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  ANSWERS 

 

for 

 

“TRANSDUCERS AND ARRAYS FOR UNDERWATER SOUND” (Springer 2007) 

 

by 

 

Charles H. Sherman and John L. Butler 

 

 

 

 

Chapter 1  

 

1.1  Linear differential equations of this type can be solved by assuming a solution in the 

form tx eγ=  and determining γ  in terms of the coefficients: 

 
2 1/ 2 2 1/ 2

m mR / 2M [R 4MK ] / 2M R / 2M j[K / M (R / 2M) ]γ = − ± − = − ± −  

 0j tt 2 1/ 2

0 mx e e , R / 2M, [K / M (R / 2M) ]
± ω−α= α = ω = −  

      where j 1= − . 

 

1.2 Df = (A + B)
2
/(A

2  
+ B

2
/3).  For A = B, DI = 4.8 dB, this pattern is called a cardioid.  

Maximum DI = 6 dB for B/A = 3. 

 

1.3 Note that Real(x1x2*) = X1X2cos(φ1 – φ2). 

 

1.4 a w w ad tc c /(c c )= ∆ −  

 

1.5  2 H B 2 B 2 H

m m 0 f m 0 m fk 1 K / K 1 L / L N / K L N / K L= − = − = =  

 

1.6 Tungsten 55.7, steel 26.9, PZT 14.7, aluminum 9.3 and magnesium 5.9. The best 

match is with a tungsten tail and a magnesium head (water end). This provides greater 

output and more bandwidth because of the better matched head and the higher impedance 

tail. A steel tail and aluminum head is often sufficient, less expensive and commonly 

used in many applications.  

 

1.7 The power output W = ηeaWi.  SL = 30 dB – 3 dB + 0 + 170.8 = 197.8  dB// 1µ Pa 

@ 1m  and SL = 30 dB – 3 dB + 6 + 170.8 = 203.8  dB// 1µ Pa @ 1m . Because of the 6 

dB increase in DI, 6 dB less or ¼ the power would be needed, - truly significant.  

 

1.8 From Eq. (1.20) I0 = DfW/4πr2
. The output power W = ur

2
Rr where ur is the rms 

output velocity and Rr is the radiation resistance. 
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1.9 From Appendix A.13, Eq. (A13.31)  p(r, 0) = j ω ρ πa2
 u e

-jkr
/2πr and the intensity, 

I0 = |p|
2
/ρc, may then be written as I0 = (ka)

2ρcπa2
ur

2
/4πr2

 = (ka)
2ρcπa2

Nem
2
V

2
/|Zmr

E
|
2
4πr

2  

. 

 

1.10 Yes, the Df should not be used if the intensity is calculated through the velocity,     

voltage or, for that matter, the current. It is only to be used if the intensity is based on  

the power. Appendix A.13, Eq. (A13.17) may be written as RrDf = (ka)
2πa

2ρc and, when 

substituted in the solution for Exercise 1.9, yields I0 = Dfur
2
Rr/4πr

2
 = DfW/4πr2

,  as it 

should. 

 

Chapter 2  

 

2.1 The free permittivity ε33
T
 = K

T
 ε0 with K

T
 the relative dielectric constant found in 

Appendix A 5. (The dielectric constant for free space ε0 = 10
-9

/36π.). Capacitances: Cf = 

0.145 and C0 = 0.074 nF. 

 

2.2. Mechanical compliance: C
E
 = 1230 x 10

-12
 and C

D
 = 627 x 10

-12
 m/N. Resonance 

frequencies: fr = 14.4 kHz, fa = 20.1 kHz and keff  = 0.70, the same as k33 because no 

degrading effects were included in this idealized calculation. 

 

2.3 Electromechanical turns ratio N = 0.235 (newton/V). Velocity u = 0.0979 x 10
-3

 and 

0.4895 m/s for 1V and 5 kV. Mechanoacoustic efficiency ηma = 50%. 

 

2.4 Power out W = 143 watts. Intensities: Is = 180 kW/m
2
 =18 W/cm

2
 and I0 = 22.8 W/m

2
 

= .00228 W/cm
2
. The difference in intensity is a result of the two areas used for Is and I0 

and the directivity factor Df. 

 

2.5 The strain S3 = 115.6 x 10
-6

. 

 

2.6 The voltage = 5080 volts and the displacement = 1.47 x 10
-6

 m. 

 

2.7 Km
E
Cf = (A0/s33

E
L)(A0ε33

T
/L) = (N/k)

2
 and Km

I
Lf = (A0/s33

H
L)(n

2µ33
T
A0/L) = (N/k)

2
. 

 

2.8 Piezoelectric ceramic turns ratio = 0.235 and the magnetostrictive turns ratio = 491. 

 

2.9 Piezoelectric ceramic force = 2.35 newton and the magnetostrictive force = 49.1 

newton. 

 

2.10  At resonance the total energy is equal to the peak kinetic energy given by Mu
2
/2 

where u is the peak velocity. The energy dissipated per cycle is (Ru
2
/2)T where the 

period T = 1/fr = 2π/ωr. The result is Qm = 2π(Mu
2
/2)/[(Ru

2
/2)2π/ωr] = ωrM/R. 

 

2.11 At resonance ωrM = 1/ωrCm
E
 and  ωr = 1/(MCm

E
 )

1/2
.  Substitution for ωrM leads to 

the first result and substitution for ωr to the second result with Km
E
 = 1/Cm

E
. 
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2.12 Use Eqs. (2.83) and (2.105) to eliminate the total resistance, Rm + Rr.  Numerical 

answer is Qm = 4.   

 

2.13 Use Eqs. (2.83), (2.105) and (2.106). Numerical answers are Qm = 11.2, 4.0 and 3.28 

respectively. 

 

2.14 Using Eqs.(2.112) and (2.115) the electroacoustic efficiency ηea = 76.9% and 79.7% 

for tan δ = 0.01 and ηea = 57.1% and 76.9% for tan δ = 0.10 for Qm = 1 and 10 

respectively. Note that for  keff
2
Qm >> tan δ or keff

2
QmQ0 >> 1 , the electroacoustic 

efficiency ηea ≈ ηma at resonance.  Numerical results are the same for the magnetostrictive 

case since Q0 = 1/tan δ.  This exercise shows the benefits of using materials with low 

electrical losses. 

 

2.15 Numerical and analytical evaluation of Eq. (2.91). Limiting expressions of Eq. 

(2.91) can be obtained from the binomial expansion of Pf(B/G) and Pf(G/B).  

