EXERCISES
for
“TRANSDUCERS AND ARRAYS FOR UNDERWATER SOUND” (Springer 2007)
by

Charles H. Sherman and John L. Butler

This document is designed to supplement the book ‘“Transducers and Arrays for
Underwater Sound” by providing specific exercises that illustrate and amplify the
material in the text. The degree of difficulty and effort required by these exercises varies
from easy and quick to difficult and time consuming, and is indicated only roughly by:
*lowest, **moderate, ***highest. Some of the exercises require a simple calculation
with a specific numerical answer, but the solution often requires the reader to become
familiar with use of the data in the Appendix. Other exercises are more complex and
may require use of simplifying assumptions and approximations that are usually
discussed in the text. Some exercises also call for more extensive computations to be
attempted depending on the reader’s interests and the availability of specialized computer
programs for transducer analysis or finite element modeling programs (see references in
Chapter 7). A set of answers is given in a separate section after the exercises. In some
cases, when the exercises require considerable effort to complete all the numerical and
graphical work, it is not practical to present the answers in complete detail. In these cases
the answers consist of some discussion of the main issues, some directions for
approaching the problem and enough numerical results to allow the reader to evaluate his
understanding. In many cases the answers also contain additional discussion related to
the practical relevance of the exercise.

EXERCISES
Chapter 1

1.1 ** The free simple harmonic oscillator is basic to most transducers. Its equation
of motion is given by Eq. (1.1) with the external mechanical and electrical forces
removed by setting F = 0 and V = 0. Show that the solution for the displacement of the
mass represents oscillations at the angular frequency [(K,_ /M)—(R/2M)*]"?, and that

these oscillations diminish in amplitude exponentially with time with a decay factor
R/2M.

1.2 ** Calculate the directivity factor of a transducer that has a far field intensity
directivity function of (A + Bcos 9 )2. What is the DI if A = B =1? What value of the



ratio B/A gives the maximum DI? Sketch the directivity pattern for some specific values
of A and B. See Section 4.56 for other examples of similar directivity patterns.

1.3 * Calculate the time average of the product of the two harmonically time varying

quantities x; = X; el @) and x, = X,¢e/@*) (see Appendix A.3), and show that it is
equal to V2 Re (x;x2*).

1.4 ** A ship approaching a harbor in poor visibility, before the invention of radio
direction finders, Loran or GPS, knows its position only within a circle of two mile
diameter. At the harbor entrance are a bell buoy and a nearby foghorn and underwater
sound source located close together that blast simultaneously at one minute intervals. The
navigator has his eyes, ears and an omnidirectional underwater listening device. Derive a
formula for the distance of the ship from the buoy, d , in terms of the speeds of sound in
water, cy, and air, c,, and the time interval between hearing the two sounds.

1.5 *** For magnetic field transducers the equations
F=Z"u+N_I
V=N_u+Z]I

correspond to Eqgs. (1.8) and (1.9) for electric field transducers, where H is the magnetic
field (proportional to I), Z, is the clamped electrical impedance and Z,  is the open
circuit mechanical impedance. Go through the steps following Egs. (1.8) and (1.9) to
derive the short circuit mechanical impedance, s = Zine +N2/Zo , and the free electrical
impedance, Zs = Z +N? /ZmrH . Then follow the steps in Section 1.41 to derive the
expressions for the coupling coefficient squared, k*, for magnetic field transducers in Eq.
(1.18).

1.6 ** Use Table A.2 of the Appendix and list the ratio of the pc values to that of
water for tungsten, steel, PZT-4, aluminum and magnesium. Consider a sandwich
transducer with PZT-4 in the center as described in Section 3.41. Of the listed materials
which would you put on the water side and which on the opposite side for the best match
to water and, separately, for a less expensive “cost effective” match to water?

1.7* Show that Eq. (1.25) may be written as the expression given in Appendix A.13,
Eq. (A13.28). Calculate the source level for a transducer with an input power of 1,000
watts and efficiency of 50% operating as an omnidirectional radiator with DI = 0 dB and
also as a directional radiator with DI = 6 dB. What is the reduced value of power needed
in the directional case to achieve the source level of the omnidirectional case?

1.8* Show that we may write the far field intensity as Iy = DfW/47tr2 and also as Ip =
Dfurer/4nr2 where u, is the rms velocity.

1.9*%*Use the pressure expression for a piston in a rigid baffle, Appendix A.13, Eq.
(A13.31), to obtain the on axis (0 = 0) intensity expression. For the case of a piezoelectric



ceramic transducer, eliminate the velocity and write the expression in terms of the
voltage, mechanical impedance and the electromechanical turns ratio.

1.10** Of the two intensity expressions, given in Exercises 1.8 and 1.9, one is
directly dependent on the directivity factor while the other is not, but depends on the
velocity or voltage. Does this mean that if the intensity is calculated using the velocity or
voltage that the Dy should not be additionally used? Show that both expressions are
equivalent by use of Appendix A.13, Eq. (A13.17) for a piston in a rigid baffle.

