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Problem Definitions and Formulations

In this chapter we will specify the densest packing of equal circles in a square problem,
and discuss some equivalent problem settings. Since, besides the geometric investi-
gations, we also consider the problem from a global optimization point of view, some
possible mathematical programming models will be included here.

2.1 Geometrical models

Informally speaking, the packing circles in a square and its related problems can be
described in the following ways:

Problem 2.1. Place n > 2 equal and non-overlapping circles in a square, such that
the common radius of the circles is maximal.

Problem 2.2. Place n > 2 points in a square, such that the minimum of the pairwise
distances is maximal.

Problem 2.3. Place n > 2 equal and non-overlapping circles with the common radius
in the smallest possible square.

Problem 2.4. Place n > 2 points with pairwise distances of at least a given positive
value in the smallest possible square.

Of course, in order to investigate these problems and their relations in detail, we
need their formal definitions and a consistent system of notation.

Formal description of Problem 2.1:

Definition 2.5. P(r,,S) € P, is a circle packing with the common radius 1, in
the square [0, S)%, where P, = {((z1,%1), - - -, (Tny¥n)) € [0, 5% | (z; — ;)% +
(yi —y5)? > 4r2;zi,y; € [rn, S — 1) (1 < i< j < n)}. P(ra,S) € P, isan

optimal circle packing , if 7, = max@ Tn-
Pr, #
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Problem PJ*. Determine the optimal circle packings for a given n > 2 integer.

Formal description of Problem 2.2:

Definition 2.6. A(m,,, Y) € A,,, is a point arrangement with the minimal pair-
wise distance my, in the square [0, X%, where A, = {((z1,11), -, (Tn,Yn)) €
[0, 2" | (@i = 2;)" + (i — 93)? 2 miy; (1< i <j <n)}. A(mn, ) € A, is
an optimal point arrangement, if M, = max my,.

mn

Problem PJ}. Determine the optimal point arrangements for a given n > 2 integer.

Formal description of Problem 2.3:

Definition 2.7. P'(R,s,) € P, is an associated circle packing with the com-
mon radius R in the square [0, s,)%, where P, = {({(z1,11),...,(@n,yn)) €
[0, 8n)2" | (x5 — ;)% + (y; — y;)? = 4R% 35, y: € [R,sn — R (1 <i<j<n)}
P'(R, s,) € Py_is an optimal associated circle packing , if 3, = Prpin Sn-

Problem PZ. Determine the optimal associated circle packings for a given n. > 2
integer.

Formal description of Problem 2.4:

Definition 2.8. A'(M, 0,,) € Aj, is an associated point arrangement with the min-
imal pairwise distance M in the square [0,0,)?, where A, = {((z1,11), .-,
(@n,yn)) € [0,0m] | (i —25)? + (s —y;)? = M? (1 < i < j < n)}
A'(M,0,) € A is an optimal associated point arrangement, if &, = Ar/nin@ On-
Problem P . Determine the optimal associated point arrangements for a givenn > 2
integer.

Theorem 2.9. The Problems PT, P3, Py, and Py are equivalent in the sense that,
if someone is able to solve one of the problem types for a fixed n > 2 integer, then
this solution yields the solutions of all the other problem types. That is, for each n the
optimal solutions of the particular problems can be derived from each other.

The theorem will be proved through four lemmas, each of them giving the equiv-
alence of two different problems. First, we prove that the circle centres of a P(r,, S)
optimal circle packing result in an A(m,,, X) optimal point arrangement. Then we
show that the circles drawn around the points of an A(m,,, ) optimal point arrange-
ment with a proper radius result in a P’(R, s,,) optimal associated circle packing. In
the next step, we prove that circle centres of a P'(R, s,,) optimal associated circle
packing result in an A’(M, 0,,) optimal associated point arrangement. Then we show
that the circles drawn around the points of an A’(M, o,,) optimal associated point
arrangement with a proper radius result in a P(r,,, .S) optimal circle packing.
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Fig. 2.1. Each circle packing corresponds to a point arrangement.

Lemma 2.10. Let P(r,,S) be an optimal circle packing. Then the centres of the
circles correspond to an A(my,, X)) optimal point arrangement with X = S — 2r,
My, = 2Tp.

PROOF. Assume the opposite of the statement of the lemma, i.e. that A(2r,,, S — 2r,,)
is not optimal. Then there exists an A(m/,S — 2r,) point arrangement with
my, > 2r,. Create a circle packing from A(m,,,S — 2r,) by drawing a circle of
radius m/, /2 from each point of the packing (see Figure 2.1). Clearly, each such
circle is located in a square of side S — 2r,, + m.,. Reduce this square to a square
of side S, using the midpoint of the square as the centre of the transformation. The
transformation changes the common radius of the circles to

m, S
2(8 — 2r, + ml,)’

P(ry, S) is an optimal circle packing, thus

m,S
Tn 2
2(5 = 2rp, +ml)

holds, from which we get (2r, — m/)(S — 2r,,) > 0. Since it is easy to see that
S — 2r, > 0 holds for all n > 2, we obtain 2r,, — m’ > 0, but this contradicts the
original assumption that m’ > 2r,. This contradiction completes the proof. O

Lemma 2.11. Let A(m,,, X) be an optimal point arrangement. Then the circles drawn
around the points with a common radius of R = m, /2 form a P'(R, s,,) optimal
associated circle packing with s, = X + my,.

