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Linear Mixed Models: Part 11

2.1 Tests in Linear Mixed Models

The previous section dealt with point estimation and related problems in lin-
ear mixed models. In this section, we consider a different type of inference,
namely, tests in linear mixed models. Section 2.1.1 discusses statistical tests
in Gaussian mixed models. As shown, exact F-tests can often be derived un-
der Gaussian ANOVA models. Furthermore, in some special cases, optimal
tests such as uniformly most powerful unbiased (UMPU) tests exist and co-
incide with the exact F-tests. Section 2.1.2 considers tests in non-Gaussian
linear mixed models. In such cases, exact/optimal tests typically do not exist.
Therefore, statistical tests are usually developed based on asymptotic theory.

2.1.1 Tests in Gaussian Mixed Models

1. Ezact tests. For ANOVA models, exact F-tests can often be derived using
the following method. The original idea was due to Wald (1947). Consider the
mixed ANOVA model (1.1) and (1.2). Suppose that one wishes to test the
hypothesis Hy: 02 = 0. Note that the model can be written as

y:Xﬂ—i—Zlal—i—Z,la,l +6, (21)

where a_y = (ab,...,a) and Z_1 = (Zs,...,Zs). Consider the quadratic
form ¢ = T72y/PZ1@(X7z_1)y = y’{lee(Xz_l)/TQ}y, where © is introduced
in Example 1.9. Note that, under the null hypothesis, we have y ~ N (X3, Vp),
where Vo = 721 + Y°7_, 027, Z!. Furthermore, we have

Pzo(x,2_1) 2, (o2
<7_2 Vo = Prioxz)+ ) =5 ) Priexz ) 2iZ;
1=2
= PZ19(X>Z—1)’

which is idempotent. Therefore, by Theorem C.1 in Appendix C, we have
q ~ Xgl, where 71 = rank{ Pz, 5(x,z_,)} = rank{(X, Z)} — rank{(X,Z_1)}.
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Note that PZle(X,Z,l)X =0and P(X,Z) = P(X,Z,l) +P21@(X,Z71)7 where the
two projections on the right side are orthogonal to each other (see Example
1.9 and Exercise 1.17).

On the other hand, consider the quadratic form g = T_2y’P(X’Z Ly =
Y'{Px,z)+/7*}y. Note that y ~ N(X3,V), where V = 721 + 377, 07 Z; Z].
Thus, we have

Pix 7)1 2 /o2

(X,2) _ g;

<7_2 ) V = P(X,Z)L + Z <T2) P(X,Z)LZZ-Z{
i=1

- P(X,Z)Jﬂ (22)

which is idempotent. Therefore, by the same theorem, we have gz ~ x?2 ,» Where
ro = rank{Px z). } =n —rank{(X, Z)}. Note that P x z)+ X = 0. Also note
that, unlike ¢, the distribution of ¢ is unaffected by the null hypothesis.
Finally, because P x z)+V Pz o(x,2z_,) = TQP(X’Z)J_PZIG(X’Zil) = 0 by
(2.2), the two quadratic forms ¢; and ¢y are independent (again, this fact
does not depend on the null hypothesis; see Appendix C). It follows that

?/lee(x,z,l)y/ﬁ

Fi =
Y Pix,2)1 /T2
Q1/7“1
_ Fr .. 2.3
o/r 1,72 (2.3)

In words, F3 has an exact (central) F-distribution with degrees of freedom
and 7y for testing the hypothesis Hy: 03 = 0.

It should be pointed out that, for the above test to be effective one must
have Z1 © (X, Z_1) # 0. For example, if £(Z1) C L(Z_1), then the test will
not work. We now consider an example.

Ezample 2.1 (Balanced two-way random effects model). First consider the
case where there is no interaction between the random effect factors. The
model can be expressed as

Yijk = M+ Ui + 05 + Cijk,

i=1,...,a,7=1,...,b, k =1,...,c, where u;s and v;s are random effects
and e;;s are errors such that u;s are independent N(0,0%), v;s are indepen-
dent N(0,03), e;j,s are independent N(0,72), and u, v, e are independent.
Using matrix expressions, we have

y=Xp+ Ziu+ Zsv+e,

where X =1, 01, ® 1., Z1 = [, @1, ® 1, and Z5 = 1, ® I, ® 1.. Clearly,
Z1 6 (X, Z3) # 0, thus (2.3) may be applied for testing Hy: o7 = 0. In this
case, we have r; = (a+b—1)—b=a—1and ro = n—(a+b—1) = abc—a—b+1.
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Next, we consider the case where there is interaction between u and v. In
this case, the model can be expressed as

Yijk = p+ Ui + U5 + Wi + Cijk,

t=1,...,a,5=1,...,b, k = 1,...,¢c, where, in addition, the interactions
wj;s are independent N (0,03), and u, v, w, e are independent. Similarly, the
model may be written as

y=Xp+ Ziu+ Zyv+ Zsw + e,

where Z3 = I,Q1,®1.. However, neither Uf = O nor 05 = 0 can be tested using
the exact F-test derived above, because £(Z;) C £L(Z3), j = 1,2. Nevertheless,
the hypothesis Hp: 02 = 0 can be tested using (2.3). In this case, r; = ab —
(a+b—1)=(a—1)(b—1) and ro =n — ab = ab(c — 1) (Exercise 2.1).

Further results on exact tests in Gaussian mixed models can be found in
Khuri et al. (1998).

2. Optimal tests. It is known that optimal tests, such as UMPU and uni-
formly most powerful invariant unbiased tests (UMPIU), exist in some special
cases of the mixed ANOVA models, assuming that normality holds. For exam-
ple, Mathew and Sinha (1988) considered a balanced mixed ANOVA model,
which can be expressed as

y=X1+ -+ X+ Zion + -+ Zgos F €, (2.4)

where the (s and as are, respectively, vectors of fixed and random effects in the
analysis of variance; that is, they are main effects, interactions, nested effects,
and the like. (e.g., Scheffé 1959), and e is a vector of errors. Furthermore,
assume that the random effects and errors are independent such that the
components of «; are distributed as N(0,0?), and the components of € are
distributed as N(0,72). The design matrices X1,...,X; and Z1,...,Z, are
assumed known with X; = 1,. Let P, ¢ =1,...,t and Q;, 7 = 1,...,s be
projection matrices such that P, = n='J,,, where J, = 1,10, ¥’ P;y the sum
of squares due to §;, 2 < i < ¢, and y'Q;y the sum of squares due to «; (as in
a fixed effects model), 1 < i < s (Searle 1971, §9.6). Note that each P; (Q;)
is a Kronecker product of matrices of the form I,, a='J, or I, —a~'J,, so
that P, i =1,...,t and Q;, i = 1,...,s + 1 are orthogonal to each other,
where Qg1 = I, — Zle P, —>"7 | Q;. With these notations, the likelihood
function can be expressed as

fly) = c(0) x
1 s+1 t
exp [—2 {Zfiy/Qw + Z ni(Siy — Ni)' (Siy — /\z‘)H , (29)
i=1 =1
where ¢(f) depends only on the variance components, § = (02,... 02, 72);

& and n; are linear functions of the variance components; S;S! = P; and
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Ai = S[XpB,1<i<t Here X isasin (1.1) when (2.4) is written in this way.
By (2.5), it can be shown that Siy, ¢ =1,...,tand ¥'Q;y, i =1,...,s+ 1 are
complete sufficient statistics for the parameters ;s, 1;s and A;s. Furthermore,
standard theory for the multiparameter exponential family (e.g., Lehmann
and Casella 1998, §1) may be applied to derive UMPU and other optimal
tests. For example, Mathew and Sinha (1988) obtained the following results.

1. Suppose that the hypothesis of interest is Hy: A\; = 0 versus Hy: A; # 0.
If 7; equals some &, say, &1, an exact F-test is based on ¢/ Py /y'Qvy; if A; is a
scalar, then this test is UMPU; if ); is multidimensional, a UMPU test does
not exist, however, the above F-test is UMPIU.

2. Suppose that the hypothesis of interest is Hy: &1 = &; versus Hy: & > &.
The F-test based on y'Q2y/y'Q1y is UMPU and UMPIU.

Note that, in some cases, a hypothesis such as 0? = 0 is equivalent to the
equality of two &;s. We consider some examples.

Ezample 2.2 (Balanced one-way random effects model). Consider a special
case of the one-way random effects model of Example 1.1 with k; = k, 1 <
1 < m. In this case, y'Q1y is equal to the treatment sum of squares and y’'Q2y
error sum of squares, that is, y'Q1y = SSA = kY /" (Ji. — §.)% ¥'Qay =
SSE = Y, Z?Zl(yij — )%, and S}y = v/mkj... Furthermore, we have
5;1 =124+ ko?, f;l =72, nfl =72 4+ ko2, and \; = Vmkp.

Consider the hypothesis ¢ = 0. Because 177 = & and )\, is a scalar, by the
first result above, the F-test based on %%/SSA is UMPU and UMPIU. As for
the hypothesis 02 = 0, because it is equivalent to & = &, the F-test based
on SSA/SSE is UMPU and UMPIU.

Ezample 2.1 (Continued). Consider the case without interaction and that
k = 1. In this case, the model can simply be expressed as

Yij = B+ ui + 05 + €ij,

i=1,...,a, 5 =1,...,b. In this case, we have y'Qi1y = b> i (J;. — §..)* =
SSA, y'Qay = GZ§:1@-3‘ —7.)> =SSB, and y'Qzy = >, Z?:l(yij — i —
y.; +9..)> = SSE, which correspond to ffl = 72 + bo?, 551 = 7% + a0,
and & 1 = 72, respectively. Furthermore, we have Sty = Vaby.. with n =
24+ aa% + bof and \; = \/%,u.

The hypotheses 0?2 = 0 and 02 = 0 correspond to & = &3 and & = &,
respectively. Thus, the F-tests based on SSA/SSE and SSB/SSE are, respec-
tively, optimal (i.e., UMPU and UMPIU) for testing these hypotheses. How-
ever, unlike the previous example, no exact optimal test (in the same sense)
exists for testing p = 0, because 7; is not equal to any of the &s.

These examples show that the results of Mathew and Sinha (1988) may be
useful in some cases to obtain optimal tests, but there are cases where these
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results do not yield optimal tests (see Exercise 2.2 for an additional example).
For more discussion on optimal tests, see Khuri et al. (1998).

3. Likelihood-ratio tests. The likelihood-ratio is a well-known method of
constructing statistical tests. The theory of likelihood-ratio tests is fully de-
veloped in the i.i.d. case (e.g., Lehmann 1999, §7.7). However, the literature
on likelihood-ratio tests in the context of linear mixed models is much less
extensive, from a theoretical point of view. Hartley and Rao (1967) was the
first paper that addressed the issue. Let 1» = (8,60’)" be the vector of all the
unknown parameters involved in a Gaussian mixed model, where 0 represents
the vector of variance components. Many of the hypotheses are concerned with
testing whether a subvector of 6, say, 81, is identical to a known vector, 9(()1)
Let #®) denote the subvector of # complementary to 8(1). Then, the likelihood
function may be expressed as L(f) = L(0),0)). [Note that L(6) depends
on y and therefore should be properly denoted by L(f]y), but we suppress
y for notational simplicity.] Let  be the (global) maximizer of L(0]y) over
0 € O, where O is the parameter space, and 6 Dbe the (global) maximizer
of L(G(()l)ﬁ@)) over 02 € O where O is the parameter space for 6(2).
Then, the likelihood ratio is given by

(1) A2

R = M : (2.6)

L(0)
Hartley and Rao (1967) stated without giving a proof that the asymptotic
null distribution of —2log R is a central x? with r degrees of freedom, where
7 is the dimension of #(V). See Jiang (2005¢) for a rigorous proof of this result,
which also applies to non-Gaussian linear mixed models (see Section 2.1.2.4).
We consider a simple example.

Ezample 2.3 (One-way random effects model). Consider the one-way ran-
dom effects model of Example 1.1 with normality assumption. It was shown in
Section 1.3.1 (see Example 1.1 (Continued)) that the log-likelihood function
is given by

1 1 m
2 2y _ 2 2., 5. 2
Wp,0°,7%) = c— i(n—m)log(T ) — 3 E_llog(T + k;io”)

1 m m 2
7@2 (yiji'u 2T2ZT2+]€O'2 —

where c is a constant, n = ZZ 1 ki, and g5 =k, Z ‘, Yij- Let i1, 6% and 72
be the MLE of u, 02, and 72. Suppose that one is 1nterested in testing the
hypothesis 02 = 0. Under the null hypothesis, we have

m  k;
l(“a077—)_c_§10g Zzyu
=1 j=1
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The MLE under the null are i = y.. and 62 = n~* > ", E?;l(yij —.)%,
where §.. = n~! Dy 2521 i;- Thus, an expression for —21log R can be easily
derived (Exercise 2.3).

2.1.2 Tests in Non-Gaussian Linear Mixed Models

For non-Gaussian linear mixed models, exact or optimal tests typically do
not exist. This is because under a non-Gaussian model, the distribution of
y is not fully specified, therefore it is (usually) not possible either to derive
the exact distribution of a test statistic or to study the power function of the
test. In such cases, statistical tests are usually based on asymptotic theory.
In this section, we consider asymptotic tests in non-Gaussian linear mixed
models. Please note that the results of this section also apply to Gaussian
mixed models, especially in cases where exact/optimal tests do not exist.

A Dbasic idea of deriving an asymptotic test is the following. Consider a
non-Gaussian linear mixed model (1.1). Let ¢ = (3,0")’, where 6 represents
the vector of variance components involved. Then 1 is the vector of all the
unknown parameters involved in the model. Suppose that an estimator of 1,
say, zﬁ, can be obtained, which is asymptotically normal, that is, there exists
a sequence of positive definite matrices, >’ = X,,, such that

SY2(4) — ) — N(0,I), in distribution, (2.7)

where I is the (p + ¢)-dimensional identity matrix with p = dim(3) and
q = dim(#). X is called the asymptotic covariance matrix of ¥. Suppose that
one wishes to test a linear hypothesis of the form

Hy: K'p=c, (2.8)

where K is a known matrix of full (column) rank, say, r, and ¢ is a known
vector. Under (2.8), (2.7) implies that

(K')p —¢)(K'SK) Y (K") — ¢) — X2, in distribution. (2.9)

Thus, (2.9) can be used to test the hypothesis (2.8).

Typically, the asymptotic covariance matrix depends not only on 6 but also
on some additional parameters. For example, under the mixed ANOVA model
Section 1.2.2.1, the asymptotic covariance matrix of the REML estimator
of = (12,0%,...,02)" depends not only on € but also on the kurtoses of
the random effects and errors; the asymptotic covariance matrix of the ML
estimator of ¥ depends not only on 6 but also on the kurtoses as well as the
third moments of the random effects and errors. (See Section 2.2.2 for more
details; note that, under normality both the third moments and the kurtoses
vanish, so there is no such problem for Gaussian mixed models.) Therefore,
for the asymptotic test (2.9) to be applicable, one has to find some way to
consistently estimate X', because standard procedures in mixed model analysis
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such as ML and REML do not produce estimators of higher (i.e., third and
fourth) moments of the random effects and errors. In the following we discuss
several methods of estimating X'. Typically, when X' in (2.9) is replaced by
a consistent estimator, say by , the asymptotic distribution on the right side
does not change. The test therefore rejects if

(K" — o)) (K'SEK) (K"} = ¢) > X7, (2.10)
where p is the significance level.

1. Empirical method of moments. Consider the case of the mixed ANOVA
model (1.1) and (1.2). As mentioned, the asymptotic covariance matrix of the
REML (ML) estimator involves higher moments, thus, a natural approach
would be to find consistent estimators of those higher moments. Jiang (2003)
proposed an empirical method of moments and gave a number of applications,
including estimation of the kurtoses in mixed ANOVA models. The basic idea
is the following. Let 6 be a vector of parameters. Suppose that a consistent
estimator of 6, 9, is available. Let ¢ be a vector of additional parameters about
which knowledge is needed. Let ¢ = (6 ¢')’, and M (¢,y) = M(0,¢,y) be a
vector-valued function of the same dimension as ¢ that depends on ¥ and v,
a vector of observations. Suppose that E{M(¢,y)} = 0 when ¢ is the true
vector of parameters. Then, if # were known, a method of moments estimator
of ¢ would be obtained by solving

M(0,6,y) =0 (2.11)

for ¢. Note that this is more general than the classical method of moments,
in which the function M is a vector of sample moments minus their expected
values. In econometric literature, this is referred to as the generalized method
of moments (e.g., Hansen 1982, Newey 1985). Because 6 is unknown, we re-
place it in (2.11) by 6. The result is called an empirical method of moments
(EMM) estimator of ¢, denoted by $, which is obtained by solving

M8, ¢,y)=0. (2.12)

Note that here we use the words “an EMM estimator” instead of “the EMM
estimator”, because sometimes there may be more than one consistent esti-
mator of #, and each may result in a different EMM estimator of ¢. In general,
ML estimators may be viewed as a special kind of EMM estimator (Exercises
2.4 and 2.5). To see this, let I(¢;y) = 1(0, ¢;y) be the log-likelihood function.
Then, the ML estimator, ¥ = (0’ ¢')’ satisfies 91/80 = 0, and hence ¢, the
ML estimator of ¢, satisfies

o .
—1(6,69) = 0. (2.13)

On the other hand, (2.13) is a special case of (2.12), in which M (0, ¢,y) =
0l/0Y. Note that E(9/09) = 0 when 9 is the true vector of parameters. Jiang
(2003) showed that, under mild conditions, ¢ is consistent.
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To apply EMM to non-Gaussian mixed ANOVA models, let 6 be the vec-
tor of variance components. It is clear that a consistent estimator of 6, é,
exists. For example, 6 can be the REML or ML estimator (e.g., Jiang 1996).
Furthermore, assume that the third moments of the random effects and errors
vanish; that is,

E(})=0 and E(o})=0, 1<i<s, (2.14)

where a1 is the first component of «; and €; the first component of €. Then,
the asymptotic covariance matrix of the REML (ML) estimator involves only
the kurtoses, in addition to the variance components [in fact, the asymptotic
covariance matrix of REML estimator does not involve the third moments
regardless of (2.14)]. For notational convenience, write 03 = 72. Then, the
(unscaled) kurtoses are defined by ko = E(e}) — 304, i = E(a},) — 30},
1 <4 < s. For any matrix A = (a;;), we define [|Afs = (32, ; a;‘j)l/‘i. Similarly,
if @ = (a;) is a vector, then [als = (3, a})*/*. Let L be a linear space,
then L' represents the linear space {a : a’b = 0,¥b € L}. If Ly, Ly are
linear spaces such that Ly C Lo, then Lo, © L; represents the linear space
{a:a € Ls,a’b=0,Yb € L1} (note that the notation is consistent with that
in Example 1.9). If My, ..., M}, are matrices with the same number of rows,
then L(Mj, ..., My) represents the linear space spanned by the columns of

My, ..., M. Let the matrices Z1,..., Zs be suitably ordered such that
Li#{0}, 0<i<s, (2.15)

where LO = ‘C(Zh e 7Z5)J', Lz = E(Z“ e 7ZS) S) E(ZiJrl, ceey 25)7 1 S ) S
s—1,and Ly = L(Zs). Let C; be a matrix whose columns constitute a base
of L;, 0 <14 < s. We define a;; = HZJ’-CiHi, 0<j<i<s, where Zy = I, the
identity matrix. It is easy to see that, under (2.15), a;; > 0, 0 < i < s. Let n;
be the number of columns of C;, and c¢;x the kth column of C;, 1 < k < n;,
0 <i < s. Define

2

bi(0'2) :32 Z‘Z;-Cik|20']2» s OSlSS
k=1 \j=0

where ¢? = (sz)ogjgs- Let k = (k;)o<j<s, and M (3,02, k,y) be the vector
whose ith component is

Mi(ﬂaojvﬁﬁy) = HCz/(y - Xﬁ)”ﬁ - Zaij/ﬁj - bi(a2)7 0<i<s.
=0

Then, by the following lemma and the definition of the Cjs, it can be shown
that E{M (3,02, k,y)} = 0 when 3, 02, k correspond to the true parameters
(Exercise 2.6). Thus, a set of EMM estimators can be easily obtained by
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solving M (3,62, k,y) = 0, where 3 and 62 are the REML or ML estimators.
Furthermore, the EMM estimators can be computed recursively as follows.