Chapter 2

2.1 * Perform a few calculations to become familiar with some of the important
parameters of transducers. Consider an ideal transducer operating in the 33 mode of
piezoelectric ceramic Type I material (PZT-4, see Appendix A.5) of bar length 1.27 cm
and cross sectional area 1.6 cm?® with rigid backing on the rear end and an ideal piston of
area 8 cm” on the front end. Assume the piston face radiates into the water and the
remaining part is isolated from the water by a water-tight housing. Calculate the free, C¢
= 833TA0/L, and clamped, Cy, capacitance.

2.2 * Ignore the mass of the piezoelectric ceramic of Ex. 2.1 and calculate the short
circuit mechanical compliance Cct= sE33L/Ao, the open circuit compliance CD, the short
circuit resonance frequency, f;, and open circuit anti-resonance frequency, f,, for a total
piston mass and radiation mass of M = 0.1 kg. Also, calculate the effective coupling
coefficient from f; and f,. Why does kg = ki3 in this case?

2.3 ** Calculate the electromechanical turns ratio, N, and the corresponding
mechanical force, F, for 1 volt and 5 kV drive for the transducer of Ex. 2.1. Then
determine the piston velocity, u, at mechanical resonance for a total mechanical loss
resistance R = 1.2x10° and radiation resistance R, = 1.2x10° Ns/m. What is the
mechanoacoustic efficiency?

2.4 ** Calculate the power output, W, and average surface intensity, Iy = W/A,, at
resonance for 5 kV for the transducer of Ex. 2.1. Assume a directivity factor of Dy = 2
and calculate the source level in dB re 1 pPa and the far field intensity, Iy, at 1 meter and
compare with the surface intensity. Explain the difference in the values of the intensities
I; and I,.

2.5 * To gain a little more familiarity with transduction consider Eq. (2.9) with
external force F, = 0 and at low frequency where the mass and resistance terms are
negligible compared with the stiffness term in the impedance. Show that under the usual
linear case where x3 << L the strain S3 = d33E3 and the displacement x3 = d33V. Calculate
this linear strain for Type I piezoelectric ceramic with typical maximum electric field of
E; =4 kV/cm (10.2 kV/inch).

2.6 * Using the results of Exercise 2.5 calculate the corresponding displacement and
voltage for a length, L, of 1.27 cm.



2.7 * Consider the piezoelectric and magnetostrictive cases of Table 2.1 and show
that the third column can be obtained from the first and second columns.

2.8 * Calculate the values of the electromechanical turns ratio N for piezoelectric and
magnetostrictive cases of Table 2.1 with Ag = 1.6 cm” and L = 1.27 cm for Type I
piezoelectric material (see Appendix AS5) and Terfenol — D magnetostrictive material (see
Appendix A.7) with n = 100 coil turns.

2.9 * Calculate the piezoelectric force for voltage V = 10 volts and the
magnetostrictive force for current I = 0.10 amps for the N values of Exercise 2.8.

2.10%* Derive Eq. (2.82), Qn = oM/R , from the definition Q,, = 2n(Total
Energy)/(Energy dissipated per cycle at resonance). See Eq. (8.5) and Section 8.2 for
further discussion of Q.

2.11* Show that, on using resonance relations, the expression Q, = o;M/R may also
be written as Qm = 1/&RCp" or Qm = (M/Cn”)"/R = (MKnH)"/R  where Cy" is the
short circuit mechanical compliance and KmE is the short circuit mechanical stiffness .

2.12 * Although the mechanical Q may be calculated for a 100% efficient transducer,
the mechanoacoustical efficiency, Nm, , usually must be measured or estimated because
the internal mechanical resistance is not known. Accordingly, show that the mechanical
Q may be written as Qu = Qun’Nma Where Qn’ = (M + M;)/R; is the mechanical Q for
Nma = 100%. If the calculated transducer Q,,’ is 5 what is Qp, for Ny, = 80% ?

2.13 ** Show that the mechanical Q may be written as Qn, = [0,M/R; + ©:M; /R;] Nma
where the first term in the brackets is the Q,, of the transducer without radiation mass
loading and the second term is called the radiation Q and is due to the radiation mass and
radiation resistance alone. Also show that for the case of a spherical radiator that the
second term may be written as 1/k;a where the wave number k; = o,/c and a is the radius
of the sphere. Determine the Q, for a spherical transducer where w:M/R; = 4 and M, =
80% for the cases where k;a =0.1, 1 and 10.

2.14* Calculate the electroacoustic efficiency of an electric field transducer at
resonance for Nm, = 80%, kegr = 0.5, for Q, = 1 and 10 for tan 6 = 0.01 and, under high
electric drive conditions, for tan 6 = 0.10. Make the same calculation for a
magnetostrictive transducer with coil Qp = 100 and 10 (instead of tan 6 = 0.01 and 0.10
respectively) but with negligible eddy current losses.

2.15* Construct a table or graph of the power factor, Py, as a function of B/G from 0
to 10. Show that in particular for B/G = 0, 1 and 10 the power factor Py=1, 0.707 and =
0.1 respectively. Show that in the limit P = 1 for B/G << 1 and Py = G/B for G/B << 1.



2.16 ** The effective coupling coefficient may be obtained from measurable
quantities by use of the equations K=1- (fr/fa)2 or k* = 1/(1 + QmQe). Prove the last
very important equation.

