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for
“TRANSDUCERS AND ARRAYS FOR UNDERWATER SOUND” (Springer 2007)
by

Charles H. Sherman and John L. Butler

Chapter 1

1.1 Linear differential equations of this type can be solved by assuming a solution in the
form x =e™ and determining 7y in terms of the coefficients:

Y=-R/2M+£[R*-4MK_]"*/2M =-R/2M % j[K /M —(R/2M)*]"?
x=e e, a=R/2M, ®,=[K_/M-(R/2M)*]"

where j=\/—_l.

1.2Df=(A + B)2/(A2 + B2/3). For A = B, DI = 4.8 dB, this pattern is called a cardioid.
Maximum DI = 6 dB for B/A = 3.

1.3 Note that Real(x1x,*) = X1 X,cos(@; — @2).

1.4 d=Atc,c, /(c, —c,)
1.5 kK*=1-K!/K? =1-L,/L, =N*/KL, =N?/K!L,

1.6 Tungsten 55.7, steel 26.9, PZT 14.7, aluminum 9.3 and magnesium 5.9. The best
match is with a tungsten tail and a magnesium head (water end). This provides greater
output and more bandwidth because of the better matched head and the higher impedance
tail. A steel tail and aluminum head is often sufficient, less expensive and commonly
used in many applications.

1.7 The power output W =ne,Wi. SL=30dB-3dB+0+170.8=197.8 dB// 1uPa
@ Im and SL=30dB -3dB + 6+ 170.8 =203.8 dB// 1uPa @ Im . Because of the 6
dB increase in DI, 6 dB less or Y4 the power would be needed, - truly significant.

1.8 From Eq. (1.20) Iy = DfW/4nr2. The output power W = urer where u, is the rms
output velocity and R; is the radiation resistance.



1.9 From Appendix A.13, Eq. (A13.31) p(r,0)=jop na® u e3/27r and the intensity,
Ip= Iplz/pc, may then be written as Iy = (ka)chnazurz/émr2 = (ka)zpcnazNeszZ/ |ZmrE|24TCI‘2

1.10  Yes, the D¢ should not be used if the intensity is calculated through the velocity,
voltage or, for that matter, the current. It is only to be used if the intensity is based on

the power. Appendix A.13, Eq. (A13.17) may be written as R,Df = (ka)2na2pc and, when
substituted in the solution for Exercise 1.9, yields Iy = DfurZRr/47tr2 = DfW/4nr2, as it
should.

Chapter 2
2.1 The free permittivity 833T =K' g9 with K" the relative dielectric constant found in

Appendix A 5. (The dielectric constant for free space & = 10°/36m.). Capacitances: Cy =
0.145 and Cy = 0.074 nF.

2.2. Mechanical compliance: C* = 1230 x 10" and C° = 627 x 10™"? m/N. Resonance
frequencies: f, = 14.4 kHz, f, = 20.1 kHz and ke = 0.70, the same as k33 because no
degrading effects were included in this idealized calculation.

2.3 Electromechanical turns ratio N = 0.235 (newton/V). Velocity u = 0.0979 x 10~ and
0.4895 m/s for 1V and 5 kV. Mechanoacoustic efficiency Nm, = 50%.

2.4 Power out W = 143 watts. Intensities: I, = 180 kW/m* =18 W/cm? and Iy = 22.8 W/m®
=.00228 W/cm?. The difference in intensity is a result of the two areas used for I and Iy
and the directivity factor Dy.

2.5 The strain S3 = 115.6 x 10°.

2.6 The voltage = 5080 volts and the displacement = 1.47 x 10° m.

2.7 Kn"Cs = (Ag/s33 L) (Agess /L) = (N/k)? and Kin'Le = (Ao/s33 L) (n”pas  Ag/L) = (N/K)*.

2.8 Piezoelectric ceramic turns ratio = 0.235 and the magnetostrictive turns ratio = 491.

2.9 Piezoelectric ceramic force = 2.35 newton and the magnetostrictive force = 49.1
newton.

2.10 At resonance the total energy is equal to the peak kinetic energy given by Mu?®/2
where u is the peak velocity. The energy dissipated per cycle is (Ru*/2)T where the
period T = 1/f; = 2n/o,. The result is Qum = 2n(Mu/2)/[(Ru*/2)2n/w,] = o,M/R.

2.11 At resonance oM = l/oarCmE and o, = 1/(MCmE )1/ 2. Substitution for oM leads to
the first result and substitution for o, to the second result with KmE = l/CmE.



2.12 Use Egs. (2.83) and (2.105) to eliminate the total resistance, Ry, + R;. Numerical
answer is Q, = 4.

2.13 Use Eqgs. (2.83), (2.105) and (2.106). Numerical answers are Q,,, = 11.2, 4.0 and 3.28
respectively.

2.14 Using Eqs.(2.112) and (2.115) the electroacoustic efficiency ne, = 76.9% and 79.7%
for tan & = 0.01 and ne, = 57.1% and 76.9% for tan 6 = 0.10 for Q, = 1 and 10
respectively. Note that for kefszm >> tan & or kefszmQ() >> 1  the electroacoustic
efficiency nea = Nma at resonance. Numerical results are the same for the magnetostrictive
case since Qp = 1/tan 5. This exercise shows the benefits of using materials with low
electrical losses.

2.15 Numerical and analytical evaluation of Eq. (2.91). Limiting expressions of Eq.
(2.91) can be obtained from the binomial expansion of P{B/G) and P{G/B).

2.16. QumQe = (1/6,CER)(@,Co/G) = Co/CEN? = Co/k’Cy = (1 — K2)/K?

2.17. For 100 volts rms the input power is 7.85 watts. The mechanoacoustic efficiency is
66.7 % and the output power is 5.24 watts.

