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2.1 Introduction

In the past decade, high-throughput measurement of gene expression has
evolved from a tantalizing possibility to an everyday exercise, thanks to mi-
croarray technology. The initial excitement for microarrays was quickly fol-
lowed, for many scientists, with apprehension about appropriately analyzing
large amounts of data of sometimes questionable quality. Most scientists have
now developed an appreciation for the limitations and challenges presented
by the technology.

A microarray study should not be conducted without careful thought and
planning, even if it is exploratory. As with any other type of scientific inves-
tigation, a successful microarray study starts with developing a well-defined
project with well-defined goals. One must then develop and implement a sound
experimental design based on these goals. This chapter will begin with a dis-
cussion of some of the basic issues to consider in the earliest stages of planning
a microarray study. In Section 2.3, I discuss three general principles of sta-
tistical design that apply generally to scientific experimentation: Replication,
blocking, and randomization. We will review each of these concepts in turn,
and discuss each of them in the context of array experiments.

2.2 The “Pre-Planning” Stage

By the time a scientist consults with a statistician about the experimental
design for a microarray study, she has probably already made some important
design choices. The scientist has probably already chosen the types of mRNA
to be studied. That is, she has chosen the organism and tissue type, and
has decided which treatments to apply or under what conditions the mRNA
will be collected. These choices are primarily made based on scientific, not
statistical, considerations, although a technical consideration is whether the
samples can provide a sufficient amount of mRNA for the assay.
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At this stage, it is important to recognize whether a study is an ezper-
iment or an observational study. Unfortunately, microarray studies all tend
to be called “experiments,” but this can be a misnomer (Potter, 2003). For
example, consider a study in which tissue samples are compared between pa-
tients with a particular kind of cancer and cancer-free control subjects. The
investigator does not assign cancer status to the subjects, he is merely mak-
ing measurements on a sample of cases and controls. This is an observational
study, even though the observations happen to be measurements of gene ex-
pression for thousands of genes. The fact that the investigation is an observa-
tional study has profound implications for the interpretation of the data. For
example, the investigator would not be automatically justified in attributing
any observed differences in gene expression between the cases and controls to
their cancer status because the differences could be due to a confounding fac-
tor. That is, the cases and controls might differ in their distributions of age,
sex, environmental exposures, or what they ate for breakfast. Unfortunately,
in many such observational microarray studies, data on potential confounding
factors are not collected and the possible impact of such factors is ignored.
Such gross oversight makes an entire study scientifically questionable (Potter,
2003).

In the early planning stage, it is important to establish realistic expec-
tations for the array study. Because arrays produce more data than many
biologists are used to, some biologists make the natural leap that they pro-
duce a vast amount of information. In a sense they do, but the information is
far from complete and a successful array study will produce at least as many
questions as it answers. Thus, it is important to clarify the goals of the array
experiment. Dudoit et al. (2002) describe three distinct goals of microarray
experiments: Unsupervised learning (Goal 1), supervised learning (Goal 2),
and class comparison (Goal 3). I discuss each of these briefly, then focus on
Goal 3 for the remainder of this chapter.

2.2.1 Goal 1: Unsupervised Learning

In very general terms, unsupervised learning attempts to organize data into
groups of “similar” observations. With microarray data, this might mean us-
ing gene expression data on multiple genes to organize or “cluster” subjects
into groups with similar gene expression profiles. Alternatively, one could or-
ganize genes into groups within which the expression profiles are similar across
individuals. Eisen et al. (1998) presented an early and influential microarray
paper that demonstrated the application of a particular flavor of unsuper-
vised learning called hierarchical clustering. Sometimes clustering subjects
and clustering genes are done simultaneously; this is especially common when
hierarchical clustering is used. See Chapter 6 of this book for more informa-
tion on unsupervised learning techniques. Note that unsupervised learning is
also called class discovery and, most often in microarrays, cluster analysis.
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Sometimes unsupervised learning is used with a specific goal in mind,
for example, discovering new sub-types of cancer that have previously been
hypothesized to exist. More commonly, unsupervised learning is used as a
completely exploratory technique. There is an emerging consensus that unsu-
pervised techniques are overused (Allison et al., 2006), as many studies that
use these techniques would be better served supervised learning (Section 2.2.2)
or class comparison (Section 2.2.3) approaches.