 

2.16. QmQe = (1/ωrC
E
R)(ωrC0/G) = C0/C

E
N

2
 = C0/k

2
Cf = (1 – k

2
)/k

2
  

 

2.17. For 100 volts rms the input power is 7.85 watts. The mechanoacoustic efficiency is 

66.7 % and the output power is 5.24 watts. 

 

 

Chapter 3  

 

3.1. Ring: 41/4 =10.25 kHz. Sphere: 68/4 =17.0 kHz. 

 

3.2. 33 mode segmented ring: 36.5/4 = 9.125 kHz.  Assuming no fringing from striping 

the effective coupling coefficient can be found from Eq. (3.18) which gives ke = 

0.70/1.028 = 0.68 and the resonance frequency is reduced to 1.026x9.125 kHz = 9.362 

kHz.  The actual electric field in a striped ring is very complicated, and this model gives 

only a rough approximation of how striping reduces the coupling coefficient from the 

value for a segmented ring where the electric field is nearly uniform.  Measurements 

indicate that the effective coupling could be about 10 % lower than the value calculated 

here. 

 

3.3. For the ring: Water resonance ≈ 0.72x10.25 = 7.4 kHz and Qm ≈ 3.9 maη or 3≈ for 

maη = 0.8 using Eqs. (3.14) and (3.16).  For the sphere use Eqs. (3.24) and (3.25) and find 

water resonance 15kHz≈ and m maQ 3.05≈ η . 

 

3.4. Use the equations in Section 3.21 to obtain: 

            C
E 

= 3.8x10
-10 

 m/newton 

            N = 3.19 newton/volt   

      M = 0.62 kg 

            C0 = 36 nF 

            G0  = 1.6 ω  x10
-10 

mho  (using k31 = 0.33 and tan δ = 0.004)  
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            Rm = 0 for ma 1η =  

 The equivalent sphere model for radiation impedance is given and discussed in Eqs. 

(3.13), (10.44) and (A13.24).  This radiation impedance model was used to calculate the 

in-water resonance frequency in Exercise 3.3.  The TVR is obtained from Eqs. (3.17) and 

(3.7)  as  0 m r sp / V AN /[4 Z 1 jk a ]= ωρ π +  which approaches 2 E

0C AN / 4ω ρ π  at low 

frequency. 

 

3.5. Use equations from Section 3.1.  Eq. (2.112) gives emη  at resonance; using k31   , 

tan δ and Qm from Exercises 3.3 and 3.4  shows that em 1η ≈ .  Assuming ma 0.8η =  makes 

ea 0.8η ≈ .   The mass and volume of the ring are 0.62 kg and 4x10
-4 

m
3
 ; assume that end 

caps and waterproofing together increases the total mass and total volume to 1kg and 

6x10
-4    

m
3
.   Then, assuming a maximum electric field in the ceramic of 4 kV/cm, the 

equations in Section 3.1 give:   

 

                                            (FOM)V = 75 watts/Hz m
3   

 

                                            (FOM)m = 45 watts/kHz kg 

 

3.6. One approach is to assume the radiation mass increases the effective tube length  to 

.0254 +0.85x0.0483 = 0.0664m. For quarter wavelength resonance λ = 4x0.0664 = 

0.266m, and the resonance frequency = c/λ = 1500/0.266 = 5.6 kHz.  

        Another approach is to use 2

h 2 21/ C Mω =  from Section 3.25 where C2 is the spring 

of length L and M2  is the approximate radiation mass.  This gives the resonance 

frequency as 7.1 kHz.  (see Exercise and Answer 3.7).  If the length of the ring is short 

compared to the acoustic wavelength the latter approach is probably more accurate.  For a 

longer ring the former approach may be more accurate.  Since this is a radiation problem 

that has not been solved analytically, accurate results would require finite element 

numerical calculations. 

 

3.7. Think of the radiation mass as a rigid mass of M = 8ρa3
/3 attached to the end of the 

spring of length L/2 formed by the fluid in the cavity.  Alternatively, think of it as an 

extension of the fluid in the cavity of radius a, length L∆ and mass ρπa2∆L.  Equate the 

two masses and solve for ∆L.  These two ways of approximating the radiation mass 

loading are not equivalent as seen in Exercise 3.6.  Because of symmetry, a rigid plane 

could be inserted through the ring at half the height of the ring, without affecting the  

radiation loading.   

 

3.8. A) With Mr = Ms = 0 and neglecting the tie rod we have      
E 1/ 2

r h t h[(1 M / M ) / M C ]ω = +  where C
E
 = 0.97x10

-10 
 m/newton giving rω = (1.29x10

9  

)
1/2 

 and fr = 5.71 kHz; N = 12.2 newton/volt, Cf = 29.3 nF, and ke = 0.70 = k33 because no 

degrading effects have been included.  

       B) Use Eqs. (3.38) and (3.39);  Ms = 0.048 kg which has a negligible effect on M and 

therefore on fr and ke .  This is expected since the wavelength in the ceramic at fr is about 

50 cm while the length of the ceramic stack is only about 2 cm. 
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       C) Modify Eq. (3.38) to include insulators and glue as well as the tie rod.  This is 

done in Section 8.42 where it is shown that the effective compliance is  

 

                                             Ce = Ctr(C
E
 + Ci)/(C

E
 + Ctr + Ci), 

 

where Ci  is the insulator/glue compliance.  Using Ctr = 10C
E   

and Ci =0.1 C
E 

 gives Ce  = 

0.991C
E 

 which causes a very small increase in the resonance frequency, by the factor 

(0.991)
-1/2 

.  The effect of these compliance changes on the effective coupling coefficient, 

ke , is discussed in Section 8.42  and given by Eq. (8.31).  In this case the result is that ke 

is reduced from 0.7 to 0.65. 

 

3.9.Calculate the velocity in the mechanical branch for a given input voltage.  Then use 

Eq. (3.17) for the far field pressure. 

 

3.10 Fundamental extensional ring resonance occurs for the circumference πD = λ = c/f 

where c is the bar speed of sound.  Thus fD = c/π. From Appendix A.7, for Terfenol-D, 

f
H
D = 0.54 kHz m = 21.3 kHz in, f

B
D = 0.764 kHz m = 30.1 kHz in. while for Galfenol 

f
H
D = 0.86 kHz m = 33.9 kHz in, f

B
D = 1.08   kHz m = 42.5 kHz in. 