~ ~13
Ko :aOO do,

i—1
G- 3 (% )k, 1siss (2.16)

=0 \ i

where d; = ||Cl(y — XB)||4 — b;(62), 0 < i < s.

Lemma 2.1. Let &,...,&, be independent random variables such that
E¢ = 0 and E€} < 0o, and Mg, ..., A, be constants. Then,

n 4 n 2 n
E<2Ai§i> ﬁ[ZA?var(si) + ) AHEE - 3[var(6)]°)

i=1

Ezample 2.2 (Continued). Here we have ko = E(ef;) — 37* and x; =
E(a})—30%. The model can be written as y = X u+Za+e, where X = 1,,®1y,
and Z =1, ® 1. Let

0 - -1 kx(k—1)
Then, it is easy to show that Cy = I, ® Dy, C1 = Z = I, ® 1. It follows
from (2.16) that, in closed form,

m k
. 1 4 4
— ) — 6

Ko 2m(k—1) ;;(yzl yw) T,
1 m 1 m k

R = —> i — ki)t i1 — ij)"
3 2\ 4 69,9 4
2 ( k)T wTo 307,

where y;. = Z?Zl Yij, il = .., and 72, 62 are the REML or ML estimators. It
can be shown (Exercise 2.7) that the EMM estimators are consistent provided
that m — oo and k > 2.

2. Partially observed information. One important assumption that we have
made in the application of EMM is (2.14). This assumption holds, for exam-
ple, if the random effects and errors are symmetrically distributed. However,
from a practical point of view, such an assumption is not very pleasant be-
cause, like normality, symmetry may not hold in practice. On the other hand,
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a method called partially observed information was proposed in Section 1.4.2
for estimating the asymptotic covariance matrices of REML or ML estima-
tors. This method applies to a general non-Gaussian mixed ANOVA model
regardless of (2.14). We consider an example.

Ezample 2.2 (Continued). Suppose that one wishes to test the hypothesis
Hp: 71 = 1; that is, the variance contribution due to the random effects is
the same as that due to the errors. Note that in this case § = (\,71)’, so the
null hypothesis corresponds to (2.8) with K = (0,1) and ¢ = 1. Furthermore,
we have K'Yr K = Xy 11, which is the asymptotic variance of 471, the REML
estimator of ;. Thus, the test statistic is ¥* = (§1 — I)Q/ZA‘R,H, where ZA’R,H
is the POQUIM estimator of X'g 11 (see Section 1.8.5) given by

O J O
& Ti1125 o0 — 271 01Z2,00Z2,01 + Z1,00Z5 01
R,11 = — .
; 2
(Z2,00Z2,11 — L5 1)?

bl

where :Zl,st = jl,l,st —|—f17275t, s,t = 0,1, and flmst, r = 1,2 are given in
Example 1.1 (continued) in Section 1.8.5 but with 4; replaced by 1, its value
under Hg; furthermore, we have

- (mk —1)
I = _%7
2,00 e
. m— 1)k
Lo = —E7)7
2A(1 + A1 k)
2,11 — 2(1 + ':Ylk)27

again with 4; replaced by 1, where )\ is the REML estimator of A (Exercise
2.8). The asymptotic null distribution of the test is x3.

3. Jackknife method. For non-Gaussian longitudinal models, the asymp-
totic covariance matrix of the REML (ML) estimator may be estimated using
the jackknife method discussed in Section 1.4.4. One advantage of the jack-
knife method is that it is one-formula-works-for-all. In fact, the same jackknife
estimator not only applies to longitudinal linear mixed models, it also applies
to longitudinal generalized linear mixed models, which we discuss in Chapters
4 and 5. Let 1 be the vector of all the parameters involved in a non-Gaussian
longitudinal model, which includes fixed effects and variance components. Let
z/; be the REML or ML estimator of ¥. Then, the jackknife estimator of the
asymptotic covariance matrix of 1) is given by (1.43). Jiang and Lahiri (2004)
showed that, under suitable conditions, the jackknife estimator is consistent
in the sense that Yy, = X+ Op (m~179) for some & > 0. Therefore, one may
use X =% Jack on the left side of (2.10) for the asymptotic test. We consider
a simple example.

Ezample 2.4 (The James—Stein estimator). Let y;, i = 1,...,m be inde-
pendent such that y; ~ N(6;,1). In the context of simultaneous estimation of
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0 = (61,...,0), it is well known that for m > 3, the James—Stein estima-
tor dominates the maximum likelihood estimator, given by y = (y1,...,Ym)’
in terms of the frequentist risk under the sum of squared error loss function
(e.g., Lehmann and Casella 1998, pp. 272-273). Efron and Morris (1973) pro-
vided an empirical Bayes justification of the James—Stein estimator. Their
Bayesian model can be equivalently written as the following simple random
effects model: y; = a; +¢;, i = 1,...,m, where the sampling errors {¢;} and
the random effects {a;} are independently distributed with a; ~ N(0,%) and
€ ~ N(0,1), and € and « are independent.

Now we drop the normality assumption. Instead, we assume that y;, 1 <
i <m (m > 1) are i.i.d. with E(y;) = 0, var(y;) = v + 1 and E(jy1]¢) < >
(d > 4). Then, an M-estimator for v, which is the solution to the ML equation,
is given by ¢ = m™1 S y? — 1. The delete-i M-estimator is Yy = (m—
H=ty ki yjz. — 1. The jackknife estimator of the asymptotic variance of 1/3 is
given by

1. . .
CAszack = L (w—z - 77Z})2

m :
=1

4. Robust versions of classical tests. Robust testing procedures have been
studied extensively in the literature. In particular, robust versions of the clas-
sical tests, that is, the Wald, score, and likelihood-ratio tests (e.g., Lehmann
1999, §7) have been considered. In the case of i.i.d. observations, see, Foutz
and Srivastava (1977), Kent (1982), Hampel et. al. (1986), and Heritier and
Ronchetti (1994), among others. In the case of independent but not identi-
cally distributed observations, see, for example, Schrader and Hettmansperger
(1980), Chen (1985), Silvapulle (1992), and Kim and Cai (1993). In contrast
to the independent cases, the literature on robust testing with dependent ob-
servations is not extensive. In particular, in the case of linear mixed models,
such tests as the likelihood-ratio test were studied only under the normality
assumption (e.g., Hartley and Rao 1967). Because the normality assumption
is likely to be violated in practice, it would be interesting to know if the clas-
sical tests developed under normality are robust against departure from such
a distributional assumption.

Jiang (2005¢) considered robust versions of the Wald, score, and likelihood-
ratio tests in the case of dependent observations, which he called W-, S- and
L-tests, and applied the results to non-Gaussian linear mixed models. The
approach is briefly described as follows with more details given in Section 2.7.
Let y = (yx)i1<k<n be a vector of observations not necessarily independent.
Let ¢ be a vector of unknown parameters that are associated with the joint
distribution of y, but the entire distribution of y may not be known given v
(and possibly other parameters). We are interested in testing the hypothesis:

Hy:9p ey (2.17)
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versus Hy: ¢ ¢ Wy, where Wy C W, and ¥ is the parameter space. Suppose
that there is a new parameterization ¢ such that, under the null hypothesis
(2. 17), ¥ = (o) for some ¢. Here 1(-) is a map from &, the parameter space
of ¢, to ¥. Note that such a reparameterization is almost always possible, but
the key is to try to make ¢ unrestricted (unless completely specified, such as
in Example 2.5 below). The following are some examples.

Example 2.5. Suppose that, under the null hypothesis, ¢ is completely
specified; that is, Hy: ¥ = 1g. Then, under Hy, ¥ = ¢ = 9)g.

Ezample 2.6. Let ¢ = (¢Y1,...,Up, ¥pt1,...,%,y), and suppose that one
wishes to test the hypothesis Ho: ¥; = g, p+1 < j < g, where 1g;,
p+1 < j < g are known constants. Then, under the null hypothesis, ¥; = ¢;,
1< j <p,and 9); = 1o, p+1 < j < g for some (unrestricted) ¢ = (¢;)i1<j<p-

Example 2.7. Suppose that the null hypothesis includes inequality con-
straints: Ho: ; > toj, p1 +1 < j < p, and ¢ = thoj, p+1 < j < g,
where p; < p < ¢. Then, under the null hypothesis, ¢; = ¢;, 1 < j < py,
Yj = toj +e?, pr+1 <5 < p,and ¢ = o, p+ 1 < j < g for some
(unrestricted) ¢ = (¢;)1<j<p-

Let L(t,y) be a function of ¢ and y that takes positive values, and
W(h,y) = log L(¢,y). Let Lo(¢,y) = L(¥(¢),y), and lo(¢,y) = log Lo(¢,y).
Let ¢ and p be the dimensions of # and ¢, respectively. Let ¢ be an estimator
of 1, and (ﬁ an estimator of ¢. Note that here we do not require that 1& and ¢?
be the (global) maximizers of (1, y) and lo(¢, y), respectively. But we require
that @[AJ be a solution to 91/ = 0, and QAS a solution to 9ly/0¢ = 0.

We now loosely define matrices A, B, C, and X with the exact definitions
given in section 2.7: A is the limit of the matrix of second derivatives of [
with respect to 6; B is the limit of the matrix of second derivatives of Iy with
respect to ¢; C' is the limit of the matrix of first derivatives of § with respect to
¢; and X' is the asymptotic covariance matrix of 91/06, all subject to suitable
normalizations. As shown in Section 2.7, the normalizations are associated
with sequences of nonsingular symmetric matrices G and H. The W-test is
closely related to the following quantity.

W= [0 - v(9) GQLEK — v (9], (2.18)
where @, is the unique Moore—Penrose inverse (see Appendix B) of
Qu=[A"1-C(C'AC)ICE[AT - o(Cc’AC) .

Let Q; be a consistent estimator of @), in the sense that 1Qm —Qull = 0
in probability. The W-test statistic, W, is defined by (2.18) with @, replaced
by @, . Similarly, we define the following:

ol ' ol
S=|— GIATV2Q7 ATY2G! ( ) . (2.19)
(‘W w(é)) O »(d)
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where @7 is the unique Moore-Penrose inverse of
Qs=(I—-P)AV2xA7V2(1 - P),

and P = AY2C(C'AC)~1C’A'Y/2. Let A and Q7 be consistent estimators of
A and Q7 , respectively, in the same sense as above. Note that, quite often,
A only depends on v, of which a consistent estimator; that is, 1/3, is available.
The S-test statistic, S, is defined by (2.19) with A and @ replaced by A and

Q5 , respectively. Finally, the L-ratio for testing (2.17) is defined as

LO(QZ), y)

L(Y,y)

Note that the L-ratio is the same as the likelihood ratio when L(%,y) is a
likelihood function. The L-test statistic is then —2log R.

Jiang (2005¢) showed that, under some regularity conditions, both the W-
and S-tests have an asymptotic x2 distribution, where the degrees of freedom
r = rank{X'/2A~Y/2(] — P)} with P given below (2.19). As for the L-test, the
asymptotic distribution of —2log R is the same as A\1&2 + - -+ + \.€2, where r
is the same as before, A1, ..., A, are the positive eigenvalues of

Qi =[A"'—C(C'AC)TIC2R[AT — C(CTAC) T2 (2.20)

and &,...,& are independent N(0,1) random variables. In particular, if X
is nonsingular, then r = g — p. These general results apply, in particular, to
non-Gaussian linear mixed models. See Section 2.7 for more details.

We now consider application of the robust versions of classical tests to
non-Gaussian mixed ANOVA models. The models are defined in Section 1.2.2
and the estimation problems discussed in Section 1.4. Consider the Hartley—
Rao variance components: A = o3, v = 07 /o5, 1 < i < 's. Let v = (v;)1<i<s;
and v = (8 XA 74'). Then, ¢ is a vector of parameters, which alone may
not completely determine the distribution of y. Nevertheless, in many cases,
people are interested in testing hypotheses of the form (2.17), where ¥, C
U={:A>0,v >0,1<i< s} versus Hy: ¢ ¢ ¥;. We assume that there
is a new parameterization ¢ such that, under the null hypothesis, ¥ = (¢)
for some ¢ = (¢r)1<k<q. Here 9(-) is a map from &, the parameter space of
o, to ¥. More specifically, let ¢ = p + s + 1, which is the dimension of ¥. We
assume that there is a subset of indices 1 < iy < --- < ig < ¢ such that

{wik (¢) is a function of ¢, 1<k<d, and (2.21)

1;(¢) is a constant, ie{l,...,q}\ {i1,... 4}

Intuitively, the null hypothesis imposes constraints on 1, therefore there are
less free parameters under Hy, and ¢ represents the vector of free parameters
after some changes of variables. Note that such a reparameterization almost
always exists, but the key is to try to make ¢ unrestricted unless completely
specified.
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When normality is assumed, the use of the likelihood-ratio test for com-
plex hypotheses and unbalanced data was first proposed by Hartley and Rao
(1967), although rigorous justification was not given. Welham and Thompson
(1997) showed the equivalence of the likelihood ratio, score, and Wald tests
under normality. On the other hand, Richardson and Welsh (1996) considered
the likelihood-ratio test without assuming normality, whose approach is simi-
lar to our L-test, but their goal was to select the (fixed) covariates. Under the
normality assumption, the log-likelihood function for estimating 6 is given by

) = constant —  flog -+ og(V]) + 50~ X0V = X8}

where V.=V, = I+ 37 |4V, with I being the n-dimensional identity
matrix, V; = Z;Z!, 1 < i < s, and |V| the determinant of V. The restricted
log-likelihood for estimating A, v is given by

1 / y'Py
Ir(\,v,y) = constant — B (n—p)log A\ +1og(|K'VK]|) + N [

where K is any n X (n — p) matrix such that rank(K) =n —p and K'X =0,
and P = P, = K(K'VK)'K' = V7! —VIX(X'V1X)7 X'V~ (see
Appendix B). The restricted log-likelihood is only for estimating the variance
components. It is then customary to estimate 8 by the empirical best linear
unbiased estimator:

f=(XVIX)TXV Yy,

where V = Vi, and 4 = (9;)1<i<s is the REML estimator of . Alternatively,
one may define the following “restricted log-likelihood” for 1.

lr(¢¥,y) = constant
1

- {(n ~ p)log A+ log | K'VE] + 5 (y — XYV~ (y - Xﬁ)} .

It is easy to show that the maximizer of I (1, y) is ) = (3’ A\ 4)’, where A and
4 are the REML estimators, and B is given above with V= V4. The difference
is that, unlike I(¢,y), {r(¢),y) is not a log-likelihood even if normality holds.
Nevertheless, it can be shown that both I(v), y) and Ig(, y) can be used as the
objective function to test (2.17) under a non-Gaussian mixed linear model.
The details are given in Section 2.7.1. We now consider an example.

Ezample 2.2 (Continued). In this case, we have ¢ = 3, 1 = p, o = X =
72, and 13 = v = 02/72. Consider the hypothesis Hyo: A\ = 1, v > 1. Note
that under Hy we have p = ¢1, A = 1, and v = 1 + 2 for unrestricted ¢,
¢2. Thus, (2.21) is satisfied with d = 2, iy = 1, and i2 = 3. The Gaussian
log-likelihood is given by (Exercise 2.9)
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1 SSE SSA
(Y, y) =c— 3 {mk log(A) +mlog(l + kv) + T NI+ )
LMk — u)2}
ML+ky) |7

where ¢ is a constant, SSA = k> i~ (7; — ¥..)%, SSE = 31", Z?zl(yij -
7i)% g = (mk)7' Y, 25:1 vij, and g;. = k7! Z?Zl yij. Here we have
1/} = (:uv)‘a'y)/a ¢ = (¢17¢2)/7 and ¢(¢) = (d)lv]-v]- + etﬁz)/’ where ¢1 and
¢ are unrestricted. The solution to the (Gaussian) ML equation is given by
o= i =g, dp = A = MSE, and 3 = 4 = (1/k){(1~1/m)(MSA/MSE)—1},
where MSA = SSA/(m —1) and MSE = SSE/m/(k —1). On the other hand, it
is easy to show that the solution to the ML equation under the null hypothesis
is given by ¢1 = §.., ¢o = log{(1/k)(1—1/m)MSA — (1+1/k)}, provided that
the term inside the logarithm is positive. Because E(MSA) =1+ ky > k+1
under Hy (Exercise 2.9), it is easy to show that, as m — oo, the logarithm is
well defined with probability tending to one.

We now specify the matrices A, C', G, and Y under the additional
assumption that E(a3) = E(e};) = 0. According to Theorem 2.4, A is
given by (2.62), and it can be shown that X'V=1X/\n = 1/A2(1 + kv),
Ap = VE/2X2(1 + kv), and Ay = k2/2)X3(1 4 kv)?. Again, by Theorem 2.4,
G = diag(v'mk,vVmk, /m); C is the 3x2 matrix whose first column is (1,0, 0)’
and second column is (0,0, e?2)’. Finally, ¥ = A+ A with A given by (2.63),
and it can be shown that

Ago 1 2 2
=0 _ —1
n 4A4(1 + k’y)2 [KO{]" + (k )’Y} + Hlk’y ]7
k
Ay = L[Ho{l + (k= 1)y} + rik?*y%,

AN (L + k)3

Ay (Ko + K1ky?),

T AN (L k)t
where ro = {E(e};)/m*} — 3 and k1 = {E(af)/o*} — 3.
It can be shown that, in this case, the W-test statistic reduces to

02 2k N\ 2

Xow = | 77— *+ ko mk(MSE — 1),
k—1

where &g is the EMM estimator of k¢ given in Example 2.2 (Continued) below

Lemma 2.1. Note that, by the consistency of % (Exercise 2.7), we have, as

m — 0o,

ﬂ_FA i}ﬂ_‘_
k1 0T T

> E(e}) -1 > 0,
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under Hy, unless €7, is degenerate. Thus, with the exception of this extreme
case, the denominator in {2, is positive with probability tending to one un-
der the null hypothesis. By Theorem 2.4, as m — oo, the asymptotic null
distribution of the W-test is x7 (Exercise 2.10).
As it turns out, the S-test statistic is identical to the W-test statistic in
this case, and it has the same asymptotic null distribution (Exercise 2.11).
Finally, the L-test statistic is equal to

—2log R = m(k — 1){MSE — 1 — log(MSE)}

in this case. Suppose that m — oo and k is fixed (k > 2). Then, it can be
shown that » = 1 in this case, therefore, by Theorem 2.5, the asymptotic
null distribution of —2log R is the same as A;x?, where \; is the positive
eigenvalue of Q; given by (2.20) evaluated under Hy. It can be shown that
A1 = 1+ {(k — 1)/2k}ko, which is estimated by 1 + {(k — 1)/2k}ko. Note
that if kg = 0, as will be the case if the errors are normal, the asymptotic
null distribution of the L-test is x?, which is the same as that for the W-
and S-tests. Interestingly, the latter result does not require that the random
effects are normal (Exercise 2.12).

2.2 Confidence Intervals in Linear Mixed Models

2.2.1 Confidence Intervals in Gaussian Mixed Models

Confidence intervals in linear mixed models include confidence intervals for
fixed effects, confidence intervals for variance components, and confidence in-
tervals for functions of variance components. Among the latter, difference and
ratio are two simple functions that are frequently used. Other functions such
as the heritability, an important quantity in genetics, may be expressed as
functions of these two simple functions. For simplicity, the term confidence
intervals for variance components is here understood as including functions of
variance components. We first consider confidence intervals under Gaussian
linear mixed models.

