
Chapter 2

SURFACE PLASMON POLARITONS AT METAL /
INSULATOR INTERFACES

Surface plasmon polaritons are electromagnetic excitations propagating at
the interface between a dielectric and a conductor, evanescently confined in
the perpendicular direction. These electromagnetic surface waves arise via
the coupling of the electromagnetic fields to oscillations of the conductor’s
electron plasma. Taking the wave equation as a starting point, this chapter
describes the fundamentals of surface plasmon polaritons both at single, flat
interfaces and in metal/dielectric multilayer structures. The surface excitations
are characterized in terms of their dispersion and spatial profile, together with
a detailed discussion of the quantification of field confinement. Applications
of surface plasmon polaritons in waveguiding will be deferred to chapter 7.

2.1 The Wave Equation
In order to investigate the physical properties of surface plasmon polaritons

(SPPs), we have to apply Maxwell’s equations (1.1) to the flat interface be-
tween a conductor and a dielectric. To present this discussion most clearly, it
is advantageous to cast the equations first in a general form applicable to the
guiding of electromagnetic waves, the wave equation.

As we have seen in chapter 1, in the absence of external charge and current
densities, the curl equations (1.1c, 1.1d) can be combined to yield

∇ × ∇ × E = −μ0
∂2D
∂t2

. (2.1)

Using the identities ∇ × ∇ × E ≡ ∇(∇ · E) − ∇2E as well as ∇ · (εE) ≡
E · ∇ε + ε∇ · E, and remembering that due to the absence of external stimuli
∇ · D = 0, (2.1) can be rewritten as
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∇
(

−1

ε
E · ∇ε

)
− ∇2E = −μ0ε0ε

∂2E
∂t2

. (2.2)

For negligible variation of the dielectric profile ε = ε(r) over distances on
the order of one optical wavelength, (2.2) simplifies to the central equation of
electromagnetic wave theory,

∇2E − ε

c2

∂2E
∂t2

= 0. (2.3)

Practically, this equation has to be solved separately in regions of constant ε,
and the obtained solutions have to been matched using appropriate boundary
conditions. To cast (2.3) in a form suitable for the description of confined
propagating waves, we proceed in two steps. First, we assume in all generality
a harmonic time dependence E(r, t) = E(r)e−iωt of the electric field. Inserted
into (2.3), this yields

∇2E + k2
0εE = 0, (2.4)

where k0 = ω
c

is the wave vector of the propagating wave in vacuum. Equation
(2.4) is known as the Helmholtz equation.

Next, we have to define the propagation geometry. We assume for sim-
plicity a one-dimensional problem, i.e. ε depends only on one spatial coor-
dinate. Specifically, the waves propagate along the x-direction of a cartesian
coordinate system, and show no spatial variation in the perpendicular, in-plane
y-direction (see Fig. 2.1); therefore ε = ε(z). Applied to electromagnetic
surface problems, the plane z = 0 coincides with the interface sustaining the

x (direction of propagation)

y

z

Figure 2.1. Definition of a planar waveguide geometry. The waves propagate along the x-
direction in a cartesian coordinate system.



The Wave Equation 23

propagating waves,which can now be described as E(x, y, z) = E(z)eiβx . The
complex parameter β = kx is called the propagation constant of the traveling
waves and corresponds to the component of the wave vector in the direction of
propagation. Inserting this expression into (2.4) yields the desired form of the
wave equation

∂2E(z)

∂z2
+ (

k2
0ε − β2

)
E = 0. (2.5)

Naturally, a similar equation exists for the magnetic field H.
Equation (2.5) is the starting point for the general analysis of guided elec-

tromagnetic modes in waveguides, and an extended discussion of its properties
and applications can be found in [Yariv, 1997] and similar treatments of pho-
tonics and optoelectronics. In order to use the wave equation for determining
the spatial field profile and dispersion of propagating waves, we now need to
find explicit expressions for the different field components of E and H. This
can be achieved in a straightforward way using the curl equations (1.1c, 1.1d).