Chapter 3
3.1. Ring: 41/4 =10.25 kHz. Sphere: 68/4 =17.0 kHz.

3.2. 33 mode segmented ring: 36.5/4 = 9.125 kHz. Assuming no fringing from striping
the effective coupling coefficient can be found from Eq. (3.18) which gives k. =
0.70/1.028 = 0.68 and the resonance frequency is reduced to 1.026x9.125 kHz = 9.362
kHz. The actual electric field in a striped ring is very complicated, and this model gives
only a rough approximation of how striping reduces the coupling coefficient from the
value for a segmented ring where the electric field is nearly uniform. Measurements
indicate that the effective coupling could be about 10 % lower than the value calculated
here.

3.3. For the ring: Water resonance = 0.72x10.25 = 7.4 kHz and Q, = 3.9m,, or =3for
N,.. = 0.8 using Eqgs. (3.14) and (3.16). For the sphere use Eqgs. (3.24) and (3.25) and find

water resonance =15kHzand Q_ =3.05n,,.

3.4. Use the equations in Section 3.21 to obtain:
CF=3.8x10"" m/newton
N = 3.19 newton/volt
M =0.62 kg
Cp=36nF
Go = 1.6 ® x10"mho (using k3; = 0.33 and tan &= 0.004)



Rp=0forn, =1

The equivalent sphere model for radiation impedance is given and discussed in Egs.
(3.13), (10.44) and (A13.24). This radiation impedance model was used to calculate the
in-water resonance frequency in Exercise 3.3. The TVR is obtained from Eqgs. (3.17) and

(3.7) as p/V=0p,AN/[4xn|Z, |[1+jk.a,|] which approaches ®’C"p,AN/4m at low
frequency.

3.5. Use equations from Section 3.1. Eq. (2.112) gives m__ at resonance; using kz;

em

tan § and Qy, from Exercises 3.3 and 3.4 shows that 1, =1. Assuming 1, =0.8 makes
M., =0.8. The mass and volume of the ring are 0.62 kg and 4x10* m® ; assume that end

caps and waterproofing together increases the total mass and total volume to lkg and
6x10°* m’. Then, assuming a maximum electric field in the ceramic of 4 kV/cm, the
equations in Section 3.1 give:

(FOM)y = 75 watts/Hz m’
(FOM),,, = 45 watts/kHz kg

3.6. One approach is to assume the radiation mass increases the effective tube length to
0254 +0.85x0.0483 = 0.0664m. For quarter wavelength resonance A = 4x0.0664 =
0.266m, and the resonance frequency = ¢/A = 1500/0.266 = 5.6 kHz.

Another approach is to use @; =1/C,M, from Section 3.25 where C; is the spring

of length L and M, is the approximate radiation mass. This gives the resonance
frequency as 7.1 kHz. (see Exercise and Answer 3.7). If the length of the ring is short
compared to the acoustic wavelength the latter approach is probably more accurate. For a
longer ring the former approach may be more accurate. Since this is a radiation problem
that has not been solved analytically, accurate results would require finite element
numerical calculations.

3.7. Think of the radiation mass as a rigid mass of M = 8pa3/3 attached to the end of the
spring of length L/2 formed by the fluid in the cavity. Alternatively, think of it as an
extension of the fluid in the cavity of radius a, length AL and mass pnazAL. Equate the
two masses and solve for AL. These two ways of approximating the radiation mass
loading are not equivalent as seen in Exercise 3.6. Because of symmetry, a rigid plane
could be inserted through the ring at half the height of the ring, without affecting the
radiation loading.

38. A) With M; = M; = 0 and neglecting the tie rod we have
o, =[1+M, /M,)/M,C*1"* where C* = 0.97x10"° m/newton giving ® = (1.29x10’
)1/2 and f. = 5.71 kHz; N = 12.2 newton/volt, Cy = 29.3 nF, and k. = 0.70 = k33 because no
degrading effects have been included.

B) Use Egs. (3.38) and (3.39); M= 0.048 kg which has a negligible effect on M and
therefore on f; and k. . This is expected since the wavelength in the ceramic at f; is about
50 cm while the length of the ceramic stack is only about 2 cm.



C) Modifty Eq. (3.38) to include insulators and glue as well as the tie rod. This is
done in Section 8.42 where it is shown that the effective compliance is

Ce=Cu(C" + CH/(C" + Cy + C)),

where C; is the insulator/glue compliance. Using C; = 10CE and C;=0.1 o gives C, =
0.991C" which causes a very small increase in the resonance frequency, by the factor
(0.991)"*. The effect of these compliance changes on the effective coupling coefficient,
ke , is discussed in Section 8.42 and given by Eq. (8.31). In this case the result is that ke
is reduced from 0.7 to 0.65.

3.9.Calculate the velocity in the mechanical branch for a given input voltage. Then use
Eq. (3.17) for the far field pressure.

3.10 Fundamental extensional ring resonance occurs for the circumference nD = A = c/f
where c is the bar speed of sound. Thus fD = c¢/n. From Appendix A.7, for Terfenol-D,
D = 0.54 kHz m = 21.3 kHz in, f°D = 0.764 kHz m = 30.1 kHz in. while for Galfenol
f'D = 0.86 kHz m = 33.9 kHz in, f’D = 1.08 kHz m = 42.5 kHz in.

