
Chapter 2

THE ALGEBRAIC STRUCTURE OF
METAGRAPHS

In Chapter 1, the notion of a metagraph was introduced informally, using visual
depictions and descriptions. In this chapter, the formal structure of a metagraph
is defined, and its basic properties are identified.

1. FORMAL REPRESENTATION OF A METAGRAPH

DEFINITION 2.1. The generating set of a metagraph is the set of elements
X = {x1, x2, . . . , xn}, which represent variables of interest, and which occur in
the edges of the metagraph.

DEFINITION 2.2. An edge e in a metagraph is a pair e = 〈Ve,We〉 ∈ E (where
E is the set of edges) consisting of an invertex Ve ⊂ X and an outvertex We ⊂
X, each of which may contain any number of elements. The different elements
in the invertex (outvertex) are coinputs (cooutputs) of each other.

DEFINITION 2.3. A metagraph S = 〈X,E〉 is then a graphical construct spec-
ified by its generating set X and a set of edges E defined on the generating set.

DEFINITION 2.4. A simple path h(x, y) from an element x to an element y is
a sequence of edges 〈e1, e2, . . . , en〉 such that

x ∈ invertex(e1),
y ∈ outvertex(en), and
for all ei, i = 1, . . . , n − 1,outvertex(ei) ∩ invertex(ei+1) �= ∅.

The coinput of x in the path (denoted coinput(x)) is the set of all other
invertex elements in the path’s edges that are not also in the outvertex of any
edges in the path, and the cooutput of y (denoted cooutput(y)) is the set of all
outvertex elements other than y. The length of a simple path is the number of
edges in the path.

EXAMPLE 2.1. The metagraph in Figure 2.1 can be represented as follows:

S = 〈X,E〉, where
X = {Exp,Notes,Prof ,Rev,Pri,Vol,Wage}, and
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Figure 2.1. An example metagraph.

E = {〈{Pri,Vol}, {Rev}〉, 〈{Vol,Wage}, {Exp}〉, 〈{Rev,Exp},
{Prof ,Notes}〉, 〈{Exp}, {Notes}〉},

Invertex(〈{Rev,Exp}, {Prof ,Notes}〉) = {Rev,Exp},
Outvertex(〈{Rev,Exp}, {Prof ,Notes}〉) = {Prof ,Notes},
Coinput(Rev, 〈{Rev,Exp}, {Prof ,Notes}〉) = {Exp},
Cooutput(Prof , 〈{Rev,Exp}, {Prof ,Notes}〉) = {Notes}.

The edges of S can be labeled, so that for example, e1 = 〈{Rev,Exp},
{Prof ,Notes}〉.

Note that a single metagraph edge is a singular metagraph. Also, note that
an edge with a singular invertex and a singular outvertex is isomorphic with
an edge in a directed graph.

Simple paths do not describe all of the connectivity properties of meta-
graphs. This is illustrated in the metagraph of Figure 2.2, in which there are
two simple paths from x1 to x5, both of which have non-null coinputs. How-
ever, x1 itself is sufficient to calculate x5, if all three edges e1, e2, and e3 are
used. However, 〈e1, e2, e3〉 does not represent a simple path, since there is no
sequence of connected edges consisting of these edges. Rather, this metapath
is the union of edges in two simple paths.

DEFINITION 2.5. Given a metagraph S = 〈X,E〉, a metapath M(B,C) from
a source B ⊂ X to a target C ⊂ X is a set of edges E′ ⊆ E such that (1) each
e′ ∈ E′ is on a simple path from some element in B to some element in C,
(2) [⋃e′ Ve′\⋃

e′ We′ ] ⊆ B , and (3) C ⊆ ⋃
e′ We′ .

There are three differences between simple paths and metapaths:

• First, a metapath is a set of edges and not a sequence of edges. For ex-
ample, in Figure 2.2, one metapath from x1 to x5 is M({x1}, {x5}) =
{e1, e2, e3}.
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Figure 2.2. Metapath example.

• Second, the source and target of a metapath are sets, not elements, as in
simple paths. Of course, these sets may sometimes be singleton sets, as
is the case in Figure 2.2 (with B = {x1} and C = {x5}).

• Third, the notion of a coinput does not apply to a metapath, since the
source set includes all pure inputs.