 

3.11. Use the results from Ex. 3.10 with the ring diameter 4 inches. For Terfenol-D: f
H
 = 

5.3 kHz and f
B
 = 7.5 kHz while for Galfenol: f

H
 = 8.6 kHz and f

B
 = 10.6 kHz. From Ex 

3.1 the short circuit PZT-4 resonance, f
E
 = 10.25 kHz, is nearly the same as the Galfenol 

short circuit resonance but higher than the Terfenol-D short circuit resonance. The free 

inductance Lf = µ33
T
n

2
Ac/πD.  The cross sectional area Ac = 0.258x10

-3
 m

2
, πD = 0.319 

m, n = 100 and µ33
T
 = µ0µr

T
. For Terfenol-D the free inductance Lf = .095 mH , while for 

Galfenol the considerably higher value Lf = 2.64 mH is obtained. 

 

 3.12 See Section 3.32. Start with ke
2
 = (Em1 + Em2)/ (Em1 + Em2 + Ee), define k1

2
 = 

Em1/(Em1 + Ee) and k2
2
 = Em2/(Em2 + Ee), write Em1/Ee = k1

2
/(1 – k1

2
) and Em2/Ee =  k2

2
/(1 

– k2
2
) to get the desired expression ke

2
 = (k1

2
 + k2

2
 – 2 k1

2
k2

2
)/(1 – k1

2
k2

2
) . For k1 = k2 = k 

we get  ke
2
 = (2k

2
 – 2k

4
)/(1 – k

4
) = 2k

2
(1 – k

2
)/(1 – k

2
)(1 + k

2
) = 2k

2
/(1 + k

2
)  as expected. 

 

Chapter 4  

 

4.1. This ring has the same dimensions as the ring in Exercise 3.1; therefore, fa = 

10.25/0.94 kHz = 10.9 kHz;  RVS = -185 dB/1V//1µPa;  Cf  = 36.7 nF;  fr(length mode) = 

65/2  = 32.5 kHz, fa (length) = 32.5/0.94 = 34.6 kHz. 

Sphere:  fa = 17/0.81 = 20.9 kHz,  RVS = -185 dB/1V//1µPa,  Cf  = 73.4 nF. 

 

4.2. Eq. (4.10) gives the general expression for the sensitivity of the cylinder as a 

function of frequency where Da for a sphere is given in Eq. (4.53) and aω is changed from 

the value in Exercise 4.1 by the radiation mass.  Fig. 4.11 is an example of the wideband 

sensitivity.   

        For the low frequency case:    RVS = -185 dB/1V//1µPa as found in Exercise 4.1 or  

M = g31 a, from which the TVR can be found using reciprocity and Eq. (12.33) for low  

frequency where Z0 = 1/ fj Cω .   TVR = TCR/Z0  = 2 2 2 T

0 0 31 0 33( f / 2Z )M 2 a g f L / tρ = π ρ ε . 
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From Exercise 3.4 the low frequency TVR was found directly to be 2 E

0ANC / 4ω ρ π .  

These two results for TVR are equal as can be seen by using the expressions for N and C
E    

and T

31 31 33d g= ε . 

     Similarly, using Eq. (12.36) and Exercise 4.1 we have  

  

                                   TVR = -185 + 20log (36.7x10
-9 

) + 40log f + 310 

                                             = -23 + 40log f  dB// Pa @1m / Vµ  

 

 The RVS and TVR for all frequencies up to anti-resonance requires extensive 

calculation.   Results at low frequency and at fa are the most important.  

 

4.3. fa = 109 kHz, RVS = -205 dB, Yes, the scaling factor is 10 in this case. If summed in 

parallel RVS = -205 dB, while if summed in series -199 dB. If series differenced, RVS = 

- 199 + 20 log (πsf/c0) = - 278.5 + 20 log f  dB.  Deviation expected in the vicinity of 

quarter wavelength separation at frequency of 7.38 kHz. Axial null summed modes at 

one-half wavelength at frequency of 14.76 kHz. Axial null differenced modes at one 

wavelength at frequency of 29.53 kHz.  

 

4.4. Use low frequency Eq. (4.67b) yielding equivalent noise pressure of  29 – 10 log f 

dB re 1 µ Pa for a 1 Hz band and Eq. (4.58) for a noise voltage of  -156 – 10 log f dB re 1 

volt for a 1 Hz band.   Equivalent circuit or analytical calculations are needed for wide 

band noise response.  

  

4.5. From Eq. (4.58), 2

n h10log V 198 10log 2R< >= − +  for both summed and differenced 

cases since the incoherent noise voltages add.  Using h fR tan / C= δ ω for low frequency 

gives  10 log 2Rh = 45 – 10 log f  and  < Vn
2
> = -153 – 10 log f  . 

       From Eqs. (4.80a,b), using RVS = -199 dB for the series summed case and  -278.5 

+20 log f for the series differenced case from Exercise 4.3 gives  

 

                                                10 log <pon
2
> = 46 – 10 log f, 

  10 log <pdn
2
> = 125 – 30 log f. 

 

These results illustrate the much higher levels of equivalent noise pressure for the 

differenced case at low frequency. 

 

 

4.6., RVS = -167.4 dB.  Equivalent noise pressure = 12.8 – 10log f dB in one cycle band 

using  Cf = 29.3 nF and Eq. (4.67b).  Operation of the T/R switch is discussed in Section 

12.61 and shown in Fig. 12.21. 

 

4.7. Resonance fr: 10.25, 14.49, 22.92, 32.41 kHz.  From Exercise 4.1 fr(length mode) = 

32.5 kHz which is only slightly above the n = 3 mode and may seriously distort the 

directivity pattern of that mode. 
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4.8. The reciprocal nature of transducers gives the radiation resistance this dual role.  See 

Appendix A.17 for further discussion. 

 

4.9.  Da  =  [1+(ka)
2 

]
-1/2  

.  The direct derivation of this result, which is somewhat lengthy, 

is given in Section 11.31. 

 

Chapter 5  

 

5.1. Use R1 = R11 + R12 and R12 ≈ R11(sin kd)/kd from Eq. (5.23b). A rigid wall creates an 

image of the piston approaching it, making it equivalent to an array of two elements.  

 

5.2. Use Vi/Ii = (Ze)i and Zi = Fi/ui.   

 

5.3. Packing factor pf = L
2
/(L + L/10)

2
 = 0.826.  See Section 5.31.  The average radiation 

resistance of one piston in the array is 2cL pfρ and the total radiation resistance of an array 

of N pistons is 2 2 2cNL pf cN(L L /10) (pf )ρ = ρ + = ρ c (total array area)(pf)
2 

. 