PROOF. Assume that the P’(m,, /2, X +m,, ) associated circle packing is not optimal.
Then there exists a P/(m,, /2, s},) associated circle packing with s/, < X' 4+ m,,. The
centres of this latter packing are located in a square of side s/, — m,,. Enlarge this
square to a square of side J/, using the midpoint of the square as the centre of the



16 2 Problem Definitions and Formulations

transformation. The enlargement changes the minimal pairwise distance between the

circle centres to
My, Y

sl —my
Since A(m,,, X} is an optimal point arrangement,

Mp 2
Mn

N S{n —Mnp

holds. Using the obvious m,, > 0 condition, we can divide both sides by m,,, and
after rearrangement we obtain s, — m,, > X. But this contradicts the assumption
8L, < X+ my,. O

Lemma 2.12. Let P'(R, s,,) be an optimal associated circle packing. Then the centres
of the circles correspond to an A' (M, o,,) optimal associated point arrangement with
M =2R,0, = s, — 2R.

PROOF. Assume that A’ (2R, s,, —2R) is not optimal. Then there existsan A’ (2R, o7,)
associated point arrangement for which o], < s, — 2R. Create a circle packing from
this latter arrangement by drawing a circle of radius R around each point. These
circles are located in a square of side o7, + 2R. Since P'(R, s,,) is an optimal as-
sociated circle packing, s, < o/, + 2R, which contradicts our original assumption
ol < s, —2R. O

Lemma 2.13. Let A'(M, 0,,) be an optimal associated point arrangement. Then the
circles drawn avound the points with a common radius of v, = M /2 forma P(r,, S)
optimal circle packing with S = o, + M.

PROOF. Assume that the P(M/2,0, + M) circle packing is not optimal, that is,
there exists a P(r,, o, + M) circle packing with v, > M /2. The centres of this latter
packing are located in a square of side o,, + M — 2r/,. Reduce this square (using
the midpoint of the square as the centre of the transformation) in such a way that
the minimal pairwise distance between the centres becomes M. Then the side of the
reduced square is
M{on+ M —2r)
27! '

n

Since A’(M, 0,,) is an optimal associated point arrangement, we obtain

< M(on + M —2r})

_— ’ b
2r],

On

from which, after rearrangement, we get 0 < (o, + M)(M — 2r]). The first term
on the right-hand side is positive, which yields M — 2r/, > 0, but this contradicts the
assumption 17, > M/2. O
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Table 2.1. Relations between the parameters of the problems.

P(rn,S5) Almy, X)
P(rn, 5) 1 To o= il
Almn, £) = 2 I
P'(R, s,) Sp = Iri_f s, = 2R(:r;l+}:‘)
A(M,0,) 0 = MLE=20m) o = MZ

Table 2.2. Relations between the parameters of the problems.

P'(R, 5n) A'(M, o)
P(Tn,S) Tn = “?‘f‘ Tn = 2(1\2/{}:5(7")
AQma, 5) o= 2B = ME
P'(R,s,) 1 Sp = —QR(AZ;”’")
A (M, 0,) On = ——~M(S;g?m 1

Moreover, of course, the transformed circle packings and point arrangements used
in the previous proofs are in shifted squares, where the left lower corner of a square
is in the (0,0) point.

Definition 2.14. The density of a circle packing P(ry, S) is given by the formula

2
nr,

52
Since the density of a circle packing is a quadratic function of the radius 7,,, the

following problem formulation is equivalent (in the sense of Theorem 2.9) to the
Problems P, 1 <14 < 4:

w

dn(rpn, S) =

Problem PZ. Determine the densest P(ry, S) circle packings for a given n > 2
integer.

Corollary 2.15. The relations between the parameters of the circle packings, point
arrangements, associated civcle packings, and associated point arrangements derived
from each other are the ones listed in Tables 2.1 and 2.2.

PRrOOF. Each entry of Tables 2.1 and 2.2 is a straightforward consequence of the
transformations used in the proofs of Lemmas 2.10 to 2.13. ]

In the sequel, the Problems P, P7, and P will be investigated in the unit
square. (Obviously, one can fix the square this way without the loss of generality,
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since the different domain squares can be transformed to each other without affecting
the structures of the packings.)

In the following, we consider two packings to be identical, if they can be trans-
formed to each other by applying symmetry transformations or index permutations.
Note that this consideration is obvious from a geometrical point of view. However,
as we shall see later, one of the main difficulties the numerical methods have to cope
with is finding one configuration and avoiding the other identical configurations.

Definition 2.16. Let us suppose that there is a given solution of Problem (2.1) (or the
equivalent ones (2.2)—(2.4)). We say that a circle is free (or a rattler) if its centre can
be moved towards a positive distance point without causing the others overlap.

