2 THE BASIC CCR MODEL

2.1 INTRODUCTION

This chapter deals with one of the most basic DEA models, the CCR model,
which was initially proposed by Charnes, Cooper and Rhodes in 1978. Tools
and ideas commonly used in DEA are also introduced and the concepts devel-
oped in Chapter 1 are extended. There, for each DMU, we formed the virtual
input and output by (yet unknown) weights (v;) and (u,):

Virtual input = v1Z1, + -+ + UmnZmo
Virtual output = w191, + -+ - + UsYso-

Then we tried to determine the weight, using linear programming so as to
maximize the ratio

virtual output
virtual input

The optimal weights may (and generally will) vary from one DMU to another
DMU. Thus, the “weights” in DEA are derived from the data instead of being
fixed in advance. Each DMU is assigned a best set of weights with values that
may vary from one DMU to another. Additional details and the algorithms
used to implement these concepts are explained in succeeding chapters.
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2.2 DATA

In DEA, the organization under study is called a DMU (Decision Making Unit).
The definition of DMU is rather loose to allow flexibility in its use over a wide
range of possible applications. Generically a DMU is regarded as the entity
responsible for converting inputs into outputs and whose performances are to be
evaluated. In managerial applications, DMUs may include banks, department
stores and supermarkets, and extend to car makers, hospitals, schools, public
libraries and so forth. In engineering, DMUs may take such forms as airplanes
or their components such as jet engines. For the purpose of securing relative
comparisons, a group of DMUs is used to evaluate each other with each DMU
having a certain degree of managerial freedom in decision making.

Suppose there are n DMUs: DMU;, DMUs,,..., and DMU,,. Some common
input and output items for each of these 7 = 1,...,n DMUs are selected as
follows:

1. Numerical data are available for each input and output, with the data as-
sumed to be positive! for all DMUs.

2. The items (inputs, outputs and choice of DMUs) should reflect an analyst’s
or a manager’s interest in the components that will enter into the relative
efficiency evaluations of the DMUs.

3. In principle, smaller input amounts are preferable and larger output amounts
are preferable so the efficiency scores should reflect these principles.

4. The measurement units of the different inputs and outputs need not be
congruent. Some may involve number of persons, or areas of floor space,
money expended, etc.

Suppose m input items and s output items are selected with the properties
noted in 1 and 2. Let the input and output data for DMU; be (215, 25, ..., Zmj)
and (y1j, Y25, -, Ysj), respectively. The input data matrix X and the output
data matrix Y can be arranged as follows,

Ti1r T2 - Tin
o1  T22 o T2n
X = (2.1)
Tml Tm2 *°° Tmn
Y11 Yz -t Yin
Y21 Y22 0 Yon

VYV = . e . (2.2)

Ys1 Ys2 ' Ysn
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where X is an (m x n) matrix and ¥ an (s X n) matrix. For example, the
hospital case in Section 1.5 has the data matrices:

X = 20 19 25 2v 22 55 33 31 30 50 53 38
T\ 151 131 160 168 158 255 235 206 244 268 306 284

V= 100 150 160 180 94 230 220 152 190 250 260 250
- 90 50 55 72 66 90 88 80 100 100 147 120

so z1; = number of doctors and z5; = number of nurses used by hospital j
in servicing (= producing) ¥;; = number of outpatients and y,; = number of
inpatients.

2.3 THE CCR MODEL

Given the data, we measure the efficiency of each DMU once and hence need
n optimizations, one for each DMU; to be evaluated. Let the DMU; to be
evaluated on any trial be designated as DMU, where o ranges over 1, 2,..., n.
We solve the following fractional programming problem to obtain values for the
input “weights” (v;) (i = 1,...,m) and the output “weights” (u,) (r = 1,...,s)
as variables.

U1Yi1o + U2Y20 + -+ UsYso

(F'P,) max 6 = (2.3)
vu V1Z10 + V2Z26 + + + UmTmo
subject to  —aM T A Ul gy (2.4)
V1Z15 +  + UmTmj
v1,1)2,...,vm20 (25)

UL, U9y ..., Ug 2> 0.

The constraints mean that the ratio of “virtual output” vs. “virtual input”
should not exceed 1 for every DMU. The objective is to obtain weights (v;) and
(u,) that maximize the ratio of DMU,, the DMU being evaluated. By virtue
of the constraints, the optimal objective value 8* is at most 1. Mathematically,
the nonnegativity constraint (2.5) is not sufficient for the fractional terms in
(2.4) to have a positive value. We do not treat this assumption in explicit
mathematical form at this time. Instead we put this in managerial terms by
assuming that all outputs and inputs have some nonzero worth and this is to
be reflected in the weights 4, and v; being assigned some positive value.

