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Introduction to Experimental Genetics

Variability in observed phenotypes may result from a variety of factors —
inherited as well as environmental. The blend of all these influences gives rise
to the unique being every living creature is. Still, the main role of science is
to identify the rules which unite seemingly unrelated phenomena. The role
of genetics is no different. Its first, and most important, task is to identify
the major factors that give rise to different phenotypical characteristics. Once
these major factors have been identified, the investigation can be carried on
in order to identify genes having secondary effects.

The basic strategy in experimental sciences is to isolate the phenomena
being investigated and study them under controlled conditions. Ideally, an
experiment will involve measurement of the phenomena, taken at various levels
of one or a small number of potentially influencing factors with the levels of
other factors kept fixed. Thence, observed variation in the phenomena can
be attributed to the variation in that single explanatory factor. Experimental
genetics applies this approach. Effort is made to ensure uniform environmental
conditions, so one hopes that environmental effects on the phenotype are
minimized. Moreover, the use of an experimental cross of inbred strains (see
below) potentially reduces the variability in the genetic background, and thus
facilitates the dissection of the genetic factors that give rise to the observed
phenotypic variation. (This simplification brings with it the disadvantage that
there may well be genetic variability in nature that is not represented in a
given set of inbred strains.)

In reality, the ideal experiment is almost never feasible. Environmental
condition may vary slightly from one stage of the experiment to the next.
Pure strains may be contaminated. Some factors may not be possible to iso-
late from others, thus forcing the investigation of several factors jointly. And
on top of that, measurement errors may introduce unwanted error into the
system. Consequently, precautionary measures need to be taken. These may
include the use of experimental controls, taking repeated measurements, and
reproducing the results in other laboratories. The analysis of the outcomes



36 2 Introduction to Experimental Genetics

of the experiments must take into account the potential effect of unplanned
factors. This is the role of statistical models and statistical inference.

Models from statistical genetics are used in order to incorporate under
one roof the investigated effects of the genetic factors, measurement errors,
and a whole range of influencing factors that may have not been taken into
account during the planning of the experiment. The analysis of the outcomes
of the experiment, and the conclusions, are based on applying the principles
of statistical inference to these models. The realization that eventually the
outcomes of the experiment will be investigated with statistical tools should
have an effect on the way the experiment is planned. A thoughtful design of
an experiment may increase its statistical efficiency. A poor design may be
wasteful, or may not produce enough information to attain its stated goal.

Our discussion concentrates on mouse genetics, but the methods are valid
more generally. The mouse model was selected due to its importance in rela-
tion to human genetics. The rest of this chapter provides some background
in specific statistical models and experimental designs for genetic mapping
based on crosses of inbred strains. Because we are not able to do breeding
experiments with humans, human genetics involves more complex statistical
considerations that will be investigated in later chapters. The first section
below outlines some basic facts regarding the mouse model and its genetics.
The material in this section is mainly borrowed from the excellent textbook
by Lee Silver [77]. (See the link http://www.informatics. jax.org/silver/
for an online version of the book.) The second section deals with a statistical
model of the relation between genetic factors and the observed phenotype.
Like reality, statistical models can become quite complex. However, even sim-
ple models can provide insight and lead to useful analysis. The model that
will be discussed here is as simple as such models can get. Thus, it is perfect
for the introduction of the basic concepts. Yet, even in its simplest form, the
model is frequently used by researchers — a testimony to its value. Some sim-
ulations are conducted in accordance with the model in order to demonstrate
the effect of genetic factors on the distribution of the phenotype. In the third
section some common experimental designs in mice are described. The merits
and drawbacks of the different designs will be revisited in later chapters after
going into the details of the statistical tools and their properties. Finally, a
short and non-technical description of the genetic markers that are commonly
used today is provided.

2.1 The Mouse Model

Already in the early days of modern genetics, the house mouse was identified
as a perfect model for genetic investigation in mammals. The house mouse is a
small, easy to handle animal. It is relatively inexpensive to maintain, it breeds
easily, and it has a high rate of reproduction. A significant portion of biological
research is aimed at understanding ourselves as human beings. Although many
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features of human biology at the cell and molecular levels are shared across
all living things, the more advanced behavioral and other characteristics of
human beings are shared only in a limited fashion with other species or are
unique to humans. In this vein, the importance of mice in genetic studies
was first recognized in the intertwined biomedical fields of immunology and
cancer research, for which a mammalian model was essential. Today, specially
developed mouse strains serve as models for many human traits, e.g., obesity
or diabetes.

The mouse genome, like the genomes of most mammals, contains about
three billion base-pairs (bp). It is organized in 19 pairs of homologous autoso-
mal chromosomes, compared to the 22 pairs in human, and a single pair of sex
chromosomes. Yet, there is a large amount of homology between the mouse
and the human genes. Large chunks of DNA, 10-20 million bp in length, re-
mained intact during evolution, and are practically identical in both species.
As a matter of fact, the entire human genome can be, more or less, recovered
by cutting the mouse genome into 130-170 pieces and reassembling them in
a different order.

At the genetic level, processes of meioses, mating, and reproduction in
the two species are similar. In particular, in mice like in human, autosomal
chromosomes may experience crossovers during meiosis. This process of re-
combination mixes up the genetic material that is passed on from the parent
to the offspring. Owing to recombination, the genetic contribution of the par-
ent is a random mosaic of segments originating from the two grandparents.
However, the rate of crossovers per base pair during meiosis in mouse is about
half the rate in human.