 

5.4. The uniform velocity distribution ui* factors out of the integral and is canceled by the 

denominator Ui* leaving Zi = ∫p(ri)dsi/Ui = Fi/Ui. 

 

5.5. It allows simplification and further physical interpretation by factoring a common 

function leaving the product of this function and that for an array of point sources. This 

interpretation may be helpful for DI calculations, if the integral of the product of the 

squares of the two functions is easier to evaluate.  It may also be helpful for radiation 

resistance calculations since radiation resistance is directly related to the far field, and 

possibly for radiation reactance calculations (see Section 11.14). 

 

 5.6  Eq.(5.10a) gives p( )θ =  Sinc[ 0N(sin sin )]π θ − θ which can be evaluated for a 

steering angle of 0 45θ =  degrees.  Eq. (5.10b) shows that a grating lobe will occur at  

sin θ = - 0.293 or at  –17 degrees, and the individual transducer beam pattern factor in Eq. 

(5.8) shows that it will be reduced by about 2.6 dB.   

 

5.7. The function Sinc x ≈ (x – x
3
/6 + • • •)/x = 1 – x

2
/6 + • • • 1as x 0→ → . Also the 

function J1(x) ≈ x/2 –x
3
/16 • • • and thus, 2J1(x)/x 1as x 0→ → .  

 

5.8. The quantity α/kd = sin
2
(BW/4) = 3.05 x 10

-4
 . Then plot the normalized beam pattern 

function p(θ) = [1 + 1.1x10
7
sin

4
(θ/2)]

-1/2
.    

 

5.9 The total radiation resistance of the center transducer for 4d / 3λ =  is  

  

 1 11 11R R [1 Nsin kd / kd] R [1 2N / 3 ]= + = − π  

 

which is negative for N > 5, meaning that the center transducer is absorbing power 

radiated by the other transducers.  The total radiation reactance of the center transducer 
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when d / 2= λ  is  1 11 11X X NR /= − π , which could also become negative for large 

enough N, reducing the total mass on the center transducer and making its resonance 

frequency higher than that of the others. 

 

5.10 Using Eqs. (5.16) and (5.23b) gives: 

       

 
j j(kd )

1 11 12 11 11Z Z Z e Z R je / kdµ − −µ= + = −  

                          

   j j(kd )

2 22 21 11 11Z Z Z e Z R je / kd− µ − +µ= + = −  

 

 1 11 1 11 11R R [1 sin(kd ) / kd], X X R cos(kd ) / kd= + − µ = + − µ  

     2 11 2 11 11R R [1 sin(kd ) / kd], X X R cos(kd ) / kd= + + µ = + + µ  

 

For steering to end-fire, kdµ = , which gives 

 

                     1 11R R=  ,                              X1  = X11  + R11/kd                                                                                      

                      R2  = R11 [1+sin2kd/kd],       X2 = X11  +R11 cos2kd/kd 

 

Note that driving transducers in an array to achieve the same velocities, as in Exercises 

5.9 and 5.10, is not accomplished by driving with the same voltages, since acoustic 

coupling affects the radiation impedances, and thus the total mechanical impedance, in a 

way that depends on the velocities.  The calculations described in Section 5.21 are needed 

to determine the required voltages. 

 

 

Chapter 6   

 

6.1. Substitute m1(x0) = m0
0jkx sin

e
γ
, where γ is the steering angle and m0 is a uniform 

sensitivity , into the one dimensional version of Eq. (6.5a) where θ is the beam pattern 

angle. Integrate from –L/2 to L/2, where L is the line length, and normalize to obtain the 

beam pattern function Sinc [(kL/2)sin θ – (kL/2)sin γ)], which shows that the wave 

number  k sin θ is displaced by  k sin γ which means the beam is steered from  0θ =  to  

θ = γ . 

 

6.2. Waves traveling in a medium at a speed lower than the sound speed in that medium 

are called non-acoustic waves.  Hydrophone arrays designed to receive acoustic waves in 

water often must be installed in locations where noise in the form of non-acoustic waves 

is present.  Therefore the response of the array to non-acoustic waves is critical in 

determining the signal to noise ratio. (See Section 6.3). 

  

6.3. The intensity increase indicated by the DI of a projector array is referenced to the 

average (omni-directional) radiation.  Therefore, in a receiving array only array gains that 

are determined by isotropic (omnidirectional) noise could be consistent with this 

definition of DI.  Because array gain depends on noise, while DI does not, array gain and 
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DI depend on frequency and array geometry in different ways; therefore, they generally 

do not have the same value (see Exercises 6.4 and 6.5 and the first paragraph of Section 

6.2).  

 

6.4.  For kD = π :      Df = N = 6,     DI = 7.8 dB  for all steering angles 

For kD = / 2π :  Df = 3.19,       DI = 5.04 dB for no steering 

                           Df = 3.23,       DI = 5.07 dB for 30 degree steering 

                           Df = 6,            DI = 7.8 dB  for 90 degree steering 

For kD << 1:      Df  = 1,           DI = 0  

 

6.5.  Use sin 2x = 2sin x cos x  to show that Df (N, kD, 0° ) = Df (N, 2kD, 90 ° ). 

 

6.6.  For all the arrays of Exercise 6.4 the array gain in isotropic, incoherent noise is the 

same, 10log 6 = 7.8 dB.  This can be seen from the examples at the end of Section 6.2 

and from Eq. (6.12) for the steered cases with the signal arriving from the steered 

direction, i.e., ij ijkd cos θ = −φ  which makes s

ij 1ρ = for all hydrophone pairs.   

 

6.7. Using the properties of carbon steel from Appendix A.2, the coincidence frequency 

is approximately 36 kHz.  The evanescent pressure wave amplitude decays by a factor of 

0.47 at 1 cm from the plate, or 6.6 dB. 

 

6.8.  A noise model must be assumed as the basis for calculating a spatial correlation 

function.  The simplest model for isotropic noise assumes that the noise consists of 

uncorrelated plane waves arriving with equal intensity from all directions.  Thus, starting 

with the cross correlation function for one plane wave arriving from a specific direction 

as given in Eq. (6.12) with ij 0φ = , and averaging over all directions gives the result in 

Eq. (6.16).  Two other noise models that give the same spatial correlation are: 1) The 

noise originates from a thin spherical shell of point noise sources, or 2) from a uniform 

spherical volume distribution of point noise sources.  In both cases, when the radius of 

the sphere is very large and the spatial correlation is calculated is at the center of the 

sphere, the result is also Eq. (6.16). 