2.4 FROM A FRACTIONAL TO A LINEAR PROGRAM

We now replace the above fractional program (FP,) by the following linear
program (LP,),

(LP,) max 0 =pyio+  + BsYso (2.7)
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subject to ViZio+ + VipZmo = 1 (2.8)
MY+ Psls; ST+ VT (2.9)
(7=1,...,n)
Vi Vg, eo sV >0 (2.10)
s oy ..oy b > 0. (2.11)

Theorem 2.1 The fractional program (FP,) is equivalent to (LP,).

Proof.  Under the nonzero assumption of v and X > 0, the denominator
of the constraint of (F'F,) is positive for every j, and hence we obtain (2.3)
by multiplying both sides of (2.4) by the denominator. Next, we note that
a fractional number is invariant under multiplication of both numerator and
denominator by the same nonzero number. After making this multiplication,
we set the denominator of (2.3) equal to 1, move it to a constraint, as is done in
(2.8), and maximize the numerator, resulting in (LP,). Let an optimal solution
of (LP,) be (v = v*, p = p*) and the optimal objective value §*. The solution
(v = v*,u = ©*) is also optimal for (F'F,), since the above transformation is
reversible under the assumptions above. (FP,) and (LP,) therefore have the
same optimal objective value 8*. O

We also note that the measures of efficiency we have presented are “units
invariant” — i.e., they are independent of the units of measurement used in the
sense that multiplication of each input by a constant §; > 0,4 =1,...,m, and
each output by a constant p, > 0, r = 1,...,s, does not change the obtained
solution. Stated in precise form we have

Theorem 2.2 (Units Invariance Theorem) The optimal values of max
6 =6*in (2.3) and (2.7) are independent of the units in which the inputs and
outputs are measured provided these units are the same for every DMU.

Thus, one person can measure outputs in miles and inputs in gallons of gasoline
and quarts of oil while another measures these same outputs and inputs in
kilometers and liters. They will nevertheless obtain the same efficiency value
from (2.3) or (2.7) when evaluating the same collection of automobiles, say. See
Note 2 for proof.?

Before proceeding we note that (LP,) can be solved by the simplex method
of linear programming. The optimal solution can be more easily obtained by
dealing with the dual side of (LP,), however, as will be explained in detail in
Chapter 3.

In any case let us suppose we have an optimal solution of (LP,) which we
represent by (6%, v*, u*)? where v* and u* are values with constraints given
in (2.10) and (2.11). We can then identify whether CCR-efficiency has been
achieved as follows:

Definition 2.1 (CCR-Efficiency)

1. DMU, is CCR-efficient if 6* = 1 and there exists at least one optimal
(v*,u*), with v* > 0 and u* > 0.

2.  Otherwise, DMU, is CCR-inefficient.
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Thus, CCR-inefficiency means that either (i) #* < 1 or (i¢) 8* = 1 and at
least one element of (v*,u*) is zero for every optimal solution of (LP,). We
will explain the latter case using an example in Section 2.6.2, and a detailed
description of CCR-efficiency will be given in Chapter 3.

Now we observe the case where DMU, has 68* < 1 (CCR-inefficient). Then
there must be at least one constraint (or DMU) in (2.9) for which the weight
(v*,u*) produces equality between the left and right hand sides since, other-
wise, 6* could be enlarged. Let the set of such j € {1,...,n} be

E,={j: Y ulyy = viziy}. (2.12)
r=1 i=1

The subset E, of E!, composed of CCR-efficient DMUs, is called the reference
set or the peer group to the DMU,. It is the existence of this collection of
efficient DMUs that forces the DMU, to be inefficient. The set spanned by E,
is called the efficient frontier of DMU,.