3.11. Use the results from Ex. 3.10 with the ring diameter 4 inches. For Terfenol-D: f =
5.3 kHz and f* = 7.5 kHz while for Galfenol: " = 8.6 kHz and f° = 10.6 kHz. From Ex
3.1 the short circuit PZT-4 resonance, £ =10.25 kHz, is nearly the same as the Galfenol
short circuit resonance but higher than the Terfenol-D short circuit resonance. The free
inductance L; = },l33TIl2AC/TCD. The cross sectional area A, = 0.258x107 mz, nD = 0.319
m, n = 100 and u33T = pourT. For Terfenol-D the free inductance L¢ = .095 mH , while for
Galfenol the considerably higher value L¢ = 2.64 mH is obtained.

3.12 See Section 3.32. Start with k¢’ = (Emi + Emo)/ (Emi + Em + Eo), define k;? =
Emt/(Emi + Eo) and ko* = Eno/(Emo + Ee), write Emi/Ee = ki?/(1 — k%) and Eno/Ee = k(1
— ko) to get the desired expression ko’ = (k;* + ko> — 2 ki ko2)/(1 — ki’k,?) . Fork; =k, =k
we get k. = (2k% — 2k*)/(1 - k*) = 2k*(1 = k*)/(1 = KH)(1 + k) = 2k*/(1 + k%) as expected.

Chapter 4

4.1. This ring has the same dimensions as the ring in Exercise 3.1; therefore, f, =
10.25/0.94 kHz = 10.9 kHz; RVS =-185 dB/1V//1pPa; C; =36.7 nF; f(length mode) =
65/2 =32.5 kHz, f, (length) = 32.5/0.94 = 34.6 kHz.

Sphere: f, =17/0.81 =20.9 kHz, RVS =-185 dB/1V//1uPa, C; =73.4 nF.

4.2. Eq. (4.10) gives the general expression for the sensitivity of the cylinder as a
function of frequency where D, for a sphere is given in Eq. (4.53) and , is changed from
the value in Exercise 4.1 by the radiation mass. Fig. 4.11 is an example of the wideband
sensitivity.

For the low frequency case: RVS =-185 dB/1V//1pPa as found in Exercise 4.1 or
M = g3; a, from which the TVR can be found using reciprocity and Eq. (12.33) for low
frequency where Zg = 1/ joC,. TVR =TCR/Zy = (p,f/2Z,)M =2n’a’g,p,f’Lel, /t.



From Exercise 3.4 the low frequency TVR was found directly to be ®’p,ANC" /4.

These two results for TVR are equal as can be seen by using the expressions for N and C*

_ T
and d;; =g;€;;.

Similarly, using Eq. (12.36) and Exercise 4.1 we have

TVR =-185 + 20log (36.7x10™) + 40log f + 310
=-23 +40log f dB//pPa @ Im/V

The RVS and TVR for all frequencies up to anti-resonance requires extensive
calculation. Results at low frequency and at f, are the most important.

4.3.f, =109 kHz, RVS = -205 dB, Yes, the scaling factor is 10 in this case. If summed in
parallel RVS = -205 dB, while if summed in series -199 dB. If series differenced, RVS =
- 199 + 20 log (msf/cy) = - 278.5 + 20 log f dB. Deviation expected in the vicinity of
quarter wavelength separation at frequency of 7.38 kHz. Axial null summed modes at
one-half wavelength at frequency of 14.76 kHz. Axial null differenced modes at one
wavelength at frequency of 29.53 kHz.

4.4. Use low frequency Eq. (4.67b) yielding equivalent noise pressure of 29 — 10 log f
dB re 1 wPa for a 1 Hz band and Eq. (4.58) for a noise voltage of -156 — 10 log f dB re 1

volt for a 1 Hz band. Equivalent circuit or analytical calculations are needed for wide
band noise response.

4.5. From Eq. (4.58), 10log <V >=-198+10log 2R, for both summed and differenced
cases since the incoherent noise voltages add. Using R, =tand/wC; for low frequency

gives 101log 2R, =45-101logf and < Vo> =-153-10 logf .
From Egs. (4.80a,b), using RVS = -199 dB for the series summed case and -278.5
+20 log f for the series differenced case from Exercise 4.3 gives

10 log <pen”> = 46 — 10 log f,
10 log <pan™> = 125 — 30 log f.

These results illustrate the much higher levels of equivalent noise pressure for the
differenced case at low frequency.

4.6., RVS =-167.4 dB. Equivalent noise pressure = 12.8 — 10log f dB in one cycle band
using Cr=29.3 nF and Eq. (4.67b). Operation of the T/R switch is discussed in Section
12.61 and shown in Fig. 12.21.

4.7. Resonance f;: 10.25, 14.49, 22.92, 32.41 kHz. From Exercise 4.1 f(length mode) =
32.5 kHz which is only slightly above the n = 3 mode and may seriously distort the
directivity pattern of that mode.



4.8. The reciprocal nature of transducers gives the radiation resistance this dual role. See
Appendix A.17 for further discussion.

49. D, = [l+(ka)2 ]'1/ 2 . The direct derivation of this result, which is somewhat lengthy,
is given in Section 11.31.

Chapter 5

5.1. Use R; =Ry + Rz and Ry, = Ry(sin kd)/kd from Eq. (5.23b). A rigid wall creates an
image of the piston approaching it, making it equivalent to an array of two elements.

5.2. Use Vi/Ii = (Ze)i and Zi = Fi/ui.

5.3. Packing factor pf = L*/(L + L/10)* = 0.826. See Section 5.31. The average radiation
resistance of one piston in the array is pcL’pf and the total radiation resistance of an array

of N pistons is pcNL?pf = pcN(L+L/10)*(pf)* = p ¢ (total array area)(pf)” .

5.4. The uniform velocity distribution u;* factors out of the integral and is canceled by the
denominator U;* leaving Z; = fp(ri)dsifU i = Fi/U,.

