demonstrate that the equivalent circuit of Fig. 7.25 may be used to represent an 

ideal mass, M, or any mass at low enough frequencies. Show that at very low frequencies  

the reduced equivalent circuit for a force F at terminals 2 and an air loaded free condition, 

i.e. a short circuit, at terminals 1 is simply a mass M, as it should be.   

  

 7.5. ** Show that Eqs. (7.36a,b) may be written in the transfer matrix form of 

Eqs.(7.37a,b). 



 

 7.6. * Show that the transmission line equivalent circuit of Fig. 7.28 may be reduced 

to the simple lumped mode representation of Fig. 7.14a (without G0) for kL = ωL/c << 1 

if the – M/6 term is ignored, with a free condition at one end (F0 = 0) and a radiation load 

of Fn/un = Rr + jωMr on the other end.  

 

 7.7. * Evaluate the A, B, C, D parameters of Eq. (7.70) using the electrical and 

mechanical parameters of Fig. 7.12a.  

 

 7.8. * The finite element evaluation of the broad side far field pressure from a large 

planar array (with most of the elements under array loaded conditions) could require very 

large run times at each frequency. Consider the alternative approach of first evaluating 

the pressure of a single element by approximating its environment by a rigid fluid filled 

wave guide with a ρc absorber at the end (see Section 7.46). Then calculate the far field 

pressure, reduced to 1 meter, for an array of 100 elements each of area 6.45 cm
2
 (one inch 

square) for a single element wave guide pressure of 0.01 Pa at 10 kHz. 

 

Chapter 8 

 

 8.1. * Consider the single mass resonator of Fig. 8.2.  Calculate the resonance 

frequency for bar stiffness K = 4 x 10
10

 N/m and head mass M = 1 kg by first ignoring 

the bar mass and then considering that the bar contributes an additional 0.3 kg.  Also, 

calculate the mechanical Qm with R2 = 6 x 10
4
 Ns/m for the two cases.   

 

 8.2. * Show that the square of the coupling coefficient k
2
 = N

2
C

E
/Cf where the free 

capacity Cf = N
2
C

E
 + C0, C0 is the clamped capacity and the mechanical short circuit 

compliance C
E
 = 1/K

E
 is consistent with Eq. (8.22) and C0 = Cf(1 – k

2
) is consistent with  

Eq. (8.23).  

 

 8.3. ** Determine the percentage change in the coupling coefficient if a stress rod 

with a stiffness that is one-tenth the stiffness of the piezoelectric ceramic short circuit 

stiffness is used with original coupling coefficient values of 0.9, 0.7, 0.5 and 0.3. What is 

the percentage change in the resonance and anti-resonance frequencies? Assume a simple 

lumped mass system.  

 

 8.4. ** Determine the percentage change in the coupling coefficient if an electrical 

insulator with a stiffness that is 10 times greater than the stiffness of the piezoelectric 

ceramic is used between the head mass and the piezoelectric ceramic. Evaluate with 

original coupling coefficient values of 0.9, 0.7, 0.5 and 0.3. What is the percentage 

change in the resonance and anti-resonance frequencies? Assume a simple lumped mass 

system. Tabulate results and compare with Exercise 8.3.  

 

 8.5. ** Determine the percentage change in the coupling coefficient and the 

resonance and anti-resonance frequencies when both the stress rod and the electrical 

insulator of Exercises 8.3 and 8.4 are used. Tabulate results and compare with individual 

effects.  



 

 8.6. ** Calculate the effective dynamic coupling coefficient for the fundamental 

mode of a 33 mode segmented bar for k33 values of 0.9, 0.7, 0.5 and 0. 3. Tabulate the 

percentage reduction. Compare results for the case of the length expander bar with 

electrodes only on the ends.  

 

 8.7. * Calculate the effective dynamic coupling coefficients for the second and third  

modes of the end electroded bar of Exercise 8.6.  

  

      8.8. ** Derive an expression for the dynamic stiffness of the n
th 

mode of the fixed-

free bar from Eq. (8.12).  Then derive expressions for the effective coupling coefficient 

of the n
th 

mode for both the length expander bar and the segmented bar following the 

procedure in Section 8.43. 

 

      8.9 *** Derive an expression for the dynamic stiffness of the n
th 

mode of the 31 mode 

ring based on the expression for the short circuit resonance frequencies,   fn = f0(1+n
2 

)
1/2

 .  

Then derive an expression for the effective coupling coefficient following the procedure 

in Section 8.43.  Calculate kedn for the n = 0,1,2,3 modes and for k31 = 0.33. 