2.5 MEANING OF OPTIMAL WEIGHTS

The (v*, u*) obtained as an optimal solution for (LP,) results in a set of
optimal weights for the DMU,. The ratio scale is evaluated by :

s

> —1 UnYro
g = ==L 777 2.13
D im1 Vi Tio ( )

From (2.8), the denominator is 1 and hence
9" = Zuﬁym. (2.14)
r=1

As mentioned earlier, (v*, u*) are the set of most favorable weights for the
DMU, in the sense of maximizing the ratio scale. v} is the optimal weight
for the input item ¢ and its magnitude expresses how highly the item is eval-
uated, relatively speaking. Similarly, v} does the same for the output item r.
Furthermore, if we examine each item v}z;, in the virtual input

S wiw, (= 1), (2.15)
=1

then we can see the relative importance of each item by reference to the value
of each vz;,. The same situation holds for u)y,, where the u} provides a
measure of the relative contribution of ¥,, to the overall value of #*. These
values not only show which items contribute to the evaluation of DMU,, but
also to what extent they do so.

2.6 EXPLANATORY EXAMPLES

We illustrate the use of the CCR model via the following small-scale examples.
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2.6.1 Example 2.1 (1 Input and 1 Output Case)

Table 2.1 shows 8 DMUs with 1 input and 1 output. (The first example in
Chapter 1).

Table 2.1. Example 2.1

DMU A B C D E F G H
Input 2 3 3 4 5 5 6 8
Output 1 3 2 3 4 2 3 5

We can evaluate the efliciency of DMU A, by solving the LP problem below:

<A> max f=u
subject to 20 =1
u<2v (4) 3u<3v (B)
2u<3v (O) 3u<4v (D)
du <bv (E) 2u<by (F)
u<év (G) 5u< 8 (H)

where all variables are constrained to be nonnegative.

The optimal solution, easily obtained by simple ratio calculations, is given by
(v* = 0.5, u* = 0.5, 8* = 0.5). Thus, the CCR~efficiency of A is 8* = u* = 0.5.
The reference set for A is found to be E4 = {B} by inserting uv* = 0.5 and
v* = 0.5, the best possible weights for DMU A, in each of the above constraints.
Thus the performance of B is used to characterize A and rates it as inefficient
even with the best weights that the data admit for A.

The efficiency of B can be similarly evaluated from the data in Table 2.1 by:

<B> max 60=3u
subject to 3v =1

uw<2v (A4) 3u<3v (B)
2u<3v (C) 3u<dv (D)
du<bv (E) 2u<bv (F)
u<by (G) S5u< 8 (H)

The optimal solution is (v* = 0.3333, u* = 0.3333, 6* = 1) and B is CCR-~
efficient. See Definition 2.1.

We can proceed in a similar way with the other DMUs to obtain the results
shown in Table 2.2. Only DMU B is efficient and is in the reference set of
all of the other DMUs. (See Figure 2.1.) Figure 2.1 portrays the situation
geometrically. The efficient frontier represented by the solid line passes through
B and no other point. The * values in Table 2.2 show what is needed to bring
each DMU onto the efficient frontier. For example, the value of 8* = 1/2 applied
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Table 2.2.  Results of Example 2.1

DMU CCR(f*) Reference Set

0.5000
1.0000
0.6667
0.7500
0.8000
0.4000
0.5000
0.6250

TQHEUQW
T w

to A’s input will bring A onto the efficient frontier by reducing its input 50%
while leaving its output at its present value. Similarly 0.6667 x 3 = 2 will
position C on the frontier. And so on.

6 1 Efficient
5 - Frontier °
\ H
4 - o
@ B
2 ® [
C F
14 ®
A
0 L] L) L] L) T L) L) L) 1
0 1 2 3 4 5 6 7 8 9
Employee
Figure 2.1. Example 2.1

2.6.2 Example 2.2 (2 Inputs and 1 Output Case)

Table 2.3 shows 6 DMUs with 2 inputs and 1 output where the output value is
unitized to 1 for each DMU.
(1) The linear program for DMU A is:

<A> max 6=u
subject to  4v; + 3vy =1
u < 4y + 3vg (A) u < Tuy + 3us (B)
u<8v+uv2  (C) u< 4v; + 20 (D)
u<2u +4ve  (F) u <100 +vy (F)

where all variables are constrained to be nonnegative.



28 DATA ENVELOPMENT ANALYSIS

Table 2.3.  Example 2.2

DMU A B C D E F

Input T1 4 7 8 4 2 10
T3 3 3 1 2 4 1

Output Yy 1 1 1 1 1 1

This problem can be solved by a linear programming code. It can also
be solved by simply deleting ve from the inequalities by inserting vo = (1 —
4v1)/3 and observing the relationship between vy and u. The (unique) optimal
solution is (v = 0.1429, v = 0.1429, v* = 0.8571, 6* = 0.8571) and the
CCR-efficiency of A is 0.8571. By applying the optimal solution to the above
constraints, the reference set for A is found to be E4 = {D, E}.