 

6.9.  Imagine a coordinate system with two unit vectors, V1  and  V2 , starting from the  

origin and pointing in different directions given by 1 1,θ φ  and 2 2,θ φ  .  The vector dot 

product of unit vectors is equal to the cosine of the angle between them, γ , and can be 

evaluated by calculating the sum of the products of the vector components.  Thus, using 

1x 1 1V sin cos= θ φ , etc., gives 

 

 1x 2x 1y 2y 1z 2z 1 2 1 2 1 2cos V V V V V V cos cos sin sin cos( )γ = + + = θ θ + θ θ φ − φ  

 

This general relation also contains the direction cosines of any specified vector.  For 

example, the direction cosine of V1 with respect to the x-axis is given for 2 90θ = ° and 

2 0φ = °  as  x 1 1cos sin cosγ = θ φ . 
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6.10  Using Eq. (6.16) for the spatial correlation of ambient noise gives: 

 

1) 2 na

ijAG 10log{4N /[ 3N]}= ρ +∑∑  

2) AG = 10logN 

               3)   AG 10log{36 /[3 4sin kD / kD 2sin 2kD / 2kD 9]}= + + +  

 4)   AG = 10log 2.47 = 3.93 dB 

 

 

6.11 . Use Eq. (5.23b) to determine the total radiation resistance of the array,  

 

 
2 2

rR 2{ c a [(ka) / 2][1 sin kD / kD]}= ρ π +  

 

 Use Eq. (6.8b) to determine Df  for a two element line array in free space and multiply by 

2 for a line array in a plane baffle, Df = 2/(1+sinkD/kD).  Determine Da from Eq. (4.51) 

for a plane wave arriving on the MRA of the array, Da  = 2.  Show that these results 

satisfy Eq. (4.56). 

 

Chapter 7  

 

7.1. For M1 = 4 kg, fr = 36 kHz and Qm = 4.7, while for M1 = 8 kg, fr = 34 kHz and Qm = 

4.0.  It’s probably not worth going from 4 kg to 8 kg as there is only a 6 % reduction in 

frequency and a 15 % reduction in Qm. Better to increase the length of the piezoelectric 

material.  

 

7.2. The anti-resonance frequency ωa
2
 = 1/MC

D
 = ωr

2
/(1 - k

2
) since C

D
 = C

E
(1 – k

2
). 

 

7.3. The sine and binomial expansions yield 1/[sin kL] ≈ 1/[kL – (kL)
3
/6] ≈ [1 + 

(kL)
2
/6]/kL = 1/kL + kL/6 which when multiplied by –jρcA0 yields - jωM/6 for the 

second term. 

 

7.4. At very low frequencies 1/ωC becomes very large and open circuiting this branch 

leaving just M/2 + M/2 = M. 

 

7.5. Eliminate u2 in Eq. (7.36a) and F2 in Eq. (7.36b) and then identify coefficients. 

 

7.6. For kL << 1, jρcA0 tan kL/2 ≈ jωM/2 and –jρcA0/sin kL ≈ 1/jωC
E
. 

 

7.7. Substitute Zm = j(ωM – 1/ωC) + R and Y0 = jωC0 + ωCf / tan δ  into Eq. (7.70). 

 

7.8. The far field pressure at 1 m is p = NAfpp/c = 4300 µPa.   

 

Chapter 8  

 

8.1.  fr = 32  kHz and Qm = 3.3 when the bar mass is ignored;   fr = 28 kHz and Qm = 3.8 

with an added bar mass of 0.3 kg. 
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8.2. Divide by N
2
C

E
/Cf. Subtract both sides of Eq. (4.23) from 1. 

 

8.3. For k = 0.5, ke = 0.482, for - 3.6% change;  change in fr  is  + 5 %; original fa = fr/0.87 

= 1.15fr ,  new fa = 1.05fr /0.876 = 1.19fr     where fr is the original resonance frequency 

 

8.4. For k = 0.5, ke = 0.477,   for – 4.5% change,  change in fr  is  -5 %,  original fa = 

fr/0.87 = 1.15fr ,  new fa   = 0.95fr /0.879 = 1.08fr 

 

8.5. For k = 0.5, ke = 0.458 for – 8.5% change,  change in fr  is 0.5 % , original fa = 1.15 fr    

new fa = 1.005fr / 0.89 = 1.13fr   

 

8.6. Segmented bar with k = 0.5: ke = 0.46, for – 8% change. End electroded bar with k = 

0.5, ke = 0.45, for – 10 % change.  

 

8.7. For k = 0.5 and n = 1, ke = 0.45; n = 2, ke = 0.225, n = 3, ke = 0.15. 

 

8.8. The modes are given by (kL)n = n π /2 with n = odd integers, and the dynamic 

stiffness is 2 2

dn bK K n /8= π .  For the length expander bar,  2 2 2 2

edn 33k 8k / n= π  and for the 

segmented bar, 2 2 2 2 2 2

edn 33 33 33k k /[k (n / 8)(1 k )]= + π − . 

 

8.9. Determine an effective stiffness for each mode from the modal frequency, i.e.   
2 2 2 E 2 E 2

n 0 n n(1 n ) K / M K (1 n ) / M, K K (1 n )ω = ω + = = + = + .  Then, assuming C0 and N 

are the same for each mode, and following Section 8.43 where it is noted that the 

dynamic increase in stiffness, (Kn  - K
E

 ), has the same effect as a stress rod, use of Eq. 

(8.29) gives 

 

 2 2 2 2

edn 31 31k k /[1 (1 k )n ]= + − . 

 

The values for n = 0, 1, 2, 3  are 0.33, 0.24,  0.16,  0.11.   

 

 

  Chapter 9  

  

9.1. The equation becomes x3/L = d33V/(L + x3/L) leading to (1 + x3/L)x3/L = d33V/L 

yielding the quadratic result S3
2
 + S3 - d33V/L = 0 with exact solution S3 = [- 1 + (1 + 

4d33V/L)
1/2

]/2 . The four term binomial expansion for (1 + y)
n
 ≈ 1 + n y + n (n - 1) y

2
/2 + 

n(n – 1)(n – 2) y
3
/6 leads to S3 = d33V/L – (d33V/L)

2
 + 2(d33V/L)

3
 + • • •. 