 

Chapter 9 

 

 9.1. *** Consider Eq. (2.8) with external force Fb = 0 at low frequencies where the 

acceleration and velocity terms are negligible compared with the displacement term. 

Show that this leads to the low frequency nonlinear equation for the strain, S3
2
 + S3 = 

d33(V/L). Determine the exact solution. . Assume 4d33V/L < 1 and use the binomial series 

to obtain the three term expansion solution showing terms that could generate second and 

third harmonics under high sinusoidal drive.  

 

 9.2. * Calculate the strain for a Type I piezoelectric material in Exercise 9.1 with a 

typical maximum electric field of  V/L = 4 kV/cm (10.2 kV per inch) and compare this 

result with the linear result given by the first term of the expansion for S3.  Calculate the 

percentage difference.  

 

 9.3. ** What are the physical nonlinear conditions for even and for odd harmonic 

generation?  

 

 9.4. *** One general objection to operating below the fundamental resonance of high 

power Tonpilz transducers is the higher harmonic distortion generated as compared to 

operating above resonance.  What is the physical reason for this?  As the most extreme 

example of this effect explain how operating at one half or one third the fundamental 

resonance frequency can greatly increase the second or third harmonic distortion.  

 

 9.5. ** Why does the presence of significant harmonic distortion indicate the 

possibility of transducer failure under high drive?  

 



      9.6*** The most common nonlinear force in transducers is the square law electric or 

magnetic drive force.  Results that are applicable to many cases can be derived from a 

simplified form of Eq. (9.9) containing only the linear strain term and the quadratic 

electric field term, T = cS – eE
2  

.  Use this expression in the equation of motion [as in Eq. 

(9.13)] with a drive voltage of 0 1V V V cos t= + ω , and find the static, fundamental and 

second harmonic drive terms and displacements.  Show, when V0  = 0, that there is no 

displacement at the drive frequency, but there is a static displacement and a displacement 

at twice the drive frequency.  Thus a bias voltage, V0 , is necessary to have any linear 

output with this force law.  

 

       9.7 ** In Exercise 9.6 calculate the ratio of the second harmonic displacement to the 

fundamental displacement at the resonance frequency, at one half the resonance 

frequency and well below resonance.  

 

      9.8*** When significant harmonic distortion is present a modified definition of the 

electromechanical coupling coefficient should be considered, because part of the input 

energy is converted to harmonics which do not contribute to the desired fundamental 

output.  Such a definition might be:  knl
2 

equals the ratio of  converted mechanical energy 

at the fundamental frequency to the total input energy.  Express this definition 

analytically and evaluate it numerically using the second harmonic results from Exercise 

9.7. 

 

      9.9 ** Square law transducers are seldom used without bias, because the frequency 

content of the output differs so much from that of the input.  Using the same equation of 

motion as Exercise 9.6 show that the output of a square law transducer driven with 

voltage 1 2V V cos t V cos 2 t= ω + ω  contains four different frequency components.  What 

are those frequencies and what are the relative displacement amplitudes and velocity 

amplitudes at low frequency if V2 = V1 ? 

 

     9.10.* Convert the relative displacement amplitudes calculated in Exercise 9.9 to 

radiated sound pressure to show the enhancement of the higher frequency pressure 

components relative to the displacement components (see the discussion in Section 9.21). 

 

 

Chapter 10 

 

 10.1. * Show that the plane wave representation for the pressure p = p0e
-j(kx-ωt)

 

satisfies the one dimensional Helmholtz wave equation ∂
2
p/∂x

2
 + k

2
p = 0.  Determine the 

particle velocity u = -(1/jωρ)∂p/∂x and show that, in this case, the characteristic 

impedance p/u = ρc. What is the characteristic impedance for Type I (PZT-4) 

piezoelectric ceramic and how does it compare with the value for water?  

 

 10.2. ** Show the condition under which the first axial null occurs for a continuous 

line of length L. What is the condition for the first axial null for a line array of two point 

sources separated by distance s?  Why the difference in lengths? 

 



 10.3. ** Use the approximate formulas to calculate the DI and beam width for a line  

of length L = λ.  Compare this result with the approximate result for a circular piston in 

an infinite rigid baffle with diameter D =λ. Why is the beam width larger and DI higher 

for a circular piston? 

 

 10.4. * Calculate the beam widths and DI for the line and piston in Exercise 10.3 

using the exact expressions and compare with the approximate results. 