5.5. It allows simplification and further physical interpretation by factoring a common
function leaving the product of this function and that for an array of point sources. This
interpretation may be helpful for DI calculations, if the integral of the product of the
squares of the two functions is easier to evaluate. It may also be helpful for radiation
resistance calculations since radiation resistance is directly related to the far field, and
possibly for radiation reactance calculations (see Section 11.14).

5.6 Eq.(5.10a) givesp(8)= Sinc[nN(sin®-sin6,)] which can be evaluated for a
steering angle of 6, =45 degrees. Eq. (5.10b) shows that a grating lobe will occur at

sin@=- 0.293 or at —17 degrees, and the individual transducer beam pattern factor in Eq.
(5.8) shows that it will be reduced by about 2.6 dB.

5.7. The function Sinc x = (x — X/6 + o o 9)/x =1-— x*/6 + %+ —lasx —0. Also the
function J1(x) = x/2 —x/16 + » * and thus, 2Jix)/Ix —>lasx — 0.

5.8. The quantity a/kq = sin’(BW/4) = 3.05 x 10 . Then plot the normalized beam pattern
function p(8) = [1 + 1.1x10"sin*(6/2)12.

5.9 The total radiation resistance of the center transducer for A=4d/3 is

R, =R, [1+Nsinkd/kd]=R,,[1-2N/37]

which is negative for N > 5, meaning that the center transducer is absorbing power
radiated by the other transducers. The total radiation reactance of the center transducer



when d=A/2 is X, =X, —NR,, /m, which could also become negative for large

enough N, reducing the total mass on the center transducer and making its resonance
frequency higher than that of the others.

5.10 Using Eqgs. (5.16) and (5.23b) gives:
72,=7,+Z,e"=7,-R, je’" ™" /kd
2,=7,+7,e"=7,-R,je’" " /kd

R, =R, [I+sin(kd—p)/kd], X, =X, +R,, cos(kd—p)/kd
R, =R, [I+sin(kd+p)/kd], X, =X, +R,, cos(kd+p)/kd

For steering to end-fire, L =kd , which gives

RIZR11 s X1 =X11 +Ryi/kd
R; =Ry [1+4sin2kd/kd], X5 = X11 +Ry; cos2kd/kd

Note that driving transducers in an array to achieve the same velocities, as in Exercises
5.9 and 5.10, is not accomplished by driving with the same voltages, since acoustic
coupling affects the radiation impedances, and thus the total mechanical impedance, in a
way that depends on the velocities. The calculations described in Section 5.21 are needed
to determine the required voltages.

Chapter 6

6.1. Substitute m;(xg) = moe’™", where y is the steering angle and my is a uniform
sensitivity , into the one dimensional version of Eq. (6.5a) where 0 is the beam pattern
angle. Integrate from —L/2 to L/2, where L is the line length, and normalize to obtain the
beam pattern function Sinc [(kL/2)sin 6 — (kL/2)sin y)], which shows that the wave
number k sin 0 is displaced by k sin y which means the beam is steered from 6 =0 to
0=vy.

6.2. Waves traveling in a medium at a speed lower than the sound speed in that medium
are called non-acoustic waves. Hydrophone arrays designed to receive acoustic waves in
water often must be installed in locations where noise in the form of non-acoustic waves
is present. Therefore the response of the array to non-acoustic waves is critical in
determining the signal to noise ratio. (See Section 6.3).

6.3. The intensity increase indicated by the DI of a projector array is referenced to the
average (omni-directional) radiation. Therefore, in a receiving array only array gains that
are determined by isotropic (omnidirectional) noise could be consistent with this
definition of DI. Because array gain depends on noise, while DI does not, array gain and



DI depend on frequency and array geometry in different ways; therefore, they generally
do not have the same value (see Exercises 6.4 and 6.5 and the first paragraph of Section
6.2).

6.4. ForkD=mn: D;=N=6, DI=7.8dB forall steering angles
ForkD = n/2: Df=3.19, DI = 5.04 dB for no steering
Df=3.23, DI =5.07 dB for 30 degree steering
Ds=6, DI=7.8 dB for 90 degree steering
ForkD<<1: D¢ =1, DI=0

6.5. Use sin 2x = 2sin x cos X to show that D¢(N, kD, 0°) = D¢(N, 2kD, 90°).

6.6. For all the arrays of Exercise 6.4 the array gain in isotropic, incoherent noise is the
same, 10log 6 = 7.8 dB. This can be seen from the examples at the end of Section 6.2
and from Eq. (6.12) for the steered cases with the signal arriving from the steered

direction, i.e., kd;; cos® =—¢; which makes p; =1for all hydrophone pairs.

6.7. Using the properties of carbon steel from Appendix A.2, the coincidence frequency
is approximately 36 kHz. The evanescent pressure wave amplitude decays by a factor of
0.47 at 1 cm from the plate, or 6.6 dB.

6.8. A noise model must be assumed as the basis for calculating a spatial correlation
function. The simplest model for isotropic noise assumes that the noise consists of
uncorrelated plane waves arriving with equal intensity from all directions. Thus, starting
with the cross correlation function for one plane wave arriving from a specific direction
as given in Eq. (6.12) with ¢, =0, and averaging over all directions gives the result in
Eq. (6.16). Two other noise models that give the same spatial correlation are: 1) The
noise originates from a thin spherical shell of point noise sources, or 2) from a uniform
spherical volume distribution of point noise sources. In both cases, when the radius of
the sphere is very large and the spatial correlation is calculated is at the center of the
sphere, the result is also Eq. (6.16).