Definition 2.17. We say, that

o acircle is fixed if it isn’t a free circle,
e apacking is rigid if all of its circles are fixed.

We should point out here that when a packing contains one or more free circles,
then the solution is obviously not unique. Moreover, the possible locations of the
centre of any free circles form a non-empty interior and connected set. In the present
volume the number of contacts will be denoted by ¢,,, and the number of free circles
by fn. In each figure a contact will be represented by a short line section and free
circles will be indicated by dark shading.

2.2 Mathematical programming models

As we have already mentioned, the circle packing problem was originally a geo-
metrical problem; on the other hand, it can also be viewed as a continuous global
optimization problem.

In this book, we will usually refer to the following bound-constrained, max-min
optimization model of the point arrangement problem in the unit square (that is,
Problem 2.2 or Problem PZ'):

i . — )2 )2
Eath 1;321%”\/(:171 ;)% + (yi — ;)

2.1
subject to 0<x;,y; <1 (1 <i<n),

where x;,y; are the coordinates of the ¢-th point. The goals are to find the global
optimum of the problem (the maximum of the minimal pairwise distance of the
points), and also, to find the global optimizer(s), that is, the respective locations of
the points.

Besides (2.1), the mathematical programming models of Problem 77 can be
represented in various different ways, for instance:

a) as a continuous, nonlinear, inequality-constrained global optimization problem
[66]:
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max t,
TiHYi

subject to

\/(%*%)2*(%—%)2215 (1<i<j<n),

0<a,y: <1 (1 <i<n).

b) as a DC programming problem [48]:

A DC (difference of convex functions) programming problem is a mathematical
programming problem, where the objective function is given by the difference be-
tween two convex functions. In [48], the minimal pairwise squared distance is treated
as the objective function, and a DC decomposition of this function is given. That is,
the point arrangement problem is formulated as

: L 2 L 2
e, lﬁl;rilll;lﬁn{(Zl 2)° + (#ngi = z04k)’}
1<j<2n
with
zZ = (xlv"' 7xn7y1>"'7yn)a

which 1s obviously equivalent to the original Problem PJ. Using the additional nota-
tion
J={1,...,2n},

Jie ={i,k,n+i,n+k},

the objective function can be written as

. Y o 5
1;1211?571 {(Zz zk)° + (2nti — Zn+tk) }

2n 2n
= min (2 — 21)* + (Zni —zn+k)2-222f+22232-
i=1 j=1

1<i<k<n
2n

=2 224+ min —2 E 22 —(zi+ 2:)? — (Zpas + 2 2
‘ j 1<i<k<n ' J ( i k) ( n+i n—Hc)
j=1 jeI\Jix
2n

:25 22 — max 2 E 224 (zi 4+ 26)% + (zas + 2 2
: 5 1<ickh<n A j ( % k) ( n+1 n+k)
J=1 Fj€IN\Jin

Thus, the objective function can be specified as the difference of two convex
functions g : R?® — R and h : R?" — R*:



20 2 Problem Definitions and Formulations
2n
g(z) =2 22,
i=1
h{z) =max | 2 Z z?+(zi+zk)2+(zn+i+zn+k)2 1<i<k<n
JjeNJix

¢) as an all-quadratic optimization problem (or QCQP — Quadratically Constrained
Quadratic Problem):

The general form of an all-quadratic optimization problem [97] is

min [z7Q% + (d°)"],

subject to
xTle+(dl)Tx+cl <0 I=1,...,p
x € P,
where Q' (I = 0,...,p) are real (n + 1) x (n + 1)-dimensional matrices, d'
(I = 0,...,p) are real (n + 1)-dimensional vectors, ¢! (I = 1,...,p) are real

numbers, p is the number of constraints, and P is a polyhedron.
Problem P3 can be written as a special case of the all-quadratic optimization
problem with a linear objective function in the following way:

Q° =0, 7= (zo,21,--.,Z2n), (dO)T = (-1,0,...,0),

@7 =0, ¢t=0, p="""1 p_j0,va) x>,
o,
o 2",
-1, ifi=j= o + 1,
20" + 1,
1,  ifi=j=1,

! 11"
@iy =@y = i=20" +1 andj = 20' +1,
i=2l" and j = 21,
1=2'4+1 andj = 21" + 1,
=2l and j = 21",
0, otherwise,

1<i,§j<2n+1,
1<l <" <n.

In this model, z¢ is the minimal distance between the points. The coordinates of
the ¢-th point (1 < ¢ < n)are (x9;—1, Tai).
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The above models may be of interest for mathematical programming solvers
as very hard optimization problems. To demonstrate the expected difficulty of the
problem, we might mention the example of the sophisticated, interval arithmetic-based
global optimization solver GlobSol [51], which was unable to return sufficient results
even for the case of packing five circles/points with reasonable parameter settings
[125]. However, as the previous and current numerical studies show, approaches that
use not only optimization models, but also the geometrical aspects of the problem are
often more effective (cf. the methods of Chapters 7 and 8). Hence in the next chapter
some of these useful geometrical characteristics will be investigated in detail.
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