(2) The linear program for DMU B is:

<B> max 6=u
subject to  Tv; +3vy =1
u<4v +3v (A) u < Tvy +3vs (B)
u < 8vy + vy () u<4v +2vuy (D)
u<2u +4vy  (E) u < 10v; +v2  (F)

The (unique) optimal solution is (v} = 0.0526, v4 = 0.2105, v* = 0.6316, 6*
0.6316), the CCR-efficiency of B is 0.6316, and the reference set is Eg =
{C, D}.

Now let us observe the difference between the optimal weights v = 0.0526
and v = 0.2105. The ratio vj /vy = 0.2105/0.0526 = 4 suggests that it is
advantageous for B to weight Input 2 four times more than Input z; in order
to maximize the ratio scale measured by virtual input vs. virtual output. These
values have roles as measures of the sensitivity of efficiency scores in reference
to variations in input items. This topic will be dealt with in detail in Chapter
9 of this book where a systematic basis for conducting such sensitivity analyses
will be provided. Here we only note that our analysis shows that a reduction
in Input xs has a bigger effect on efficiency than does a reduction in Input z;.

(3) An optimal solution for C is (vi = 0.0833,v5 = 0.3333,u* = 1,0* = 1)
and C is CCR-efficient by Definition 2.1. However, the optimal solution is not
uniquely determined, as will be observed in the next section.

Likewise, D and E are CCR-efficient.

(4) The linear program for DMU F is:

<F> max 6=u

subject to 10v, +ve =1
u<4vy +3v (4) u< v +3v (B)
u<8u+ve  (C) u < dvy + 20y (D)
u<2u +4vy (E) u<10v +ve2 (F)
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The optimal solution for F is (v = 0, v3 = 1, u* = 1, 6* = 1) and with
8* =1, F looks efficient. However, we notice that v} = 0. We therefore assign
a small positive value € to v; and observe the change in 6*. That is, we use
the data for F' and with 10 + vy = 1 to obtain v2 = 1 — 10e. By inserting this
value in the above inequalities, the following constraints are obtained:

u<3-26 (A u<3-23 (B)
u<l-2 (C) u<2-16e (D)
u<4-—-38 (E) u<l (F)

Noting that £ is a small positive value, the minimum of the right-hand terms
is attained with

u=1-2¢.

Therefore, for any ¢ > 0, it follows that 6* = 1 —2¢ < 1. Thus, v; must be zero
in order for F' to have 8* = 1. We therefore conclude that F' is CCR-inefficient
by Definition 2.1.

Furthermore, let us examine the inefliciency of F' by comparing F' with
C. C has Input z; = 8 and Input o = 1, while F has Input z; = 10
and Input zo = 1. F has 2 units of excess in Input z, compared with C.
This deficiency is concealed because the optimal solution forces the weight of
Input z to zero (v§ = 0). C is in the reference set of F' and hence by direct
comparison we can identify the fact that F' has used an excessive amount of
this input.

It is not always easy to see such an excess in an input (or a shortage in
output) from the optimal solution of the CCR model. In the next chapter, we
will approach the CCR model from the dual side of the linear program and this
will enable us to determine the excesses and shortfalls explicitly by the nonzero
values with which these are identified.

A DMU such as F, with 8* = 1 and with an excess in inputs and/or a
shortage in outputs, is called ratio efficient but miz inefficient.

Table 2.4 shows the CCR-efficiency (6*) of Example 2.2 and Figure 2.2 de-
picts the efficient frontier.

Table 2.4.  Results of Example 2.2

DMU =z =z2 y CCR(F*) Reference Set wv; V2 u
A 4 3 1 08571 DE 1429 1429 8571
B 7 3 1 0.6316 cD .05626  .2105 .6316
C 8 1 1 1 C .0833 3333 1
D 4 2 1 1 D 1667 .1667 1
E 2 4 1 1 E 2143 1429 1
F 10 1 1 1 C 0 1 1
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Figure 2.2.  Example 2.2

2.7 ILLUSTRATION OF EXAMPLE 2.2

In order to demonstrate the role of weights (v, u) for identifying the CCR-
efficiency of DMUs, we will show graphically the efficient frontier of Example
2.2 in the weight variables (=multiplier) space. Example 2.2 has 2 inputs and
1 output, whose value is unitized to 1. For this simple example we can illus-
trate the situations using a two dimensional graph. The linear programming
constraints for each DMU have the following inequalities in common with all
variables being constrained to be nonnegative.