2.17 * Calculate the input power at resonance for a transducer with k = 0.5, C¢ = 10
nF, Qn, = 5 and f; = 10 kHz for an RMS input voltage of 1 and 100 volts assuming that
electrical losses are negligible. What is the efficiency and output power if the internal
mechanical resistance is one half the radiation resistance?

Chapter 3

3.1. * Calculate the in-air ring mode short circuit resonance frequencies of a thin-
walled, 0.508 cm (0.2 inches) Type 1 (PZT-4) piezoelectric ceramic ring transducer of
mean diameter 10.16 cm (4 inches) and height 5.08 cm (2 inches) operating in the 31
mode. Compare the result with the resonance frequency of a thin walled spherical
transducer operating in the planar mode with the same diameter and wall thickness. Use
the frequency constants in Appendix A.6.

3.2. ** Calculate the in—air short circuit resonance frequencies for the ring transducer
of Exercise 3.1 operating in the 33 mode. Calculate the change in resonance frequency
and coupling coefficient if the 33 mode is obtained by electrode striping the ring,
replacing 10 % of the active circumferential length of short circuit elastic modulus, SE33 ,
by Type I material, but with open circuit modulus s°33. Use equations in Section 3.22.

3.3. * Calculate the approximate in—water resonance short-circuit frequencies and
mechanical Qp,’s for the ring and spherical transducers of Exercise 3.1. This resonance is
the frequency of maximum output for a constant voltage transmitting response. Assume
the ring has end caps that are mechanically isolated from the ring with air on the inside
and approximate spherical loading to obtain the water mass loading for the ring.

3.4. #** Evaluate the ring parameters of Exercise 3.1 for the equivalent circuit of Fig.
3.4 and compute the TVR. Compare the results with a finite element model if available.

3.5. * Calculate the volume and mass figures of merit (FOM, and FOM,,) for the
transducer of Exercise 3.1.

3.6. ** Determine the Helmholtz resonance frequency (often called cavity resonance)
of the ring of Exercise 3.1. Assume the ring is small compared to the wavelength at this
frequency and use the piston in a rigid baffle low frequency radiation mass loading M, =
8pa’/3 or use the water field added tube length AL = 8a/3w (see Exercise 3.7). Assume
symmetry about a plane midway through the ring; thus the effective cavity depth is L/2
not L.

3.7. * Show that the water load added length, AL = 8a/3m, is equivalent to the low
frequency radiation mass loading M, = 8pa3/3. Justify the Exercise 3.6 statement “We



assume symmetry about a plane midway through the ring; thus the effective cavity depth
is L/2 not L.”

3.8. *** Consider the Tonpilz projector illustrated in Fig. 3.17 with piston area
0.0162 m2, head mass M; = 10 kg, tail mass M; = 40 kg and a drive stack consisting of
four Type 1 (PZT-4) piezoelectric ceramic rings of mean diameter 10.16 cm (4 inches),
height 0.508 cm (0.2 inches) and wall thickness 1.016 cm (0.4inches) operating in the 33
mode and wired as illustrated in Fig. 3.17. Also assume a tie rod with one-tenth the
stiffness of the stack and insulators plus glue joints with a total of 10 times the stiffness
of the stack. Calculate the in-air short circuit resonance frequency, the turns ratio N, the
free capacitance Cr and the effective coupling coefficient.

A) Ignore the effects of the tie rod, insulator, glue joints and mass of the stack.
B) Ignore the effects of the tie rod, insulator, glue joints, but include stack mass.
C) Include effects of the tie rod, insulator, glue joints and stack mass.

3.9. *** Use the equivalent circuit of Fig. 3.20 to calculate the response of the
projector of Exercise 3.8, case A. Then use the equivalent circuit of Fig. 3.19 to calculate
the TVR and maximum SPL response of the projector of Exercise 3.8. Assume
equivalent sphere radiation loading and piston in a rigid baffle radiation loading.
Compare results. Assume 100 % and then 80% mechanoacoustic efficiency. Determine
kesr and Qp,. Compare results from circuit model with transmission line, matrix or FEA
models. Calculate the maximum power output and the FOM, for maximum electric field
voltage drive.

3.10* Determine the in-air frequency diameter constants, fD, for thin walled
Terfenol-D and Galfenol magnetostrictive ring transducers under open, fH, and short, fB,
circuit conditions (see Appendix A.7).

3.11* Calculate the in-air ring mode open circuit and short circuit resonance
frequencies and free inductances of thin walled, 0.508 (0.2 inches) ideally biased
magnetostrictive Terfenol-D and Galfenol ring transducers of mean diameter 10.16 cm (4
inches) and height 5.08 cm (2 inches) operating in the 33 mode with a coil of 100 turns.
Compare the resonance frequency results with the PZT - 4 ring of Exercise 3.1.

3.12*%** In Section 3.32 an equation for estimating the effective coupling coefficient,
ko> = 2k*/(1 + k%) was given for the hybrid transducer for the case where the piezoelectric
ceramic and magnetostrictive drivers have the same coupling coefficient. This approach
evaluated the coupling coefficient from the total mechanical energy stored and the shared
electrical energy at resonance for the two sections wired in parallel. Using the same
approach develop an expression for k.” where the drivers have two different coupling
coefficients, k; and k, , and show that it reduces to the original expression for k; = k.