1. Ezact confidence intervals for variance components. It is known that
in some special cases, mostly balanced cases, exact confidence intervals for
variance components can be derived. Here we do not attempt to list all such
cases where exact confidence intervals are available. For more details, see
Burdick and Graybill (1992). Instead, our approach is to introduce a basic
method used to derive exact confidence intervals, so that it may be applied
to different cases whenever applicable. The basic idea is to find a pivotal
quantity, that is, a random variable that depends on both the observations
and the variance component, for which an exact confidence interval is to be
constructed. Quite often, such a pivotal quantity is in the form of either an*“F-
statistic” or a “y?-statistic”. Here the quotes indicate that the quantity is not
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really a statistic because it involves the variance component. We illustrate the
method by examples.

Ezample 2.2 (Continued). Consider the Hartley—Rao form of variance com-
ponents A = 72 and v = ¢2/72. Suppose that one is interested in constructing
an exact confidence interval for v. Consider the following quantity

MSA
(1+ kv)MSE ’

where MSA = SSA/(m —1) and MSE = SSE/m/(k —1). It can be shown that,
under normality, F' has an F-distribution with m — 1 and m(k — 1) degrees of
freedom (Exercise 2.13). It follows that, given p (0 < p < 1), an exact (1—p)%
confidence interval for + is

(R (R _,

E\Fy " E\ L ’
where R = 1\/ISA/1\/IS:E7 FL = F’m,71,m(k71),17p/2’ and FU = mel,m(kfl),p/Z
(Exercise 2.13).

Ezample 2.3 (Continued). Suppose that the problem of interest is to con-
struct an exact confidence interval for the variance of any single observa-
tion y;;; that is, var(y;;) = o2 + 72. Let ¢;;, 1 < j < k; be constants such

ki k?i — ki
that ijl ¢;ij = 0 and ijl cfj = 1—1/k;. Define u; = g;. + ijl CijYij,
1 < i < m. It can be shown that uq,...,u,, are independent and normally
distributed with mean p and variance 02 +72 (Exercise 2.14). Thus, the quan-
tity
V2= i (ui — @)
02 + 72

is distributed as x2, ;. It follows that an exact (1 — p)% confidence interval

for o2 + 72 is

27;1(% —u)° Z:’;l(ul —u)°

)

D) D)
Xm—1,p/2 Xm—1,1—p/2

The method used in the above example for constructing an exact confi-
dence interval for o2 + 72 is due to Burdick and Sielken (1978). In fact, the
authors developed a method that can be used to obtain an exact confidence
interval for ao? + br?, where a, b are positive constants subject to some addi-
tional constraints. One such constraint is that b # 0. Thus, for example, the
method cannot give an exact confidence interval for o2 (see Exercise 2.15).
This example shows the limitation of the method used to construct exact con-
fidence intervals. In fact, no existing method is known to be able to obtain an
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exact confidence interval for ¢2 in an analytic form. On the other hand, ap-
proximate confidence intervals do exist for 02 and other variance components.
We discuss such methods next.

2. Approxzimate confidence intervals for variance components. Satterth-
waite (1946) proposed a method, which extended an earlier approach of Smith
(1936), for balanced ANOVA models. The goal was to construct a confidence
interval for a quantity in the form ¢ = 2?21 ci\i, where \; = E(S?) and S? is
the mean sum of squares corresponding to the ith factor (fixed or random) in
the model (e.g., Scheffé 1959). Note that many variance components can be
expressed in this form; for example, the variance of y;;, 0% + 72, in Example
2.3 can be expressed as (1/k)E(S?) + (1 — 1/k)E(S3), where S is the mean
sum of squares corresponding to a and S3 that corresponding to €. The idea
was to find an appropriate “degrees of freedom,” say, d, such that the first two
moments of the random variable d Y7, ¢;5? /¢ match those of a x2 random
variable. This approach is known as Satterthwaite’s procedure. Graybill and
Wang (1980) proposed a method that improved Satterthwaite’s procedure.
The authors called their method the modified large sample (MLS) method.
The method provides an approximate confidence interval for a nonnegative
linear combination of the \;s, which is exact when all but one of the coeffi-
cients in the linear combination are zero. We describe the Graybill-Wang for
the special case of balanced one-way random effects model (Example 2.2).

Suppose that one is interested in constructing a confidence interval for
¢ = A1 + c2Ag, where ¢; > 0 and c3 > 0. This problem is equivalent to
constructing a confidence interval for ( = cA\; + Ao, where ¢ > 0. A uniformly
minimum variance unbiased estimator (UMVUE, e.g., Lehmann and Casella
1998) of the quantity is given by é = ¢S? + S2. Furthermore, it can be shown

that ¢ is asymptotically normal such that (¢ — ¢)/y/var(C) has a limiting

N(0,1) distribution (Exercise 2.16). Furthermore, the variance of ¢ is given
by ¢2{2A1/(m — 1)} +2X3/m(k —1). Again, recall that S7 is an unbiased (and
consistent) estimator of A; j = 1,2 (Exercise 2.16). This allows one to obtain
a large sample confidence interval for ¢ as follows.

A 25¢ 254
_ 2 1 2
[C ZP/Q\/C <m—1>+m(k—l) y

2 25} 253
<+z,,/2\/cz <m—11) + m(kf 1)1 , (2.22)

where 1 — p is the confidence coefficient. The confidence interval (2.22) is
expected to be accurate when the sample size is large, that is, when m — oo.
However, small sample performance is not guaranteed. Graybill and Wang
proposed to modify the constants z,/5, 2/(m — 1) and 2/m(k — 1), so that
the confidence interval will be exact when either Ay = 0 or Ay = 0. Their
confidence interval is given by
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{é — /G328 + G3S4,C + \/H3 28] + Hgsg] :

where G; = 1 — (m — 1)/)@”_14)/2, Gy =1—-—m(k — 1)/)(371(16_1)’/)/27 H; =
(m — 1)/x727171717p o — 1, and Hy = m(k — 1)/x72n(k71)’p/2 — 1. Using numer-
ical integration, Graybill and Wang compared confidence coefficients of the
MLS confidence intervals with those of Satterthwaite and Welch (Welch 1956).
They concluded that the confidence coefficients of the MLS are closer to the
nominal levels than those of Satterthwaite and Welch. As for the length of
the confidence intervals, Graybill and Wang conducted a simulation study.
The results showed that average widths of two types of MLS confidence inter-
vals, namely, the shortest unbiased confidence interval and shortest confidence
interval, are generally smaller than those of Welch’s.

Sometimes, the variance components of interest cannot be expressed as
a nonnegative linear combination of the \;s. For example, in Example 2.2,
the variance 02 = (\; — A2)/k, so the coefficients in the linear combination
have different signs. It is therefore of interest to obtain confidence intervals
for ¢ = E?:l ¢i\i, where the ¢;s may have different signs. Healy (1961) pro-
posed a procedure that may be used to obtain an exact confidence interval for
c1A\1 — Ao, where ¢; and ¢y are nonnegative. However, the procedure requires
a randomization device. In other words, the confidence interval is not solely
determined by the data. Several authors have proposed (solely data-based)
approximate confidence intervals for ¢. For example, Ting et al. (1990) pro-
posed a procedure similar to Graybill and Wang (1980) discussed above. Note
that a large sample confidence interval such as (2.22) based on asymptotic
normality of ¢ does not require that the signs of the ¢;s be the same. All one
has to do is to modify the coefficients of the large sample confidence interval
so that it performs better in small sample situations. See Ting et al. (1990) for
details. Burdick and Graybill (1992) reviewed several approximate procedures
for constructing confidence intervals for . They conclude that there is little
difference in terms of performance of the proposed procedures.

Finally, one should bear in mind that, in cases of large samples, a confi-
dence interval as simple as (2.22) can be used without modification. Such a
procedure is much easier to derive and calculate. We return to this method in
the next section.

3. Simultaneous confidence intervals. Hartley and Rao (1967) derived a
simultaneous confidence region for the variance ratios v; = 07 /7%,i=1,...,s
(i.e., the Hartley-Rao form of variance components; see Section 1.2.1.1) in
a Gaussian mixed ANOVA model. Their derivation is based on maximum
likelihood estimation, a method that we visit again in the next section. The
Hartley-Rao confidence region is quite general, that is, it applies to a general
ANOVA model, balanced or unbalanced. On the other hand, in some spe-
cial cases different methods may result in confidence intervals that are easier
to interpret. For example, Khuri (1981) developed a method of construct-
ing simultaneous confidence intervals for all continuous functions of variance
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components in the balanced random effects model, a special case of the mixed
ANOVA model.

It should be pointed out that, provided one knows how to construct con-
fidence intervals for the individual variance components, by then Bonferroni
inequality, a conservative simultaneous confidence interval for the variance
components can always be constructed. Suppose that [L;,U;] is a (1 — p;)%

confidence interval for the variance component 6;, ¢ = 1,...,q. Then, by the
Bonferroni inequality, the set of intervals [L;,U;], ¢ = 1,...,q is a (conser-
vative) simultaneous confidence interval for 6;, i = 1,...,q with confidence

coefficient greater than or equal to 1 — >"7 | p;. Sometimes, the confidence
coefficient may be improved if there is independence among the individual con-
fidence intervals. For example, in the balanced normal random effects model,
let n; be the degrees of freedom associated with S?, the mean sum of squares
corresponding to the ith factor (fixed or random). Then, it is known that
niSf/)\i has a x? distribution with n; degrees of freedom, where \; = E(SZQ)

Furthermore, the random variables n;S2/\;, i = 1,...,h are independent
(e.g., Scheffé 1959). It follows that a (1 — p)% confidence interval for \; is
3 , 5 , (2.23)
Xnip/2 Xng1-p/2
and, furthermore, the set of intervals (2.23) with ¢ = 1,..., h is a simultaneous
confidence interval for \;, i = 1,..., h with confidence coefficient (1—p)". Note

that (1 — p)* > 1 — hp for any integer h > 1.

4. Confidence intervals for fized effects. For the vector of fixed effects 3
in (1.1), the best linear unbiased estimator, or BLUE, is given by (1.36),
provided that the expression does not involve unknown variance components.
Furthermore, we have

Var(fpLue) = (X'V71X)71 (2.24)

In fact, under mild conditions, Aprug is asymptotically normal with mean vec-
tor [ and asymptotic covariance matrix given by the right side of (2.24). It is
known that in some special cases, mostly in the balanced situations, the right
side of (1.36) does not depend on the variance components, therefore BBLUE
can be used as an estimator. However, even in those cases the right side of
(2.24) typically depends on the variance components. Of course, in general,
both BBLUE and its covariance matrix depend on the variance components.
Therefore, to construct a confidence interval for a fixed effect, or more gen-
erally, any linear function of (3, one needs to replaced the unknown variance
components by consistent estimators, for example, REML estimators. Except
for some special cases (see Example 2.8 below), the resulting confidence inter-
val will be approximate in the sense that its confidence coefficient approaches
the nominal level as sample size increases. We consider an example.
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Ezample 2.8. Consider the following model, which is a special case of the
so-called nested error regression model:

yijzﬁo—l-ﬁlxi—&-ai—i—eij, 1=1,...,m, jZl,...,k}i,

where Oy, 01 are unknown regression coefficients, x;s are known covariates,
a;s are random effects, and €;;s are errors. Suppose that the random effects
and errors are independent and normally distributed such that E(a;) = 0,
var(a;) = 0%, E(¢;;) = 0, and var(e;;) = 72.

It can be shown (Exercise 2.17) that, in this case, (1.36) gives the following
expressions for the BLUE,

P = S gt
s = R S G

where d; = k; /(72 + k;o?). Tt follows that, when k; = k, 1 < i < m (ie., in
the balanced case), we have

(Cimy 20) it i) — (i i) (i widi)

BBLUE,O = m m )
my il 7 — (Dimy @i)?
[ >im (@i —2) (5 — 9..)
’ iy (s — 2.)?

It is seen that in the balanced case, the BLUE does not depend on the vari-
ance components but in the unbalanced case it does. Furthermore, fpLug =
(BBLUE,0, BBLUE,1) - It can be shown by (2.24) that

A 1 ”1 di 2 _ m, di i
o) = 3 ( 25, R ). e

where D = (3270 d;) (>t dix?) — (3%, diw;)? (Exercise 2.17). So even in
the balanced case the covariance matrix of BLUE depends on the variance
components.

When the variance components involved in BLUE are replaced by their
estimators, the resulting estimator is often called empirical BLUE, or EBLUE.
It is easy to see that, under normality, EBLUE is the same as the MLE
of B, if the variance components are replaced by their MLE. It should be
pointed out that EBLUE is more complicated and, in particular, not linear
in y. Furthermore, if one replaces the variance components involved on the
right side of (2.24) by their estimators, the result would underestimate the true
variation of EBLUE. In fact, Kackar and Harville (1981) showed that EBLUE,
denoted by £, is still an unbiased estimator of 3, that is E(B) = (3, provided
that the data are normal and estimators of the variance components are even



72 2 Linear Mixed Models: Part II

and translation invariant (see Section 2.8 for more detail). In addition, the
authors showed that, under normality

var(a3) = var(aBeLug) + E{d'(8 — BsLuE)} (2.28)

for any given vector a. Because var(a’ BBLUE) =a Var(BBLUE)a, the first term
on the right side of (2.28) can be estimated by the right side of (2.24) with
the variance components replaced by their estimators. However, there is a
second term on the right side of (2.28) that cannot be estimated this way.
Fortunately, for constructing confidence intervals for the fixed effects, this
complication does not necessarily cause any problem, at least in the large-
sample situation. In fact, for ANOVA models, Jiang (1998b) showed that,
when the variance components are estimated by the REML estimators, the
asymptotic covariance matrix of B is still given by the right side of (2.24)
(in spite of estimation of the variance components). It is known (e.g., Miller
1977) that, when the variance components are estimated by the MLE, the
asymptotic covariance matrix of B is also given by the right side of (2.24).
Thus, in such cases, a (large-sample) confidence interval for a’3 is given by

[G/B _ Zp/Q{a/(X/VAX)Aa}l/Q’

a’B—i—zp/g{a’(X’f/_lX)_la}l/Q} , (2.29)

where V is V with the variance components replaced by their REML or ML
estimators. It is shown in section 2.3 that the complication in EBLUE becomes
important in the prediction of a mixed effect, that is, a linear combination of
fixed and random effects.

Ezample 2.8 (Continued). Suppose that one is interested in constructing
a confidence interval for 8;. By (2.29) and (2.27), taking a = (0,1)’, a large
sample confidence interval is

s 1/2 s 1/2
B = 22 (i‘l > , Br+ 20 (i_l ) :

#2D #2D

where d; = k; /(72 + k;62), By is given by (2.26) with d; replaced by d; ,1 <
1 < m, and D is D with d; replaced by d;, 1 < i < m. Here 62 and 72 are
understood as the REML (or ML) estimators.

2.2.2 Confidence Intervals in Non-Gaussian Linear Mixed Models

For non-Gaussian linear mixed models, exact confidence intervals for param-
eters of interest usually do not exist. Therefore, methods of constructing con-
fidence intervals will be based on large sample theory. Suppose that one is
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interested in obtaining a confidence interval for a linear function of the pa-
rameters, which may include fixed effects and variance components. Let ¢ be
the vector of all fixed parameters involved in a non-Gaussian linear mixed
model. Suppose that an estimator of 1, say 1&, is available which is consis-
tent and asymptotically normal; that is, (2.7) holds. If a consistent estimator
of X', the asymptotic covariance matrix of 1[), is available, say X, then, for
any linear function a’vy, where a is a known vector, one may be able to show

that a’ (@E —)/Vd Ya is asymptotically standard normal. Therefore, a large-
sample (1 — p)% confidence interval (0 < p < 1) for a’y is

4= 2y 2Vl S a5+ 5V ]

We now consider two special cases of non-Gaussian linear mixed models and
discuss how to estimate X' in those cases.

1. ANOVA models. For ANOVA models, Jiang (1996) derived asymptotic
distributions of both REML and ML estimators without the normality as-
sumption. Jiang (1998b) extended these results to include estimators of fixed
effects. The main result of the latter is summarized as follows. Consider the
Hartley-Rao form of variance components (see Section 1.2.1.1). Let the nor-
malizing constants p;, 0 < i < s and matrices M, J be defined as in Theo-
rem 1.1 of Chapter 1. Define P = Mdiag(po,p1,...,ps), @ = (X'V1X)1/2
R = JY?TC, where

i)
PNE=D ) i1 <i<ntm
C =NV 'xo!

9

with V; i, w; and b(7y) defined above Theorem 1.1. Then, under suitable con-

ditions, we have
(R?P RQQ) (Z B Z) By N0, Iyts11), (2.30)
where § is the EBLUE with REML estimators of variance components (in
other words, B is the REML estimator of 3; see Section 1.3.2). Because, un-
der normality, 7 = 0 hence R = 0, the normalizing matrix on the left side
of (2.30) reduces to diag(P, Q) in this case. However, for non-Gaussian lin-
ear mixed models, the normalizing matrix in (2.30) may involve additional
parameters such as the third and fourth moments of the random effects and
errors. A method of estimating the higher moments, known as EMM, has been
introduced earlier (see Section 2.1.2.1), under the assumption (2.14) (which
implies E(w;) =0, 1 <1 <n+m). To see how much difference there may be
if one ignores the higher moments, consider the following example.

Ezample 2.2 (Continued). If normality is not assumed, it can be shown,
by (2.30), that the asymptotic variance of vmk(A — \) is A\?/2 + ko, that
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is, Vmk(A — ) = N(0,A2/2 + k) in distribution, where kg, k1 are defined
below (2.14). Similarly, the asymptotic variance of v/m(§—7) is 72 /2+ k1 /A2
Therefore, the difference in asymptotic variance from that under normality is
ko for the estimation of A\, and 1 /A? for the estimation of 7.

If (2.14) is not known to hold, the EMM may not apply. In this case, an
alternative method would be that of partially observed information introduced
in Section 1.4.2. Note that the latter method applies more generally not only
to mixed ANOVA models but also to other types of non-Gaussian linear mixed
models for estimating the asymptotic covariance matrix of the REML or ML
estimator.

2. Longitudinal models. For longitudinal models, the asymptotic covari-
ance matrix of the vector of parameters of interest, which may include fixed
effects and variance components, may be estimated using the jackknife method
introduced in Section 1.4.4 [see (1.43)]. Alternatively, the asymptotic covari-
ance matrix may also be estimated by partially observed information. See the
remark at the end of Section 1.4.2.

2.3 Prediction

There are two types of prediction problems in the context of linear mixed
models. The first is the prediction of a random effect, or, more generally, a
mixed effect. Here we focus on a linear mixed effect, which can be expressed
as 1 = a’a+b' 3, where a, b are known vectors, and « and 3 are the vectors of
random and fixed effects, respectively, in (1.1). This type of prediction problem
has a long history, starting with C. R. Henderson in his early work in the
field of animal breeding (e.g., Henderson 1948). The best-known method for
this kind of prediction is best linear unbiased prediction, or BLUP. Robinson
(1991) gives a wide-ranging account of BLUP with examples and applications.
The second type of prediction is that of a future observation. In contrast to
the first type, prediction of the second type has received much less attention,
although there are plenty of such prediction problems with practical interest
(e.g., Jiang and Zhang 2002). In the next two sections we discuss these two
types of predictions.

2.3.1 Prediction of Mixed Effect

1. Best prediction when all the parameters are known. When the fixed ef-
fects and variance components are known, the best predictor for ¢ = d’a, in
the sense of minimum mean squared error (MSE), is its conditional expecta-
tion given the data; that is,

£ =E(ély) = d'E(aly) . (2.31)

Assuming normality of the data, we have, by (1.1), that
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()= ((50) (V)
y xp)\za v )
where G = Var(a), R = Var(e), and V = Var(y) = ZGZ' + R. It follows that
EB(aly) = GZ'V7(y — XP)
(see Appendix C). Therefore, by (2.31), the best predictor of ¢ is
§=dGZ'V y—Xp).

Once the best predictor of ¢ = o'« is obtained, the best predictor of
n=ada+bsis

g =bp+dGZ'V 1y - Xp). (2.32)

Here the subscript B refers to the best predictor.