u < 4v; +3vy  (4) u<Tv; +3vy (B)
u < 8uy + vy (C) u < 4vy + 205 (D)
u< 2u +4vy (F) u<10v +ve (F)

Dividing these expressions by u > 0, we obtain the following inequalities:

1< 4o /u)+3mfu) (A) 1< 7(0ifu)+3(/) (B)
1< 8(wy/u) + (v2/u) (C) 1 < 4(vifu) +2(ve/u) (D)
1< 2(vi/u) +4(ve/u) (E)  1<10(vi/u) + (v2/u) (F)

These inequalities are depicted in Figure 2.3 by taking v; /u and ve/u as axes.
The area denoted by P then shows the feasible region for the above constraints.
The boundary of P consists of three line segments and two axes. The three
line segments correspond to the efficient DMUs C, D and E.

We explain this situation using D as an example and we also explain the
relationship between this region and the inefficient DMUs using A as an exam-
ple.
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Figure 2.3.  Region P

1. Example D
The linear program for D consists of the preceding inequalities plus the
following,

max u
subject to 4y + 2vp = 1. (2.16)

Dividing (2.16) by u, we have
4(vy fu) + 2(ve/u) = 1/u. (2.17)

The objective function v — max yields the same solutions as 1/« — min, so
the problem is to find the minimum ¢ for which the following line touches
the region P:

4(vy Ju) + 2(ve /u) = t. (2.18)

From Figure 2.3 we see that ¢ = 1 (and hence u = 1) represents the optimal
line for D, showing that D is efficient. It is also easy to see that D is efficient
for any weight (v1, vs) on the line segment (P, P;). This observation leads
to the conclusion that the optimal (v1, v2) for D is not unique. In fact,
the value (v; = .1667, vy = .1667) for D in Table 2.4 is an example, and
actually corresponds to P; in Figure 2.3. See Problem 2.1 at the end of this
Chapter.

Similarly, any (vi, v2) on the line segment (P, P,) expresses the optimal
weight for C' and any (vy, v2) on the line segment (P3, P,) for E.

Thus, the optimal weights for an efficient DMU need not be unique and we
should be careful to keep this in mind.

2. Example A
Next, we consider the inefficient DMUs, taking A as an example. The linear



32

DATA ENVELOPMENT ANALYSIS

program for A consists of the following expressions added to the inequalities
above:

max u
subject to 4v; +3ve = 1. (2.19)

As with example D, (2.19) can be transformed into
4(vy fu) + 3(va/u) = t. (2.20)

Then the problem is to find the minimum ¢ within the region P. Referring
to Figure 2.4, we can see that the solution is given by the point P, where
the line parallel to line A touches the region P for the first time. Pj is the
intersection of lines D and E and this is the geometric correspond of the fact
that the reference set to A consists of D and E. A simple calculation finds
that t = 1/0.8571 and hence the efficiency of A is u = .8571. The value of
(1)1, U2) at P3 is :

vp = .1667 x .8571 = .1429, vy = .1667 x .8571 = .1429, (2.21)

which are the optimal weights for A. The optimal weights for A are unique.
Usually, the optimal weights for inefficient DMUs are unique, the exception
being when the line of the DMU is parallel to one of the boundaries of the
region P.

Figure 2.4.  The Case of DMU A

2.8 SUMMARY OF CHAPTER 2

In

this chapter, we introduced the CCR model, which is a basic DEA model.
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1. For each DMU, we formed the virtual input and output by (yet unknown)
weights (v;) and (u,):

Virtual input = v1Z16 + ** * + UmZmo
Virtual output = w410 + - -+ + Us¥Yso-

Then we tried to determine the weight, using linear programming so as to

maximize the ratio
virtual output

virtual input

The optimal weights may (and generally will) vary from one DMU to another
DMU. Thus, the “weights” in DEA are derived from the data instead of being
fixed in advance. Each DMU is assigned a best set of weights with values
that may vary from one DMU to another. Here, too, the DEA weights differ
from customary weightings (e.g., as in index number constructions) so we
will hereafter generally use the term “multiplier” to distinguish these DEA
values from the other commonly used approaches.

2. CCR-efficiency was defined, along with the reference sets for inefficient DMUs.

3. Details of the linear programming solution procedure and the production
function correspondence are given in Chapter 3.