 

 10.5. *** Calculate the beam width for a vibrating ring on an infinite rigid cylinder of 

length L = λ and diameter D = λ and compare these results with that of a thin line of 

length L = λ.  Note in Eq. (10.34) that L is half the length of the vibrating ring, while in 

Eq. (10.22) L is the whole length of the thin line.  Also note that in Eq. (10.34) θ is 

measured from the axis of the cylinder, while in Eq. (10.22) / 2α = π − θ  is measured 

from the perpendicular to the line. 

 

 10.6. * Calculate the values of ka for which there is a pressure null at the center of a 

circular piston set in an infinite rigid baffle.  

 

 10.7. ** Consider two spheres vibrating at the same frequency one as a dipole source 

with radius ad and the other as an omni source with radius ao. Determine the approximate 

value of kao of the omni sphere in order for it to have the same value of radiation 

resistance as the dipole sphere under the conditions of both kao and kad << 1 and also for 

both kao and kad >> 1.  Why are the radii so different for ka << 1? Use appropriate 

approximations.   

 

      10.8. * Calculate the diffraction constant for a circular piston in an infinite rigid plane 

by using Eq. (4.56) with Df and Rr from Eqs. (10.31) and (10.52).  

 

      10.9. ** Calculate the diffraction constant for a sphere vibrating in the dipole mode 

by using Eq. (4.56).  Use Rr   from Eq. (10.47)  and Df  from the answer to Exercise 1.2 

with A = 0 and B = 1.  Find the maximum value of Da in this case and the value of ka at 

which the maximum occurs. 

 

     10.10. *** An acoustic radiation problem is defined by stating the boundary condition 

on the normal velocity.  In some cases the solution can be completed in terms of known 

solutions of the wave equation.  In other cases a numerical finite element solution is the 

only practical approach.  A clear statement of the boundary condition is the essential 

starting point for both approaches.  Write out the normal velocity boundary condition for 

a free-flooding ring transducer and consider how it could be solved.   Make a sketch 

showing the various vibrating surfaces in a cylindrical coordinate system. 

 

 

Chapter 11 

 

 11.1. ** Of the 11 coordinate systems in which the wave equation is separable (see 

Reference 3) only 6 or 7 have been used in modeling practical transducers and arrays.  



Consider the geometrical shapes that occur in practice and think of specific shapes that 

can be accommodated by certain coordinate systems as a way of identifying the most 

useful systems.  

 

 11.2. ** Show that Eq. (11.8) follows from Eq. (11.9) for n = 1.  Also see Exercise 

6.9 regarding the development of Eq. (11.8).  

 

      11.3. **Derive Eq. (11.4) from Eqs. (11.2), (11.3a) and (11.3b) using the 

orthogonality relation for Legendre polynomials: 

                                                                         

            n m

0

P (cos )P (cos )sin d

π

θ θ θ θ =∫  2/(2m+1)  for n = m,  and  = 0 for n ≠ m. 

                                                                                   

 11.4. *** The boundary condition in Exercise 10.10 for a free flooding ring simplifies 

considerably for an end-capped cylinder where the inside velocity, ui , is not involved and 

ut applies to the entire top.  But the problem is still not solvable because of the finite 

length of the cylindrical surface.  In such cases, under low frequency conditions, a useful 

model can be based on spherical wave functions.  In the lowest order approximation the 

cylinder is replaced by a monopole sphere with the same radiating area as the cylinder as 

discussed in Section 3.21.  A better approximation is possible by using a sphere with 

uniform normal velocity in the polar regions, representing the velocity of the end caps, 

and a different uniform normal velocity in the equatorial region, representing the velocity 

of the sides of the cylinder.  When the end caps are considered motionless this boundary 

condition is described by:    

   

                    u = 0  ,    r = a   ,      1 10 and 180 180< θ < θ ° − θ < θ < °  

 

                    u = u   ,    r  = a   ,       1 1180θ < θ < ° − θ  

 

where a is the radius of the sphere and also the radius of the ring being modeled.  Express 

the solution of this problem as a series of spherical wave functions and determine the 

coefficients.  Consider the solution for ka small enough that only two terms are sufficient.  

What is the effect of the second term on the beam pattern? 

 

 11.5. *** The Hilbert transform was used in Sec. 11.14 to obtain the radiation 

reactance from the radiation resistance of a sphere of radius, a, operating in a uniform 

omni-directional mode. Obtain the radiation reactance from the radiation resistance of the 

same sphere vibrating in a dipole mode given by Eq. (10.47). 

 

 11.6. *** Show that for an unbaffled plane array, the pressure in the plane of the 

array is one-half the pressure for the same array in a large rigid baffle.  Use the fact that, 

for the same array in a large pressure release baffle, the pressure in the plane of the array 

is zero. 