For harmonic time dependence
(

∂
∂t

= −iω
)
, we arrive at the following set

of coupled equations

∂Ez

∂y
− ∂Ey

∂z
= iωμ0Hx (2.6a)

∂Ex

∂z
− ∂Ez

∂x
= iωμ0Hy (2.6b)

∂Ey

∂x
− ∂Ex

∂y
= iωμ0Hz (2.6c)

∂Hz

∂y
− ∂Hy

∂z
= −iωε0εEx (2.6d)

∂Hx

∂z
− ∂Hz

∂x
= −iωε0εEy (2.6e)

∂Hy

∂x
− ∂Hx

∂y
= −iωε0εEz. (2.6f)

For propagation along the x-direction
(

∂
∂x

= iβ
)

and homogeneity in the y-

direction
(

∂
∂y

= 0
)

, this system of equation simplifies to
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∂Ey

∂z
= −iωμ0Hx (2.7a)

∂Ex

∂z
− iβEz = iωμ0Hy (2.7b)

iβEy = iωμ0Hz (2.7c)
∂Hy

∂z
= iωε0εEx (2.7d)

∂Hx

∂z
− iβHz = −iωε0εEy (2.7e)

iβHy = −iωε0εEz. (2.7f)

It can easily be shown that this system allows two sets of self-consistent
solutions with different polarization properties of the propagating waves. The
first set are the transverse magnetic (TM or p) modes, where only the field
components Ex , Ez and Hy are nonzero, and the second set the transverse
electric (TE or s) modes, with only Hx , Hz and Ey being nonzero.

For TM modes, the system of governing equations (2.7) reduces to

Ex = −i
1

ωε0ε

∂Hy

∂z
(2.8a)

Ez = − β

ωε0ε
Hy, (2.8b)

and the wave equation for TM modes is

∂2Hy

∂z2
+ (

k2
0ε − β2

)
Hy = 0. (2.8c)

For TE modes the analogous set is

Hx = i
1

ωμ0

∂Ey

∂z
(2.9a)

Hz = β

ωμ0
Ey, (2.9b)

with the TE wave equation

∂2Ey

∂z2
+ (

k2
0ε − β2

)
Ey = 0. (2.9c)

With these equations at our disposal, we are now in a position to embark on
the description of surface plasmon polaritons.
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2.2 Surface Plasmon Polaritons at a Single Interface
The most simple geometry sustaining SPPs is that of a single, flat interface

(Fig. 2.2) between a dielectric, non-absorbing half space (z > 0) with positive
real dielectric constant ε2 and an adjacent conducting half space (z < 0) de-
scribed via a dielectric function ε1(ω). The requirement of metallic character
implies that Re [ε1] < 0. As shown in chapter 1, for metals this condition is
fulfilled at frequencies below the bulk plasmon frequency ωp. We want to look
for propagating wave solutions confined to the interface, i.e. with evanescent
decay in the perpendicular z-direction.

Let us first look at TM solutions. Using the equation set (2.8) in both half
spaces yields

Hy(z) = A2eiβxe−k2z (2.10a)

Ex(z) = iA2
1

ωε0ε2
k2e

iβxe−k2z (2.10b)

Ez(z) = −A1
β

ωε0ε2
eiβxe−k2z (2.10c)

for z > 0 and

Hy(z) = A1eiβxek1z (2.11a)

Ex(z) = −iA1
1

ωε0ε1
k1e

iβxek1z (2.11b)

Ez(z) = −A1
β

ωε0ε1
eiβxek1z (2.11c)

for z < 0. ki ≡ kz,i(i = 1, 2) is the component of the wave vector perpen-
dicular to the interface in the two media. Its reciprocal value, ẑ = 1/ |kz|,
defines the evanescent decay length of the fields perpendicular to the interface,

Metal

Dielectricx

z

Figure 2.2. Geometry for SPP propagation at a single interface between a metal and a dielec-
tric.
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which quantifies the confinement of the wave. Continuity of Hy and εiEz at
the interface requires that A1 = A2 and

k2

k1
= −ε2

ε1
. (2.12)

Note that with our convention of the signs in the exponents in (2.10,2.11),
confinement to the surface demands Re [ε1] < 0 if ε2 > 0 - the surface waves
exist only at interfaces between materials with opposite signs of the real part
of their dielectric permittivities, i.e. between a conductor and an insulator. The
expression for Hy further has to fulfill the wave equation (2.8c), yielding

k2
1 = β2 − k2

0ε1 (2.13a)

k2
2 = β2 − k2

0ε2. (2.13b)

Combining this and (2.12) we arrive at the central result of this section, the
dispersion relation of SPPs propagating at the interface between the two half
spaces

β = k0

√
ε1ε2

ε1 + ε2
. (2.14)

This expression is valid for both real and complex ε1, i.e. for conductors with-
out and with attenuation.