 

9.2. Exact quadratic solution for S3 gives 1.1558664 x 10
-4

.  Neglecting the nonlinearity 

gives the approximate solution, S3 = d33 V/L = 1.156 x 10 
-4

  with an error of only 0.01%
 
, 

which is much smaller than the uncertainty in d33  .  The specific nonlinear mechanism 

included here, at very low frequency, is the variation of the electric field as the length of 

the material varies with the voltage held constant.  At higher frequencies other nonlinear 

mechanisms would usually have more significant effects. 
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9.3. The strain versus field curve must be symmetric for even harmonic generation and 

anti-symmetric for odd harmonic generation.  This can be seen from the nonlinear 

solution in Exercise 9.1, although that exercise was stated for nearly static conditions.  If 

the applied voltage is 0V V cos t= ω the second term of the solution, which is symmetric, 

gives a strain proportional to 2cos t (1 cos 2 t) / 2ω = + ω , i.e., static and second harmonic 

strain components.  Similarly, the third anti-symmetric term of the solution, proportional 

to 3cos t (3cos t cos3 t) / 4ω = ω + ω , gives a third harmonic and a change in the 

fundamental.  

  

9.4. Below resonance the voltage response increases (typically at 12 dB/octave) and 

flattens out above resonance. If a transducer is operated below resonance, the harmonics 

will have additional output relative to the fundamental, since they occur at higher 

frequencies where the voltage response is greater.  Operating at fr/2 and fr/3 augments the 

second and third harmonics, since then they occur at the transducer resonance frequency 

where the voltage response is usually maximum (see the pressure harmonics in Figs. 9.4 

and 9.5 and Exercises 9.6 and 9.7). 

 

9.5. Materials generally produce harmonics when the strain approaches and exceeds the 

elastic limit or when the electric or magnetic field approaches breakdown. In this region 

the transducer efficiency at the drive frequency decreases since part of the input power is 

transferred to power in the harmonics.  Thus an increase of input power is required to 

achieve a goal based on linearity, which brings the strain or field closer to the limits of 

the material and may lead to mechanical or electrical failure of the transducer.  

 

9.6. The equation of motion is:  
2 2 2 2 2 2

0 0 1 1Mx Rx (Ac / L)x (Ae / L )V (Ae / L )(V 2V V cos t V cos t)+ + = = + ω + ω&& &                                                                                             

2 2 2 2

0 1 0 1 1

1 1
(Ae / L) (V V 2V V cos t V cos 2 t)

2 2
= + + ω + ω  which shows the static, fundamental 

and second harmonic drive terms.  The solution for the displacement for each drive term 

can be found separately since this is a linear equation.  The results are:   

 

                                              2 2 2

0 0 1

1
x (Ae / cL)(V V )

2
= +  

    2

1 0 1 mx (Ae / L) (2V V ) / Z ( )= ω ω  

 2 2

2 1 mx (Ae / L) V / 4 Z (2 )= ω ω  

 

9.7.  The ratios can be found from the solutions in Exercise 9.6 or from Eq. (9.36) and 

Table 9.2:   

                         

                   2 1 1 0x / x V / 4V=       ,                       well below resonance 

 

                   2 1/ 2

2 1 1 0 mx / x (V /16V )(4 9Q )= + ,      at one half the resonance frequency 
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2 1/ 2

2 1 1 0 mx / x (V / 4V ) /(4 9Q )= +    ,    at the resonance frequency 

 

Note that for Qm  = 10 the ratio at one half the resonance frequency is 7.5 times greater, 

and at the resonance frequency 30 times smaller, than it is well below resonance, showing 

that harmonic distortion and its effects can vary strongly with frequency. 

 

9.8.  Let Um1 and Um2  be the converted mechanical energy in the fundamental and in the 

second harmonic and Ue  be the stored electrical energy.  Define the square of the 

electromechanical coupling coefficient, generalized to nonlinear conditions, as the ratio 

of the mechanical energy in the fundamental to the total input energy: 

 

 2 2 2

nl m1 m1 m2 e m2 m1k U /(U U U ) k /(1 U k / U )= + + = +  

 

where k
2  

= Um1 /(Um1 +Ue ) is the squared coupling coefficient when nonlinear effects are 

negligible.  Using the displacement ratio from Exercise 9.6, and noting that the 

mechanical energy is proportional to displacement squared, gives at low frequency, 

 

                                     
2 2

m2 m1 2 1 1 0U / U x / x (V / 4V )= =  . 

 

 When operating a biased transducer the usual practice is to keep the alternating drive 

voltage less than the bias voltage (V1 < V0 ) to avoid significant nonlinear effects.  The 

results from Exercise 9.6 show that, even for V1 = V0 ,  the effect on coupling is very 

small at low frequency  (for k = 0.7, knl  = 0.696) and even smaller at resonance.  But the 

effect is much greater at one half the resonance frequency (for k = 0.7 and Qm = 10, knl = 

0.42).  This is a specific example of the effects pointed out in Exercise 9.4. 

 

9.9 For the component at  2 2

1 1: x V , u Vω ∝ ∝ ω  

                                           2 2

2 22 : x V / 2, u Vω ∝ ∝ ω  

                                            2 2

3 33 : x V , u 3 Vω ∝ ∝ ω  

                                            2 2

4 44 : x V / 2, u 2 Vω ∝ ∝ ω  

 9.10  Since the radiated pressures are proportional to the accelerations the four pressure 

components are:  2 2 2 2 2 2 2 2

1 2 3 4p V , p 2 V , p 9 V , p 8 V∝ ω ∝ ω ∝ ω ∝ ω . 

 

 

Chapter 10  
 

10.1. Substitution yields ∂2
p/∂x2

 = - k
2
p. Particle velocity = u = (jk/jωρ)p = p/ρc showing 

that characteristic impedance is cρ . Characteristic impedance ratio of PZT to water is 

22.2/1.5 = 14.8. 
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10.2. For L = λ, kL = 2π. S= λ/2. The line with L = λ can be thought of as two lines, each 

λ/2 long, with centers λ/2 apart, and thus canceling in the axial direction as the two point 

sources do. 

 

10.3. Line: BW = 51
0
 and DI = 3 dB. For piston: BW = 58

0
 and DI = 9.9 dB. The higher 

DI of the circular piston occurs because it radiates mainly in one direction, while the line 

radiates omnidirectionally in the plane perpendicular to its axis.  BW is caused by partial 

cancellation as the observation point is moved away from the MRA.  The fact that the 

piston has area, while the line does not, causes the piston’s greater beam width when the 

diameter is the same as the line length.  This can be seen by considering the piston to be a 

collection of parallel strips.  Note that cancellation for those strips near the diameter is 

about the same as it is for the line. However, for those shorter strips near the edge of the 

piston, cancellation is less than for the line, thus giving a broader beam for the piston. 