6.9. Imagine a coordinate system with two unit vectors, V; and V, , starting from the
origin and pointing in different directions given by 0,,¢, and 6,,0, . The vector dot
product of unit vectors is equal to the cosine of the angle between them, 7y, and can be

evaluated by calculating the sum of the products of the vector components. Thus, using
V,, =sin6, cos ¢, , etc., gives

cosy=V,V, + Vlszy +V,,V,, =cos0,cos 0, +sin O, sin 6, cos(d, — 0, )

This general relation also contains the direction cosines of any specified vector. For
example, the direction cosine of V; with respect to the x-axis is given for 6, =90°and

— ()° — a1
0,=0°as cosy, =sin6,cos?,.



6.10 Using Eq. (6.16) for the spatial correlation of ambient noise gives:

1) AG=10log{4N*/[> > pi* +3N]}

2) AG = 10logN
3) AG=10log{36/[3+4sinkD/kD+ 2sin 2kD/2kD +9]}
4) AG=10log2.47=3.93dB

6.11 . Use Eq. (5.23b) to determine the total radiation resistance of the array,
R, =2{pcra’[(ka)’/2][1+sinkD/kD]}

Use Eq. (6.8b) to determine D¢ for a two element line array in free space and multiply by
2 for a line array in a plane baffle, D¢ = 2/(1+sinkD/kD). Determine D, from Eq. (4.51)
for a plane wave arriving on the MRA of the array, D, = 2. Show that these results
satisfy Eq. (4.56).

Chapter 7

7.1. For M| =4 kg, f, =36 kHz and Q,, = 4.7, while for M; = 8 kg, f. = 34 kHz and Q,, =
4.0. It’s probably not worth going from 4 kg to 8 kg as there is only a 6 % reduction in
frequency and a 15 % reduction in Qy,. Better to increase the length of the piezoelectric
material.

7.2. The anti-resonance frequency 0. =1/MCP = mrz/(l - kz) since CP = CE(l - kz).

7.3. The sine and binomial expansions yield 1/[sin kL] = 1/[kL - (kL)3/6] ~[1 +
(kL)*/61/kL = 1/kL + kL/6 which when multiplied by —jpcA, yields - joM/6 for the

second term.

7.4. At very low frequencies 1/wC becomes very large and open circuiting this branch
leaving just M/2 + M/2 = M.

7.5. Eliminate u; in Eq. (7.36a) and F; in Eq. (7.36b) and then identify coefficients.
7.6. For kL << 1, jpcA tan kL/2 = joM/2 and —jpcAy/sin kL = 1/joC".

7.7. Substitute Z, = j(@M — 1/oC) + R and Y, = joCy + oC¢/ tand into Eq. (7.70).
7.8. The far field pressure at 1 m is p = NAfpy/c = 4300 pPa.

Chapter 8

8.1. f; =32 kHz and Q,, = 3.3 when the bar mass is ignored; f; =28 kHz and Q,, = 3.8
with an added bar mass of 0.3 kg.

10



8.2. Divide by N*C¥/Cy. Subtract both sides of Eq. (4.23) from 1.

8.3. For k =0.5, k. = 0.482, for - 3.6% change; change in f; is + 5 %; original f,=£,/0.87
= 1.15f;, new f,=1.05f,/0.876 = 1.19f;, where f;is the original resonance frequency

8.4. For k = 0.5, ke = 0477, for — 4.5% change, change in f; is -5 %, original f, =
£/0.87 = 1.15f,, new f, = 0.95f,/0.879 = 1.08f,

8.5. For k = 0.5, ke = 0.458 for — 8.5% change, change in f; is 0.5 % , original f,=1.15 f;
new f, = 1.005f,/ 0.89 = 1.13f;

8.6. Segmented bar with k = 0.5: k. = 0.46, for — 8% change. End electroded bar with k =
0.5, ke = 0.45, for — 10 % change.

87.Fork=05andn=1,k.=0.45;n=2,k.=0.225,n=3, k. = 0.15.

8.8. The modes are given by (kL), = n®/2 with n = odd integers, and the dynamic
stiffness is K, =K,n’n’/8. For the length expander bar, k’, =8k, /n*n’ and for the

edn
segmented bar, k2, =k3, /[ki, +(n°%* /8)(1-k3,)].

edn

8.9. Determine an effective stiffness for each mode from the modal frequency, i.e.
o =w,(1+n’)=K_/M=K*(1+n*)/M, K =K"(1+n?). Then, assuming Cy and N
are the same for each mode, and following Section 8.43 where it is noted that the

dynamic increase in stiffness, (K, - KE ), has the same effect as a stress rod, use of Eq.
(8.29) gives

2
kedn

=k, /[1+(1-k3)n’].

The values forn=0, 1, 2, 3 are 0.33, 0.24, 0.16, 0.11.

Chapter 9

9.1. The equation becomes x3/L = d33V/(L + x3/L) leading to (1 + x3/L)x3/L = d33V/L
yielding the quadratic result S32 + S3 - d33V/L = 0 with exact solution S5 =[- 1 + (1 +
4d33V/L)""*)/2 . The four term binomial expansion for (1 +y)"=~ 1 +ny+n - 1) y/2 +
n(n — 1)(n — 2) y'/6 leads to Sz = d33V/L — (d33V/L)* + 2(d33V/L)’ + ¢ o o.