2. THE INCIDENCE AND ADJACENCY MATRICES

In order to define an algebra for metagraph manipulation, two matrix rep-
resentations of a metagraph are needed. These are the adjacency matrix and
incidence matrix, respectively. It is worth noting that as with traditional graph
structures, each of these matrices is a complete representation of a metagraph,
and can be derived from the other.

DEFINITION 2.6. The adjacency matrix A for a metagraph S = 〈X,E〉 is an
I × I matrix (where I = |X|), such that for all i, j ∈ {1, . . . , I },

aij =
⋃

k

(αij )k,

where

(αij )k =
{ 〈

Vk\{xi},Wk\{x}, 〈Ek〉
〉

if xi ∈ Vk ∧ xj ∈ Wk,

φ otherwise.

In other words, the adjacency matrix A of a metagraph is a square matrix
with one row and one column for each element in the generating set X. The ijth
element of A, denoted aij , is a set of triples, one for each edge e connecting xi

to xj . Each triple is of the form 〈CIe,COe, e〉, in which CIe is the coinput of
xi in e and COe is the cooutput of xj in e.
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For example, the adjacency matrix for the metagraph in Figure 2.3 below is
shown in Figure 2.4.

There is an algebra defined for metagraph adjacency matrices. Given adja-
cency matrices A1 and A2, defined for two metagraphs that have the same gen-
erating set, these matrices can be added and multiplied with the result in each
case being another matrix over the same generating set. Intuitively, A1 + A2
represents the adjacency matrix of the union of the two metagraphs, while
A1 ∗A2 represents all paths of length two, where the first edge is from the first
metagraph and the second edge is from the second metagraph.

Figure 2.3. An example metagraph.

Figure 2.4. The adjacency matrix for the metagraph in Figure 2.3.
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Figure 2.5. Adjacency matrix of additional metagraph.

DEFINITION 2.7. Given a generating set X and two metagraphs S1 = 〈X,E1〉
and S2 = 〈X,E2〉 with adjacency matrices A1 and A2 respectively, then the
sum of the two adjacency matrices is the adjacency matrix of the metagraph
S3 = 〈X,E1 ∪ E2〉 with components

(A1 + A2)ij = a1
ij ∪ a2

ij .

Note that the two matrices must be defined on the same generating set.
However, this is not a restrictive requirement. If the generating sets of the two
metagraphs are overlapping but not identical, each metagraph can be defined
over a new generating set which is the union of the two generating sets, and
then the above definition can be applied.

As an example, consider the metagraph in Figure 2.3 combined with a
metagraph consisting of two edges, e6 = 〈{x3, x4}, {x6}〉 and e7 = 〈{x4}, {x1}〉,
which has the adjacency matrix shown in Figure 2.5.

The result of adding the two adjacency matrices gives the adjacency matrix
of the union of the two metagraphs, and this is shown in Figure 2.6.

The definition of multiplication of adjacency matrices is computationally
more complex, since the result is not an adjacency matrix, but rather a matrix
that identifies paths of length two between elements, as mentioned above. In
order to define this operator, a number of preliminary concepts need to be
specified.

DEFINITION 2.8. The components of an ordered triple R are α(R),β(R) and
γ (R) respectively (i.e., R = 〈α(R),β(R), γ (R)〉).
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Figure 2.6. The adjacency matrix for the combined metagraph.

DEFINITION 2.9. The operator Cat(A,B) represents the concatenation of two
ordered lists A and B .

For example, Cat(〈q, r〉, 〈q, s, t〉) = 〈q, r, q, s, t〉.

DEFINITION 2.10. The Trnc(.) operator truncates a list when it encounters a
duplicate element.

For example, Trnc(〈an, n = 1, . . . ,N〉) = 〈an,n = 1, . . . ,M〉, where Q =
{an, n = 1, . . . ,M} is a set of distinct elements and aM+1 ∈ Q.