It can be shown that, without assuming normality, (2.32) gives the best
linear predictor of n in the sense that it minimizes the MSE of a predictor
that is linear in y. See Searle et al. (1992, §7.3). The following example was
given by Mood et al. (1974, pp. 370).

Ezample 2.9 (IQ tests). Suppose intelligence quotients for students in a
particular age group are normally distributed with mean 100 and standard
deviation 15. The IQ, say x1, of a particular student is to be estimated by a
test on which he scores 130. It is further given that test scores are normally
distributed about the true IQ as a mean with standard deviation 5. What is
the best prediction on the student’s 1Q? (The answer is not 130.)

The solution may be found by applying the method of best prediction. Here
we have y = pu+a+e¢, where y is the student’s test score, which is 130; « is the
realization of a random effect corresponding to the student, so that u + « is
the student’s true IQ, which is unobservable. The question is to predict u+ «,
a mixed effect. It is known that IQ ~ N (100, 15?) and score|IQ ~ N(I1Q, 5?).
Also, p = 100 is given. It follows that Z = 1, G = var(IQ) = 152, V =
var(score) = var(E(score|IQ))+E(var(score|IQ)) = var(IQ)+E(5%) = 152452,
Therefore, by (2.32), the best prediction of the student’s IQ is

52

IQ=p+ m(score —p) =127.

2. Best linear unbiased prediction. If the fixed effects are unknown but the
variance components are known, Equation (2.32) is not a predictor. In such
a case, it is customary to replace 3 by [, its maximum likelihood estimator

under normality, which is
B=(XVIX)TIX'Vly. (2.33)

Here, for simplicity, we assume that X is of full rank p. (2.33) is also known
as the best linear unbiased estimator, or BLUE, whose derivation does not
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require normality. Henderson (1973) showed that, after 5 in (2.32) is replaced
by the BLUE (2.33), the resulting predictor is the best linear unbiased predic-
tor of 7 in the sense that (i) it is linear in y, (ii) its expected value is equal to
that of 7, and (iii) it minimizes the MSE among all linear unbiased predictors,
where the MSE of a predictor 7 is defined as MSE(7}) = E{(57 — n)(7 — n)'}.
Again, the result does not require normality. Thus, the BLUP is given by

fipLup = VB +dGZ'V (y - XB), (2.34)
where [ is the BLUE given by (2.33). The vector
a=GZ'V iy - Xp) (2.35)

is also called the BLUP of «.

Henderson’s original derivation of BLUP was based on what he called
“joint maximum likelihood estimates” of fixed and random effects. Consider
a Gaussian mixed model (1.1), where o ~ N(0,G), € ~ N(0, R), and « and
e are independent. Suppose that both G and R are nonsingular. Then, it can
be shown that the logarithm of the joint pdf of o and y can be expressed as
(Exercise 2.18)

C*%{(y*XﬂfZa)'R’l(y*XﬂfZa)Jra’G*la}, (2.36)

where ¢ is a constant. Henderson (1950) proposed to find the “maximum like-
lihood estimates” of § and «, treating the latter as (fixed) parameters, by
differentiating (2.36) with respect to § and « and setting the partial deriva-
tives equal to zero. This leads to Henderson’s mixed model equations:

X'R7'X  X'R'Z B X'R™?

<Z’R1X G+ Z'Rlz) (a) = (Z’R1 > y, @30
the solution to which leads to (2.33) and (2.35) (Exercise 2.18). Later, Hender-
son (1963) showed that the “maximum likelihood estimates” he derived earlier
are indeed the BLUP. A more intuitive approach to show that the BLUP has
minimum mean squared error within the class of linear unbiased estimators
was given by Harville (1990). Also see Robinson (1991). In particular, this
derivation does not require normality assumptions. In other words, the BLUP
is well defined for non-Gaussian linear mixed models. The BLUP may also
be regarded as the maximum likelihood estimator of the best predictor, be-
cause, assuming that the variance components are known, the BLUP may be
obtained by replacing § in the expression of the best predictor (2.32) by its
maximum likelihood estimator under normality, that is, (2.33). Finally, Jiang
(1997b) showed that BLUP is the best predictor based on error contrasts;
that is, (2.35) is identical to E(«|A’y), where A is any n X (n — p) matrix of
full rank such that A’X = 0.

Robinson (1991) used the following example to illustrate the calculation
of BLUE and BLUP.
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Ezample 2.10. Consider a linear mixed model for the first lactation yields
of dairy cows with sire additive genetic merits being treated as random effects
and herd effects being treated as fixed effects. The herd effects are represented
by 8;, 7 = 1,2,3 and sire effects by oy, i = 1,2, 3,4, which correspond to sires
A, B, C, D. The matrix R is taken to be the identity matrix, while the matrix
G is assumed to be 0.1 times the identity matrix. This would be a reasonable
assumption, provided that the sires were unrelated and that the variance ratio
0? /7% had been estimated previously, where 02 = var(«q;) and 72 = var(e;;).
Suppose that the data are given below. It can be shown (Exercise 2.20) that

Herdj1 1 2 2 2 3 3 3 3
Si,ie |AA D B DD C C D D
Yield|110 100 110 100 100 110 110 100 100

2001 0 0 1 B 210
0300 1 0 2 B 310
0040 0 2 2 Bs 420
100110 0 0 a | =110,
0100110 0 dg 110
0020 0120 dis 220
1220 0 015 Gy 500

which have the solution

3 = (105.64, 104.28,105.46)’,
& = (0.40,0.52,0.76, —1.67)".

3. Empirical BLUP. In practice, the fixed effects and variance components
are typically unknown. Therefore, in most cases neither the best predictor
nor the BLUP is computable, even though they are known to be best in
their respective senses. In such cases, it is customary to replace the vector
of variance components, 6, which is involved in the expression of BLUP by
a consistent estimator, . The resulting predictor is often called empirical
BLUP, or EBLUP.

Kackar and Harville (1981) showed that, if § is an even and translation-
invariant estimator and the data are normal, the EBLUP remains unbiased.
An estimator 6 = 0(y) is even if 6(—y) = 0(y), and it is translation invariant if
é(y —Xp) = é(y) Some of the well-known estimators of 6, including ANOVA,
ML, and REML estimators (see Sections 1.3-1.5), are even and translation
invariant. In their arguments, however, Kackar and Harville had assumed the
existence of the expected value of EBLUP, which is not obvious because,
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unlike BLUP, EBLUP is not linear in y. The existence of the expected value
of EBLUP was proved by Jiang (1999b, 2000a). See Section 2.7 for details.

Harville (1991) considered the one-way random effects model of Example
1.1, and showed that, in this case, the EBLUP of the mixed effect, u + «,
is identical to a parametric empirical Bayes (PEB) estimator. In the mean-
time, Harville noted some differences between these two approaches, PEB and
EBLUP. One of the differences is that much of the work on PEB has been
carried out by professional statisticians and has been theoretical in nature.
The work has tended to focus on relatively simple models, such as the one-way
random effects model, because it is only these models that are tractable from
a theoretical standpoint. On the other hand, much of the work on EBLUP has
been carried out by practitioners such as researchers in the animal breeding
area, and has been applied to relatively complex models.

One problem of practical interest is estimation of the MSE of EBLUP.
Such a problem arises, for example, in small area estimation (e.g., Ghosh and
Rao 1994). The EBLUP method has been used in small area estimation for
estimating small area means, which are in the form of mixed effects. However,
the MSE of EBLUP is complicated. A naive estimator of MSE of EBLUP
may be obtained by replacing 6 by 0 in the expression of the MSE of BLUP.
However, this is an underestimation. To see this, let /) = a’& + V' B denote
the EBLUP of a mixed effect = a’a + '3, where & and 3 are the BLUP
of a, given by (2.35), and BLUE of j, given by (2.33), with the variance
components  replaced by 0. Kackar and Harville (1981) showed that, under
normality assumptions, one has

MSE(7) = MSE(7) + E(7) — 7)?, (2.38)

where 77 is the BLUP of 5 given by (2.34). It is seen that the MSE of BLUP
is only the first term on the right side of (2.38). In fact, it can be shown that
MSE(7) = g1(0) + g2(0), where

q(0) =d(G-GZ'V'ZG)a,
92(0) = (b— X'V 1ZGa) (X'VIX) (b - X'V ZGa)
(e.g., Henderson 1975). It is clear that, using g1(A) + g2(f) as an estimator
would underestimate the MSE of 7, because it does not take into account
the additional variation associated with the estimation of 6, represented by
the second term on the right side of (2.38). Such a problem may become
particularly important when, for example, large amounts of funds are involved.
For example, over $7 billion of funds are allocated annually based on EBLUP
estimators of school-age children in poverty at the county and school district
levels (National Research Council 2000).
Kackar and Harville (1984) gave an approximation to the MSE of EBLUP
under the linear mixed model (1.1), taking account of the variability in é,
and proposed an estimator of MSE(7)) based on this approximation. But the
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approximation is somewhat heuristic, and the accuracy of the approximation
and the associated MSE estimator was not studied. Prasad and Rao (1990)
studied the accuracy of a second-order approximation to MSE(7) for two
important special cases of longitudinal linear mixed models (see Section 1.2):
(i) the Fay—Herriot model (Fay and Herriot 1979), and (ii) the nested error
regression model (e.g., Battese et al. 1988). Both models are very popular in
the context of small area estimation. Recently, Das et al. (2004) extended the
result of Prasad and Rao to general linear mixed models (1.1). For example,
for Gaussian mixed ANOVA models with REML estimation of 8, Das et al.
(2004) showed that MSE(A) = g1() + g2(0) + g3(6) + o(d; %), where

93(0) = tr [{(0/00\V ' ZGa}' V{(9/00"\V ' ZGa}H™ '] ,  (2.39)

where H = E(8%lr/0000") and I is the restricted log-likelihood given by
(1.17), and d. = mini<;<sd; with d; = ||Z/PZ;||2 and P given by (1.11).
The same result also holds for ML estimation. Based on the approximation,
the authors obtained an estimator of MSE(7}) whose bias is corrected to the
second order. More specifically, an estimator MS\E(ﬁ) was obtained such that
E{MSE(#)} = MSE(#) + o(d;2). See Das et al. (2004) for details.

Alternatively, Jiang et al. (2002) proposed a jackknife method that led to
second-order approximation and estimation of the MSE of EBLUP in the case
of longitudinal linear mixed models. Denote MSE(7}) by b(), where 7 is the
BLUP given by (2.34). The jackknife estimator of the MSE of # is given by
MSE(A) = MSAE(#) + MSE(#}), where

m

MSAE(D) = "2 3" (- )",
— . m—1< . .
MSE(R) = () - =—— > {b(e,i) - b(a)} . (2.40)
=1

Here m represents the number of clusters (e.g., number of small areas), 0_;
denotes an M-estimator of 6 using the data without the ith cluster (e.g., the
ith small area), and 7j_; the EBLUP of 7 in which the fixed parameters are
estimated using the data without the ith cluster. Jiang et al. (2002) showed
that E{l\ZS\E(ﬁ)} = MSE(7)) + o(m™1). The result holds, in particular, when
6 is either the REML or the ML estimator. Furthermore, the result holds
for non-Gaussian (longitudinal) linear mixed models. In fact, the jackknife
method also applies to longitudinal generalized linear mixed models, in which
EBLUP is replaced by the empirical best predictor (EBP). See Jiang et al.
(2002) for details.

Ezample 2.4 (Continued). Consider, once again, the James—Stein estimator
of Example 2.4. Consider the prediction of the random effect n = a;. The
BLUP is given by 7j = (1 — w)y;, where w = (1 + ¢)~!. The EBLUP is
given by 77 = (1 — ©)y;. Efron and Morris (1973) used the following unbiased
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estimator, @ = (m — 2)/>_1" | y?. Note that the MSE of 7 is given by 1 — w.
The jackknife estimator of the MSE of 7 is given by

— m—1<&
MSE=1-a+ "N (h_, —7)?
Ot — ;(n 7)

=1-0+y} (T) Zm:(w,i — Q)2

i=1

Note that, because in this case 1 — @ is an unbiased estimator of 1 — w, no
bias correction is needed; that is, the second term on the right side of (2.40)
is not needed.

Ezample 2.11 (The baseball example). Efron and Morris (1975) considered
a Bayesian model to predict the true 1970 season batting average of each of 18
major league baseball players using the data on batting averages based on the
first 45 official at-bats. Their model can be obtained as a simple linear mixed
model by adding an unknown p term to the previous example. The prediction
of the true season batting average of player 1 is the same as that of the mixed
effect: n = p + ay. The best predictor of n (see Section 2.3.1.1) is given by
7= p+ (1 —w)(yr —p). The EBLUP is given by 7 = g+ (1 —&)(y1 —y), where
g is the sample mean. As for &, Morris (1983) suggested a different estimator:

c&—min{m_S m=3 }
m—1" 30" (yi —9)?)

It can be shown that the bias of 1 — @ for estimating 1 — w, the MSE of 7, is
o(m™1), thus, again, bias correction is not needed. It follows that the jackknife
estimator of the MSE of 7 is

— m—1
MSE=1-w+ — A_i—AQ,
wt+— > (i =)

i=1

where ) =g + (1= 0_i)(y1 — §-4), §—i = (m —=1)7' Y, y; and

R . m—4 m—4
w_; = min , — .
' m—2 Zj;éi(yj — -i)?

We return to this example later in this chapter.

2.3.2 Prediction of Future Observation

We now consider the problem of predicting a future observation under a non-
Gaussian linear mixed model. Because normality is not assumed, the approach
is distribution-free; that is, it does not require any specific assumption about
the distribution of the random effects and errors. First note that for this
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type of prediction, it is reasonable to assume that a future observation is
independent of the current ones. We offer some examples.

FEzample 2.12. In longitudinal studies, one may be interested in prediction,
based on repeated measurements from the observed individuals, of a future
observation from an individual not previously observed. It is of less interest to
predict another observation from an observed individual, because longitudinal
studies often aim at applications to a larger population (e.g., drugs going to
the market after clinical trials).

Ezample 2.13. In surveys, responses may be collected in two steps: in the
first step, a number of families are randomly selected; in the second step,
some family members (e.g., all family members) are interviewed for each of
the selected families. Again, one may be more interested in predicting what
happens to a family not selected, because one already knows enough about
selected families (especially when all family members in the selected families
are interviewed).

Therefore, we assume that a future observation, y,, is independent of the
current ones. Then, we have E(y.|y) = F(y.) = 2.3, so the best predictor is
xL 3, if B is known; otherwise, an empirical best predictor (EBP) is obtained by
replacing (8 by an estimator. So the point prediction is fairly straightforward.
A question that is often of practical interest but has been so far neglected, for
the most part, is that of prediction intervals.

1. Distribution-free prediction intervals. A prediction interval for a single
future observation is an interval that will, with a specified coverage probabil-
ity, contain a future observation from a population. In model-based statistical
inference, it is assumed that the future observation has a certain distribution.
Sometimes, the distribution is specified up to a finite number of unknown
parameters, for example, those of the normal distribution. Then, a prediction
interval may be obtained, if the parameters are adequately estimated, and the
uncertainty in the parameter estimations is suitably assessed. Clearly, such a
procedure is dependent on the underlying distribution in that, if the distribu-
tional assumption fails, the prediction interval may be seriously off: it either
is wider than necessary, or does not have the claimed coverage probability. An
alternative to the parametric method is a distribution-free one, in which one
does not assume that the form of the distribution is known.

The problem of prediction intervals is, of course, an old one. One of the
earliest works in this field is that of Baker (1935). Patel (1989) provided a
review of the literature on prediction intervals when the future observation
is independent of the observed sample, including results based on paramet-
ric distributions and on distribution-free methods. Hahn and Meeker (1991)
reviewed three types of statistical intervals that are used most frequently in
practice: the confidence interval, the prediction interval, and the tolerance
interval. For a more recent overview, and developments on nonparametric
prediction intervals, see Zhou (1997). Although many results on prediction
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intervals are for the i.i.d. case, the problem is also well studied in some non-
i.i.d. cases, such as linear regression (e.g., Sen and Srivastava 1990, §3.8.2).
In the context of linear mixed models, Jeske and Harville (1988) considered
prediction intervals for mixed effects, assuming that the joint distribution of
a and y — E(y) is known up to a vector of unknown parameters. Thus, their
approach is not distribution-free.

Note that, even if § is unknown, it is still fairly easy to obtain a prediction
interval for y, if one is willing to make the assumption that the distributions
of the random effects and errors are known up to a vector of parameters
(e.g., variance components). To see this, consider a simple case: y;; = x;j 6+
o + €;5, where the random effect a; and error €;; are independent such that
a; ~ N(0,0?) and €;; ~ N(0,72). It follows that the distribution of y;; is
N(x;jﬁ,crz + 72). Because methods are well developed for estimating fixed
parameters such as 3, 02, and 72 (see Section 1.3), a prediction interval with
asymptotic coverage probability 1 — p is easy to obtain. However, it is much
more difficult if one does not know the forms of the distributions of the random
effects and errors, and this is the case that we consider. In the following, we
propose a distribution-free approach to prediction intervals. Our results do not
require normality or any specific distributional assumptions about the random
effects and errors, and therefore are applicable to non-Gaussian linear mixed
models.

First note that to consistently estimate the fixed effects and variance com-
ponents in a linear mixed model, one does not need to assume that the random
effects and errors are normally distributed (see Section 1.4). We categorize
(non-Gaussian) linear mixed models into two classes: the standard and the
nonstandard ones. A linear mixed model (1.1), (1.2) is standard if each Z;
consists only of Os and 1s, there is exactly one 1 in each row and at least
one 1 in each column. Our approaches are quite different for standard and
nonstandard linear mixed models.

2. Standard linear mized models. For standard linear mixed models, the
method is surprisingly simple, and can be described as follows. First, one
throws away the middle terms in (1.1) that involve the random effects, that
is, (1.2), and pretends that it is a linear regression model with i.i.d. er-
rors: y = X0 + e. Next, one computes the least squares (LS) estimator
B = (X'X)"'X'y and the residuals ¢ = y — X3. Let a and b be the p/2
and 1 — p/2 quantiles of the residuals. Then, a prediction interval for y, with
asymptotic coverage probability 1 — p is [§i. + @, §x + b], where §, = 2. 3. Note
that, although the method sounds almost the same as the residual method
in linear regression, its justification is not so obvious because, unlike linear
regression, the observations in a (standard) linear mixed model are not inde-
pendent. The method may be improved if one uses more efficient estimators
such as the empirical BLUE (EBLUE; see Section 2.3) instead of the LS esti-
mator. We study this in a simulated example in the sequel.
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Let y. be a future observation that we wish to predict. Suppose that y,
satisfies a standard linear mixed model. Then, y, can be expressed as

Yo = T B4 Qa1 + -+ Qs + €

where x, is a known vector of covariates (not necessarily present with the
data), s are random effects, and e, is an error, such that a,; ~ Fj., < i < s,
€+ ~ Fp, where the F's are unknown distributions (not necessarily normal), and
Qily .- ., Oy, €4 are independent. According to earlier discussion, we assume
that y, is independent of y = (y;)1<i<n. It follows that the best (point)
predictor of y., when f is known, is F(y.|y) = FE(y.) = z.. Because f is
unknown, it is replaced by a consistent estimator, B, which may be the OLS
estimator or EBLUE (e.g., Jiang and Zhang 2002, Theorem 1; Jiang 1998b).