2.9 SELECTED BIBLIOGRAPHY

The term ‘Decision Making Unit’ (DMU) was used for the first time in the CCR
model proposed in Charnes, Cooper and Rhodes (1978).% The term DEA (Data
Envelopment Analysis) was introduced in their report “A Data Envelopment
Analysis Approach to Evaluation of the Program Follow Through Experiment
in U.S. Public School Education,” (1978),> Rhodes (1978)¢ and appeared in
Charnes, Cooper and Rhodes’ subsequent paper (1979).” DEA originated from
efforts to evaluate results from an early 1970’s project called “Program Follow
Through”—a huge attempt by the U.S. Office (now Department) of Education
to apply principles from the statistical design of experiments to a set of matched
schools in a nationwide study. The purpose of the study was to evaluate educa-
tional programs designed to aid disadvantaged students in U.S. public schools.
The data base was sufficiently large that issues of degrees of freedom, etc., were
not a serious problem despite the numerous input and output variables used in
the study. Nevertheless, unsatisfactory and even absurd results were secured
from all of the statistical-econometric approaches that were tried. While trying
to respond to this situation, Rhodes called Cooper’s attention to Farrell’s sem-
inal article, “The Measurement of Productive Efficiency,” in the Journal of the
Royal Statistical Society (1957). Charnes, Cooper and Rhodes extended Far-
rell’s work and succeeded in establishing DEA as a basis for efficiency analysis.
Details of the project are described in Charnes, Cooper and Rhodes (1981).3
A brief history of DEA can be found in Charnes and Cooper (1985).°
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2.10 PROBLEM SUPPLEMENT FOR CHAPTER 2

Problem 2.1

In Example 2.2, determine the region of (v;,vs2) that makes each of DMUs C,
D and FE efficient, by referring to Table 2.4 and Figure 2.3.

Suggested Answer : For C: line segment P; P,. This is the line segment stretch-
ing from (vi/u = 0, vo/u = 1) at P, to (vi/u = .08333, vs/u = .3333)
at P». For D: line segment P, P;. This is the line segment stretching from
(v1/u = .08333, va/u = .3333) at P, to (vi/u = .1667, v2/u = .1667) at

P;. For E: line segment P3P,;. This is the line segment stretching from
(v1/u = .1667, vo/u = .1667) at P3 to (v /u = .5, va/u = 0) at P.

Problem 2.2
Use the data of Tables 2.3 and 2.4 to relate Figures 2.2 and 2.3.

Suggested Answer : The relation between Figures 2.2 and 2.3 is an example of
what is called “the point-to-hyperplane correspondence” in mathematical pro-
gramming. This means that the coordinates of the points for the representation
in one of the spaces correspond to the coefficients for the hyperplanes in the
dual (here=multiplier) space. The spaces in these figures are 2-dimensional,
so the hyperplanes take the form of lines. For example, the coordinates for
A in Figure 2.2 as obtained from Table 2.3 correspond to the coefficients in
4vy + 3ve > 1u, the expression associated with DMU A as obtained from Table
2.4. In this single output case, we can use (2.19) to effect a further simplifica-
tion by moving to homogenous coordinates and then try to minimize ¢, as given
in (2.20). This minimization is undertaken subject to the similar transforma-
tion (to homogenous coordinates) for all of the other constraints obtained from
Table 2.4. The result, as given in the discussion of (2.21), is t = 1/0.8571, so
u = 0.8571 and v; = vy = 0.1429. Substitution in the expression with which
we began then gives

1.00 = 4v; + 3vy > lu = 0.8571.

Hence DMU A is found to be inefficient. It should have produced more output,
or used less input (or both).

This evaluation, as noted in Table 2.4, is determined relative to the corre-
sponding expressions obtained for D and E — both of which achieve equality
between both sides of their expressions, while using these same (best) weights

for A — viz.
D: 08574 =4dv; +2v, = 0.8571

E: 08574 =2v +4vs =~ 0.8571.

We now note that the points for A and B in Figure 2.2 lie above the effi-
cient frontier whenever the corresponding hyperplanes (here=lines) lie below
the hyperplanes for D and E in Figure 2.3. The situation for F, which is
also inefficient, differs because its hyperplane (=line) intersects the efficiency
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frontier at one point, P, but otherwise lies everywhere below it. This is the
dual reflection of the hyperplane-to-point correspondence while examination of
Figure 2.2 shows that F' has the same coordinate as C for Input 2 but F’s
coordinate for Input 1 exceeds the value of the same coordinate for C.