Chapter 4

4.1. ** Calculate the in-air ring-mode open-circuit resonance frequency and the low
frequency receiving response and free capacitance of a thin-walled, 0.508 cm (0.2 inches)
Type 1 (PZT-4) piezoelectric ceramic ring hydrophone of mean diameter 10.16 cm (4
inches) and height 5.08 cm (2 inches) operating in the 31mode. Compare results with a
thin walled spherical hydrophone operating in the planar mode, with the same wall
thickness and diameter. What is the length mode resonance frequency of the ring?
Assume air backing with isolated end caps on the ends of the ring.

4.2. *** Determine the receiving response through the anti-resonance of the ring
hydrophone of Exercise 4.1. Assume equivalent sphere radiation loading and spherical
diffraction constant. Calculate the electrical impedance and use reciprocity to determine
the TVR. Compare with the TVR obtained directly in Exercise 3.4.

4.3. *** Consider two small ring Type I hydrophones one-tenth the size of the one in
Exercise 4.1 and separated by 5.08 cm (2 inches). First, calculate anti-resonance and the
low frequency RVS value for each alone. Are these results scalable from the results of
Exercise 4.1?7 Next, determine the low frequency summed sensitivity and the low
frequency differenced sensitivity for a plane wave incident in the axial direction.
Calculate the frequency at which you would expect this vector sensor to differ from an
expected cosine beam pattern. Calculate the frequencies at which the summed and
differenced modes yield a null in the axial direction.

4.4. *** Determine the low frequency electrical noise voltage, equivalent noise
pressure and signal to noise ratio for a 1 nuPa plane wave signal on the MRA for the ring
hydrophone of Exercise 4.1. Repeat for the wide band noise response through anti-
resonance. Assume an electrical dissipation factor of 0.004, equivalent sphere radiation
loading and diffraction constant.

4.5. ** Determine the low frequency electrical noise voltage and equivalent noise
pressure for the summed and differenced dual hydrophones of Exercise 4.3. Assume an
electrical dissipation factor of 0.004.

4.6. ** The Tonpilz of Exercise 3.8 (case A), as shown in Fig. 3.13, is to be also used
as a hydrophone. Calculate the low frequency signal sensitivity and equivalent noise
pressure for a dissipation factor of 0.004. Assume array baffle conditions and that D, =2.
Sketch and explain the operation of the TR switch for achieving transmit and receive
operation from a single transducer.

4.7. ** Calculate the first four short circuit extensional ring mode resonance
frequencies of the hydrophone of Exercise 4.1 for Type I material operating in the 31
mode. How many electrodes are needed to detect (or excite) each of these four modes?
What is the highest mode that can be excited below the length mode resonance?



4.8. *** The internal thermal noise for a 100% efficient hydrophone can be
represented by the mechanical radiation resistance of the hydrophone, although it is
caused by a thermal noise pressure in the medium acting on the surface of the
hydrophone, as described by Mellen [48]. Radiation resistance is usually thought of as a
measure of how a transducer radiates, but in this case, it is also a measure of how the
transducer receives. What is the basic physical reason for this dual role of radiation
resistance?

4.9. * As an example of the usefulness of Eq. (4.56) use the known radiation
resistance in Eq. (10.44) and directivity factor for a monopole sphere to find the
diffraction constant for a spherical hydrophone.

Chapter 5

5.1. * Consider two small pistons of radius, a, with ka << 1, separated by a center-to-
center distance, d, in a large rigid baffle. Show that the total radiation resistance of each
approaches 2R;; as kd becomes small. Why is this case similar to the case of a single
piston approaching a rigid wall?

5.2. * Show that Eq. (5.20c) follows from Egs. (5.20a) and (5.20b).

5.3. * Consider a large array of square pistons of side length L and with spacing L/10
between the pistons. What is the packing factor? What is the average radiation resistance
of the individual pistons? What is the total radiation resistance of an array of N pistons?

5.4. * Show that Eq. (5.29) reduces to Z = F/U for a uniform velocity distribution.

5.5. * Explain why the product theorem is useful in array beam pattern analysis?
Would it be useful in determining the DI or the radiation impedance?

5.6. *** A close packed array of ideal square pistons shows no grating lobes when it
is not steered, because the individual piston patterns null out the array grating lobes. But
when the array is steered grating lobes appear at angles such that they are only partially
nulled out. Show this by calculating the beam pattern for a line array of ten close packed,
square pistons with side length of one-wavelength and center-to-center spacing of one
wavelength steered to 45° (see Egs. (5.10a) and (5.10b)).

5.7. **% Show that Sinc (kd/2) = 2sin(kd/2)/kd approaches 1 for kd/2 << 1. Likewise
show that J;(ka) goes to ka/2 for ka << 1; and thus, 2J;(ka)/ka also approaches 1 for ka
<< 1.

5.8. ** Determine the value of a/kq required for a parametric array full beam width of
4° and calculate the corresponding beam pattern.



5.9. ** To see extreme effects of acoustic coupling consider a small transducer
located at the center of a circle of radius d of N identical transducers being driven to
make all have the same velocity. Use Egs. (5.16) and (5.23b) and show that the total
radiation resistance of the center transducer could become negative for N > 5 when
A < 4d/3and also in other frequency regions for greater values of N. What does negative
radiation resistance mean physically? What is the total radiation reactance of the center
transducer when A =2d.