DEFINITION 2.11. Let X be a generating set and let two metagraphs with
adjacency matrices A and B respectively be defined on this generating set.
Each cell in these matrices is a list of triples, with the nth triple in aik and
the mth triple in bkj denoted as (aik)n and (bkj )m respectively. Then the ‘◦’
operator defines either an ordered triple or a null set, as follows:

(1) If ((aik)n �= φ)∧((bkj )m �= φ) then (aik)n◦(bkj )m is a triple R specified
as follows:
(a) α(R) = (α((aik)n) ∪ α((bkj )m))\(β((aik)n) ∪ {xi}),
(b) β(R) = (β((aik)n) ∪ β((bkj )m) ∪ {xk})\{xj },
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(c) γ (R) = Trnc(Cat(γ (aik)n, γ (bkj )m));
(2) Else (aik)n ◦ (bkj )m = φ.

DEFINITION 2.12. Given a generating set X and two metagraphs S1 =
〈X,E1〉 and S2 = 〈X,E2〉 with adjacency matrices A and B respectively, let
(aij )n and (bij )n be the ordered triples in aij and bij such that:

aik = {
(aik)n, n = 1, . . . ,N

}
and bkj = {

(bkj )m, m = 1, . . . ,M
}
.

Then the product of the two adjacency matrices A and B is denoted A × B

with components

(A × B)ij =
K⋃

k=1

N⋃

n=1

M⋃

m=1

(
(aik)n ◦ (bkj )m

)
.

EXAMPLE 2.2. Given aik = 〈φ, {x4}, e1〉 and bkj = {〈{x2}, {x5}, e2〉, 〈{x4}, φ,
e3〉}, consider the first combination of (aik)1 ◦ (bkj )1. Since neither of them is
null, we get a triple as follows:

α
(
(aik)1 ◦ (bkj )1

) = (
φ ∪ {x2}

)\({x4} ∪ {x1}
) = {x2},

β
(
(aik)1 ◦ (bkj )1

) = ({x4} ∪ {x5} ∪ {x3}
)\{x6} = {x3, x4, x5},

γ
(
(aik)1 ◦ (bkj )1

) = Trnc
(
Cat

(〈e1〉, 〈e2〉
)) = 〈e1, e2〉.

Similarly, (aik)1 ◦ (bkj )2 = 〈φ, {x3, x4}, 〈e1, e3〉〉.

Using multiplication, the powers of an adjacency matrix can also be com-
puted. The nth power of A is denoted An. The ijth element of An, denoted an

ij ,
is a set of triples, one for each simple path h(xi, xj ) of length n connecting
xi to xj . Each triple is of the form 〈CIh,COh, h〉, in which h denotes the se-
quence of edges comprising the path, CIh is the coinput of xi in h and COh is
the cooutput of xj in h. The closure of A, denoted A∗ = A + A2 + · · ·, repre-
sents all simple paths of any length in the metagraph. The ijth element of A∗,
denoted a∗

ij , is a set of triples, one for each simple path h(xi, xj ) of any length
connecting xi to xj . Note that the multiplication operator allows any cycle to
be traversed only once. Figure 2.7 shows the closure of the adjacency matrix
in Figure 2.4.

The addition and multiplication operators on adjacency matrices of meta-
graphs also support the properties of associativity and distributivity, as shown
below:
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Figure 2.7. The closure of the adjacency matrix in Figure 2.4.

THEOREM 2.1. Given a generating set X and three metagraphs defined on
this set with adjacency matrices A,B , and C respectively, then

(1) A × (B × C) = (A × B) × C,
(2) A + (B × C) = (A × C) + (B × C).

PROOF. Since the multiplication operation identifies all paths made up of
edges in the first metagraph followed by an edge in the second metagraph,
A × (B × C) identifies all paths of length three consisting of an edge from A

followed by an edge from B and then an edge from C respectively. This is the
same as in (A × B) × C, which proves associativity.

To prove the distributive property, if D = (A × C) + (B × C), it suffices to
show that for any i, j, dij = ((A + B) × C)ij . In the following, the notation
(aij )n refers to the nth triple in aij , while an

ij refers to the entry in the ith row
and j th column of An, and (an

ij )m refers to the mth element of an
ij .