Before discussing the properties of the dispersion relation (2.14) in more
detail, we now briefly analyze the possibility of TE surface modes. Using
(2.9), the respective expressions for the field components are

Ey(z) = A2eiβxe−k2z (2.15a)

Hx(z) = −iA2
1

ωμ0
k2e

iβxe−k2z (2.15b)

Hz(z) = A2
β

ωμ0
eiβxe−k2z (2.15c)

for z > 0 and

Ey(z) = A1eiβxek1z (2.16a)

Hx(z) = iA1
1

ωμ0
k1e

iβxek1z (2.16b)

Hz(z) = A1
β

ωμ0
eiβxek1z (2.16c)
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Figure 2.3. Dispersion relation of SPPs at the interface between a Drude metal with negligible
collision frequency and air (gray curves) and silica (black curves).

for z < 0. Continuity of Ey and Hx at the interface leads to the condition

A1 (k1 + k2) = 0. (2.17)

Since confinement to the surface requires Re [k1] > 0 and Re [k2] > 0, this
condition is only fulfilled if A1 = 0, so that also A2 = A1 = 0. Thus, no
surface modes exist for TE polarization. Surface plasmon polaritons only exist
for TM polarization.

We now want to examine the properties of SPPs by taking a closer look at
their dispersion relation. Fig. 2.3 shows plots of (2.14) for a metal with negli-
gible damping described by the real Drude dielectric function (1.22) for an air
(ε2 = 1) and a fused silica (ε2 = 2.25) interface. In this plot, the frequency ω is
normalized to the plasma frequency ωp, and both the real (continuous curves)
and the imaginary part (broken curves) of the wave vector β are shown. Due
to their bound nature, the SPP excitations correspond to the part of the dis-
persion curves lying to the right of the respective light lines of air and silica.
Thus, special phase-matching techniques such as grating or prism coupling are
required for their excitation via three-dimensional beams, which will be dis-
cussed in chapter 3. Radiation into the metal occurs in the transparency regime
ω > ωp as mentioned in chapter 1. Between the regime of the bound and
radiative modes, a frequency gap region with purely imaginary β prohibiting
propagation exists.

For small wave vectors corresponding to low (mid-infrared or lower) fre-
quencies, the SPP propagation constant is close to k0 at the light line, and the
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waves extend over many wavelengths into the dielectric space. In this regime,
SPPs therefore acquire the nature of a grazing-incidence light field, and are
also known as Sommerfeld-Zenneck waves [Goubau, 1950].

In the opposite regime of large wave vectors, the frequency of the SPPs
approaches the characteristic surface plasmon frequency

ωsp = ωp√
1 + ε2

, (2.18)

as can be shown by inserting the free-electron dielectric function (1.20) into
(2.14). In the limit of negligible damping of the conduction electron oscillation
(implying Im [ε1(ω)] = 0), the wave vector β goes to infinity as the frequency
approaches ωsp, and the group velocity vg → 0. The mode thus acquires
electrostatic character, and is known as the surface plasmon. It can indeed be
obtained via a straightforward solution of the Laplace equation ∇2φ = 0 for
the single interface geometry of Fig. 2.2, where φ is the electric potential. A
solution that is wavelike in the x-direction and exponentially decaying in the
z-direction is given by

φ(z) = A2eiβxe−k2z (2.19)

for z > 0 and

φ(z) = A1eiβxek1z (2.20)

for z < 0. ∇2φ = 0 requires that k1 = k2 = β: the exponential decay
lengths

∣∣ẑ∣∣ = 1/kz into the dielectric and into the metal are equal. Continuity
of φ and ε∂φ/∂z ensure continuity of the tangential field components and the
normal components of the dielectric displacement and require that A1 = A2

and additionally

ε1(ω) + ε2 = 0. (2.21)

For a metal described by a dielectric function of the form (1.22), this condi-
tion is fulfilled at ωsp. Comparison of (2.21) and (2.14) show that the surface
plasmon is indeed the limiting form of a SPP as β → ∞.