9.2. Exact quadratic solution for S3 gives 1.1558664 x 10™*. Neglecting the nonlinearity
gives the approximate solution, S3; = ds3 V/L =1.156 x 10 “+ with an error of only 0.01%,
which is much smaller than the uncertainty in ds3 . The specific nonlinear mechanism
included here, at very low frequency, is the variation of the electric field as the length of
the material varies with the voltage held constant. At higher frequencies other nonlinear
mechanisms would usually have more significant effects.
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9.3. The strain versus field curve must be symmetric for even harmonic generation and
anti-symmetric for odd harmonic generation. This can be seen from the nonlinear
solution in Exercise 9.1, although that exercise was stated for nearly static conditions. If
the applied voltage is V =V, cos ot the second term of the solution, which is symmetric,

gives a strain proportional to cos® ot = (1+cos2mt)/2, i.e., static and second harmonic
strain components. Similarly, the third anti-symmetric term of the solution, proportional
to cos’ ®t=(3cosmt+cos3mt)/4, gives a third harmonic and a change in the
fundamental.

9.4. Below resonance the voltage response increases (typically at 12 dB/octave) and
flattens out above resonance. If a transducer is operated below resonance, the harmonics
will have additional output relative to the fundamental, since they occur at higher
frequencies where the voltage response is greater. Operating at f;/2 and f,/3 augments the
second and third harmonics, since then they occur at the transducer resonance frequency
where the voltage response is usually maximum (see the pressure harmonics in Figs. 9.4
and 9.5 and Exercises 9.6 and 9.7).

9.5. Materials generally produce harmonics when the strain approaches and exceeds the
elastic limit or when the electric or magnetic field approaches breakdown. In this region
the transducer efficiency at the drive frequency decreases since part of the input power is
transferred to power in the harmonics. Thus an increase of input power is required to
achieve a goal based on linearity, which brings the strain or field closer to the limits of
the material and may lead to mechanical or electrical failure of the transducer.

9.6. The equation of motion is:
MX +Rx + (Ac/L)x = (Ae/17)V? = (Ae/L7)(V; +2V,V, cos ot + V; cos” ot)

= (Ae/L)*(V, + % V] +2V,V, cos ot + % V] cos2mt) which shows the static, fundamental

and second harmonic drive terms. The solution for the displacement for each drive term
can be found separately since this is a linear equation. The results are:

1
x| = (Ae? /cL)(V, +5vf)

|x,|=(Ae/L)*(2V,V,)/ 0|Z,, ()|
|x,|=(Ae/L)’* V] /40|Z, (20)|

9.7. The ratios can be found from the solutions in Exercise 9.6 or from Eq. (9.36) and
Table 9.2:

|x2 / X1| =V,/4V, , well below resonance

|x,/x,|=(V,/16V,)(4+9Q2)"*,  at one half the resonance frequency
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|x,/%,|=(V,/14V)) [(4+9Q:)"* , at the resonance frequency

Note that for Q. = 10 the ratio at one half the resonance frequency is 7.5 times greater,
and at the resonance frequency 30 times smaller, than it is well below resonance, showing
that harmonic distortion and its effects can vary strongly with frequency.

9.8. Let Uy and U, be the converted mechanical energy in the fundamental and in the
second harmonic and U, be the stored electrical energy. Define the square of the
electromechanical coupling coefficient, generalized to nonlinear conditions, as the ratio
of the mechanical energy in the fundamental to the total input energy:

K2 =U_ /(U +U_,+U)=k>/1+U,k*/U,_)

where k* = Ui /(U +U, ) is the squared coupling coefficient when nonlinear effects are
negligible. Using the displacement ratio from Exercise 9.6, and noting that the
mechanical energy is proportional to displacement squared, gives at low frequency,

U, /U, =[x, 0%, = (V,14V,)

When operating a biased transducer the usual practice is to keep the alternating drive
voltage less than the bias voltage (V| < Vj ) to avoid significant nonlinear effects. The
results from Exercise 9.6 show that, even for V| = V,, the effect on coupling is very
small at low frequency (for k = 0.7, k,; = 0.696) and even smaller at resonance. But the
effect is much greater at one half the resonance frequency (for k = 0.7 and Q, = 10, ky =
0.42). This is a specific example of the effects pointed out in Exercise 9.4.

9.9 For the componentat ®: x,<V’, — u, < ®V’
20: x,<V?/2, u,x<mV’
30: X, V7, u, o< 30V’

40: x,<V?/2, u, <20V’
9.10 Since the radiated pressures are proportional to the accelerations the four pressure
components are: p, < @'V, p, < 20°V?, p, < 9w’V?, p, < 8w’V>.

Chapter 10
10.1. Substitution yields 6°p/6x” = - k’p. Particle velocity = u = (jk/jop)p = p/pc showing

that characteristic impedance is pc. Characteristic impedance ratio of PZT to water is
22.2/1.5 =14.8.
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10.2. For L = A, kL = 2x. S= A/2. The line with L = A can be thought of as two lines, each
A2 long, with centers A/2 apart, and thus canceling in the axial direction as the two point
sources do.

10.3. Line: BW = 51° and DI = 3 dB. For piston: BW = 58° and DI = 9.9 dB. The higher
DI of the circular piston occurs because it radiates mainly in one direction, while the line
radiates omnidirectionally in the plane perpendicular to its axis. BW is caused by partial
cancellation as the observation point is moved away from the MRA. The fact that the
piston has area, while the line does not, causes the piston’s greater beam width when the
diameter is the same as the line length. This can be seen by considering the piston to be a
collection of parallel strips. Note that cancellation for those strips near the diameter is
about the same as it is for the line. However, for those shorter strips near the edge of the
piston, cancellation is less than for the line, thus giving a broader beam for the piston.

10.4. For the line the exact BW = 52.9° and the approximate BW = 51%; error of 3.6% for
one wavelength long. A better approximation for DI, given by Eq. (10.23b), is 2.5 dB
rather than the approximate 3dB. For the circular piston the exact BW = 62° and the
approximate BW = 58° ; error of 6.5% for one wavelengh diameter. The exact Eq.
(10.31) yields DI = 9.7 dB rather than the approximate 9.9 dB.