Let |aij | = M1, |bij | = M2, and |cij | = N . Also, let Y = A + B (i.e.,
∀i, j, yij = aij ∪ bij . Reorganize bij so that for q ≤ Q,(bij )q /∈ aij and for
all q > Q, (bij )q ∈ aij . Thus, |yij | = M1 +Q. Then xij can be partitioned into
the following sets:

(yij )p = (aij )m1 for p = 1, . . . ,M1,

(yij )p = (bij )p−M1 for p = (M1 + 1), . . . , (M1 + Q).
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Then,

dij =
( ⋃

k,m1,n

(aik)m1 ◦ (ckj )n

)

∪
( ⋃

k,m2,n

(bik)m2 ◦ (ckj )n

)

=
⋃

k,n

((⋃

m1

(aik)m1 ◦ (ckj )n

)

∪
(⋃

m2

(bik)m2 ◦ (ckj )n

))

=
⋃

k,n

((
M1⋃

p=1

(yik)p ◦ (ckj )n

)

∪
(

M1+Q⋃

p=M1+1

(yik)p ◦ (ckj )n

))

=
⋃

k,n

(
M1+Q⋃

p=1

(yik)p ◦ (ckj )n

)

=
⋃

k,p,n

(
(aik ∪ bik)p ◦ (ckj )n

)
.

Thus, D = (A + B) × C, which is the desired result. �

Also, note that the null matrix D (with dij = φ ∀i, j) is a left and right
identity under addition (i.e., A+D = D +A = A). This implies that the set of
all adjacency matrices defined on the same generating set forms a commutative
idempotent monoid under addition, while the set of all non-null adjacency
matrices forms a semi-group under multiplication.

DEFINITION 2.13. The incidence matrix G of a metagraph has one row for
each element in the generating set and one column for each edge. The ijth
component of G,gij , is −1 if xi is in the invertex of ej , it is +1 if xi is in the
outvertex of ej , and it is ∅ otherwise.

The incidence matrix for the metagraph in Figure 2.3 is shown in Figure 2.8
below.

Once the closure A∗ of a metagraph’s adjacency matrix has been con-
structed, it can be used to identify a variety of connectivity features of that
metagraph, as discussed in the next chapter.

3. IDENTIFYING METAPATHS

The adjacency matrix and its closure can be used to find paths and meta-
paths. One of the benefits of the metagraph representation (versus simpler
graph representations) is that searches for metapaths can be limited to only
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Figure 2.8. The incidence matrix for the metagraph in Figure 2.3.

those portions of the A∗ matrix that deals with the elements in the source and
target sets, which can substantially reduce the search space. This is because
every metapath from B to C must consist of edges based on a combination of
triples from cells a∗

ij such that xi ∈ B and xj ∈ C. Furthermore, the efficiency
of the search procedure now becomes a function of the number of simple paths
between B and C (each corresponding to a triple in the candidate set), rather
than the entire closure matrix.

Another useful observation that can be exploited is that if there is a metapath
from B to C, then there should be triples composed of these edges in A∗ in
every column j such that xj ∈ C. Also, in using the closure matrix to find
metapaths M(B,C), even though there is at least one triple in every column of
A∗ corresponding to elements of C, it is not always necessary to examine each
triple explicitly, because the triples include the co-inputs and co-outputs for
the path that they represent. Furthermore, if we use a conservative approach
that always considers a minimal number of rows, then the metapaths obtained
are all input-dominant.

DEFINITION 2.14. Given a metagraph S = 〈X,E〉, for any two sets of ele-
ments B and C in S, a metapath M(B,C) is said to be input-dominant if there
is no metapath M ′(B ′,C) such that B ′ ⊂ B .

Based on the above observations, the procedure to find metapaths can be
described as follows:
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1. Select a candidate set of input rows I in A∗ such that xi ∈ B,∀i ∈ I,B =⋃
i xi . Start with single rows, and repeat with larger sets progressively

in successive iterations.
2. If ∃xj ∈ B such that a∗

ij = φ,∀i ∈ I , then there is no metapath from
{xi | i ∈ I } to C. Return to step 1 and repeat with another set of rows.

3. Find a candidate set of triples in cells a∗
ij such that i ∈ I, xj ∈ C that

forms a cover for C (where a cover for C is a set of triples T such
that C ⊆ ⋃

t∈T output(t)). If such a cover is found, then
⋃

t∈T path(t)

comprises an input dominant metapath from B(= {xi | i ∈ I }) to C.
4. Otherwise, return to step 1 and use an alternative candidate set I .

The stopping criterion for the procedure (in step 3 after a metapath is found,
or in step 1 if there are no more candidate sets) depends upon whether the
desired outcome is one metapath or every metapath.
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