This results in an empirical best predictor:

O« = 2.0 . (2.41)
Let &; = y; — a:;ﬁA Define
R #{1<i<n:6 <z} 1
F(z) = - == D e - (2.42)
1=1

Note that, although (2.42) resembles the empirical distribution, it is not one in
the classic sense, because the b;s are not independent (the y;s are dependent,
and 3 depends on all the data). Let a < b be any numbers satisfying 13'(13) —
F(a) =1—-p (0 < p < 1). Then, a prediction interval for y, with asymptotic
coverage probability 1 — p is given by

(s + @, §u + 1] . (2.43)

See Jiang and Zhang (2002). Note that a typical choice of @, b has F'(a) = p/2
and F'(b) = 1 — p/2. Another choice would be to select @ and b to minimize
b— a, the length of the prediction interval. Usually, a, b are selected such that
the former is negative and the latter positive, so that ¢, is contained in the
interval. Also note that, if one considers linear regression as a special case
of the linear mixed model, in which the random effects do not appear, 5; is
the same as ¢€;, the residual, if B is the least squares estimator. In this case,
F is the empirical distribution of the residuals, and the prediction interval
(2.43) corresponds to that obtained by the bootstrap method (Efron 1979).
The difference is that our prediction interval (2.43) is obtained in closed form
rather than by a Monte Carlo method. For more discussion on bootstrap
prediction intervals, see Shao and Tu (1995, §7.3).

3. Nonstandard linear mized models. Although most linear mixed models
used in practice are standard, nonstandard linear mixed models are also used.
First, the method developed for standard models may be applied to some of
the nonstandard cases. To illustrate this, consider the following example.
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FEzxample 2.14. Suppose that the data are divided into two parts. For
the first part, we have y;; = 2,8 + i + €5, i = 1,...,m, j = 1,...,n,
where ay, ..., q,, are i.i.d. random effects with mean 0 and distribution Fi;
€;;5 are ii.d. errors with mean 0 and distribution Fp, and the as and es
are independent. For the second part of the data, we have yi, = 2.8 + €,
k=N+1,...,N+ K, where N =Y _"" n;, and the €s are i.i.d. errors with
mean 0 and distribution Fy. Note that the random effects only appear in the
first part of the data (and hence there is no need to use a double index for
the second part).

For the first part, let the distribution of é;; = y;; — x;jﬁ be F (= Fy* F).
For the second part, let §, = yi —x}, 5. If § were known, the §;;s (0s) would be
sufficient statistics for F' (Fp). Therefore it suffices to consider an estimator of
F (Fp) based on the §;;s (dxs). Note that the prediction interval for any future
observation is determined either by F' or by Fp, depending on to which part
the observation corresponds. Now, because 3 is unknown, it is customary
to replace it by B Thus, a prediction interval for y,., a future observation
corresponding to the first part, is [§. + @, §x + 13], where §, = .3, a, b are
determined by F(b) — F(a) = 1 — p with

. 1 .
F(z) = N#{(i’j) 1<i<m,1<j<n oy <}

and Sij = Yij fa;;j B Similarly, a prediction interval for y,, a future observation

corresponding to the second part, is [ + @, g« + I;], where g, = J:f,ﬁ, a, b are
determined similarly with F' replaced by

Fo(:c):%#{k:N—f—lngN—&—K,&ch}

and 0y, = yk—aﬁﬁ . The prediction interval has asymptotic coverage probability
1 — p (see Jiang and Zhang 2002).

If one looks more carefully, it is seen that the model in Example 2.14
can be divided into two standard submodels, so that the previous method
is applied to each submodel. Of course, not every nonstandard linear mixed
model can be divided into standard submodels. For such nonstandard models
we consider that a different approach may need to be used.

Jiang (1998b) considered estimation of the distributions of the random
effects and errors. His approach is the following. Consider the EBLUP of
the random effects: &; = &fZﬂA/*l(y — XﬁA), 1 < i < s, where 8 is the
EBLUE (see Section 2.2.1.4). The “EBLUP” for the errors can be defined as
E=y— Xﬁ — Zle Z;&;. It was shown that, if the REML or ML estimators
of the variance components are used, then, under suitable conditions,

. 1 &
Fl(l‘) = E Z 1(di,u§ﬂ3) L Fl(l‘), T e C(Fz) s
v u=1

where &; ,, is the uth component of &;, 1 <¢ < s, and
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n
Y ey — Fola),  weC(R),

u=1

Fo(z) =

where €&, is the uth component of é. Here C(F;) represents the set of all
continuity points of F;, 0 < i < s (see Jiang 1998b).

For simplicity, we assume that all the distributions Fp, ..., Fs are contin-
uous. Let y, be a future observation we would like to predict. As before, we
assume that y, is independent of y and satisfies a mixed linear model, which
can be expressed componentwise as

!/ / ! .
Vi = ;0 + zjpon + -+ 2.0 + €, i=1,...,n.

This means that y, can be expressed as

!
Y =$;5+Zwﬂj+€*,

j=1

where z, is a known vector of covariates (not necessarily present with the
data), w;s are known nonzero constants, ;s are unobservable random effects,
and €, is an error. In addition, there is a partition of the indices {1,...,1} =
Uf_1 Iy, such that y; ~ F if j € Iy, where r(1),...,7(g) are distinct integers
between 1 and s (so ¢ < s); €x ~ Fo; 71,...,7, €« are independent. Define
Mo (k)
(4 —1 P
F(])(JZ) = mr(k) 1(wj07r(lc),u§$)’ if J € I

u=1
for 1 <k <gq. Let
F(z) = (FD s 5« FO « Fy)(x)
B #{(ur, ... uu) > Zjelk WGy (), + € < T}
- ( het m‘f&g) n

where * represents convolution (see Appendix C), and 1 < u; < mypy if
jeIr, 1 <k<q 1<u<n.Itcan be shown that

. (2.44)

sup |F(z) — F(z)] =50,
x

where F = FW x...« FO « Fy, and FU) is the distribution of wjy;, 1 <j <L
Note that F is the distribution of y. — 2/, 3. Let §. be defined by (2.41) with
/3 a consistent estimator, and d, b defined by F'(b) — F(a) = 1 — p, where F is
given by (2.44). Then, the prediction interval [j. + @, 7. + b] has asymptotic
coverage probability 1 — p (see Jiang and Zhang 2002).

We conclude this section with a simulated example.

4. A simulated example. Consider the linear mixed model
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Yij = Bo + Brwij + i + €5, (2.45)

i1=1,...,m,j=1,...,n;, where the o;s are i.i.d. random effects with mean 0
and distribution F7, and €;;s are i.i.d. errors with mean 0 and distribution Fp.
The model might be associated with a sample survey, where «; is a random
effect related to the ith family in the sample, and n; is the sample size for the
family (e.g., the family size, if all family members are to be surveyed). The
x;js are covariates associated with the individuals sampled from the family
and, in this case, correspond to people’s ages. The ages are categorized by the
following groups: 0-4, 5-9, ..., 55-59, so that x;; = k if the person’s age falls
into the kth category (people whose ages are 60 or over are not included in
the survey). The true parameters for Gy and [ are 2.0 and 0.2, respectively.

In the following simulations, four combinations of the distributions Fjp,
Fy are considered. These are Case I. Fy = F; = N(0,1); Case II: Fy =
Fy = t3; Case III: Fy = logistic [the distribution of log{U/(1 — U)}, where
U ~ Uniform(0,1)], F; = centralized lognormal [the distribution of eX — \/e,
where X ~ N(0,1)]; Case IV: Fy = double exponential [the distribution of
X, — X, where X, X, are independent ~ exponential(1)], F; = a mixture of
N(—4,1) and N(4,1) with equal probability. Note that Cases II-TV are related
to the following types of departure from normality: heavy-tail, asymmetry, and
bimodal. In each case, the following sample size configuration is considered:
m = 100, k1 = -+ = ky o = 2, and ky, 011 = -+ = k= 6. Finally, for
each of the above cases, three prediction intervals are considered. The first is
the prediction interval based on the OLS estimator of (; the second is that
based on the EBLUE of (3, where the variance components are estimated
by REML (see Section 1.4.1); and the third is the linear regression (LR)
prediction interval (e.g., Casella and Berger 2002, pp. 558), which assumes
that the observations are independent and normally distributed. The third
one is considered here for comparison.

For each of the four cases, 1000 datasets are generated. First, the following
are independently generated, (i) z;;, 1 <i <m, 1 < j < k;, uniformly from
the integers 1,...,12 (twelve age categories); (ii) a;, 1 < i < m, from F7; (iii)
€j,1 <i<m,1<j<k,from Fy. Then y,; is obtained by (2.45) with 5y, 51
being the true parameters. Because of the way that the data are generated,
condition on the z;;s, the y;;s satisfy (2.45) with its distributional assump-
tions. For each dataset generated, and for each of the 12 age categories, three
prediction intervals are obtained, where p = .10 (nominal level 90%): OLS,
EBLUE, and LR; then one additional observation is generated, which corre-
sponds to a future observation in that category. The percentages of coverage
and average lengths of the intervals over the 1000 data sets are reported.

The results are given in Table 2.1, in which the letters O, E; and L stand
for OLS, EBLUE, and LR, respectively. The numbers shown in the table are
coverage probabilities based on the simulations, in terms of percentages, and
average lengths of the prediction intervals. Note that for OLS and EBLUE the
lengths of the prediction intervals do not depend on the covariates, whereas
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for LR the length of the prediction interval depends on the covariate, but
will be almost constant if the sample size is large. This, of course, follows
from the definition of the prediction intervals, but there is also an intuitive
interpretation. Consider, for example, the normal case. The distribution of
a future observation y, corresponding to a covariate x. is N(G8y + S12., 02),
where 02 = var(a;) + var(e;;) is a constant. So, if the s were known the
length of any prediction interval for y, would not depend on z,. If the s
are unknown but replaced by consistent estimators, then if the sample size
were large, one would also expect the length of the prediction interval to be
almost constant (not dependent on z.). For such a reason, there is no need
to exhibit the lengths of the prediction intervals for different categories, and
we only give the averages over all categories.

It is seen that in the normal case there is not much difference among all
three methods. This is not surprising. The difference appears in the nonnor-
mal cases. First, the LR prediction intervals are wider than the OLS and
EBLUE ones. Second, as a consequence, the coverage probabilities for the
LR prediction intervals seem to be higher than 90%. Overall, the OLS and
EBLUE perform better than LR in the nonnormal cases. This is not surpris-
ing, because the OLS and EBLUE prediction intervals are distribution-free.
The EBLUE does not seem to do better than the OLS. This was a bit un-
expected. On the other hand, it shows that at least in this special case the
OLS, although much simpler than the EBLUE in that one does not need to
estimate the variance components, can do just as well as more sophisticated
methods such as the EBLUE.

Table 2.1. Coverage probability and average length

Coverage Probability (%)

Case [ Case II | Case III Case IV
x/OE L|OETLIWOTETLI WO E L
1190 90 90 (89 89 9290 91 9390 90 94
2 (90 90 90(89 89 91 (91 91 93 (89 90 96
3 |88 88 88 (91 91 93 |90 89 92 |88 89 96
4 190 90 89 |91 91 93|89 89 91|89 &9 97
5 (89 89 89 (89 89 92 (90 90 92 (90 90 96
6 (89 89 90 (89 89 92|91 91 93|90 90 97
7 (89 88 89190 90 92 (90 90 93 [88 89 96
8 (90 90 90 (90 90 92|89 89 91|90 90 97
9 (90 90 91 (89 89 92|89 89 91 |89 &9 96
10|89 89 90 {91 90 93 (89 89 93 [88 88 95
11|90 90 90 (89 89 93 (89 89 92 (89 89 97
12|89 89 89 (89 89 92 (91 91 93 (89 89 96

Average Length
4.6 4.6 4.7[7.0 7.0 7.9]8.1 8.1 9.0[12.1 12.1 14.3
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2.4 Model Checking and Selection

The previous sections have been dealing with inference about linear mixed
models. For the most part, we have assumed that the basic assumptions about
the model, for example, those about the presence of the random effects and
their distributions, are correct. In practice, however, these assumptions may
also be subject to checking. Methods of model checking are also known as
model diagnostics. Sometimes, it is not clear which is the best model to use
when there are a number of potential, or candidate, models. Here being best
is in the sense that the model is not only correct but also most economical,
meaning that it is simplest among all correct models. In this section we deal
with the problems of model diagnostics and selection.

2.4.1 Model Diagnostics

Unlike standard regression diagnostics, the literature on diagnostics of lin-
ear mixed models involving random effects is not extensive (e.g., Ghosh and
Rao 1994, pp. 70-71, Verbeke and Molenberghs 2000, pp. 151-152). Limited
methodology is available, mostly regarding assessing the distribution of the
random effects and errors. For the most part, the methods may be classified
as diagnostic plots and goodness-of-fit tests.

1. Diagnostic plots. Several authors have used the idea of EBLUP or em-
pirical Bayes estimators (EB), discussed in the previous section, for diagnosing
distributional assumptions regarding the random effects (e.g., Dempster and
Ryan 1985; Calvin and Sedransk 1991). The approach is reasonable because
the EBLUP or EB are natural estimators of the random effects. In the fol-
lowing we describe a method proposed by Lange and Ryan (1989) based on a
similar idea.

One commonly used assumption regarding the random effects and errors is
that they are normally distributed. If such an assumption holds, one has a case
of Gaussian mixed models. Otherwise, one is dealing with non-Gaussian linear
mixed models. Lange and Ryan considered the longitudinal model (see Section
1.2.1.2), assuming that G; = G, R; = 7%I},, i = 1,...,m, and developed
a weighted normal plot for assessing normality of the random effects in a
longitudinal model. First, under the model (1.3) and normality, one can derive
the best predictors, or Bayes estimators, of the random effects o; i = 1,...,m
(see Section 2.3.1.1 and Section 2.5.1.1), assuming that 5 and 6, the vector of
variance components, are known. This is given by

&; = E(ailyi)
=GZV7  y: — Xi3),

where V; = Var(y;) = 721y, + Z;GZ/. Furthermore, the covariance matrix of
@; is given by
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Var(&;) = GZIV, ' Z,G.

Lange and Ryan proposed to examine a Q—Q plot of some standardized linear
combinations

Cldi

- % i=1,....m, 2.46
(OVar(@@)e) 2’ ! " (246)

2
where ¢ is a known vector. They argued that, through appropriate choices
of ¢, the plot can be made sensitive to different types of model departures.
For example, for a model with two random effects factors, a random intercept
and a random slope, one may choose ¢; = (1,0)" and ¢y = (0,1)" and produce
two Q—Q plots. On the other hand, such plots may not reveal possible nonzero
correlations between the (random) slope and intercept. Thus, Lange and Ryan
suggested producing a set of plots ranging from one marginal to the other by
letting ¢ = (1 — u, u)’ for some moderate number of values 0 < u < 1.

Dempster and Ryan (1985) suggested that the normal plot should be
weighted to reflect the differing sampling variances of &;. Following the same
idea, Lange and Ryan proposed a generalized weighted normal plot. They
suggested ploting z; against @~ *{F*(z;)}, where F* is the weighted empirical
cdf defined by

Z:il wil(ziﬁw)

S wi

and w; = ¢/Var(&;)c = ¢ GZV; ' Z,Ge.

In practice, however, the fixed effects § and variance components 6 are
unknown. In such cases, Lange and Ryan suggested using the ML or REML
estimators in place of these parameters. They argued that, under suitable con-
ditions, the limiting distribution of \/n{F*(x) — &(x)} is normal with mean
zero and variance equal to the variance of v/n{F*(z) — ¢(z)} minus an ad-
justment, where F*(z) is F*(z) with the unknown parameters replaced by
their ML (REML) estimators. See Lange and Ryan (1989) for details. This
suggests that, in the case of unknown parameters, the Q—Q plot will be Z;
against @ 1{F*(%;)}, where 2 is z; with the unknown parameters replaced
by their ML (REML) estimates. However, the (asymptotic) variance of F'*(x)
is different from that of F*(x), as indicated above. Therefore, if one wishes to
include, for example, a 1 SD bound in the plot, the adjustment for estima-
tion of parameters must be taken into account. See Lange and Ryan (1989).
We consider an example.

F*(z) =

Ezample 2.3 (Continued). Consider, again, the one-way random effects
model of Example 1.1 with normality assumption. Because «; is real-valued,
c=1in (2.31). If pu, 02, 72 are known, the EB estimator of «; is given by

kiiO'Q

Q= (gl - :U’)a



90 2 Linear Mixed Models: Part II

where ;. = k; ! Ef’zl Yij, with

(@) =
w; = varlo;) = .
72 + ko2
Therefore, in this case,
5 — Q; _ Yi — [
Cosd(a) o2 T2k
t=1,...,m and
“ kot iz kot
F*(z) = —_ — 1, <p)-
(@) (; T2 4+ kmz> ; 72 ko2 (157

In practice, p, 0%, and 72 are unknown and therefore replaced by their REML
(ML) estimators when making a Q—Q plot (Exercise 2.20).

2. Goodness-of-fit tests. Recently, several authors have developed tests for
checking distributional assumptions involved in linear mixed models. Consider
a mixed ANOVA model (1.1), where for 1 <1i <'s, oy = (@45)1<j<m,, where
the ay;s are i.i.d. with mean 0, variance o2, which is unknown, and continuous
distribution F; = Fi(- |0;); and € = (€;)1<j<n, where the ¢;s are i.i.d. with
mean 0, variance 72, which is unknown, and continuous distribution G =
G(- |7); and ag,...,as, € are independent. We are interested in testing the
following hypothesis,

Ho : Fi(-|oi) = Foi(+|oi), I<i<s,
and G(|7) = Go(+|7); (2.47)

that is, the distributions of the random effects and errors, up to a set of
unknown variance components 0%, ..., 02, 72 are as assumed.

Such distributional assumptions are vital in many applications of linear
mixed models, and this is true even in large sample situations. For example,
in many cases the prediction of a mixed effect is of main interest. Consider,
for example, a nested error regression model, a special case of linear mixed
models, which is useful in small area estimation (e.g., Battese et al. 1988;
Prasad and Rao 1990; Ghosh and Rao 1994; Arora, Lahiri, and Mukherjee
1997):

yij:$;j5+ai+€ij, izl,...,m, j:].,...,ki, (248)

where x;; is a known vector of covariates, 3 is an unknown vector of regression
coefficients, «; is a random effect associated with the ith small area, and €;;
is an error. A mixed effect may be in the form n = 2’8 + «;, where z is
known. If the sample size is large (i.e., m is large), one may consistently
estimate 3 and even obtain an asymptotic confidence interval for it, and this
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does not rely on distributional assumptions such as normality. However, large
sample results may not help, for example, in obtaining a prediction interval
for n, because the effective sample size for estimating «; is k;, the sample
size for the ith small area, which is often very small. Therefore, unless one
knows the form of the distribution of «; (e.g., normal), an accurate prediction
interval for 1 cannot be obtained no matter how large m is (provided that
k; is small). To see another example, consider the estimation of the MSE of
the EBLUP. Prasad and Rao (1990) give approximation formulas for MSE
of EBLUP in the context of small area estimation, which are correct to the
order o(m~1). Although their results are asymptotic, assuming that m is large,
normality distributional assumption remains critical for the validity of their
approximations.

Jiang, Lahiri, and Wu (2001) developed an asymptotic theory of Pearson’s
x2-test with estimated cell frequencies, and applied the method to the case
of nested error regression model (2.48) for checking the distributions of «
and e. The procedure requires splitting the data into two parts, one used for
estimation and the other for testing, and thus raised some concerns about the
power of the test. Jiang (2001) developed a method that applies to a general
mixed ANOVA model as described above (2.47), which does not require data
splitting. The method is described below.

The procedure is similar to Pearson’s x2-test with estimated cell probabil-
ities (e.g., Moore 1978). Let E4, ..., Epr be a partition of R, the real line. Let
an be a sequence of normalizing constants that is determined later on. Define

1 M
= . Z{Nj —E;(N;)}?, (2.49)

where N; = S0 1(y.em,) = #{1 < i < n:y € E;}, and 6 is the REML
estimator of the vector of parameters involved in the linear mixed model. De-
spite the similarity of (2.49) to Pearson’s x2-statistic, there are several major
differences. First and most important, the observed count Nj is not a sum
of independent random variables. In Pearson’s y2-test, one deals with i.i.d.
observations, so that Nj is a sum of i.i.d. random variables, and hence the
asymptotic result follows from the classic central limit theorem (CLT). In
a mixed linear model, however, the observations are correlated. Therefore,
the classic CLT cannot handle the asymptotics. Second, unlike Pearson’s x2-
statistic, the normalizing constant in (2.49) is the same for all the squares in
the sum. The choice of the normalizing constants in Pearson’s x2-test is such
that the asymptotic distribution is x2. However, even in the i.i.d. case, the
asymptotic distribution of Pearson’s y2-statistic is not necessarily x?2, if the
parameters are to be estimated (see Moore 1978). In fact, it may never be
X2 no matter what normalizing constants are used. Thus, for simplicity, we
choose a unified normalizing constant a,,. Note that, because of the depen-
dence among the observations, a,, may not increase at the same rate as n,
the sample size. Third, in a linear mixed model the number of fixed effects
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may be allowed to increase with n (e.g., Jiang 1996). As a consequence, the
dimension of § may increase with n. This shows, from another angle, that one
can no longer expect an asymptotic distribution such as x2, q—1+ Where ¢ is
the number of (independent) parameters being estimated.