5.10. *** As a simple example of the effects of beam steering on the radiation
impedance of transducers in an array consider a line array of two small transducers driven
to have the same velocity amplitude but steered by a velocity phase difference of U, i.e.,

u, =u,e’. How does the total radiation impedance of the two transducers differ, in
general, and specifically for end fire steering?

Chapter 6

6.1. ** Show, starting from the Fourier Transform formulation of the array output in
Eq. (6.5a) (also see Appendix A.11), that a linear phase shift in the array sensitivity
distribution results in a wave vector displacement that corresponds to steering the beam.

6.2. * What is a non-acoustic plane wave? Why do we need to consider the wave
vector response of an array of hydrophones?

6.3. ** What are the physical situations in which the array gain and the directivity
index could have the same value? What are the basic reasons why they usually are not the
same?

6.4 ***  Use Eq. (6.8b) to calculate the DI of an unshaded line array of small
hydrophones for N = 6 and kD = w, w/2 and kD << 1, and for steering angles of 0, 30

and 90 degrees.

6.5 ** Show from Eq. (6.8b), for unshaded line arrays for any values of kD and N,
that the Dy is the same when the array is unsteered and when the array is steered to 90
degrees at 2kD, i.e., at twice the frequency or twice the spacing.

6.6. ** Calculate the array gains for the arrays in Exercise 6.4 in isotropic, incoherent
noise.

6.7. ** Calculate the coincidence frequency of a steel plate with thickness 0.635 cm
(0.25 inches). At frequencies below the coincidence frequency flexural waves in a
submerged plate produce evanescent pressure waves in the water traveling parallel to the
plate that decay with distance from the plate. At 20 kHz how much does the evanescent
wave amplitude decay at 1 cm from the surface of the plate?

6.8. *** Develop the spatial correlation function for isotropic noise given by Eq.
(6.16).



6.9. ** The discussion of the triaxial vector sensor (see Fig. 6.24) makes use of
certain relationships between angles. Show that in general cos y, = cos 0 cos 6, + sin 0
sin 0, cos (¢ - @,) and that specifically for ¢ = ¢, , cos y, = cos (0 — 0,).

6.10. *** Consider Eq. (6.29) for an array of N hydrophones under conditions where
all four types of noise have the same intensity at each hydrophone, i.e., f, = f; = ff = f, =
Y4. Also consider the structural, flow and hydrophone internal noise to be incoherent,
while ambient noise is isotropic and partially coherent with spatial correlation given by
Eq. (6.16), and the signal is a plane wave from the broadside direction. What is the array
gain: 1) for any configuration of N hydrophones? 2) for a line array of N with half
wavelength spacing? 3) for a line array of N = 3 with spacing D? 4) for a line array of
N = 3 with quarter wavelength spacing?

6.11 *** Note that the development of the generalized diffraction constant in Section
11.31 suggests that Eq. (4.56) holds for arrays as well as individual transducers, although
it does not explicitly show it.  Investigate the validity of this suggestion by considering
a simple array of two small circular pistons in a plane, rigid baffle and calculating the
total radiation resistance of the array, the diffraction constant of the array and the
directivity factor of the array and showing that they satisfy Eq. (4.56).

Chapter 7

7.1. ** Consider the dual mass mechanical resonator of Fig. 7.4. Assume loss
resistance R; is negligible and R, << ®;M;. Calculate the approximate resonance
frequency for stiffness K =4 x 10'° N/m and head mass M, =1 kg for tail masses M; =1,
2, 4 and 8 kg. Also calculate the mechanical Q, with R, = 6 x 10* Ns/m for the above
values of M. Does there appear to be much benefit gained in doubling the tail mass from
4 kg to 8 kg, considering the weight increase in the transducer?

7.2. * The equivalent circuits of Fig. 7.12a and 7.13 show a single resonance under
short circuit conditions (or constant voltage drive) at the mechanical resonance frequency
where o.M = l/wrCE. Show that anti resonance, ®, = ®/(1 — kz)l/ 2 is obtained under open
circuit conditions where, in this case, CofN2 is now in series with CF reducing the

compliance to C" raising the stiffness and the resonance frequency to the value a,.

7.3. ** Expand the function —jpcAo/sin(kL) and obtain —jpcAo(1/kL + kL/6) for small
kL using trigonometric and binomial expansions; and thus, verify the -M/6 in Fig. 7.25.

7.4. * Demonstrate that the equivalent circuit of Fig. 7.25 may be used to represent an
ideal mass, M, or any mass at low enough frequencies. Show that at very low frequencies
the reduced equivalent circuit for a force F at terminals 2 and an air loaded free condition,
i.e. a short circuit, at terminals 1 is simply a mass M, as it should be.

7.5. ** Show that Egs. (7.36a,b) may be written in the transfer matrix form of
Eqgs.(7.37a,b).



7.6. * Show that the transmission line equivalent circuit of Fig. 7.28 may be reduced
to the simple lumped mode representation of Fig. 7.14a (without Gy) for kL = oL/c << 1
if the — M/6 term is ignored, with a free condition at one end (Fy = 0) and a radiation load
of Fy/u, = R; + joM; on the other end.