The above discussions of Fig. 2.3 have assumed an ideal conductor with
Im [ε1] = 0. Excitations of the conduction electrons of real metals however
suffer both from free-electron and interband damping. Therefore, ε1(ω) is
complex, and with it also the SPP propagation constant β. The traveling SPPs
are damped with an energy attenuation length (also called propagation length)
L = (2Im

[
β
]
)−1, typically between 10 and 100 μm in the visible regime,

depending upon the metal/dielectric configuration in question.
Fig. 2.4 shows as an example the dispersion relation of SPPs propagating at

a silver/air and silver/silica interface, with the dielectric function ε1(ω) of silver
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Figure 2.4. Dispersion relation of SPPs at a silver/air (gray curve) and silver/silica (black
curve) interface. Due to the damping, the wave vector of the bound SPPs approaches a finite
limit at the surface plasmon frequency.

taken from the data obtained by Johnson and Christy [Johnson and Christy,
1972]. Compared with the dispersion relation of completely undamped SPPs
depicted in Fig. 2.3, it can be seen that the bound SPPs approach now a maxi-
mum, finite wave vector at the the surface plasmon frequency ωsp of the system.
This limitation puts a lower bound both on the wavelength λsp = 2π/Re

[
β
]

of the surface plasmon and also on the amount of mode confinement perpen-
dicular to the interface, since the SPP fields in the dielectric fall off as e−|kz||z|

with kz =
√

β2 − ε2
(

ω
c

)2
. Also, the quasibound, leaky part of the dispersion

relation between ωsp and ωp is now allowed, in contrast to the case of an ideal
conductor, where Re

[
β
] = 0 in this regime (Fig. 2.3).

We finish this section by providing an example of the propagation length L

and the energy confinement (quantified by ẑ) in the dielectric. As is evident
from the dispersion relation, both show a strong dependence on frequency.
SPPs at frequencies close to ωsp exhibit large field confinement to the inter-
face and a subsequent small propagation distance due to increased damping.
Using the theoretical treatment outlined above, we see that SPPs at a silver/air
interface at λ0 = 450 nm for example have L ≈ 16 μm and ẑ ≈ 180 nm.
At λ0 ≈ 1.5 μm however, L ≈ 1080 μm and ẑ ≈ 2.6 μm. The better the
confinement, the lower the propagation length. This characteristic trade-off
between localization and loss is typical for plasmonics. We note that field-
confinement below the diffraction limit of half the wavelength in the dielectric
can be achieved close to ωsp. In the metal itself, the fields fall off over distances
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on the order of 20 nm over a wide frequency range spanning from the visible
to the infrared.

2.3 Multilayer Systems
We now turn our attention to SPPs in multilayers consisting of alternating

conducting and dielectric thin films. In such a system, each single interface
can sustain bound SPPs. When the separation between adjacent interfaces is
comparable to or smaller than the decay length ẑ of the interface mode, in-
teractions between SPPs give rise to coupled modes. In order to elucidate
the general properties of coupled SPPs, we will focus on two specific three-
layer systems of the geometry depicted in Fig. 2.5: Firstly, a thin metallic
layer (I) sandwiched between two (infinitely) thick dielectric claddings (II,
III), an insulator/metal/insulator (IMI) heterostructure, and secondly a thin di-
electric core layer (I) sandwiched between two metallic claddings (II, III), a
metal/insulator/metal (MIM) heterostructure.

Since we are here only interested in the lowest-order bound modes, we
start with a general description of TM modes that are non-oscillatory in the
z-direction normal to the interfaces using (2.8). For z > a, the field compo-
nents are

Hy = Aeiβxe−k3z (2.22a)

Ex = iA
1

ωε0ε3
k3eiβxe−k3z (2.22b)

Ez = −A
β

ωε0ε3
eiβxe−k3z, (2.22c)

while for z < −a we get

x

z

a

-a

III

I

II

Figure 2.5. Geometry of a three-layer system consisting of a thin layer I sandwiched between
two infinite half spaces II and III.
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Hy = Beiβxek2z (2.23a)

Ex = −iB
1

ωε0ε2
k2eiβxek2z (2.23b)

Ez = −B
β

ωε0ε2
eiβxek2z. (2.23c)

Thus, we demand that the fields decay exponentially in the claddings (II) and
(III). Note that for simplicity as before we denote the component of the wave
vector perpendicular to the interfaces simply as ki ≡ kz,i .