10.5. Normalize Eq. (10.34) by dividing by the value at 8 =90° giving

p(8)/p(90°) = Sinc(kL cos ©)H), (ka)/sin 6H;, (ka sin 6) .

This ratio can be simplified by use of the approximation , Hj(x) = (2/7x)"? , valid for x
> 1/2 (see Morse and Ingard, Reference 17, p.360), and it becomes

p(8)/p(90°) = Sinc(kL cos 8)(sin 8)"'*.

Note that the first factor is the line function (for length 2L). Now with kL = ka = 7, find
0 for a pressure amplitude ratio of 0.707 (i.e. -3 dB) . The quantity 26 gives the beam
width. This must be done by trial and error, and it is important to start with a good guess.
In this case, since the ring is the same length as the line in Exercise 10.4, the beam width
will be similar; so 50° is a good initial estimate. Thus 6=(nt—-BW)/2= 650,
Sinc(mcos0) = 0.73, (sin 6 )1/2 = 0.95 and the pressure ratio = 0.69, close to the desired
value. A trial beam width of 46° gives a pressure ratio of 0.74. The correct beam width
is about 48" .

10.6. Eq. (10.36) with z = 0 gives nulls when sin(ka/2) = 0 and the radiusa=nA, n=1, 2,
3, o 00 .

10.7. For ka << 1, ka, = (kag)"*/(12)"*. For ka >> 1, ka, = kag/N3. When the size is
small compared to the wavelength the dipole is a much poorer radiator than the monopole
because of strong cancellation from its two out-of-phase parts. Thus to radiate the same
power the dipole must have much more radiating area or much greater velocity.
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10.8. D, = 2 for a plane wave arriving perpendicular to the plane.

10.9 D, = (ka)*/[4+(ka)*] for a plane wave arriving parallel to the axis of the dipole.
This D, has a maximum value of 0.25 when ka = \/5 .

10.10.  Consider a free-flooding ring of length L, inner radius a and outer radius b. Use
a cylindrical coordinate system with the center of the ring at the origin. This makes the z
= 0 plane a plane of symmetry, and the boundary conditions only need to be stated for
half the ring. The boundary values of the normal velocity are:

u=0, for z=0, O<r<a and b<r< o
u=u;, for z=L/2, a<r<b

u=uy, for O<z<L/2, r=a

u=u, for O0<z<L/2, r=b

where u;, u; and u, are uniform outward normal velocities on the top, inside and outside
surfaces of the ring. These velocities are related by the mechanics of the ring; e.g., if the
ring has very thin walls, u; = -u, . Consider trying to make the cylindrical wave
functions in Eq. (10.13) satisfy these conditions. The ring has cylindrical symmetry and
only the functions for m = 0 are needed, but all values of k, are allowed. A solution in
terms of these wave functions does not exist (see Chapter 11).

Chapter 11

11.1. Spherical coordinates are the most useful because the constant coordinate surfaces
are finite and therefore capable of fitting real transducers. Thus exact solutions are
available for spherical transducers with any normal velocity distribution and exact
solutions for quantities such as radiation impedance have been derived from them.
Oblate spheroidal, prolate spheroidal and ellipsoidal coordinates also have the important
advantage of finite constant coordinate surfaces, although the wave functions are not as
well developed. Rectangular and cylindrical coordinates are commonly used, but their
constant coordinate surfaces are not finite, and radiation from finite flat surfaces such as
pistons can only be solved by assuming they are part of an infinite rigid plane. Similarly,
cylindrical radiators must be assumed to have infinite rigid extensions. Radiation from
common shapes such as a rectangular box or a cylinder of finite length cannot be solved
by expansion in wave functions except as an approximation.

11.2. Use P1(x) = x and let X = cos 6; etc.

11.3. Satisfying the boundary condition in Eq. (11.2) requires the integral:
T 0

[u(B)P, (cos0)sin6d6 = u, [ P, (cosH)sin 6d6
0

0
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_ Uy
(2m+1)

[P, . (cosB,)—P (cosb,)].

11.4. Use Eq. (11.1) with m = 0 because of the azimuthal symmetry of the boundary
condition, leading to Eq. (11.3a). The boundary condition is satisfied, in the same way
that led to Eq. (11.4), using the orthogonality relation given in Exercise 11.3. Using the
relation P, (-x) = P, (x) for n an even integer and P, (-x) = —P, (x) for n an odd integer
gives the coefficients:

A, =[pcu/jh’ (ka)][P,, (cosB,)—P,  (cosb,)], forneven
A,=0, forn odd .

Vanishing of the odd coefficients is a necessary feature of the solution because the
boundary condition in this Exercise is symmetric about the equatorial plane, while the
boundary condition in Exercise 11.3 does not have this symmetry. Using Py (cos0) =1
and P, (cos0) = (3cos20-1)/4 the first two terms of the solution for the pressure are:

p(r,0) = A h{” (kr)+ A, (3cos 26 —1)h{” (kr) /4.

The second term shows the departure from omnidirectionality that results from this model
of an end capped ring transducer.

11.5. Follow the procedure in Section 11.14 but use the radiation resistance of a dipole
given by the real part of Eq. (10.47).