7.7. * Evaluate the A, B, C, D parameters of Eq. (7.70) using the electrical and
mechanical parameters of Fig. 7.12a.

7.8. * The finite element evaluation of the broad side far field pressure from a large
planar array (with most of the elements under array loaded conditions) could require very
large run times at each frequency. Consider the alternative approach of first evaluating
the pressure of a single element by approximating its environment by a rigid fluid filled
wave guide with a pc absorber at the end (see Section 7.46). Then calculate the far field
pressure, reduced to 1 meter, for an array of 100 elements each of area 6.45 cm? (one inch
square) for a single element wave guide pressure of 0.01 Pa at 10 kHz.

Chapter 8

8.1. * Consider the single mass resonator of Fig. 8.2. Calculate the resonance
frequency for bar stiffness K = 4 x 10" N/m and head mass M = 1 kg by first ignoring
the bar mass and then considering that the bar contributes an additional 0.3 kg. Also,
calculate the mechanical Q,, with R, = 6 x 10* Ns/m for the two cases.

8.2. * Show that the square of the coupling coefficient k? = N°CF/Cy where the free
capacity Cy = N’CE + Cy, Cy is the clamped capacity and the mechanical short circuit
compliance CF = 1/K" is consistent with Eq. (8.22) and Cyp = C¢(1 - kz) is consistent with
Eq. (8.23).

8.3. ** Determine the percentage change in the coupling coefficient if a stress rod
with a stiffness that is one-tenth the stiffness of the piezoelectric ceramic short circuit
stiffness 1s used with original coupling coefficient values of 0.9, 0.7, 0.5 and 0.3. What is
the percentage change in the resonance and anti-resonance frequencies? Assume a simple
lumped mass system.

8.4. ** Determine the percentage change in the coupling coefficient if an electrical
insulator with a stiffness that is 10 times greater than the stiffness of the piezoelectric
ceramic is used between the head mass and the piezoelectric ceramic. Evaluate with
original coupling coefficient values of 0.9, 0.7, 0.5 and 0.3. What is the percentage
change in the resonance and anti-resonance frequencies? Assume a simple lumped mass
system. Tabulate results and compare with Exercise 8.3.

8.5. ** Determine the percentage change in the coupling coefficient and the
resonance and anti-resonance frequencies when both the stress rod and the electrical
insulator of Exercises 8.3 and 8.4 are used. Tabulate results and compare with individual
effects.



8.6. ** Calculate the effective dynamic coupling coefficient for the fundamental
mode of a 33 mode segmented bar for k33 values of 0.9, 0.7, 0.5 and 0. 3. Tabulate the
percentage reduction. Compare results for the case of the length expander bar with
electrodes only on the ends.

8.7. * Calculate the effective dynamic coupling coefficients for the second and third
modes of the end electroded bar of Exercise 8.6.

8.8. ** Derive an expression for the dynamic stiffness of the n™ mode of the fixed-
free bar from Eq. (8.12). Then derive expressions for the effective coupling coefficient
of the n™ mode for both the length expander bar and the segmented bar following the
procedure in Section 8.43.

8.9 *** Derive an expression for the dynamic stiffness of the n™ mode of the 31 mode
ring based on the expression for the short circuit resonance frequencies, f,= fo(1+n®)"2 .
Then derive an expression for the effective coupling coefficient following the procedure
in Section 8.43. Calculate keq, for the n = 0,1,2,3 modes and for kz; = 0.33.

Chapter 9

9.1. #** Consider Eq. (2.8) with external force F, = 0 at low frequencies where the
acceleration and velocity terms are negligible compared with the displacement term.
Show that this leads to the low frequency nonlinear equation for the strain, S32 + S5 =
ds3(V/L). Determine the exact solution. . Assume 4ds;3V/L < 1 and use the binomial series
to obtain the three term expansion solution showing terms that could generate second and
third harmonics under high sinusoidal drive.

9.2. * Calculate the strain for a Type I piezoelectric material in Exercise 9.1 with a
typical maximum electric field of V/L =4 kV/cm (10.2 kV per inch) and compare this
result with the linear result given by the first term of the expansion for S;. Calculate the
percentage difference.

9.3. ** What are the physical nonlinear conditions for even and for odd harmonic
generation?

9.4. *** One general objection to operating below the fundamental resonance of high
power Tonpilz transducers is the higher harmonic distortion generated as compared to
operating above resonance. What is the physical reason for this? As the most extreme
example of this effect explain how operating at one half or one third the fundamental
resonance frequency can greatly increase the second or third harmonic distortion.

9.5. ** Why does the presence of significant harmonic distortion indicate the
possibility of transducer failure under high drive?



9.6*** The most common nonlinear force in transducers is the square law electric or
magnetic drive force. Results that are applicable to many cases can be derived from a
simplified form of Eq. (9.9) containing only the linear strain term and the quadratic
electric field term, T = ¢S — eE* . Use this expression in the equation of motion [as in Eq.
(9.13)] with a drive voltage of V=V, +V,coswt, and find the static, fundamental and

second harmonic drive terms and displacements. Show, when V, = 0, that there is no
displacement at the drive frequency, but there is a static displacement and a displacement
at twice the drive frequency. Thus a bias voltage, Vo, is necessary to have any linear
output with this force law.