The literature contains little discussion of design issues for studies in which
unsupervised learning will be used. Dobbin and Simon (2002) may be the only
paper on the subject. However, the lack of research in this area should not
be interpreted as an indication that design issues are not important in these
studies. Section 2.3.3 of this chapter gives an example that illustrates how
poor design can produce misleading results in cluster analysis.

2.2.2 Goal 2: Supervised Learning

Supervised learning is also know as supervised classification and discriminant
analysis. An example application is a study where the goal is to develop an
algorithm to make an accurate prognosis for cancer patients based on gene ex-
pression measurements on biopsy samples. An accurate prognosis could help
patients and their doctors decide whether to pursue more aggressive treat-
ment. The data include information on the eventual outcome for the subjects,
and this information is used to develop (or “train”) the algorithm, which is
why the learning is called “supervised.” See Chapter 9 for more information
on supervised learning techniques.

Supervised learning is typically done with the possibility of a clinical ap-
plication in mind. As such, the data used in a supervised learning analysis are
invariably from an observational study, not an experiment. A truly useful clas-
sification algorithm must be able to classify new subjects, not just those in the
sample. An important factor for facilitating this is to ensure that there are no
obvious differences between the kinds of samples in study design. For example,
suppose the biopsy samples for long-term cancer survivors tend to be older,
whereas the samples for patients who died quickly tend to be fresher. Handling
and storage differences could affect the array measurements, and these differ-
ences could influence the parameters of the classification algorithm. Thus, an
algorithm that putatively discriminates between patients with good and poor
prognoses is actually distinguishing between handling and storage differences
between the RNA. Because of this design flaw, the algorithm will not perform
well when tested on new samples from newly-diagnosed patients, all of whom
provide fresh samples.

2.2.3 Goal 3: Class Comparison

Class comparison is probably the most common goal of gene expression studies
and is the focus of the remainder of this chapter. In a typical class comparison
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study, an investigator wants to identify genes that are differentially expressed
between two or more classes of tissue. A class comparison investigation can
be either an experiment or an observational study. For example, a comparison
between laboratory mice treated with a certain drug and untreated mice is
an experiment, as long as the pre-specified number of mice to receive the
treatment are chosen randomly from all mice in the study. In contrast, a
study that identified differentially expressed genes between patients with and
without a particular malignancy is an observational study.

In class comparison studies it is important to understand that microarrays
do not remove inherent limitations in determining the “cause and effect” in
some system. As a measurement tool, microarrays cannot be used to make
causal inferences unless the study is explicitly designed to make this possible.
In the observational study comparing malignant tissue with benign controls,
microarrays cannot distinguish genes whose altered expression caused the ma-
lignancy from genes whose expression is altered as a result of the malignancy.
In fact, the study can only conclude that altered expression is associated with
the malignancy, keeping in mind that such an association could be due to a
confounding factor (Potter, 2003).

In the microarray experiment with the treated and untreated mice, we
can justify causal inference about the effect of the drug on gene expression
because of the initial randomization of the treatment. However, note that the
causal inference is about the effect of the treatment. This is quite different
from trying to infer the causal effect of gene expression changes.

Once these basic issues have been considered, the next step is to plan the
details of the microarray study itself. We now discuss the three fundamen-
tal principles of design, replication, blocking, and randomization, focusing on
their application to microarrays and in particular to microarray studies for
class comparison.

2.3 Statistical Design Principles, Applied to Microarrays

2.3.1 Replication

Replication is probably the most widely-recognized principle of design. Re-
searchers carefully plan the sample size of their studies to ensure adequate
replication.