11.6. Use reasoning similar to that in Section 10.33 for small pistons. Imagine an array
constructed such that it vibrates exactly the same on both sides (case 1, the rigid baffle).
Imagine the same array surrounded by pressure release material, or lying on the surface
of water, or constructed to vibrate exactly the opposite on both sides (case 2, the pressure
release baffle). Now consider the same array mounted such that it vibrates only on one
side (case 3, no baffle). As in Section 10.33, superposition of the velocity boundary
conditions for cases 1 and 2 shows that uz = (u; + uy )/2, and it follows that the entire
pressure fields of the three cases are related in the same way, i.e. , ps = (p1 + p2 )/2. But
in the plane of the array p, = 0, and so p3; = pi/2 in the plane of the array. The
approximation in Eq. (11.44b) is also consistent with this result.

11.7. Note that the D, for the piston holds for a wave at normal incidence. As the
wavelength decreases the piston acts as a plane rigid baffle with the reflected and incident
waves in phase, which raises the pressure on the surface and increases the D, . While for
the sphere the phase distribution of both the incident and scattered waves becomes more
nonuniform as the wavelength decreases, which reduces the average pressure on the
surface and decreases the D, . It is reasonable for D, to decrease as 1/ka as ka increases,
because 1/ka is proportional to the number of wavelengths contained in the diameter of
the sphere; the more wavelengths, the more completely the pressure cancels.
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11.8. The pressure along the pressure release surface is forced to be zero, but the velocity
of that surface is not zero. The motion of the pressure release surface is similar to an
array of dipoles that results in radiation in the back direction out of phase with the direct
radiation from the piston.

11.9. The radiation resistance and velocity must be equal because of symmetry. The
symmetry of the results is a valuable means of checking the validity of the calculation,
which can also be used for large arrays. Programs designed for handling large arrays
should also be validated by applying them to small arrays for which the results can be
estimated by other means.

11.10 In Eq. (11.34) p, is the pressure exerted on transducer 1 by transducer 2,
including the incident wave from 2 and the scattered wave from 1, i.e., p> = [pi (r) + ps(1)],

while u; is the normal velocity as a function of position on transducer 1, u; (r). Thus,
using Eq. (11.50), the left side of Eq. (11.34) can be written

szuldS1 = uln‘[pi (r)+p,(r)](u,(r)/u,)dS, =u,Ap,.
S, S,

In Eq. (11.53) p,(r,0,0), the pressure from transducer 1, is constant over the surface of
the very small transducer 2. Thus the right side of Eq. (11.34) can be written

J-J. p,u,dS, =p,(r, 9,¢)ﬂu2d52 =p,(1,0,0)u,A,,
S, Sy

consistent with Eq. (11.53).

11.11. D,(6,0)=4J,(kasin®)/kasin® — 2 for 6=0.

Chapter 12
12.1. The admittance Y = 1/Z = /(R + jX) = (R - jX)/(R* + X*) =G + jB

12.2. At low frequencies, well below resonance, 1/joC. >> joL. + R. Also, Cs = Cy +
NCE.

12.3. A measurement of both an electrical and mechanical quantity is needed to
determine N; such as, voltage and force or voltage and acceleration with a known mass.

12.4. In air the damping is usually small allowing an accurate determination of f, and f,
; however, an

from measurements that clearly show the maxima and minima of IZl or |Y

accurate measurement of Q,, and Q. is difficult in air where the resonant peak is very
narrow. With much higher in-water damping Q,, and Q. are much smaller and are easily
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measured, while the maxima and minima of |Z| and |Y| are broadened making it difficult

to determine f; and f, accurately.

12.5. TCR is given by S = p/l = Zp/V where p/V gives the TVR. The electrical
impedance is, except at resonance, approximately given by a function like 1/joC. Thus
the TCR response is modified by a function with a slope of - 6 dB/ octave. The RVS is
obtained from the TVR through reciprocity that includes an additional slope change of —
6 dB/octave.

12.6. The magneotstricitive transducer is the dual of the piezoelectric transducer. Thus,
one acts like the other with current and voltage interchanged.

12.7. A parallel inductor does not change the input voltage. A series inductor does not
change the input current. RVS is for open circuit conditions which is equivalent to a very
high impedance constant current condition.

12.8. Use a separate hydrophone or construct a separately wired hydrophone as part of
the projector.

12.9. At 2 kHz the wavelength A = 0.75 m. If we need 2 cycles to make a measurement,
the differential distance, A, between the transmitted direct path and the reflected path,
would be A = 0.75(5 +2) = 5.25 meters. For a mid-tank projector-hydrophone separation,
1, (see Fig. 12.26) the distance A = 2H - r where 2H is the total reflected path and H is the
hypotenuse of the right triangles. Thus for a separation of 1 meter H = (5.25 + 1)/2 =
3.125 m. The distance to the surface, w/2, is then [(3.125) — (0.5)*]"* = 3.08 m, and the
water tank depth, w, should be 6.2 m (20 ft) for Qy, <5 and frequency > 2 kHz. For Q,, <
I, A=225m, H= (225 + 1)/2 = 1.625 m, and the tank depth needs to be only 3.09 m
(10.1 ft).

12.10. At 10 kHz the wavelength A = 0.15 m. The Rayleigh distance z; > (0.1935)%/0.3 =
0.125m (4.92 inches). For a close packed 7 element array z; > (3 x 0.1935)2/0.3 =1.123
m (44.2 inches), which is nine times the distance needed for a single piston. Note that the
Rayleigh distance is less than the diameter for one piston but almost twice the width of
the array.

12.11 The effective coupling coefficient is k = [1 — (fr/fa)z]l/ 2 = 0.5. Since QuQe = (1 -
KAC, Qe=1.

12.12 The RVS can be obtained from the reciprocity relation in Eq. (12.35) where IZI =

(400% + 300%)'? = 500 ohms. The result is that the RVS = 140 + 54 — 80 -294 = -180
dB//V/uPa .
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