 



 11.7. ** Equation (11.52) gives the diffraction constant, Da, for a sphere of radius, a. 

Why does Da decrease from unity as the frequency is increased rather than increase as in 

the case of a piston.  Why does Da decrease as 1/ka for ka >> 1? 

 

 11.8** Beam pattern results for a piston set in a pressure release sphere show a 

significant reduction in the back radiation compared to a rigid sphere as shown in Fig. 

11.15.  Explain why this happens. 

 

 11.9. * Table I shows the radiation resistance for a linear array of three equally space 

pistons in a rigid baffle. Why do the two outside pistons have the same radiation 

resistance and the same velocity?   

 

      11.10. *** Consider the basis of the important Eq. (4.56) by following its derivation 

in Section 11.31 and, specifically, by showing that Eq. (11.53) follows from the acoustic 

reciprocity relation in Eq. (11.34) and the definition of clamped force in Eq. (11.50). 

 

     11.11.** The diffraction constant, Da , in Eq. (4.56) is for an incoming wave arriving 

on the MRA of the hydrophone, and the Df is referred to the same MRA.  The directional 

diffraction constant, aD ( , )θ φ , in Eq. (11.57) is Da referred to the MRA multiplied by the 

square root of the normalized intensity directivity function.  Use of aD ( , )θ φ in any of the 

expressions for hydrophone output [such as Eqs. (4.10) or (4.17)] gives the output as a 

function of direction.  The frequency dependence of Da and of the hydrophone 

mechanism together determine the final frequency dependence of the output.  In an 

isotropic noise field the mean squared noise output is proportional to the average of 
2

aD ( , )θ φ  which is Da
2 

/Df .  What is aD ( , )θ φ  for a tonpilz hydrophone with a circular 

head mounted in a rigid baffle, and what is its value at 0θ = ?  

 

 

Chapter 12 

 

 12.1. * Show that if Z = R + jX, then the conductance G = R/(R
2
 + X

2
) and the 

susceptance B = -X/(R
2
 + X

2
).  Show that if the electrical Qe is defined as B/G,  then Qe is 

also equal to -X/R.  

 

 12.2. * Show that the Van Dyke equivalent circuit of Fig. 12.1 reduces to the circuit 

of Fig. 12.1a where the free capacity Cf = C0 + Ce . 

 

 12.3. ** Convince yourself that the measurements of Cf, tan δ , fr, fa and |Ymax| are 

sufficient to determine the parameters of the Van Dyke circuit of Fig. 12.1. What 

measurement or measurements are necessary to evaluate the electromechanical 

transformer turns ratio N of the equivalent circuit of Fig. 7.12a? 

 

 12.4. ** Explain why the formula keff = (1 + QmQe)
-1/2

 is more suitable for 

determining keff under water loaded conditions (with measurements of B vs. G or 



response of B and G) while the formula keff = [1 – (fr/fa)
2
] is more suitable for in-air 

measurements of |Y| or |Z|. 

 

 12.5. ** Explain the change in the response curve slopes from the TVR curve of Fig. 

12.11a to the TCR curve of 12.12a to the RVS curve of 12.13a.  

 

 12.6. ** Why does the TCR curve of a magnetostrictive transducer look like the TVR 

curve of a piezoelectric ceramic transducer?  

 

 12.7. * Shunt tuning a transducer does not change the TVR and series tuning does not 

change the TCR and RVS. Why is this so? 

 

 12.8. ** The Transmit/Receive, “TR”, switch of Fig. 12.21 has at times been 

criticized for the diode noise introduced in the RVS. With no restrictions on you, how 

would you avoid this?  

 

 12.9. *** What should the smallest dimension of a water-filled tank be for pulsed 

measurements of transducers which go as low as 2 kHz and have a Qm of no more than 5, 

and also for a Qm of no more than 1. Assume two steady state cycles are needed for 

measurement.  

 

      12.10. * Determine the far field Rayleigh distance for a 19.35 cm (7.6 inch) diameter 

piston transducer operating at 10 kHz. Determine the approximate far field distance for a 

close packed seven element circular array of the same transducers.   

  

      12.11. * The in-air frequencies of maximum and minimum admittance magnitudes (fr 

and fa respectively) of a transducer are measured to be 10 kHz and 11.55 kHz.  The in-

water mechanical Qm is measured to be 3.0. What is the in-water electrical Qe ? 

 

      12.12. * The measured TVR level for a transducer is 140 dB and the measured 

impedance is 400 – j300 ohms, all at 10 kHz. What is the RVS?    
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