To appreciate the important role of replication, it is useful to review the
general paradigm of statistics. Scientifically, we are often interested in compar-
ing different groups or classes of individuals: Treated and untreated; diseased
and non-diseased; genotypes AA, Aa, and aa (see class comparison, Section
2.2.3). In statistics, such groups are called populations. A population is gen-
erally either very large or infinite, so it is impossible to examine an entire
population. Instead, we take a sample from the population. We may study
the sample in excruciating detail, collecting and analyzing data. Ironically,
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however, our true interest is not in the individuals in the sample. Our interest
in the sample is as a means to making inference to the population from which
it was drawn. A statistical inference is something more than a generalization
or an educated guess. The theory of statistics allows us to make inferences
with rigor: Using the data on a random sample, we can estimate certain char-
acteristics of a population (for example, the mean expression of gene zyz in
the population), and we can also quantify our level of certainty in the estimate
(often, with a confidence interval). However, rigorous statistical inference is
only possible with replication. In other words, samples of size 1 are not suf-
ficient. Further, an adequate level of precision in inference is achieved only
with an adequate amount of replication.

Understanding this fundamental statistical paradigm can help a researcher
understand the appropriate level on which to replicate. In research with mi-
croarrays, it is common to differentiate between technical replicates and bi-
ological replicates (Yang and Speed, 2002). Technical replicates are typically
repeated hybridizations of the same RNA to multiple arrays. Replication in
early array experiments was often limited to technical replication. Technical
replication allows one to make inference about the particular RNAs being
studied in light of the technical error (measurement error) of the assay. How-
ever, this is usually not the desired inference. Most often, the desired inference
is from the sampled individuals to the population(s) they represent. This infer-
ence is only possible with biological replication: Multiple individuals sampled
from each population of interest.

Kerr (2003a) examines the relative benefits of biological and technical
replication. Technical replication can be useful, but is usually unnecessary. It
is usually best to use available resources to maximize biological replication
and forego technical variation altogether (Simon et al., 2002; Kerr, 2003a).

2.3.2 Blocking

The term “blocking” comes from the agricultural origins of the field of sta-
tistical design. Suppose one wants to conduct a study to compare, say, the
yields of different varieties of a crop. Suppose further that different blocks
of land are available to use in the study. Different blocks of land will vary
in many characteristics that can affect yield, e.g., the amount of sunlight or
the soil composition. It would be crucial to recognize this in planning the ex-
periment. The more variation among the blocks of land, the more important
it is to explicitly address this source of variation in the experimental design.
If block-to-block variability is large, an effective solution is to balance vari-
eties with respect to blocks. For example, if there are four varieties and each
block can accommodate four sub-plots, then each block should contain one of
each variety (Figure 2.1). In statistical design this would be called a “com-
plete block design.” “Complete” refers to the fact that every block contains
an equal number of replicates of each variety.



44 Kathleen F. Kerr

Fig. 2.1. An experiment in which the experimental units come in blocks of size 4.
If there are four groups to compare, the best design is to put one of each variety in
each block.

Experimentalists routinely and intuitively use the principle of blocking.
For example, if an assay is known to be sensitive to humidity, then an ex-
perimentalist may make sure to conduct all assays within a short period of
time when humidity is constant. Two ocular treatments might be compared
by applying each of them to one eye of multiple individuals. Each pair of eyes
is a “block” in such a study design. This design controls for variation be-
tween individuals by enabling the treatments to be compared “within” each
individual.

In microarray studies, it can be important and useful to implement block-
ing as with any other kind of experiment. For example, if treatments are to
be compared on mice from various litters, a litter of mice should be treated
as a block. Ideally, each treatment could be applied to the same number of
mice in each litter.

For two-color microarray platforms, blocking is intrinsic to the technology.
This is because spot characteristics (size, density, etc.) are variable, which
means a large signal could result from a high level of gene expression or
from a particularly large or dense spot. However, if spot characteristics lead
to a high level of signal, then the signal should be brighter in both channels.
Therefore, the relative sizes of the red and green signals is used as a measure of
the relative levels of expression in the red- and green-labeled RNAs. In other
words, ratios are used because they control for spot-to-spot variation from
array to array. Taking ratios (or better, log-ratios) “cancels out” uninteresting
variation that is due to spot heterogeneity. This is actually a textbook example
of the principle of blocking.