9.7 ** In Exercise 9.6 calculate the ratio of the second harmonic displacement to the
fundamental displacement at the resonance frequency, at one half the resonance
frequency and well below resonance.

9.8*** When significant harmonic distortion is present a modified definition of the
electromechanical coupling coefficient should be considered, because part of the input
energy is converted to harmonics which do not contribute to the desired fundamental
output. Such a definition might be: Kot equals the ratio of converted mechanical energy
at the fundamental frequency to the total input energy. Express this definition
analytically and evaluate it numerically using the second harmonic results from Exercise
9.7.

9.9 ** Square law transducers are seldom used without bias, because the frequency
content of the output differs so much from that of the input. Using the same equation of
motion as Exercise 9.6 show that the output of a square law transducer driven with
voltage V =V, cosmt+V, cos2mt contains four different frequency components. What

are those frequencies and what are the relative displacement amplitudes and velocity
amplitudes at low frequency if V,=V;?

9.10.* Convert the relative displacement amplitudes calculated in Exercise 9.9 to
radiated sound pressure to show the enhancement of the higher frequency pressure
components relative to the displacement components (see the discussion in Section 9.21).

Chapter 10

10.1. * Show that the plane wave representation for the pressure p = poe'j(kx"m)
satisfies the one dimensional Helmholtz wave equation 82p/8x2 + kzp = (. Determine the
particle velocity u = -(1/jop)op/0x and show that, in this case, the characteristic
impedance p/u = pc. What is the characteristic impedance for Type I (PZT-4)
piezoelectric ceramic and how does it compare with the value for water?

10.2. ** Show the condition under which the first axial null occurs for a continuous
line of length L. What is the condition for the first axial null for a line array of two point
sources separated by distance s? Why the difference in lengths?



10.3. ** Use the approximate formulas to calculate the DI and beam width for a line
of length L = A. Compare this result with the approximate result for a circular piston in
an infinite rigid baffle with diameter D =A. Why is the beam width larger and DI higher
for a circular piston?

10.4. * Calculate the beam widths and DI for the line and piston in Exercise 10.3
using the exact expressions and compare with the approximate results.

10.5. *#** Calculate the beam width for a vibrating ring on an infinite rigid cylinder of
length L = A and diameter D = A and compare these results with that of a thin line of
length L = A. Note in Eq. (10.34) that L is half the length of the vibrating ring, while in
Eq. (10.22) L is the whole length of the thin line. Also note that in Eq. (10.34) 0Ois
measured from the axis of the cylinder, while in Eq. (10.22) aa=7n/2-0 is measured
from the perpendicular to the line.

10.6. * Calculate the values of ka for which there is a pressure null at the center of a
circular piston set in an infinite rigid baffle.

10.7. ** Consider two spheres vibrating at the same frequency one as a dipole source
with radius a4 and the other as an omni source with radius a,. Determine the approximate
value of ka, of the omni sphere in order for it to have the same value of radiation
resistance as the dipole sphere under the conditions of both ka, and kag << 1 and also for
both ka, and kag >> 1. Why are the radii so different for ka << 1? Use appropriate
approximations.

10.8. * Calculate the diffraction constant for a circular piston in an infinite rigid plane
by using Eq. (4.56) with Drand R, from Egs. (10.31) and (10.52).

10.9. ** Calculate the diffraction constant for a sphere vibrating in the dipole mode
by using Eq. (4.56). Use R; from Eq. (10.47) and D¢ from the answer to Exercise 1.2
with A =0 and B = 1. Find the maximum value of D, in this case and the value of ka at
which the maximum occurs.

10.10. *** An acoustic radiation problem is defined by stating the boundary condition
on the normal velocity. In some cases the solution can be completed in terms of known
solutions of the wave equation. In other cases a numerical finite element solution is the
only practical approach. A clear statement of the boundary condition is the essential
starting point for both approaches. Write out the normal velocity boundary condition for
a free-flooding ring transducer and consider how it could be solved. Make a sketch
showing the various vibrating surfaces in a cylindrical coordinate system.

Chapter 11

11.1. ** Of the 11 coordinate systems in which the wave equation is separable (see
Reference 3) only 6 or 7 have been used in modeling practical transducers and arrays.



Consider the geometrical shapes that occur in practice and think of specific shapes that
can be accommodated by certain coordinate systems as a way of identifying the most
useful systems.

11.2. ** Show that Eq. (11.8) follows from Eq. (11.9) for n = 1. Also see Exercise
6.9 regarding the development of Eq. (11.8).

11.3. **Derive Eq. (11.4) from Egs. (11.2), (11.3a) and (11.3b) using the
orthogonality relation for Legendre polynomials:

an (cosO)P_(cos0)sinB8dO = 2/(2m+1) forn=m, and =0 for n# m.
0

11.4. *** The boundary condition in Exercise 10.10 for a free flooding ring simplifies
considerably for an end-capped cylinder where the inside velocity, u;, is not involved and
u; applies to the entire top. But the problem is still not solvable because of the finite
length of the cylindrical surface. In such cases, under low frequency conditions, a useful
model can be based on spherical wave functions. In the lowest order approximation the
cylinder is replaced by a monopole sphere with the same radiating area as the cylinder as
discussed in Section 3.21. A better approximation is possible by using a sphere with
uniform normal velocity in the polar regions, representing the velocity of the end caps,
and a different uniform normal velocity in the equatorial region, representing the velocity
of the sides of the cylinder. When the end caps are considered motionless this boundary
condition is described by:

u=0, r=a , 0<06<0O, and 180°-6,<6<180°

u=u, r=a , 6, <0<180°-6,

where a is the radius of the sphere and also the radius of the ring being modeled. Express
the solution of this problem as a series of spherical wave functions and determine the

coefficients. Consider the solution for ka small enough that only two terms are sufficient.
What is the effect of the second term on the beam pattern?