Jiang (2001) showed that, under suitable conditions, the asymptotic dis-
tribution of %2 is a weighted x2, that is, the distribution of Zj\il Aj ij, where
Zi,...,Zy are independent N(0,1) random variables, and Ay > -+ > Ay
are eigenvalues of some nonnegative definite matrix, which depends on 6. Be-
cause the latter is unknown in practice, Jiang (2001) developed a method of
estimating the critical value of the asymptotic distribution, and showed that
P(x? > ¢,) = p as n — oo, where p € (0,1) is the level of the test. The esti-
mated critical value, ¢, is determined as cp(j\l, el A M), where for any given
A > -2 My and 0 < p <1, eq(Ar,...,An) is the p-critical value of the
random variable £ = Z]A/il )\jZJZ, and A\; > --- > A\ are the eigenvalues of a
matrix ¥, = ,,(f). The definition of X, (6), which depends on 6, is given in
Section 2.7.

It remains to specify the normalizing constant a,,. Jiang (2001) noted that
the choice of a,, is not unique. However, in some special cases there are natural
choices. For example, in the case of linear regression, which may be regarded
as a special case of the linear mixed model [with s = 0 in (1.1)], one has
an, = n. In the case of the one-way random effects model of Example 1.1, if
the k;s are bounded, one has a,, = m. The choice is less obvious in the case
of multiple random effects factors [i.e., s > 1 in (1.1)]. Jiang (2001) proposed
the following principle that in many cases either uniquely determines a,, or
at least narrows the choices. Note that there are a number of integers that
contribute to the total sample size n, for example, m, k in Example 2.2; a,
b, ¢ in Example 2.1. Usually, a, is a function of these integers. It is required
that a,, depend on these integers in a way as simple as possible. In particular,
no unnecessary constant is allowed in the expression of a,. This is called a
natural choice of a,. A natural choice of a,, can be found by examining the
leading term in the expression of the matrix H,, + A,, defined in Section 2.7.
The following are some special cases.

Ezample 2.2 (Continued). In the case of the balanced one-way random
effects model, it can be shown that H,, + A, = mk?{Var(hy) + o(1)}, where
hi is some nondegenerate random vector (see Jiang 2001, Section 3). Thus,
in this case, a natural choice is a,, = mk?. If, in fact, k is bounded, a natural
choice would be a,, = m.

Ezample 2.1 (Continued). Suppose, for simplicity, that ¢ = 1; that is, there
is a single observation per cell. Similarly, it can be shown that, in this case, a
natual choice is a,, = (ab)®>/? (see Jiang 2001, Example 4.1).
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2.4.2 Model Selection

In a way, model selection and estimation are viewed as two components of
a process called model identification. The former determines the form of the
model, leaving only some undetermined coefficients or parameters. The latter
finds estimators of the unknown parameters. A pioneering work on model
selection criteria was Akaike’s information criterion (AIC, Akaike 1972). One
of the earlier applications of AIC and other procedures such as the Bayesian
information criterion (BIC, Schwartz 1978) was determination of the orders of
an autoregressive moving-average time series model (e.g., Choi 1992). Similar
methods have also been applied to regression model selection (e.g., Rao and
Wu 1989; Bickel and Zhang 1992; Shao 1993; and Zheng and Loh 1995). It
was shown that most of these model selection procedures are asymptotically
equivalent to what is called the generalized information criterion (GIC, e.g.,
Nishii 1984). Although there is extensive literature on parameter estimation
in linear mixed models, so that one component of the model identification has
been well studied, the other component, that is, mixed model selection, has
received little attention. Only recently have some results emerged in a paper
by Jiang and Rao (2003).

Consider a general linear mixed model (1.1), where it is assumed that
E(a) = 0, Var(a) = G; E(e) = 0, Var(e) = R, where G and R may involve
some unknown parameters such as variance components; and « and ¢ are
uncorrelated. In the following we first consider the problem of mixed model
selection when the random effect factors are not subject to selection.

1. Selection with fized random factors. Consider the model selection prob-
lem when the random part of the model (i.e., Za) is not subject to selection.
Let ( = Za + €. Then, the problem is closely related to a regression model
selection problem with correlated errors. Consider a general linear model
y = X0+ (, where ( is a vector of correlated errors, and everything else is as
above. We assume that there are a number of candidate vectors of covariates,
X1, ..., X, from which the columns of X are to be selected. Let L = {1,...,1}.
Then, the set of all possible models can be expressed as B = {a : a C L}, and
there are 2! possible models. Let A be a subset of B that is known to contain
the true model, so the selection will be within A. In an extreme case, 4 may
be B itself. For any matrix M, let £(M) be the linear space spanned by the
columns of M; Py the projection onto £(M): Py = M(M'M)~M'; and Py
the orthogonal projection: Pj; = I — Py (see Appendix B). For any a € B,
let X (a) be the matrix whose columns are X;, j € a, if a # 0, and X (a) =0
if @ = (). Consider the following criterion for model selection,

Cu(a) = |y — X(a)B(a)* + Aulal
= |Px(ayyl? + Anlal, (2.50)

a € A, where |a| represents the cardinality of a; 3(a) is the ordinary least
squares (OLS) estimator of ((a) for the model y = X (a)B(a) + ¢; that is,
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B(a) = {X(a)'X(a)}~ X (a)'y, and A, is a positive number satisfying certain
conditions specified below. Note that Px ) is understood as 0 if a = (). Denote
the true model by ag. If ag # 0, we denote the corresponding X and 8 by X
and 8 = (B8j)i<j<p (p = |ao|), and assume that §; # 0, 1 < j < p. This is,
of course, reasonable because, otherwise, the model can be further simplified.
If ag = 0, X, 3, and p are understood as 0. Let v, = maxi<;j<,|X;|* and
Pn = Amax(ZGZ") + Amax(R), where A\pax means the largest eigenvalue. Let
@ be the minimizer of (2.50) over a € A, which is our selection of the model.
Jiang and Rao (2003) showed that, under suitable conditions, @ is consistent
in the sense that P(a # ap) — 0 as n — oo, provided that

An/Vn — 0 and pp/A, —> 0. (2.51)

Note 1. If p, /v, — 0, there always exists A, that satisfies (2.51). For
example, take \,, = \/p,v,. However, this may not be the best choice of A,,,
as a simulated example in the following shows.

Note 2. Typically, we have v, ~ n. To see what the order of p, may
turn out to be, consider a special but important case of linear mixed mod-
els: the mixed ANOVA model of (1.1) and (1.2). Furthermore, assume that
each Z; (1 < i < s) is a standard design matrix in the sense that it con-
sists only of Os and 1s, there is exactly one 1 in each row, and at least one
1 in each column. Let n;; be the number of 1s in the jth column of Z;.
Note that n,; is the number of appearance of the jth component of «;. Also
note that Z/Z; = diag(n;;,1 < j < m,;). Thus, we have Apnax(ZGZ’) <
S 02 Amax(ZiZ]) = 3 i, 07 maxi<j<m, nij. Also, we have Apax(R) = 02.
It follows that p, = O (maxi<;<sMaxi<;j<m, ni;). Therefore, (2.51) is sat-
isfied provided that \,/n — 0 and maxj<;<smaxi<;<m, Nij/An — 0. The
following is an example not covered by the above case, because the errors are
correlated.

Ezample 2.15. Consider the following linear mixed model which is a special
case of the nested error regression model of (2.48); y;; = Bo + f12ij + o + €5,
i=1,....,m,j=1,...,k, where By, 81 are unknown coeflicients (the fixed
effects). It is assumed that the random effects aq,...,a,, are uncorrelated
with mean 0 and variance 2. Furthermore, assume that the errors €i;5 have
the following exchangeable correlation structure: Let €; = (€;5)1<j<k. Then,
Cov(e;, i) = 0ifi #4', and Var(e;) = 72{(1—p)[+pJ }, where I is the identity
matrix and J the matrix of 1s, and 0 < p < 1 is an unknown correlation
coefficient. Finally, assume that the random effects are uncorrelated with the
errors. Suppose that m — oo, and

m k

o 1 2

0 < liminf o El El(xij —I.)
i=1 j—
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k
. 1 &
< limsup %ZZﬁ] < 00,
i=1 j=1

where Z.. = (mk)~! > 1", 2?21 x;;. It is easy to see that, in this case, p,, ~ k
and v, ~ mk (Exercise 2.21).

The above procedure requires selecting @ from all subsets of A. Note that
A may contain as many as 2’ subsets. When [ is relatively large, alternative
procedures have been proposed in the (fixed effect) linear model context,
which require less computation (e.g., Zheng and Loh 1995). In the following,
we consider an approach similar to Rao and Wu (1989). First, note that one
can always express X (G as X3 = 25:1 B;X; with the understanding that some
of the coefficients 3; may be zero. It follows that ap = {1 < j <1[:3; #0}.
Let X = (Xu)i<u<tuzj, 1 < J <1, np = mini<jq |P)Jg__]_Xj\2, and ¢,, be a
sequence of positive numbers satisfying conditions specified below. Let a be
the subset of L = {1,...,1} such that

(1Px_,yl* = |Pxyl*)/(|1Px_, X;1*60) > 1 (2.52)

for j € a. Jiang and Rao (2003) showed that, if p,, /n, — 0, where p,, is defined
earlier, then a is consistent, provided that

0n — 0 and p,/(Nndn) — O.

Ezample 2.15 (Continued). Tt is easy to show that, in this case, 7, ~ mk.
Recall that p,, ~ k in this case. Thus, p,/n, — 0 as m — oo.

To study the finite sample behavior of the proposed model selection pro-
cedures, we consider a simulated example.

Ezample 2.16 (A simulated example). The model here is similar to Example
2.15 except that it may involve more than one fixed covariate; that is, Gy +
Bixi; is replaced by xgjﬂ, where x;; is a vector of covariates and 3 a vector
of unknown regression coefficients. Here we focus on the first model selection
procedure, the one defined by (2.50), which we also call GIC (e.g., Nishii
1984). We examine it by simulating the probability of correct selection and
also the overfitting (al) and underfitting (a2) probabilities,respectively, of
various GICs for some given model parameters and sample sizes. Five GICs
with different choices of A are considered: (1) A = 2, which corresponds to the
C, method; (2) A = logn. The latter choice satisfies the conditions required
for consistency of the model selection. A total of 500 realizations of each
simulation were run.

In the simulation the number of fixed factors was | = 5 with A being
all subsets of {1,...,5}. The first column of X is all ones, corresponding
to the intercept, and the other four columns of X are generated randomly
from N (0, 1) distributions, then fixed throughout the simulation. Three s are
considered: (2,0,0,4,0)’, (2,0,0,4,8)', and (2,9,0,4,8)’, which correspond to
ap = {1,4}, {1,4,5}, and {1,2, 4,5}, respectively.
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Furthermore, we consider the case where the correlated errors have varying
degrees of exchangeable structure as described in Example 2.15, where four
values of p were considered: 0,0.2,0.5,0.8. Variance components o and 7 were
both taken to be equal to 1. We take the number of clusters (m) to be 50 and
100 and the number of repeats on a cluster to be fixed at & = 5. Table 2.2
presents the results.

Table 2.2. Selection probabilities under Example 1.10

Model p % correct al a2
An = 2 log(n) 2 log(N) 2 log(N)

Mi(m=50)[0 59 94 41 6 0 0
2 64 95 36 5 0 O

D89 90 40 9 1 1

8 52 93 47 5 1 2

Mi(m =100)0 64 97 36 3 0 0
.2 57 94 43 6 0 O

.5 b8 9% 42 3 0 1

.8 61 9% 39 4 0 O

M2(m =50)|0 76 97 24 3 0 O
2 76 97 24 3 0 O

D73 96 27 4 0 O

.8 68 94 31 4 1 2

M2(m =100)|0 76 99 24 1 0 0
2 70 97 30 3 0 O

D70 98 30 2 0 O

8 72 98 28 2 0 O

M3(m =50){0 90 9 10 1 0 O
2 87 9 13 2 0 0

D 84 98 16 2 0 O

8 T8 9 21 3 1 2

M3(m =100)|0 87 9 13 1 0 O
2 87 9 13 1 0 O

5 80 99 20 1 0 O

8 T8 96 21 3 1 1

2. Selection with random factors. We now consider model selection that
involves both fixed and random effects factors. Here we consider the mixed
ANOVA model of (1.1), (1.2). If 02 > 0, we say that «; is in the model;

otherwise, it is not. Therefore, the selection of random factors is equivalent to

simultaneously determining which of the variance components 0%, ...,02 are
positive. The true model can be expressed as
y=XB+> Ziai+e, (2.53)

i€bg
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where X = (X;);eq, and ag C L [defined above (2.50)]; by € S = {1,...,s}
such that 0? > 0, i € by, and 02 =0, i € S\ bo.

There are some differences between selecting the fixed covariates X, as
we did earlier, and selecting the random effect factors. One difference is that,
in selecting the random factors, we are going to determine whether the vector
«;, not a given component of «;, should be in the model. In other words, the
components of «; are all “in” or all “out”. Another difference is that, unlike
selecting the fixed covariates, where it is reasonable to assume that the X;
are linearly independent, in a linear mixed model it is possible to have i # ¢/
but L£(Z;) C L(Z;/). See Example 2.17 below. Because of these features, the
selection of random factors cannot be handled the same way.

To describe the basic idea, first note that we already have a procedure to
determine the fixed part of the model, which, in fact, does not require knowing
bo. In any case, we may denote the selected fixed part as a(by), whether or
not it depends on by. Now, suppose that a selection for the random part of
the model (i.e., a determination of by) is b. We then define & = a(b). In other
words, once the random part is determined, we may determine the fixed part
using the methods developed earlier, treating the random part as known. It
can be shown that, if the selection of the random part is consistent in the
sense that P(é # bg) — 0, and given by, the selection of the fixed part is
consistent; that is, P(a(by) # ag) — 0, then P(a = ag,b = by) — 1; that is,
the combined procedure is consistent.

We now describe how to obtain b. First divide the vectors Qi,...,0s,
or, equivalently, the matrices Z1,..., Z, into several groups. The first group
is called the “largest random factors.” Roughly speaking, those are Z;, i €
S1 C S such that rank(Z;) is of the same order as n, the sample size. We
assume that £(X, Z,,u € S\ {i}) # L(X, Z,,u € S) for any i € Sy, where
L(Mjy,..., M) represents the linear space spanned by the columns of the
matrices My, ..., M;. Such an assumption is reasonable because Z; is supposed
to be “the largest,” and hence should have a contribution to the linear space.
The second group consists of Z;, i € S C S such that £(X, Z,,u € S\ S1\
{i}) # L(X,Z,,u € S\ S1), i € Sa. The ranks of the matrices in this group
are of lower order of n. Similarly, the third group consists of Z;, i € S3 C S
such that £(X, Z,,u € S\ S1\ 52\ {i}) # L(X, Z,,u € S\ 51\ S2), and so on.
Note that if the first group (i.e., the largest random factors) does not exist, the
second group becomes the first, and other groups also move on. As mentioned
earlier [see below (2.53)], the selection of random factors cannot be treated
the same way as that of fixed factors, because the design matrices Z1, ..., Zs
are usually linearly dependent. Intuitively, a selection procedure will not work
if there is linear dependence among the candidate design matrices, because of
identifiability problems. To consider a rather extreme example, suppose that
Zy is a design matrix consisting of Os and 1s such that there is exactly one 1 in
each row, and Zy = 2Z;. Then, to have Zya; in the model means that there
is a term «y,;; whereas to have Zsas = 2775 in the model means that there
is a corresponding term 2qs;. However, it makes no difference in terms of a
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model, because both ay; and as; are random effects with mean 0 and certain
variances. However, by grouping the random effect factors we have divided
the Z;s into several groups such that there is linear independence within each
group. This is the motivation behind grouping. To illustrate such a procedure,
and also to show that such a division of groups does exist in typical situations,
consider the following example.

Example 2.17. Consider the following random effects model,
Yijht = P+ a; + b + cp +dij + fir + gjr + hijr + eijris (2.54)

t=1,....my, j =1,....omo, k =1,....,m3, 1 = 1,...,t, where y is an
unknown mean; a, b, ¢ are random main effects; d, f, g, h are (random) two-
and three-way interactions; and e is an error. The model can be written as

y:X/J—f—Z16L+Zgb—|—Z36+Z4d+Z5f+Zﬁg+Z7h+6,

where X = 1, with n = mimamat, Z1 = I, @ 1, @ 1y, @ 14,..., 24 =
Loy @ Ly @ Ly @14, ...y and Zy = Iy, @ Iy @ Ly, ® 1. It is easy to see that
the Z;s are not linearly independent. For example, £(Z;) C L(Z4), i = 1,2,
and L£(Z;) C L(Z7),i=1,...,6. Also, L(X) C L(Z;) for any i. Suppose that
m; — 00, 7 = 1,2,3, and t is bounded. Then, the first group consists of Z;
the second group Z4, Z5, Zg; and the third group 21, Z5, Z3. If t also — oo, the
largest random factor does not exist. However, one still has these three groups.
It is easy to see that the Z;s within each group are linearly independent.

Suppose that the Z;s are divided into h groups such that S = S;U---US,.
We give a procedure that determines the indices i € Sy for which o2 > 0; then
a procedure that determines the indices i € Sy for which o7 > 0; and so on,
as follows.

Group one: Write B = L(X,Z1,...,Zs), By = L(X,Z,, u € S\ {zg})
i € S1; r = n —rank(B), r; = rank(B) — rank(B_;); R = |Pgy|?>, R; =
Pg — Pg_)yl?. Let l;l be the set of indices ¢ in S7 such that
I( )Y
(r/R)(Ri/r;) > 14 r(P/D=1 4 /271

where p is chosen such that 0 < p < 2. Let ag; = {i € Ly : 07 > 0}.

Group two: Let By(be) = L(X, Zy,u € (S\S1\S2)Uby), ba C Sy. Consider
Crn(b2) = |Pg, 1,y 41> + Aimlbal, b2 C S,

where A; ,, is a positive number satisfying certain conditions similar to those
for A, in (2.50) (see Jiang and Rao 2003, Section 3.3 for details). Let by be
the minimizer of Cy ,, over by C Sa, and boz = {i € Sy : 62 > 0}.

General: The above procedure can be extended to the remaining groups.
In general, let By(bi1) = L(X, Zy,u € (S\S1\ -\ St+1)Ubti1), bry1 C Siy1,
1 <t < h—1. Define
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Crn(be1) = P55, b, ) yl° + Aen[blega ], bi+1 C Sit,

where ) ,, is a positive number satisfying certain conditions similar to those
for A\, in (2.50). Let l;t+1 be the minimizer of Cy,, over byy1 C Sipq, and
bo@ = {Z S St+1 : 0'1-2 > 0}

It can be shown that, under suitable conditions, the combined procedure
is consistent in the sense that P(l;l = bg1,.. bh = boh) — 1 asn — oo. One
property of by is that it does not depend on bu, u < t. In fact, bl, .. bh can
be obtained simultaneously, and b = uh 1bt is a consistent selectlon for the
random part of the model. See Jiang and Rao (2003) for details.