In this chapter we examined the multiplier model in which the maximizing
objective tries to move each hyperplane “up,” as far as the other constraints
allow, with the highest hyperplanes used to determine the boundaries of P, as
exhibited in Figure 2.3. In the next chapter we shall examine the minimizing
model which moves in the opposite direction in order to move the boundaries
of P (the production possibility set) as far “down” as possible. Then we shall
use the duality theorem of linear programming to show that the optimal values
yield the same production possibility sets so either (or both) problems may be
used, as desired and, even better, a suitable reading of the solution yields the
solution to both problems when either one is solved.

Problem 2.3

Can you relate the CCR ratio form given by (2.3)-(2.6) in this chapter to the
“ratio of ratios” form given by (1.4) in Chapter 1 for engineering efficiency?

Suggested Response : The “ratio of ratios” form given for engineering efficiency
in (1.4) is for use with a single input and a single output. This can be interpreted
as “virtual inputs” and “virtual outputs” for the values used in the numerators
and denominators of (2.3)-(2.6) when specific values are assigned to all of the
variables u, and v;. To put these ratios in the form of a “ratio of ratios” we
will use what is called the TDT (Thompson-Dharmapala-Thrall) measure of
efficiency obtained from the following problem,

Ury =1 Yrlrk
max T 1_roro ZT 1 %ol (2.22)
uv 1 ViTio 1 ViTik

where Z_=1w — maximum,_, | 2r=1% Y] g9
221 Vilik =hem Z:ll Vilij )

Up, v > 0 V. (2.24)

Here “Vr,i” means “for all r,4.” Thus, for each choice of u, and v;, the max-
imum of the ratios in the braces on the right in the last expression is to be
used as the denominator ratio in the first expression. Considering all allowable
possibilities the problem is to maximize the ratio in (2.22) and “theoretical”
as well as “observed” values may be used in these expressions if desired. A
detailed discussion of the TDT measure and its properties may be found in
W.W. Cooper, R.G. Thompson and R.M. Thrall “Extensions and New Devel-
opment in DEA,” Annals of Operations Research, 66, 1996, pp.3-45. Here we
only note that no bounds are placed on the admissible values in the ratios of
the last expression. The idea is to allow these to be specialized, if one wants to
do so, by imposing such bounds on any or all these ratios. If we limit all the
ratio values to a bound of unity, as is done in (2.4), we obtain the model given
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in (2.3)-(2.6). The value of the objective, (2.3), can then be interpreted as a
“ratio of ratios” because a necessary condition for a solution to be optimal in
(2.3)-(2.6) is that at least one of the ratios must achieve the maximal allowable
value of unity. Thus, the maximization for (2.3)-(2.6) obtains an optimal value
in the form of “ratio of ratios” in which the maximal term in the braces gives

§ *
zrzl UpYrk _ 1
S oviTae
i=1 Vi ik

Problem 2.4

Background : “Evaluating Efficiency of Turbofan Jet Engines in Multiple Input-
Output Contexts: A Data Envelopment Analysis Approach,” by S. Bulla,
W.W. Cooper, K.S. Park and D. Wilson(1999)1° reports results from a study of
29 jet engines produced by different manufacturers. The engineering measure
of efficiency is given by n = TV/ () where T = Thrust of Engine, V = Cruise
Velocity and () = Heat Input from Fuel. The DEA evaluations were based on
these same two outputs but the single input (in the denominator) was replaced
by 3 inputs: (1) Fuel Consumption (2) Weight of Engine and (3) Drag.

Using data from commercially available sources the results obtained from
these two approaches to efficiency are portrayed in Figure 2.5 on the left. Co-
efficients for the resulting regression were found to be statistically significant.
The value of R?, however, suggested that the explanatory power of engineering
efficiency was low. More input variables are needed to bring the engineering
results into closer correspondence with the DEA efliciency scores.
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Figure 2.5. A Scatter Plot and Regression of DEA and Engineering Efficiency Ratings

As shown at the top of Figure (a), Engines 3 and 19 have the same coor-
dinates. Their “outlier” character suggests that their removal would yield a
regression with a higher R2. This is confirmed by the new regression and the
new R? in Figure (b) where the estimates show statistically significant improve-
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ments. Nevertheless, the same conclusion is reached: more inputs are needed
for the engineering ratio to provide better “explanations” of the DEA scores,
but it is not clear how this can be done.