In the core region −a < z < a, the modes localized at the bottom and top
interface couple, yielding

Hy = Ceiβxek1z + Deiβxe−k1z (2.24a)

Ex = −iC
1

ωε0ε1
k1eiβxek1z + iD

1

ωε0ε1
k1eiβxe−k1z (2.24b)

Ez = C
β

ωε0ε1
eiβxek1z + D

β

ωε0ε1
eiβxe−k1z. (2.24c)

The requirement of continutity of Hy and Ex leads to

Ae−k3a = Cek1a + De−k1a (2.25a)
A

ε3
k3e−k3a = −C

ε1
k1ek1a + D

ε1
k1e−k1a (2.25b)

at z = a and

Be−k2a = Ce−k1a + Dek1a (2.26a)

−B

ε2
k2e−k2a = −C

ε1
k1e−k1a + D

ε1
k1ek1a (2.26b)

at z = −a, a linear system of four coupled equations. Hy further has to fulfill
the wave equation (2.8c) in the three distinct regions, via

k2
i = β2 − k2

0εi (2.27)

for i = 1, 2, 3. Solving this system of linear equations results in an implicit
expression for the dispersion relation linking β and ω via

e−4k1a = k1/ε1 + k2/ε2

k1/ε1 − k2/ε2

k1/ε1 + k3/ε3

k1/ε1 − k3/ε3
. (2.28)
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We note that for infinite thickness (a → ∞), (2.28) reduces to (2.12), the
equation of two uncoupled SPP at the respective interfaces.

We will from this point onwards consider the interesting special case where
the sub- and the superstrates (II) and (III) are equal in terms of their dielectric
response, i.e. ε2 = ε3 and thus k2 = k3. In this case, the dispersion relation
(2.28) can be split into a pair of equations, namely

tanh k1a = −k2ε1

k1ε2
(2.29a)

tanh k1a = −k1ε2

k2ε1
. (2.29b)

It can be shown that equation (2.29a) describes modes of odd vector parity
(Ex(z) is odd, Hy(z) and Ez(z) are even functions), while (2.29b) describes
modes of even vector parity (Ex(z) is even function, Hy(z) and Ez(z) are odd).

The dispersion relations (2.29a, 2.29b) can now be applied to IMI and MIM
structures to investigate the properties of the coupled SPP modes in these two
systems. We first start with the IMI geometry - a thin metallic film of thick-
ness 2a sandwiched between two insulating layers. In this case ε1 = ε1(ω)

represents the dielectric function of the metal, and ε2 the positive, real dielec-
tric constant of the insulating sub- and superstrates. As an example, Fig. 2.6
shows the dispersion relations of the odd and even modes (2.29a, 2.29b) for an
air/silver/air geometry for two different thicknesses of the silver thin film. For
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Figure 2.6. Dispersion relation of the coupled odd and even modes for an air/silver/air mul-
tilayer with a metal core of thickness 100 nm (dashed gray curves) and 50 nm (dashed black
curves). Also shown is the dispersion of a single silver/air interface (gray curve). Silver is
modeled as a Drude metal with negligible damping.
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simplicity, here the dielectric function of silver is approximated via a Drude
model with negligible damping (ε(ω) real and of the form (1.22)), so that
Im

[
β
] = 0.

As can be seen, the odd modes have frequencies ω+ higher than the respec-
tive frequencies for a single interface SPP, and the even modes lower frequen-
cies ω−. For large wave vectors β (which are only achievable if Im [ε(ω)] = 0),
the limiting frequencies are

ω+ = ωp√
1 + ε2

√
1 + 2ε2e−2βa

1 + ε2
(2.30a)

ω− = ωp√
1 + ε2

√
1 − 2ε2e−2βa

1 + ε2
. (2.30b)

Odd modes have the interesting property that upon decreasing metal film
thickness, the confinement of the coupled SPP to the metal film decreases as
the mode evolves into a plane wave supported by the homogeneous dielectric
environment. For real, absorptive metals described via a complex ε(ω), this
implies a drastically increased SPP propagation length [Sarid, 1981]. These
long-ranging SPPs will be further discussed in chapter 7. The even modes
exhibit the opposite behavior - their confinement to the metal increases with
decreasing metal film thickness, resulting in a reduction in propagation length.