While the majority of analyses are based on the ratio of the red and green
signals from each spot, some analytical methods start with the individual
signal intensities rather than ratios. For example, see Kerr et al. (2000) and
Wolfinger et al. (2001). Such methods simply handle the blocking structure
of the data in a different way. In fact, the difference between intensity-based
methods and ratio-based methods is somewhat more technical than substan-
tive — see (Kerr, 2003b).

Because of spot heterogeneity, two-color arrays are used to measure rela-
tive gene expression, not absolute gene expression. A two-color array can be
thought of as a comparison between the co-hybridized RNAs. When there are
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multiple samples to be compared, this raises the question: Which hybridiza-
tions to perform? That is, what pairs of RNAs should be co-hybridized? Kerr
and Churchill (2001) addressed this question for experiments that do not con-
tain biological replicates. Dobbin and Simon (2002) and Kerr (2003a) update
these findings for experiments with biological replicates.

When there are n replicates from two groups to be compared, an efficient
and effective strategy is the multiple-dye-swap design, as seen in Figure 2.2(a).
In this design, the n replicates from the two groups are randomly paired and
each pair is co-hybridized to a pair of arrays, with a dye-swap to control for
dye-effects. Another design, similar to those proposed by Rosa et al. {2005),
is to alternate the dye-labeling between replicates (see Figure 2.2(b)). This
will allow twice the number of replicates to be used for the same cost of
arrays, while maintaining dye-balance. Another, popular strategy is to employ
a “reference” RNA in the design; each RNA of interest is co-hybridized with
the reference RNA. The reference RNA is not of interest and serves only to
“connect” the other samples. In Figure 2.2(c), this strategy is employed for
the two-group comparison problem, employing dye-swap. While the reference
design is technically less efficient than the multiple-dye swap strategy, its
efficiency disadvantage is small when biological variation is much larger than
technical variation (Kerr, 2003a). It is an exceedingly simple and practical
design choice for many investigations.

(a) (b) (c)
A—=0 A0
A<=0 A—0O
A—=0 A<—-7I0

oOpbOPOPOP

Fig. 2.2. Circles represent biological replicates from some population and triangles
represent biological replicates from another population. Arrows represent two-color
microarrays. An arrow between individual 1 and individual 2 indicates a hybridiza-
tion with red-labeled RNA from individual 1 and green-labeled RNA from individ-
ual 2. All designs are appropriate for a two-group comparison study. (a) Multiple
dye-swap design; (b) Alternating-dye pairwise design; (c) Reference design — the
rectangle represents the “reference” RNA, which is not of interest.



46 Kathleen F. Kerr
2.3.3 Randomization

The principle of randomization says that once any blocking structure to a
design is established, treatments should be applied to experimental units in
random fashion. If three littermates are to be divided among treatments A, B,
and C, then the mice should be randomly allocated to each treatment. “Ran-
dom” here does not mean the same thing as “arbitrary.” Although tedious, it
is useful to assign numbers to each mouse and use a random-number generator
or draw numbers out of a hat to choose the mouse for each treatment.

While blocking protects against known or anticipated biases in the data,
randomization protects against unknown or unanticipated biases. For the pre-
vious example, suppose one had an unrecognized tendency to pick-up the
slowest mouse out of a litter. If one assigned mice to treatments A, B, and
C in sequence, treatment A mice would tend to be assigned the slowest mice
and treatment C would tend to be assigned to the quickest mice. If quick mice
are also healthier, the experiment would obviously be biased.

Here is a more subtle, fictionalized example from the world of microarrays
that shows that randomization is important even in observational studies. An
experimenter is interested in a particular human mutation and recruits 20
carriers of the mutation. The mutation is rare and non-carriers are easier to
find, and she is able to recruit 40 non-carriers to serve as controls. She is
interested in whether the mutation is associated with any gene expression dif-
ferences in humans. The investigator is reasonably confident that there are no
other variables confounding the comparison between carriers and non-carriers.
Using a single-color platform, the researcher uses one array to hybridize the
mRNA for every individual. There is a practical limitation of a maximum of
20 hybridizations a day, so the experiment is carried out over three days.