2.5 Bayesian Inference

A linear mixed model can be naturally formulated as a hierarchical model
under the Bayesian framework. Such a model usually consists of three levels,
or stages of hierarchies. At the first stage, a linear model is set up given the
fixed and random effects; at the second stage, the distributions of the fixed and
random effects are specified given the variance component parameters; finally,
at the last stage, a prior distribution is given for the variance components.
Before we further explore these stages, we briefly describe the basic elements
of Bayesian inference.

Suppose that y is a vector of observations and 6 a vector of parameters
that are not observable. Let f(y|@) represent the probability density function
(pdf) of y given 0, and 7(6) a prior pdf for 6. Then, the posterior pdf of 6 is
given by

(Oly) = f}”(ylf));r(g) .

Getting the posterior is the goal of Bayesian inference. In particular, some
numerical summaries may be obtained from the posterior. For example, a
Bayesian point estimator of @ is often obtained as the posterior mean:

B(6ly) = [ on(6lu)ap
[0S0 (0)d0
J 1 (ylo)m(0)0
the posterior variance, var(f|y), on the other hand, is often used as a Bayesian
measure of uncertainty.

In the first stage of a hierarchical linear model, it is assumed that, given
£ and «,

y=XB+Za+e,
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where X and Z are known matrices, and € has distribution F}. In the second
stage, it is assumed that («, 8) has a joint distribution F5, which depends on
some parameters of variance components. Finally, in the last stage, a prior
distribution F3 is assumed for the variance components. Note that a classical
linear mixed model essentially involves the first two stages, but not the last
one. A hierarchical model that is used most of the time is the so-called normal
hierarchy, in which it is assumed that

(1) e~ N(0,R);
(2) a~ N(0,G), 8~ N(b,B);
(3) (G.R)~m,

where 7 is a prior distribution. It is often assumed that, in the second stage,
« and [ are distributed independently, and b and B are known. Thus, a prior
for (3 is, in fact, given in the second stage. The following is an example.

Ezample 2.18. Consider the one-way random effects model (Example 1.1).
A normal hierarchical model assumes that (1) given g and a; (1 < i < m),
Yij = U+ a; + €5, J =1,...,n;, where ¢;s are independent and distributed
as N(0,72); (2) p, a1,...,qy, are independent such that u ~ N(ug,o?d),
a; ~ N(0,0%), where pg and o2 are known; and (3) o2, 72 are independent
with o2 ~ Inverse — x%(a), 72 ~ Inverse — x?(b), where a, b are known positive
constants, and an Inverse—y? distribution with parameter v > 0 has pdf
{27¥/2 /1 (v/2)}a= /24 De=1/22 3 > (. Alternatively, the priors in (3) may
be such that 0 « 1/0% and 72 « 1/72. Note that, in the latter case, the
priors are improper.

The inference includes that about the fixed and random effects and that
about the variance components. In the following we discuss these two types
of inference, starting with the variance components.

2.5.1 Inference about Variance Components

First define the likelihood function under the Bayesian framework. Suppose
that, given «, 3, and R, y ~ f(y|a, 8, R). Furthermore, suppose that, given
G, a and ( are independent such that a ~ g(a|G) and B ~ h(B5|b, B) (b,
B known). Then, the full likelihood function, or simply the likelihood, for
estimating G and R, is given by

L(G.Rly) = / / F(ylo B, R)g(a|G)R(Bb, B)dads,  (2.55)

where the integrals with respect to o and 3 may be both multivariate. Note
that the difference between a likelihood and a posterior is that the prior is not
taken into account in obtaining the likelihood. We now consider two special
cases under the normal hierarchy.
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The first case is when h is a point mass (or degenerate distribution) at S.
Then, the limit of (2.55), when b = 8 and B — 0, reduces to

LGBl = sy 0 { ~3 0 = XOYV - X))

(Exercise 2.22), where V = ZGZ' + R. This is simply the (normal) likeli-
hood function given in Section 1.3.1. Under the Bayesian framework, it is also
called the conditional likelihood, because a point mass corresponds to being
conditional on .

The second case is when h is a noninformative, or flat, distribution, that
is, the prior for § is uniform over (—oo,00). Note that this is an improper
prior. Nevertheless, the likelihood (2.55) does exist and has the expression

1 1 4
L(G, Rly) = (2m) (D) 2| ATV A|1/2 €xp {—22’(A’VA) Z} )

where p = rank(X), z = A’y, and A is an n X (n — p) matrix such that
rank(A) = n —p and A’X = 0 (Exercise 2.23). This is exactly the (normal)
restricted likelihood function defined in Section 1.3.2. Under the Bayesian
framework, it is also called the marginal likelihood, because it has 8 integrated
out with respect to the noninformative prior.

Thus, without taking the prior into account, the likelihood can be used to
obtain estimators of G and R, as one does in classical situations. This method
is used later to obtain empirical Bayes estimators of the effects.

If the prior is taken into account, then the posterior for G and R can be
expressed as

7(G, Rly)
yla, @, R)g(a|G)h(3)b. B (G, R)
//fffffy dad?

a, 3, R)g(a|G)h(B|b, B)n (G, R)dadBdGdR
L(G, Rly)n (G, R)
~ [JL(G, Rly)x(G, R)dGdR’

where 7(G, R) is a prior pdf for G, R. The computation of (2.56) can be fairly
complicated even for a simple model (Exercise 2.24). For complex models the

computation of (2.56) is typically carried out by Markov chain Monte Carlo
(MCMC) methods.

(2.56)

2.5.2 Inference about Fixed and Random Effects
Similar to (2.56), the posterior for 3 can be expressed as

(Bly)

/// f(yla, ﬂ, R)g(a|G)h(B]b, B)n(G, R)
[ [ [ [ f(yla, 8, R)g(alG)h(Bb, B)x(G, R)dadBdGdR
dadGdR, (2.57)
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and the posterior for « is

m(aly)
/// f(yla, @ R)g(a|G)h(B]b, B)n (G, R)
T T T fla, 3, R)g(e|G)h(Blb, B)x(G, R)dadBdGdR
dBdGdR. (2.58)

If normality is assumed, (2.57) and (2.58) may be obtained in closed forms.
In fact, in the case of normal hierarchy, we have

Bly ~ N(E(Bly), Var(8ly)),

where E(8ly) = (X'V1X+B~1) "4 X'V~y+B~1b), Var(8ly) = (X'V 1 X+
B~1)~1; and, similarly,

aly ~ N(E(aly), Var(aly)),

where E(aly) = (Z'LZ + G=Y)"1Z'L(y — Xb), Var(aly) = (Z'LZ + G=1)~!
with L=R' - RIX(B™' + X’R71X)"1X'R™~! (Exercise 2.25). It is inter-
esting to note that, when B~! — 0, which corresponds to the case where the
prior for 3 is noninformative, one has E(8|y) — (X'V1X)"1X'V-ly = 8,
which is the BLUE; similarly, E(aly) = GZ'V~1(y — X[3) (Exercise 2.26),
which is the BLUP (see Section 2.3.1.2). Thus, the BLUE and BLUP may be
regarded as the posterior means of the fixed and random effects under normal
hierarchy and a limiting situation, or noninformative prior for 3.

Note that the BLUE and BLUP depend on G and R, which are unknown in
practice. Instead of assuming a prior for G and R, one may estimate these co-
variance matrices, which often depend parametrically on some variance com-
ponents, by maximizing the marginal likelihood function introduced before
(see the early part of Section 2.5.1). This is called the empirical Bayes (EB)
method. Harville (1991) showed that in the special case of the one-way ran-
dom effects model (see Example 1.1), the EB is identical to EBLUP (see
Section 2.3.1.3). From the above derivation, it is seen that this result actually
holds more generally in a certain sense. Note that when G and R in BLUE
and BLUP are replaced by estimators, the results are EBLUE and EBLUP.
However, as Harville noted, much of the work on EB has focused on relatively
simple models, whereas EBLUP has been carried out by practitioners such
as individuals in the animal breeding area and survey sampling to relatively
complex models.

2.6 Real-Life Data Examples

2.6.1 Analysis of the Birth Weights of Lambs (Continued)

In this section, we revisit the example of lamb-weight data discussed in sec-
tion 1.7.1, where estimates of the fixed effects and variance components were
obtained.
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The BLUPs of the sire effects are obtained by PROC MIXED. The results
are shown in Table 2.3. Here Standard Pred Error represents the square root of
the estimated mean square prediction error (MSPE) of the EBLUP of s;;, the
jth sire effect in line i. The estimated MSPE in PROC MIXED is obtained by
substituting the REML estimates of the variance components into the formula
for the MSPE assuming known variance components. This is known as the
naive method of estimating the MSPE. As discussed earlier (see Section 2.3.1),
the naive estimates may underestimate the true MSPE. Methods that improve
the accuracy of the MSPE estimation have been proposed. See Section 2.3.1.

Table 2.3. BLUPs of the random effects

Sire Line Estimate Standard Pred Error

11 1 —-0.6256 0.6693
121 0.3658 0.6693
13 1 0.5050 0.6156
14 1 —0.2452 0.6441
21 2 0.1750 0.6701
22 2 0.1588 0.6296
23 2 —0.0423 0.6717
24 2 -0.2914 0.6457
31 3 —0.2667 0.6184
32 3 —-0.2182 0.5850
33 3 0.3212 0.6397
34 3 0.1637 0.6701
41 4 —-0.2015 0.6187
42 4 0.0695 0.6454
43 4 0.1319 0.6436
51 5 0.3047 0.6356
52 5 —0.2437 0.6308
53 5 —0.1177 0.6327
54 5 —0.1549 0.6656
55 5 0.3940 0.6684
56 5 —0.6311 0.6318
57 5 0.5762 0.5913
58 5 —0.1274 0.5769

2.6.2 The Baseball Example

In this section, we revisit the Efron-Morris baseball example (Example 2.11)
and use it to illustrate methods of diagnostics in linear mixed models. This
example is chosen because of its simplicity. The dataset has been analyzed by
several authors in the past, including Efron and Morris (1975), Efron (1975),
Morris (1983), Datta and Lahiri (2000), Gelman et al. (1995), Rao (2003),
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and Lahiri and Li (2005), among others. Efron and Morris(1975) used this
dataset to demonstrate the performance of their empirical Bayes and limited
translation empirical Bayes estimators derived using an exchangeable prior
in the presence of an outlying observation. They first obtained the batting
average of Roberto Clemente, an extremely good hitter, from the New York
Times dated April 26, 1970 when he had already batted n = 45 times. The
batting average of a player is just the proportion of hits among the number
at-bats. They selected 17 other major league baseball players who had also
batted 45 times from the April 26 and May 2, 1970 issues of the New York
Times. They considered the problem of predicting the batting averages of
all 18 players for the remainder of the 1970 season based on their batting
averages for the first 45 at-bats. This is a good example for checking the effect
of an outlier on the efficiency of an EB estimation with an exchangeable prior.
Gelman et al. (1995) provided additional data for this estimation problem and
included important auxiliary data such as the batting average of each player
through the end of the 1969 season. Jiang and Lahiri (2005b) reviewed the
problem of predicting the batting averages of all 18 players for the entire 1970
season, instead of predicting the batting averages for the remainder of the
1970 season as Efron and Morris (1975) originally considered.

For the player ¢ (i = 1,...,m), let p;, and m; be the batting average for
the first 45 at-bats and the true season batting average of the 1970 season.
Note that p; is the direct maximum likelihood (also unbiased) estimator of 7;
under the assumption that conditional on 7;, the number of hits for the first
n at-bats, np;, follows a binomial distribution with number of trials n and
success probability m;, i =1,...,m.

Efron and Morris (1975) considered the following standard arc-sine trans-
formation,

y; = v/narcsin(2p; — 1)
and then assumed the following model

yz‘gz 1,151N(0“1)7 z:l,,m,

where 6; = \/narcsin(2m; —1). There could be a criticism about the validity of
the above approximation. However, Efron and Morris (1975) and Gelman et
al. (1995) noted that this is not a serious concern given the moderate sample
size of 45. The data analysis by Lahiri and Li (2005) supports this conjecture.
Efron and Morris (1975) assumed exchangeability of the ;s and used the two-
level Fay—Herriot model, given in Section 2.1, without any covariate and equal
sampling variances (i.e., 1).

Gelman et al. (1995) noted the possibility of an extra-binomial variation in
the number of hits. The outcomes from successive at-bats could be correlated
and the probability of hits may change across at-bats due to injury to the
player and other external reasons not given in the dataset. However, there is
no way to check these assumptions because of the unavailability of such data.
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Assuming Level 1 is reasonable, Lahiri and Li (2005) checked the validity of
the above model through graphical tools. To this end, they used the following
standardized residual,

Yy
€; = )
S

where s> = (m —1)7! 3" (y; — §)? is the usual sample variance. Note that

marginally y; i N(p,1 4+ A). Under this marginal model, E(e;) = 0, and
var(e;) = 1+ A for large m. Thus, if the model is reasonable, a plot of the
standardized residuals versus the players is expected to fluctuate randomly
around 0. Otherwise, one might suspect the adequacy of the two-level model.
However, random fluctuation of the residuals may not reveal certain system-
atic patterns of the data. For example, Lahiri and Li (2005) noted that the
residuals, when plotted against players arranged in increasing order of the pre-
vious batting averages, did reveal a linear regression pattern, something not
apparent when the same residuals were plotted against players arranged in an
arbitrary order. This is probably questioning the exchangeability assumption
in the Efron—Morris model, a fact we knew earlier because of the intentional
inclusion of an extremely good hitter.

Let p;o be the batting average of player ¢ through the end of the 1969
season and x; = y/narcsin(2p;o — 1), ¢ = 1,...,m. We plot y and 0 versus x
in Figure 2.1 (a) and (b) respectively. This probably explains the systematic
pattern of the residuals mentioned in the previous paragraph. We also note
the striking similarity of the two graphs: 1(a) and 1(b). Although Roberto
Clemente seems like an outlier with respect to y, 0, or x, player L. Alvarado
appears to be an outlier in the sense that his current batting average is much
better than his previous batting average. He influences the regression fit quite
a bit. For example, the BIC for the two-level model reduced from 55 to 44 when
Alvarado was dropped from the model. Further investigation shows that this
player is a rookie and batted only 51 times through the end of the 1969 season
compared to other players in the dataset, making his previous batting average
information not very useful. The BICs for the Fay—Herriot model with and
without the auxiliary data are almost the same (54.9 and 55.3, respectively),
a fact not expected at the beginning of the data analysis. In spite of more or
less similar BIC values and the presence of an outlier in the regression, Figure
2.2 shows that EMReg did a good job in predicting the batting averages of
Clemente and Alvarado, two different types of outliers. Further details on this
data analysis are given in Lahiri and Li (2005).

2.7 Further Results and Technical Notes

1. Robust versions of classical tests. We first state the following theorems,
which also define the matrices A, B, C, and X introduced in Section 2.1.2.4.
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Theorem 2.1. Suppose that the following hold. (i) I(-,y) is twice contin-
uously differentiable for fixed y, and 1 (-) is twice continuously differentiable.
(ii) With probability — 1, ¥, ¢ satisfy oljoy =0, dly/d¢ = 0, respectively.
(ili) There are sequences of nonsingular symmetric matrices {G} and {H} and
matrices A, B, C' with A, B > 0 such that the following — 0 in probability,

921
G—l
S}sllp ( 00
_ 9%l
H 1
S}slf < 0¢;0¢;
o;
G
"5 < 9¢;

where Sy = {|[¢®) — tholy < [ = dolo V () = $(do)]o, 1 < i < g}, S

4"1')) 1<i<q,1<j<p

) G '+4
v/ 1<ij<q

> H'+B
¢0 /) 1<ij<p

H'-C

{16 —¢oly < 16— dolv, 1 <i < p}, Sz = {[6® — ol < [p—olu, 1 <i < g}
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and |al, = (|a1], ..., |ag])’ for a = (ay,...,ax)’;

(iv) D(0l/0v)|g, — 0 in probability, where D = diag(d;,1 < i < s) with
di = |[H™1(0%)i /0604 )| s, H "], and
ol

G 70 — N(0,%) in distribution. (2.59)
Yo

Then, under the null hypothesis, the asymptotic distribution of W is x2,
where W is defined in (2.18), and 7 = rank[X/2A~1/2(] — P)] with P =
AY2C(C"AC)~1C" AY2, In particular, if X is nonsingular, then r = ¢ — p.

The theorem may be extended to allow the matrices A, B, and so on. to
be replaced by sequences of matrices. Such an extension may be useful. For
example, suppose G is a diagonal normalizing matrix; then, in many cases, A
can be chosen as —G Y E(8%1/0v0v")|y,]G™1, but the latter may not have a
limit as n — oco.

Extension of Theorem 2.1. Suppose that, in Theorem 2.1, A, B, C are
replaced by sequences of matrices {A}, {B}, and {C}, such that A, B are
symmetric,
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0< lim inf[Amin(A) A )\min(B)] S lim Sup[Amax(A) \ Arnax(B)] < 00,

and limsup ||C|| < co. Furthermore, suppose that (2.59) is replaced by

!
»-2gt % — N(0,1) in distribution, (2.60)
Yo

where {X'} is a sequence of positive definite matrices such that
0 < liminf Apin (X) < limsup Apax(X) < 00,

and [ is the p-dimensional identity matrix. Then, the asymptotic distribution
of Wis x2_,,.

The proofs are given in Jiang (2002). According to the proof, one has
G — ()] = Op(1), hence

W = [0 - 0(9)'G[Q,, + op(1)]G[0 - 6(9)]
=W+op(1).

Thus, by Theorem 2.1, we conclude the following.

Corollary 2.1. Under the conditions of Theorem 2.1, the asymptotic dis-
tribution of W is X2, where r is the same as in Theorem 2.1. Thus, in par-
ticular, if X' is nonsingular, » = ¢ — p. Under the conditions of Extension of
Theorem 2.1, the asymptotic distribution of W is ngp.

We now consider the asymptotic distribution of the S-test defined in (2.19).

Theorem 2.2. Suppose that the conditions of Theorem 2.1 are satisfied
with the following changes: (1) in (ii), that 1 satisfies 91/9v = 0 with proba-
bility — 1 is not required; and (2) in (iii), the supremum for the first quantity
(involving A) is now over [ — o], < [1(d) — ¥(¢0)]w, 1 < i < q. Then,
under the null hypothesis, the asymptotic distribution of S is x2, where r is
the same as in Theorem 2.1. In particular, if X' is nonsingular, then r = g — p.

In exactly the same way, we have the following.

Extension of Theorem 2.2. Suppose that, in Theorem 2.2, A, B, and C
are replaced by {A}, {B}, and {C}, and (2.59) by (2.60), where the sequences
of matrices {A}, {B}, {C}, and {X'} satisfy the conditions of the Extension
of Theorem 2.1. Then, the asymptotic distribution of S is Xg_p-

Corollary 2.2. Under the conditions of Theorem 2.2, the asymptotic dis-
tribution of & is X2, where r is the same as in Theorem 2.1. Thus, in particular,
if X is nonsingular, » = ¢ — p. Under the conditions of the Extension of The-
orem 2.2, the asymptotic distribution of S is Xop

Finally, we consider the asymptotic distribution of the L-test. It is seen
that the asymptotic distributions for the W- and S-tests are both x2. However,
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the following theorem states that the asymptotic distribution for the L-test is
not x? but a “weighted” x? (e.g., Chernoff and Lehmann 1954). Recall that
@ is defined near the end of Section 2.1.2.4.

Theorem 2.3. Suppose that the conditions of Theorem 2.1 are satisfied
except that the third quantity in (iii) (involving C) — 0 in probability is
replaced by G[(0v/d¢)|s,]H™ " — C. Then, under the null hypothesis, the
asymptotic distribution of —2log R is the same as A&7 + - - - + \.&2, where r
is the same as in Theorem 2.1; A1,..., A, are the positive eigenvalues of Q;
and &1,...,&. are independent N (0, 1) random variables. In particular, if X
is nonsingular, then r = ¢ — p.