 

10.4. For the line the exact BW = 52.9
0
 and the approximate BW = 51

0
; error of 3.6% for 

one wavelength long.  A better approximation for DI, given by Eq. (10.23b), is 2.5 dB 

rather than the approximate 3dB.  For the circular piston the exact BW = 62
0 

and the 

approximate BW = 58
0 

; error of 6.5% for one wavelengh diameter.  The exact Eq. 

(10.31) yields DI = 9.7 dB rather than the approximate 9.9 dB.  

 

10.5. Normalize Eq. (10.34) by dividing by the value at θ = 90
0  

giving   

   

 0

0 0p( ) / p(90 ) Sinc(kLcos )H (ka) / sin H (ka sin )′ ′θ = θ θ θ . 

 

This ratio can be simplified by use of the approximation , 1/ 2

0H (x) (2 / x)′ = π  , valid for x 

> 1/2 (see Morse and Ingard, Reference 17, p.360), and it becomes 

 

                                  0 1/ 2p( ) / p(90 ) Sinc(kLcos )(sin )θ = θ θ . 

 

Note that the first factor is the line function (for length 2L).  Now with kL =  ka = π , find 

θ for a pressure amplitude ratio of 0.707 (i.e. -3 dB) . The quantity 2θ gives the beam 

width.  This must be done by trial and error, and it is important to start with a good guess.  

In this case, since the ring is the same length as the line in Exercise 10.4, the beam width 

will be similar; so 50
0   

is a good initial estimate.  Thus ( BW) / 2θ = π − = 65
0
, 

Sinc( cosπ θ ) = 0.73, (sin θ )
1/2

  = 0.95 and the pressure ratio = 0.69, close to the desired 

value.  A trial beam width of 46
0   

gives a pressure ratio of  0.74.  The correct beam width 

is about 48
0  

. 

 

10.6. Eq. (10.36) with z = 0 gives nulls when sin(ka/2) = 0 and the radius a = nλ, n = 1, 2, 

3, • • • . 

 

10.7. For ka << 1,  kao = (kad)
3/2

/(12)
1/4

. For ka >> 1, kao = kad/√3.  When the size is 

small compared to the wavelength the dipole is a much poorer radiator than the monopole 

because of strong cancellation from its two out-of-phase parts.  Thus to radiate the same 

power the dipole must have much more radiating area or much greater velocity.   
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10.8. Da = 2 for a plane wave arriving perpendicular to the plane.   

 

10.9 Da = (ka)
2 

/[4+(ka)
4 

] for a plane wave arriving parallel to the axis of the dipole. 

This Da  has a maximum value of 0.25 when ka = 2 .  

 

10.10. Consider a free-flooding ring of length L, inner radius a and outer radius b.  Use 

a cylindrical coordinate system with the center of the ring at the origin.  This makes the z 

= 0 plane a plane of symmetry, and the boundary conditions only need to be stated for 

half the ring.  The boundary values of the normal velocity are:  

 

                                         u = 0,     for  z = 0,              0 < r < a    and   b < r < ∞  

                                         u = ut ,   for   z = L/2,          a < r < b 

                                         u = ui ,   for   0 < z < L/2 ,    r = a 

                                         u = uo,     for   0 < z < L/2,     r = b 

 

where ut , ui  and uo  are uniform outward normal velocities on the top, inside and outside 

surfaces of the ring.  These velocities are related by the mechanics of the ring; e.g., if the 

ring has very thin walls, ui ≈  -uo .  Consider trying to make the cylindrical wave 

functions in Eq. (10.13) satisfy these conditions.  The ring has cylindrical symmetry and 

only the functions for m = 0 are needed, but all values of kz are allowed.  A solution in 

terms of these wave functions does not exist (see Chapter 11).      
   
 

Chapter 11  
 

11.1. Spherical coordinates are the most useful because the constant coordinate surfaces 

are finite and therefore capable of fitting real transducers.  Thus exact solutions are 

available for spherical transducers with any normal velocity distribution and exact 

solutions for quantities such as radiation impedance have been derived from them.  

Oblate spheroidal, prolate spheroidal and ellipsoidal coordinates also have the important 

advantage of finite constant coordinate surfaces, although the wave functions are not as 

well developed.  Rectangular and cylindrical coordinates are commonly used, but their 

constant coordinate surfaces are not finite, and radiation from finite flat surfaces such as 

pistons can only be solved by assuming they are part of an infinite rigid plane.  Similarly, 

cylindrical radiators must be assumed to have infinite rigid extensions. Radiation from 

common shapes such as a rectangular box or a cylinder of finite length cannot be solved 

by expansion in wave functions except as an approximation. 

 

11.2. Use P1(x) = x and let x = cos θi etc. 

 

11.3. Satisfying the boundary condition in Eq. (11.2) requires the integral: 

  

            
0i

m 0 m

0 0

u( )P (cos )sin d u P (cos )sin d

θπ

θ θ θ θ = θ θ θ∫ ∫  
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                                  0
m 1 0i m 1 0i

u
[P (cos ) P (cos )]

(2m 1)
+ −= θ − θ

+
. 

 

 

11.4.  Use Eq. (11.1) with m = 0 because of the azimuthal symmetry of the boundary 

condition, leading to Eq. (11.3a).  The boundary condition is satisfied, in the same way 

that led to Eq. (11.4), using the orthogonality relation given in Exercise 11.3.   Using the 

relation Pn (-x) = Pn  (x) for n an even integer and Pn (-x) = –Pn (x) for n an odd integer 

gives the coefficients: 

 

                  n n n 1 1 n 1 1A [ cu / jh (ka)][P (cos ) P (cos )]+ −
′= ρ θ − θ ,      for n even 

                                              An = 0,          for n odd  . 

 

Vanishing of the odd coefficients is a necessary feature of the solution because the 

boundary condition in this Exercise is symmetric about the equatorial plane, while the 

boundary condition in Exercise 11.3 does not have this symmetry.  Using P0 (cos θ ) = 1 

and P2 (cos θ ) = (3cos2 θ -1)/4  the first two terms of the solution for the pressure are: 

 

 (2) (2)

0 0 2 2p(r, ) A h (kr) A (3cos 2 1)h (kr) / 4θ = + θ − . 

 

The second term shows the departure from omnidirectionality that results from this model 

of an end capped ring transducer. 

      

11.5. Follow the procedure in Section 11.14 but use the radiation resistance of a dipole 

given by the real part of Eq. (10.47). 

 

11.6. Use reasoning similar to that in Section 10.33 for small pistons.  Imagine an array 

constructed such that it vibrates exactly the same on both sides (case 1, the rigid baffle).  