11.5. *** The Hilbert transform was used in Sec. 11.14 to obtain the radiation
reactance from the radiation resistance of a sphere of radius, a, operating in a uniform
omni-directional mode. Obtain the radiation reactance from the radiation resistance of the
same sphere vibrating in a dipole mode given by Eq. (10.47).

11.6. *** Show that for an unbaffled plane array, the pressure in the plane of the
array is one-half the pressure for the same array in a large rigid baffle. Use the fact that,
for the same array in a large pressure release baffle, the pressure in the plane of the array
is zero.



11.7. ** Equation (11.52) gives the diffraction constant, D,, for a sphere of radius, a.
Why does D, decrease from unity as the frequency is increased rather than increase as in
the case of a piston. Why does D, decrease as 1/ka for ka >> 1?

11.8%* Beam pattern results for a piston set in a pressure release sphere show a
significant reduction in the back radiation compared to a rigid sphere as shown in Fig.
11.15. Explain why this happens.

11.9. * Table I shows the radiation resistance for a linear array of three equally space
pistons in a rigid baffle. Why do the two outside pistons have the same radiation
resistance and the same velocity?

11.10. *** Consider the basis of the important Eq. (4.56) by following its derivation
in Section 11.31 and, specifically, by showing that Eq. (11.53) follows from the acoustic
reciprocity relation in Eq. (11.34) and the definition of clamped force in Eq. (11.50).

11.11.*%* The diffraction constant, D, , in Eq. (4.56) is for an incoming wave arriving
on the MRA of the hydrophone, and the Dris referred to the same MRA. The directional
diffraction constant, D, (0,9), in Eq. (11.57) is D, referred to the MRA multiplied by the

square root of the normalized intensity directivity function. Use of D,(0,¢)1in any of the

expressions for hydrophone output [such as Eqgs. (4.10) or (4.17)] gives the output as a
function of direction. The frequency dependence of D, and of the hydrophone
mechanism together determine the final frequency dependence of the output. In an
isotropic noise field the mean squared noise output is proportional to the average of

D2(6,0) which is D,2 /D;. What is D,(0,¢9) for a tonpilz hydrophone with a circular
head mounted in a rigid baffle, and what is its value at 6 =0?

Chapter 12

12.1. * Show that if Z = R + jX, then the conductance G = R/(R2 + XZ) and the
susceptance B = —X/(R2 + XZ). Show that if the electrical Q. is defined as B/G, then Q. is
also equal to -X/R.

12.2. * Show that the Van Dyke equivalent circuit of Fig. 12.1 reduces to the circuit
of Fig. 12.1a where the free capacity C¢= Cy + C. .

12.3. ** Convince yourself that the measurements of Cg, tand, f;, f, and Y.« are
sufficient to determine the parameters of the Van Dyke circuit of Fig. 12.1. What
measurement or measurements are necessary to evaluate the electromechanical
transformer turns ratio N of the equivalent circuit of Fig. 7.12a?

12.4. ** Explain why the formula ke = (1 + QumQe¢)"? is more suitable for
determining ke under water loaded conditions (with measurements of B vs. G or



response of B and G) while the formula ke = [1 — (fr/fa)z] 1s more suitable for in-air
measurements of Y| or IZI.

12.5. ** Explain the change in the response curve slopes from the TVR curve of Fig.
12.11a to the TCR curve of 12.12a to the RVS curve of 12.13a.

12.6. ** Why does the TCR curve of a magnetostrictive transducer look like the TVR
curve of a piezoelectric ceramic transducer?

12.7. * Shunt tuning a transducer does not change the TVR and series tuning does not
change the TCR and RVS. Why is this so?

12.8. ** The Transmit/Receive, “TR”, switch of Fig. 12.21 has at times been
criticized for the diode noise introduced in the RVS. With no restrictions on you, how
would you avoid this?

12.9. *#** What should the smallest dimension of a water-filled tank be for pulsed
measurements of transducers which go as low as 2 kHz and have a Q,, of no more than 5,
and also for a Q,, of no more than 1. Assume two steady state cycles are needed for
measurement.

12.10. * Determine the far field Rayleigh distance for a 19.35 cm (7.6 inch) diameter
piston transducer operating at 10 kHz. Determine the approximate far field distance for a
close packed seven element circular array of the same transducers.

12.11. * The in-air frequencies of maximum and minimum admittance magnitudes (f;
and f, respectively) of a transducer are measured to be 10 kHz and 11.55 kHz. The in-
water mechanical Qy, is measured to be 3.0. What is the in-water electrical Q. ?

12.12. * The measured TVR level for a transducer is 140 dB and the measured
impedance is 400 — j300 ohms, all at 10 kHz. What is the RVS?
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