Assignment : Is the removal of engines 3 and 19 justified or should the potential
effects on the efficiency scores of other engines also be considered? Discuss.

Suggested Answer : Statistical independence for all observations is generally as-
sumed in the removal of outliers. However, engines 3 and 19 have DEA ratings
of unity and this suggests that they may be members of reference sets used
to evaluate other engines. To check this possibility we use Figure 2.6 which is

known as an “envelopment map.”!!
Eng. T1[2[3[4[5[6[7]s]9ofo]nli2[13[14[1s[16f17]18]19]20]21[22[23[24[25]26[27]28]29] N=*
1 4 v 3
P 7 7 v 3
3 v 0
2 7 % % 71 4
5 v v 2
3 7 7 2
= Vv v 3
3 7V 7 7T 4
) 7 7 7 71 4
10 v v 7 71 2
11 v 0
12 % 7 2
13 i
14 v 0
15 7 0
16 % 0
17 v v v v 4
18 % 0
19 1 0
20 v 2
21 v 2
22 v 712
23 v v 4
24 v v 3
25 v 7 7 3
26 v 7 3
27 v v v 3
28 viv v 3
29 V1 o
TN*|[olojalolo|ofofofofo|1]o|of7|to[15]0f12[o][o[of[ofofolo]o]o0]i2] 6l
TN* = Total number of times that engine j (= 1, ..., 29 in column) was used to evaluate other
engines.

N* = Number of times that other engines were used to evaluate engine / (= 1, ..., 29 in row).

Figure 2.6.  Envelopment Map for 29 Jet Engines
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The values at the bottom of each column show the number of times an engine
identified at the top of this column entered into a reference set to evaluate other
engines, and the total for each row shows the number of other engines used in
an evaluation. Thus, engine 3 was used a total (net) of 4 times in evaluating
other engines and the row total shows that no other engine was involved in the
evaluation of engine 3 — a property of efficient engines when the latter are
extreme points of the production possibility set. A removal of engine 3 will
therefore affect the efficiency ratings of other engines — unless in each case
there exists an alternate optimum in which engine 3 does not actively enter as
a member of the basis (=reference set).

No similar interaction with other engines occurs for engine 19, however, as
is clear from the fact that the row and column totals are both zero for this
engine. Hence our analysis shows that 19 (but not 3) may be treated as an
outlier without affecting any other observations. Proceeding in this manner
produces Figure 2.7 which, though statistically significant, is closer to Figure
2.5 (a).
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Figure 2.7. A Comparative Portrayal and Regression Analysis for 28 Engines (All Data
Except for Engine 19)

Problem 2.5

Try to bring the engineering definition into play in a DEA evaluation.

Suggested Response : As noted in (1.4) the engineering “ratio of ratios” reduces
to a comparison of actual to theoretically obtainable output from the amount
of input actually used by any engine. This could be brought into play in a DEA
evaluation by associating the theoretically obtainable output with the actual
input for each engine (=DMU). This would produce n additional observations
giving 2n DMUs from which evaluations would be made. However, there is no
guarantee that a DMU will be evaluated relative to its own input. A DMU
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evaluation of any engine (=DMU) could utilize a reference set yielding a lower
input and a higher output. This could be checked and further analyzed, how-
ever, because the members of the reference set would be identified as well as
the output shortfalls and input excesses for the actual DMU being evaluated.

Notes

1. This condition will be relaxed to allow nonnegative data in Chapter 3. Furthermore,
in Chapter 5 (Section 5.2), we will introduce models which can also deal with negative data.

2. Proof of Theorem 2.2. Let 6*,uX,v! be optimal for (2.3)-(2.6). Now replace the
original y,; and z;; by p,y,; and é;x;; for some choices of p,,d; > 0. But then choosing
ul, = u}/pr and v = v} /8; we have a solution to the transformed problem with ¢ = 6*.
An optimal value for the transformed problem must therefore have §’* > *. Now suppose
we could have 8 > 6*. Then, however, u, = u*p, and v; = v{*J; satisfy the original
constraints so the assumption ¢* > 6* contradicts the optimality assumed for 6* under
these constraints. The only remaining possibility is §’* = #*. This proves the invariance
claimed for (2.3). Theorem 2.1 demonstrated the equivalence of (LP,) to (FP,) and thus
the same result must hold and the theorem is therefore proved. m}

3. We use the notations v and u instead of v and p in (LF,).
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