Imagine the same array surrounded by pressure release material, or lying on the surface 

of water, or constructed to vibrate exactly the opposite on both sides (case 2, the pressure 

release baffle).  Now consider the same array mounted such that it vibrates only on one 

side (case 3, no baffle).  As in Section 10.33, superposition of the velocity boundary 

conditions for cases 1 and 2 shows that u3 = (u1 + u2 )/2, and it follows that the entire 

pressure fields of the three cases are related in the same way, i.e. , p3  = (p1 + p2 )/2.  But 

in the plane of the array p2 = 0, and so p3 = p1/2 in the plane of the array.  The 

approximation in Eq. (11.44b) is also consistent with this result. 

 

11.7. Note that the Da for the piston holds for a wave at normal incidence. As the 

wavelength decreases the piston acts as a plane rigid baffle with the reflected and incident 

waves in phase, which raises the pressure on the surface and increases the Da   . While for 

the sphere the phase distribution of both the incident and scattered waves becomes more 

nonuniform as the wavelength decreases, which reduces the average pressure on the 

surface and decreases the Da .  It is reasonable for Da   to decrease as 1/ka as ka increases, 

because 1/ka is proportional to the number of wavelengths contained in the diameter of 

the sphere; the more wavelengths, the more completely the pressure cancels.  
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11.8. The pressure along the pressure release surface is forced to be zero, but the velocity 

of that surface is not zero.  The motion of the pressure release surface is similar to an 

array of dipoles that results in radiation in the back direction out of phase with the direct 

radiation from the piston. 

 

11.9. The radiation resistance and velocity must be equal because of symmetry.  The 

symmetry of the results is a valuable means of checking the validity of the calculation, 

which can also be used for large arrays. Programs designed for handling large arrays 

should also be validated by applying them to small arrays for which the results can be 

estimated by other means.    

 

11.10   In Eq. (11.34) p2  is the pressure exerted on transducer 1 by transducer 2, 

including the incident wave from 2 and the scattered wave from 1, i.e., p2 = [pi (r) + ps(r)], 

while u1 is the normal velocity as a function of position on transducer 1, u1 (r). Thus, 

using Eq. (11.50), the left side of Eq. (11.34) can be written 

 

                    

1 1

2 1 1 1 i s 1 1 1 1 1 b

S S

p u dS u [p (r) p (r)](u (r) / u )dS u A p= + =∫∫ ∫∫ .   

 

In Eq. (11.53) 1p (r, , )θ φ , the pressure from transducer 1, is constant over the surface of 

the very small transducer 2.  Thus the right side of Eq. (11.34) can be written 

 

 

2 2

1 2 2 1 2 2 1 2 2

S S

p u dS p (r, , ) u dS p (r, , )u A= θ φ = θ φ∫∫ ∫∫ , 

 

consistent with Eq. (11.53). 

 

11.11.  a 1D ( , ) 4J (ka sin ) / ka sin 2θ φ = θ θ →   for 0θ = . 

 

 

Chapter 12  
 

12.1. The admittance Y = 1/Z = 1/(R + jX) = (R – jX)/(R
2
 + X

2
) = G + jB 

 

12.2. At low frequencies, well below resonance, 1/jωCe >> jωLe + R. Also, Cf = C0 + 

N
2
C

E
. 

 

12.3. A measurement of both an electrical and mechanical quantity is needed to 

determine N; such as, voltage and force or voltage and acceleration with a known mass. 

 

12.4. In air the damping is usually small allowing an accurate determination of fr and fa  

from measurements that clearly show the maxima and minima of |Z| or Y  ; however, an 

accurate measurement of Qm and Qe is difficult in air where the resonant peak is very 

narrow. With much higher in-water damping Qm and Qe are much smaller and are easily 
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measured, while the maxima and minima of |Z| and Y are broadened making it difficult 

to determine fr and fa accurately. 

 

12.5. TCR is given by S = p/I = Zp/V where p/V gives the TVR. The electrical 

impedance is, except at resonance, approximately given by a function like 1/jωC. Thus 

the TCR response is modified by a function with a slope of - 6 dB/ octave. The RVS is 

obtained from the TVR through reciprocity that includes an additional slope change of – 

6 dB/octave.  

 

12.6. The magneotstricitive transducer is the dual of the piezoelectric transducer. Thus, 

one acts like the other with current and voltage interchanged.     

 

12.7. A parallel inductor does not change the input voltage. A series inductor does not 

change the input current. RVS is for open circuit conditions which is equivalent to a very 

high impedance constant current condition. 

 

12.8. Use a separate hydrophone or construct a separately wired hydrophone as part of 

the projector.  

 

12.9.  At 2 kHz the wavelength λ = 0.75 m. If we need 2 cycles to make a measurement, 

the differential distance, ∆, between the transmitted direct path and the reflected path, 

would be ∆ = 0.75(5 +2) = 5.25 meters. For a mid-tank projector-hydrophone separation, 

r, (see Fig. 12.26) the distance ∆ = 2H - r where 2H is the total reflected path and H is the 

hypotenuse of the right triangles. Thus for a separation of 1 meter H = (5.25 + 1)/2 = 

3.125 m. The distance to the surface, w/2, is then [(3.125)
2
 – (0.5)

2
]

1/2
 = 3.08 m, and the 

water tank depth, w, should be 6.2 m (20 ft) for Qm ≤ 5 and frequency ≥ 2 kHz. For Qm ≤ 

1, ∆ = 2.25 m, H = (2.25 + 1)/2 = 1.625 m, and the tank depth needs to be only 3.09 m 

(10.1 ft).  

 

12.10. At 10 kHz the wavelength λ = 0.15 m. The Rayleigh distance zf ≥ (0.1935)
2
/0.3 = 

0.125m (4.92 inches). For a close packed 7 element array zf ≥ (3 x 0.1935)
2
/0.3 = 1.123 

m (44.2 inches), which is nine times the distance needed for a single piston.  Note that the 

Rayleigh distance is less than the diameter for one piston but almost twice the width of 

the array.  

 

12.11 The effective coupling coefficient is k = [1 – (fr/fa)
2
]

1/2
 = 0.5. Since QmQe = (1 – 

k
2
)/k

2
,  Qe = 1.   

 

12.12 The RVS can be obtained from the reciprocity relation in Eq. (12.35) where |Z| = 

(400
2
 + 300

2
)
1/2

 = 500 ohms. The result is that the RVS = 140 + 54 – 80 -294 = -180 

dB//V/µPa . 
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