The researcher applies a hierarchical clustering algorithm to explore the
array data. The results appear as depicted in Figure 2.3(a). To the scientist’s
delight, the 60 samples appear to cluster into three primary groups: The 20
samples from the carriers of the mutation, and two groups of the remaining 40
non-carriers. The natural temptation is to conclude that gene expression data
can discriminate carriers of the mutation from non-carriers, and that non-
carriers can further be divided into two sub-types. However, with a healthy
respect for scientific skepticism, the experimenter re-examines her data. Upon
closer scrutiny, she sees that the three clusters correspond exactly to the three
days of hybridizations, as in Figure 2.3(b).

In detail, the schedule for the hybridizations was:

s Dayl: 20 carriers
Day 2: 20 non-carriers
¢ Day 3: remaining 20 non-carriers

The fatal flaw in this investigation was the lack of randomization. The day
of hybridization was ignored as a factor, but it turned out to be an important
source of variation. Samples should have been hybridized in random order.
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Fig. 2.3. Results of clustering samples for the example in Section 2.3.3. (a) Samples
labeled by mutation status; (b) samples labeled by day of hybridization.

As is, the gene expression differences between carriers and non-carriers are
hopelessly confounded with day-to-day differences in the hybridizations. There
is no way to “rescue” the experiment — the confounding is complete and there
is no way to separate the genetic differences of interest from the nuisance
experimental artifacts.

Now that the day of hybridization is known to be an important factor,
the researcher should probably “block” on the day of hybridization in future
experimental plans. That is, for each group she should hybridize the same
number of samples on each day.

2.4 Case Study

A plant geneticist is interested in the effects on gene expression in arabadopsis
arising from infection by an agrobacterium. He plans a basic class comparison
microarray study. From his initial collection of 20 plants, he randomly divides
them into treatment and control groups of size 10. The treatment group is
infected with the agrobacteria. The control group receives “mock” treatment,
undergoing each step of infection except the introduction of the bacteria. This
is to make sure that differences between the groups can properly be ascribed
to infectious agent. One treated and control sample are produced every day, in
random order. The RNA is extracted from each, and the treated and control
RNA with same-day preparation are co-hybridized to a pair of microarrays
employing dye-swap. That is, the design in Figure 2.2(a) is used, which is a
very efficient design for comparing the two groups (Kerr, 2003a). This design
will naturally handle any day-to-day differences in sample preparation (block-
ing) because day-to-day differences will cancel out in the treatment-control
comparison due to the balance in the preparation schedule.

2.5 Conclusions

Replication, blocking, and randomization should all be considered in design-
ing a microarray experiment. It usually works to consider them in the order
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presented here. First, make sure there is the right kind of replication to allow
the desired inferences. Replication leads directly to the question of choosing
a sample size. Sample size calculations are a tricky issue with microarrays
and the subject of considerable research, beyond the scope of this article. See
Simon et al. (2002); Lee and Whitmore (2002); Wei et al. (2004); and Tibshi-
rani (2005). Second, for two-color platforms the arrangement of the samples
onto the arrays must be decided. For many class comparison experiments the
layouts in Figure 2.2 can be adapted. See Rosa et al. (2005), for other ideas.
Lastly, consider all opportunities for randomization. For example, arrays can
be randomly assigned to planned hybridizations and the order of hybridiza-
tions should also be randomized.

Although microarray studies are typically exploratory, one should still be
able to clearly articulate a goal for the project. A well-defined goal will inform
good choices in experimental design. A seriously flawed experimental design
guarantees a study will be a failure, because it produces data that cannot
answer the scientific question of interest. A sound experimental design does
not guarantee a study will be a rousing success, but gives it a fighting chance.
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