Moving on to MIM geometries, we now set ε2 = ε2(ω) as the dielectric
function of the metal and ε1 as the dielectric constant of the insulating core
in equations (2.29a, 2.29b). From an energy confinement point of view, the
most interesting mode is the fundamental odd mode of the system, which does
not exhibit a cut-off for vanishing core layer thickness [Prade et al., 1991].
Fig. 2.7 shows the dispersion relation of this mode for a silver/air/silver het-
erostructure. This time, the dielectric function ε(ω) was taken as a complex fit
to the dielectric data of silver obtained by Johnson and Christy [Johnson and
Christy, 1972]. Thus β does not go to infinity as the surface plasmon frequency
is approached, but folds back and eventually crosses the light line, as for SPPs
propagating at single interfaces.

It is apparent that large propagation constants β can be achieved even for
excitation well below ωsp, provided that the width of the dielectric core is cho-
sen sufficiently small. The ability to access such large wave vectors and thus
small penetration lengths ẑ into the metallic layers by adjusting the geometry
indicates that localization effects that for a single interface can only be sus-
tained at excitations near ωsp, can for such MIM structures also be attained for
excitation out in the the infrared. An analysis of various other MIM structures,
for example concentric shells, has given similar results [Takahara et al., 1997].
Geometries amendable to easy fabrication such as triangular metal V-grooves
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Figure 2.7. Dispersion relation of the fundamental coupled SPP modes of a silver/air/silver
multilayer geometry for an air core of size 100 nm (broken gray curve), 50 nm (broken black
curve), and 25 nm (continuous black curve). Also shown is the dispersion of a SPP at a single
silver/air interface (gray curve) and the air light line (gray line).

on a flat metal surface have already shown great promise for applications in
waveguiding, which will be presented in chapter 7.

We have limited our discussion of coupled SPPs in three-layer structures
to the fundamental bound modes of the system, with a view on applications
in waveguiding and confinement of electromagnetic energy. It is important to
note that the family of modes supported by this geometry is much richer than
described in this treatment. For example, for IMI structures, we have omitted a
discussion of leaky modes, and MIM layers can also exhibit oscillatory modes
for sufficient thickness of the dielectric core. Additionally, the coupling be-
tween SPPs at the two core/cladding interfaces changes significantly when the
dielectric constants of the sub- and superstrates are different, so that ε2 �= ε3,
prohibiting phase-matching between the modes located at the two interfaces.
A detailed treatment of these cases can be found in [Economou, 1969, Burke
and Stegeman, 1986, Prade et al., 1991].

2.4 Energy Confinement and the Effective Mode Length
In chapter 5 we will see that using localized surface plasmons in metal

nanoparticles, electromagnetic energy can be confined or squeezed into vol-
umes smaller than the diffraction limit (λ0/2n)3, where n = √

ε is the re-
fractive index of the surrounding medium. This high confinement leads to a
concomitant field enhancement and is of prime importance in plasmonics, en-
abling a great variety of applications in optical sensing, as will be discussed
in chapter 9. In the essentially one-dimensional cases of single interfaces and
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Figure 2.8. Energy confinement in a gold/air/gold MIM structure. (a) Real (solid curve) and
imaginary (dashed curve) part of the normalized propagation constant β versus gap size at
λ0 = 850nm. (b) Fraction of electric field energy residing inside the metallic half spaces as
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curve), 1.5 μm (gray curve), 10 μm (broken black curve), and 100 μm (broken gray curve). (c)
Effective mode length Leff normalized to free-space wavelength λ0 as a function of gap size.
Adapted from [Maier, 2006b].

multilayer structures presented above that support propagating SPPs, energy
localization below the diffraction limit perpendicular to the interface(s) is also
possible. We have already hinted at this phenomenon when stating that the field
decay length ẑ in the dielectric layers can be significantly smaller than λ0/n.