Again, the proofs are given in Jiang (2002). It should be pointed out that
if L(0,y) is, indeed, the likelihood function, in which case the L-test is the
likelihood-ratio test, the asymptotic distribution of —2log R reduces to x2 see
Weiss 1975).

Let Q; be a consistent estimator of Q. Then, by Weyl’s eigenvalue per-
turbation theorem (see Appendix B), the eigenvalues of Q, are consistent
estimators of those of @);, and therefore can be used to obtain the asymptotic
critical values for the L-test.

We now specify the W-, S-, and L-tests under the non-Gaussian mixed
ANOVA model (see Section 1.2.2) with the additional assumption that

E(&) = 0, E(a}) = 0, 1<i<s. (2.61)

As it turns out, this assumption is not essential but simplifies the results
considerably. First define

Ay = (tr(VIV) /2A00/mmy) 1<i<ss,
Az = (e(VTIViVTIV)) /2 mimmg)1<ij<s,
X'VIX/An 0 0
A= 0 17222 4 | . (2.62)
0 A A,

Let b= (I \/71Z1 -+ \/VsZs), Bo = V¥V, B, =bVV;V7 1 1 <i<s.
Furthermore, we define

n
Dy ;= E B; uBju,
=1

n+mq

Dy = E B; uBju,
l=n+1

n+mi+--+ms
D5 = E B;iuBju,
l=n+mi+--+ms_1+1
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where B; j; is the (k,1) element of B;, 0 <i,j < s. The kurtoses of the errors
and random effects are defined by ko = (Fe}/od) -3, and k; = (Eal, /o) —3,
1 < ) <s. Let Al = (AOi/M)1gi§s, A2 = (Aij/\/m)lﬁi,jSSv and

0 0 0
A= 0 Aoo/n All 5 (263)
0 A A,

where A;; = {4\le=0Tlo=0} =15 'k, D, ;00 <i,j < s. Let
W =bvVIX(X'ViX)“V2
and W/ be the Ith row of W, 1 <1 <n+m, where m =mq + --- + m,.

Theorem 2.4. Suppose that the following hold.
(i) 6(-) is three-times continuously differentiable and satisfies (2.21), and
00;, /09, #0,1 <k <d.
(ii) Eef < oo, var(e?) > 0, Ea}; < oo, var(a?) > 0,1 < i < s, and (2.61)
holds.
(iii) n = 00, m; = 00, 1 <4 < 5,0 < liminf Apin(A) < limsup Apax(4) < oo,
and maxi<j<n+tm |Wi| — 0;
Then, for [(0, y) there exist 6 and g% such that the conditions of the Extensions
of Theorems 2.1 and 2.2 are satisfied with

G = diag(V/n, . .., /1, /T -+ - /5

= diag(g;, 1 <1i < q),

H = diag(g;,,1 < k < a), A is given by (2.62), C = 96/9¢, B = C'AC,
and X = A+ A, where A is given by (2.63). Therefore, the asymptotic null
distribution of both x2 and x?2 is ngd- The same conclusion holds for [z(0, y)
as well.

Note that the ith row of 96/9¢ is 90;/0¢', which is (0,...,0) if i ¢
{i1,...,4a}, and (0,...,0,00;, /0,0, ...,0) (kth component nonzero) if i =
ik, 1 <k < a under (2.21).

Theorem 2.5. Suppose that the conditions of Theorem 2.4 are satisfied
except that, in (iii), the condition about A is strengthened to that A — Ay,
where Ag > 0, and X~ — 3. Then, the conditions of Theorem 2.3 are
satisfied with A = Ag, XY = X, and everything else given by Theorem
2.4. Therefore, the asymptotic null distribution of —2log R is the same as
> i1 A&7, where r = rank{X'/2A=Y/2(I — P)}, evaluated under Hy with
P = AV2C(C'AC)~TCT AY/?; Ajs are the positive eigenvalues of @; given by
(2.20), again evaluated under Hp; and ¢;s are independent N(0,1) random
variables. In particular, if 3’ is nonsingular under Hy, then r = ¢ — d. The
same conclusion holds for [z (8, y) as well.

The proof of Theorems 2.1-2.5 can be found in Jiang (2005c¢).
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It is seen from (2.63) that A, and hence X, depends on the kurtoses x;,
0 < i < s, in addition to the variance components o7, 0 < i < s. One already
has consistent estimators of o2, 0 < i < s (e.g., the ML or REML estimators).
As for k;, 0 < i < s, they can be estimated by the empirical method of
moments (EMM) of Jiang (2003Db).

The extension of Theorem 1 and Theorem 2 without assuming (2.61) is
fairly straightforward, although the results will not be as simple. Note that
Theorems 2.1-2.3 (and their extensions) do not require (2.61). However, there
is a complication in estimating the additional parameters involved in Y. This
is because, without (2.61), the matrix A also involves the third moments of the
random effects and errors (on the off-diagonal). In such a case, the EMM of
Jiang (2003b) is not directly applicable. Alternatively, X' can be consistently
estimated by the POQUIM method (see Sections 1.4.2 and 1.8.5), which does
not require (2.61).

2. Existence of moments of ML and REML estimators. Jiang (2000a) es-
tablished the existence of moments of MLL and REML estimators under non-
Gaussian linear mixed models (see Section 1.4.1) as an application of a matrix
inequality. Let A;,..., As be nonnegative definite matrices. Then, there are
positive constants depending on the matrices such that for all positive num-
bers x1,...,xs,

2

I-i—Zl‘jAj R 1<71<s.
J=1

:
A < =

)
€Ty

Now consider a non-Gaussian mixed ANOVA model (see Section 1.2.2.1),
where y = (y;)1<i<n. The ML and REML estimators are defined in Sections
1.3.1 and 1.3.2, respectively, and EBLUE and EBLUP in Sections 2.2.1.4 and
2.3.1.3, respectively.

Theorem 2.6. The kth moments (k > 0) of the ML or REML estimators
of 02,...,02,72 are finite, provided that the 2kth moments of y;, 1 <i <n
are finite.

3. Ezistence of moments of EBLUE and EBLUP. In the same paper, Jiang
(2000a) established the existence of moments of EBLUE and EBLUP as an-
other application of the same matrix inequality. Again, no normality assump-
tion is made. Note that here the only requirement for the variance components
estimators is that they are nonnegative. In the following theorem, the abbre-
viations EBLUEs and EBLUPs stand for the components of EBLUE and
EBLUP, respectively.

Theorem 2.7. The kth moments (k > 0) of EBLUEs and EBLUPs are
finite, provided that the kth moments of y;, 1 < ¢ < n are finite, and the
variance components estimators are nonnegative.
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Because it is always assumed that the second moments of the data are
finite, we have the following conclusion.

Corollary 2.3. The means and MSEs of EBLUE and EBLUP exist as
long as the variance components estimators are nonnegative.

Note 1. Kackar and Harville (1984) showed that the EBLUE and EBLUP
remain unbiased if the variance components are estimated by nonnegative,
even, and translation-invariant estimators (see Section 2.3.1.3). In deriving
their results, Kackar and Harville avoided the existence of the means of
EBLUE and EBLUP. Jiang (1999b) considered a special case of linear mixed
models corresponding to s = 1 in (1.2) and proved the existence of the means.
The above corollary has solved the problem for the general case.

Note 2. The ML and REML estimators are nonnegative by their definitions
(see Section 1.4.1). However, for example, the ANOVA estimators may take
negative values (see Section 1.5.1).

4. The definition of X,,(0) in Section 2.4.1.2. First consider the case s = 0,
that is, the case of linear regression. In this case, we have y; = 2,0 + ¢, i =
1,...,n, where z is the ith row of X, which has full rank p, and ¢;s are i.i.d.
errors with mean 0, variance 72, and an unknown distribution G(-|7). Thus,
in this case, § = (3#',7%)". The matrix X,(0) is defined as n=' > | Var(h;),
where

= Ip; (0 _
he = (e — (O))rziens - (Z L )) (X'X) e
=1

- al(XX) e ( " 8pi(9>> 2

n—p or? i

i=1
with pi(a) = (pik(e))lngM and p,»k(&) = Pg(yi € Ek) Jiang (2001) gives
a more explicit expression of X, (#). On the other hand, it may be more
convenient to compute ¥, = En(é) by a Monte Carlo method, where § =
(3',72)" with § being the least squares estimator and 72 = |y — X 3|2/(n — p).

We now consider another special case, the case s = 1, such that y;; =
v B+ a;i+e€j,i=1,...,m, j=1,... k;, where the a;s are i.i.d. with mean
0, variance 02, and an unknown distribution F(:|0), €;;s are i.i.d. with mean
0, variance 72, and an unknown distribution G(:|7), and «, € are independent.
In other words, we consider the nested error regression model (2.48). Write
the model in the standard form y = X3 + Za + €. Let § = (8,72,7)’, where
v = 0%/72. Define

2.(0) = a,* {i Var(h;) + 29'(T — R)@} ,

where 7 is defined in Section 1.8.3, and h;, @, R are defined as follows. Recall
the notation introduced in Section 1.8.3. Redefine p; = [tr{(Z'V (v)Z)?}]*/2.
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Recall pg = v/n —p. Let p = tr{Z'V(y)Z}/pop1- Let P;;(6) be the M x (p+2)

matrix whose (k,r) element is

B —ult) = Glep—1 — ;8 — ulT) }dF (ulo)

00,

(6, is the rth component of 6). Let P;;[r](8) be the rth column of P;;(8), and
P;;[1,p](0), the matrix, consist of the first p columns of P;;(¢). Define

- () G i)

_ (%)
- @/ )

W =7b(y)V; X (X'VEX) T ZPwlp

= (D) 1<i<min,

where V,, = V/72. Let S; = {1 : X2, _ ko +1 <1 <37, ki U{n+i}. Write
w(i) = (Wiies;s Vi(i,i') = (Vi iesives, s 3= 0,1, U(i) = (®))ies, - Let

ki
Z{l(yneEw —pijr(0)} — (i) w(i)

L w(@)'V; (i, i)w(i)

N Z 2(1—5) 5,
j=0 T TP
where p;;x(0) = Po(y;; € Ey). Finally, let R = (7 /). 7=0,1, Where

ZZ L er{ V5 (8, 9)Vy (4, z)}

7‘2(2 Jj— J)pjpj

Tji =

Finally, in the case of multiple random effect factors, that is, s > 2, X,,(0) is
defined in a similar way; that is, X, (0) = a;l{zlel Var(h;) 4+ 29'(Z — R)P}.
We omit the definitions of h, @, and R here and refer the details to Jiang
(2001, Section 4) (Z is the same as before).

2.8 Exercises

2.1. Derive explicit expressions of the test statistic (2.3) (in terms of the
yijxs) for the two cases considered in Example 2.1 where the exact F-test
applies: (i) testing 02 = 0 under the model without interaction; and (ii) testing
02 = 0 under the model with interaction.

2.2. Consider the following random effects model,
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Yijkt = K+ fi + 95 + wij + Vi + wijk + €k

(see, e.g., Searle 1971, for notation), ¢ = 1,...,a,j =1,...,b, k =1,... ¢,
l=1,...,d, where u is an unknown mean, e;;z; is an error, and all the others
are random effects. Assume that the random effects and errors are independent
such that f; ~ N(0,0), g; ~ N(0,03), u;j ~ N(0,03), vjy ~ N(0,0%),
wijr ~ N(0,02), and e;j, ~ N(0,7%). Do exact or optimal tests exist for
testing Hy: 05 = 0? Please explain. (Hint: Consider Result 2 of Mathew and
Sinha (1988) described in Section 2.1.1.2).

2.3. Derive an expression for —2logR, where R is the likelihood ratio
(2.6), under the one-way random effects model of Example 2.3 for testing Hy:
02 = 0. What is the asymptotic distribution of the likelihood-ratio test, that is,
the asymptotic distribution of —2logR? Study empirically the (asymptotic)
size of the likelihood-ratio test and compare it with the nominal levels. For
the empirical study, let the true parameters be i = 0.5 and 72 = 1.0; and
consider sample sizes m = 50, 100, 200 and k; = 5 for all 7 in all cases.

2.4. Suppose that Xi,...,X,, are i.i.d. observations from a population
with mean p and variance 02, and the problem of interest is to estimate p. A
well-known estimator is the sample mean, fi = X. However, because var(X) =
o?/n, in order to evaluate the precision of /i, one needs knowledge about o2.
Show that an EMM estimator of o2 is given by 6% = n=1 Y1 (X; — X)?,
which is the same as the ML estimator when the data are normal.

2.5. Consider a linear regression model

!/ .
yi:xiﬁ—'—eia i=1,...,n,

where z; = (z41,...,®ip) is a vector of known covariates; (3 is a vector of
unknown regression coefficients that are of main interest; and ¢q,...,¢, are
i.i.d. errors with mean 0 and variance o?. The model can be expressed as
y = X + ¢, where the ith row of X is x}. Assume that rank(X) = p. Then,
the least squares (LS) estimator of f is given by

B=(X'X)"'X"y.

Although # is of main interest, because Var(8) = o2(X'X)~!, to find the
standard errors of the estimators one needs knowledge about o2. Show that
an EMM estimator of 2 is 62 = n~' 31", (y; — 2/ (3)?, which, again, is the
ML estimator when normality is assumed.

2.6. Show that the estimating function M (83,02, k,y) defined above (2.16)
is unbiased in the sense that E{M (8,02, k,y)} = 0 when 3, 0%, k correspond
to the true parameters.

2.7. Show that the EMM estimators derived in closed form in Example
2.2 (continued) below Lemma 2.1 are consistent, provided that m — oo and
k > 2. You may assume that 62 and 67 are the REML estimators and that
they are consistent.

2.8. Show that, in the balanced one-way random effects model with the
Hartley—-Rao form of variance components, the POQUIM estimator of the
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asymptotic variance of the REML estimator of , that is, the diagonal element
of the POQUIM estimator of the asymptotic covariance matrix of the REML
estimator corresponding to 4, is given by ZA‘RM in Example 2.2 (Continued)
in Section 2.1.2.2.

2.9. This and the next three exercises concern Example 2.2 (Continued) in
Section 2.1.2.4. Verify the expression for the Gaussian log-likelihood, (1), y),
given there. Show that E(MSA) = 1+k~, therefore, under the null hypothesis,
the probability approaches one as m — oo, so that the estimator &2 is well
defined.

2.10. Continuing with the previous exercise, verify that the W-test statistic
for Hp: A=1 and v > 1 is given by

i 2k \! )
Xw: k_1+/f0 mk(MSE—l) 5

where Ry may be chosen as the EMM estimator of k¢ given in Example 2.2
(Continued) below Lemma 2.1. Also show that 2k/(k — 1) + ko > 0 unless €3,
is a constant with probability one.

2.11. Continuing with the previous exercise, show that the S-test statistic
is identical to the W-test statistic in this case.

2.12. Continuing with the previous exercise, show that the L-test statistic
is equal to

—2log R = m(k — 1){MSE — 1 — log(MSE)}

in this case. Furthermore, show that the asymptotic null distribution of the
test statistic is A\;x?, where \; = 1+ {(k — 1)/2k}ko, which is estimated by
1+ {(k — 1)/2k}ko. Note that the asymptotic null distribution is x? if the
errors are normal but regardless of the normality of the random effects. (Hint:
Use Theorem 2.5.)

2.13. Consider the balanced one-way random effects model of Example
2.2. Consider the Hartley-Rao form of variance components A\ = 72 and v =
0?/7%. Suppose that one is interested in constructing an exact confidence
interval for . Consider the following quantity

MSA
(1 + ky)MSE’

where MSA = SSA/(m — 1) and MSE = SSE/m(k — 1). Show that, under
normality, F' has an F-distribution with m—1 and m(k—1) degrees of freedom.
Furthermore, show that, given p (0 < p < 1), an exact (1 — p)% confidence

interval for v is
1
LR\ 1RO
k \ Fy k \ FL

where R = 1\/ISAA/1\/IS]E7 FL = F’mfl,m(kfl),lfp/Z and FU = mel,m(kfl),p/Q'
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2.14. Consider the one-way random effects model of Example 2.3. Let ¢,
1 < j < k; be constants such that 251:1 ¢ij = 0 and 25;1 G =1-1/k;.
Define u; = g;. + 2521 cij¥ij, 1 <4 < m. Prove the following.

a. The random variables ui,...,u,, are independent and normally dis-
tributed with mean p and variance o2 4 72.

b. The quantity x* = > 1", (u; — u)?/(c? + 72) is distributed as x?,_;.

2.15. In Exercise 2.14, find an exact confidence interval for 72, the variance
of the error ¢;;.

2.16™. In the balanced one-way random effects model of Example 2.2, it
is known that a UMVU estimator of ¢ = ¢\ + Ag is ¢ = €52 + S2, where 52
and S2 are MSA and MSE, respectively, defined in Example 1.1 (continued)
in Section 1.5.1.1.

a. Show that SJZ is a consistent estimator of A;, j = 1,2.

b. Show that ( — ¢)/y/var(C) converges in distribution to the standard
normal distribution.

2.17. Show that, in Example 2.8, the BLUE is given by (2.25) and (2.26)
and its covariance matrix is given by (2.27). How do these formulae compare
with the corresponding expressions under a linear regression model, that is,
those for the least squares estimators? and when do the former reduce to the
latter?

2.18. Show that, in Section 2.3.1.2, the logarithm of the joint pdf of o and
y can be expressed as (2.36). Furthermore, derive Henderson’s mixed model
equations (2.37).

2.19. For the following linear mixed models determine the order of d.
above (2.39).

a. One-way random effects model (Example 1.1)

b. Two-way random effects model (Example 1.2)

c. Example 2.8, which is a special case of the nested error regression model

2.20. In Example 2.3 (continued) in Section 2.4.1.1, let the true parameters
be = —0.5, 02 = 2.0, and 72 = 1.0. Also, let m = 100 and k; = 5,1 < i < m.
In the following, the errors are always generated from a normal distribution.

a. Generate the random effects from a normal distribution. Make a Q—Q
plot to assess normality of the random effects, using REML estimators of the
parameters.

b. Generate the random effects from a double-exponential distribution
(with the same variance). Make a Q—Q plot to assess normality of the random
effects, using REML estimators of the parameters.

c. Generate the random effects from a centralized-exponential distribution
(with the same variance). Here a centralized-exponential distribution is the
distribution of £ —E(&), where £ has an exponential distribution. Make a Q-Q
plot to assess normality of the random effects, using REML estimators of the
parameters.

d. Compare the plots in a, b, and c. What do you conclude?
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2.21. Show that, in Example 2.15, p,, ~ k and v, ~ mk as m — oo (k
may or may not go to co). Also show that, in Example 2.15 (continued) below
(2.37), Ny, ~ mk.

2.22. Show that, in Section 2.5.1, under normal hierarchy and when b = (3
and B — 0, the likelihood (2.55) reduces to the normal likelihood of Section
1.3.1 when the prior for 8 is a point mass at [3.

2.23. Show that, in Section 2.5.1, under normal hierarchy the likelihood
(2.55) reduces to the normal restricted likelihood of Section 1.3.21 when the
prior for § is noninformative.

2.24. Consider Example 2.18. Let the priors be such that 0% « 1/02,
72  1/72, and 02, 72 independent. Derive the likelihood (2.55) and posterior
(2.56). Is the posterior proper (even though the priors are improper)?

2.25. Show that, under normal hierarchy, the posterior of § is multivariate
normal with E(Bly) = (X'V !X + B~)"YX'V~ly + B~1b) and Var(Bly) =
(X'V-1X + B~1)~1 Similarly, the posterior of o is multivariate normal with
E(aly) = (Z'LZ + G171 Z'L(y — Xb) and Var(aly) = (Z'LZ + G~1)~1,
where L=R! - RIX(B™'+ X'R71X)"'X'R~%.

2.26. Show that, under normal hierarchy and when B~! — 0, which
corresponds to the case where the prior for ( is noninformative, one has
E(Bly) — (X'V-1X)"'X'V~1y = §, which is the BLUE; similarly, E(a|y) —
GZ'V-l(y — XP).
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