However, care must be taken when quantifying energy confinement, since
a sub-wavelength field decay length ẑ on the dielectric side of the interface
implies that a significant amount of the total electric field energy of the SPP
mode resides inside the metal. This energy must be taken into account using
(1.38) when calculating the spatial distribution of the electric energy density,
since for the quantification of the strength of interactions between light and
matter (e.g. a molecule placed into the field), the field strength per unit energy
(i.e., single photon) is of importance.

Taking a gold/air/gold MIM heterostructure as an example, Fig. 2.8(a) shows
the evolution of both the real and imaginary parts of the propagation constant
β of the fundamental SPP mode with varying gap size for excitation at a free
space wavelength of λ0 = 850 nm, calculated using Drude fits to the dielectric
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function of gold [Johnson and Christy, 1972, Ordal et al., 1983]. Both parts
increase with decreasing gap size, since the mode is becoming more electron-
plasma in character, suggesting that the electromagnetic energy is residing in-
creasingly in the metal half-spaces. A plot of the fractional amount of the
electric field energy inside the metal regions is shown in Fig. 2.8(b) for exci-
tation at wavelengths λ0 = 600 nm, 850 nm, 1.5 μm, 10 μm, and 100 μm
(= 3 THz). For a gap of 20 nm for example, at λ0 = 850 nm this fraction al-
ready reaches 40%. Note that the gap size is normalized to the respective free
space wavelength. It is apparent that along with the increased localization of
the field to the gold/air interface, either via small gap sizes or excitation closer
to ωsp, comes a shift of the energy into the metal regions.

In order to get a better handle on the consequences of increasing fractions
of the total energy of the mode entering the metallic cladding upon decreasing
size of the dielectric gap, we can define in analogy to the effective mode volume
Veff used to quantify the strength of light-matter interactions in cavity quantum
electrodynamics [Andreani et al., 1999] an effective mode length Leff, with

Leff(z0)ueff(z0) =
∫

ueff(z)dz. (2.31)

ueff(z0) represents the electric field energy density at a position z0 of interest
within the air core (e.g. the location of an emitter). In this one-dimensional
picture, the effective mode length is therefore given as the ratio of the total
energy of the SPP mode divided by the energy density (energy per unit length)
at the position of interest, which is often taken as the position of highest field.
In a quantized picture for normalized total energy, the inverse of the effective
mode length thus quantifies the field strength per single SPP excitation. More
details can be found in [Maier, 2006b].

A determination of the effective mode length of MIM structures allows an
examination how the electric field strength per SPP excitation in the air gap
scales as a function of the gap size. Fig. 2.8(c) shows the variation of L̄eff

(normalized to the free-space wavelength λ0) with normalized gap size. z0 is
taken to be at the air side of the air/gold boundary, where the electric field
strength is maximum. The mode lengths drop well below λ0/2, demonstrating
that plasmonic metal structures can indeed sustain effective as well as physical
mode lengths below the diffraction limit of light. The trend in Leff with gap size
tends to scale with the physical extent of the air gap. For large normalized gap
sizes and low frequencies, this is due to the delocalized nature of the surface
plasmon, leading to smaller mode lengths for excitation closer to the surface
plasmon frequency ωsp for the same normalized gap size.

As the gap size is reduced to a point where the dispersion curve of the SPP
mode turns over (see Fig. 2.7) and energy begins to enter the metallic half
spaces, the continued reduction in mode length is due to an increase in field
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localization to the metal-air interface. In this regime, excitations with lower
frequencies show smaller mode lengths for the same normalized gap size than
excitations closer to the plasmon resonance, due to the fact that more energy
resides inside the metal for the latter. We note that for very small gaps with
2a < 2 nm, the effects of local fields due to unscreened surface electrons
become important [Larkin et al., 2004], leading to a further decrease in Leff.
This cannot be captured using the dielectric function approach.

To summarize, we see that despite the penetration of a significant amount
of energy of a SPP mode into the conducting medium (for excitation near ωsp

or in small gap structures), the associated large propagation constants β ensure
that the effective extent of the mode perpendicular to the interface(s) drops
well below the diffraction limit.
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