The founding father of mouse research was W. E. Castle, who (inten-
tionally) brought the mouse into his laboratory at the beginning of the 20th
century. Subsequently, he, and his many students, began developing geneti-
cally homogeneous inbred lines of mice. These pure inbred lines became a very
valuable resource and the key to the success of the mouse model in genetics.
Genetically homogeneous strains provide the means to control for the effect
of genetic factors. Moreover, since all mice of the same line are genetically
identical, results of experiments carried out in a specific laboratory can be
compared to results of experiments from other laboratories. A major source
of such genetically pure strains is the Jackson Laboratory in Bar Harbor,
Maine. This laboratory was founded in 1929 by C. Little, a student of Cas-
tle’s, with the aim of promoting mouse research; it serves to this day as a
center of mouse research.

Genetically homogeneous inbred strains are created by a process of suc-
cessive brother—sister mating. Random drift in finite inbred populations even-
tually results in the fixation of a given locus, namely in the extinction of all
other alleles. Once a locus is not polymorphic, it remains so in all subsequent
generations. With additional brother—sister mating, the genomes in the pop-
ulation become less and less polymorphic. The formal definition of an inbred
strain requires at least 20 generations of strict brother—sister mating. Some
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of the classical inbred strains have a history of more than 100 generations of
inbreeding. See Chap. 3 for a more systematic discussion of inbreeding.

2.1.1 A Quantitative Trait Locus (QTL)

We consider measurement of a continuous trait, such as body weight or blood
pressure, in a population of mice. Denote the level of the measurement for
a randomly selected mouse by y. One usually observes that such measure-
ments show variability across the population. Some of this variability may be
attributed to genetic factors. The task is to model the overall genetic con-
tribution, and the genetic contribution of each specific locus, to the overall
variance.

We assume that the phenotypic value y is a simple summation of the
mouse’s genotype and environment influences:

y=m+G+E, (2.1)

where m is a constant, G denotes the effect of all genes contributing to the
phenotype, and E denotes the environmental effects. By writing m separately
we can assume without loss of generality that both G and E have mean value
0, so m is in fact the average phenotypic value. We also make the critical
assumption that G and E are uncorrelated. The variance of G, say o2, is
called the genetic variance; the variance of vy, Uy2 is the phenotypic variance.
From our assumption that G and E are uncorrelated, it follow that 0; is the
sum of 62 and the variance of F, 2. An important quantity is the heritability
H? defined to be the ratio o2/, of the genotypic to phenotypic variance. It
measures the percentage of variation in the phenotype that has a genetic
origin.

We now want to make more specific assumptions about the contribution
to G arising from one genetic locus. Consider a given polymorphic genetic
locus, specifically, a bi-allelic locus with its two alleles denoted by A and a.
The genotype at the given locus is one of the three types: AA, Aa, or aa.
Consequently, the underlying population can also be subdivided into three
subclasses according to these three types. The model we propose may assign
different average measurements for each of these subclasses. However, the
variance of the measurement is assumed to be unchanged across the three
subclasses. Let x, be the number of A alleles (0 or 1) inherited from the
mother and z the number inherited from the father. Observe that x = x\ +
Ty, the total number of A alleles in the genotype, can take on the values 0, 1,
or 2. Consider a model of the form

y=p+a(xy+xs)+0|zy — x| +e, (2.2)

where e is a zero mean random deviate. Note that |z, — x| = 1 if, and only
if, z = 1, namely that the mouse is heterozygous. The term p is the mean level
of y for an aa-homozygote. The mean level for an AA-homozygote is pu + 2 «
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and the mean level for an heterozygote is u + « 4+ 6. The locus is said to be
additive if § = 0, since in this case each A allele adds the amount « to the
average phenotype. If § = «, the allele A is said to be dominant; it is called
recessive if a = —§. These terms are consistent with the usage for qualitative
traits. For a dominant locus, a single A allele produces the full genetic effect;
for a recessive locus a single A allele produces no effect, while two A alleles
do produce an effect. Note that A is dominant if and only if a is recessive.

The term & = zy + xp is the number of A alleles in a randomly se-
lected mouse. Both z,, and = are Bernoulli random variables. We assume
here that they are independent with the same probability p to take the value
1 (indicating an A allele). Then the distribution of x is binomial, namely
Pr(z =2) = p?, Pr(x = 1) = 2p(1 — p), and Pr(x = 0) = (1 — p)?, where p is
the frequency of allele A in the population. It follows that the mean value of
xis 2p? 4+ 2p(1 — p) + 0 = 2p. Therefore, the overall mean of the phenotype
ism=p+2pa+2p(l—p)d. (The assumption that z,, and xy are indepen-
dent Bernoulli variables can be derived from the notion of Hardy- Weinberg
Equilibrium, which will be discussed in the next chapter.)

The residual e incorporates all remaining factors that contribute to the
variability. Such factors can include the genetic contribution from loci other
than the one we investigate, as well as environmental factors. We assume that
e is uncorrelated with the other terms on the right-hand side of (2.2). This
assumption may not be satisfied. In most cases it rules out the possibility of
other genes on the same chromosome that contribute to the trait. Such genes
would be linked to and hence correlated with the investigated locus. (See the
discussion of recombination in Chap. 3.) In the special case where the locus
explicitly modeled in (2.2) is the only genetic locus contributing to the trait,
then e in (2.2) is the same as E in (2.1); and since G has mean 0, it can be
written explicitly as G = a(z — 2p) + 6[|exnm — x| — 2p(1 — p)].

Often in what follows we assume also that e is normally distributed, al-
though this assumption is not strictly necessary. Because of the central limit
theorem, it would be a reasonable assumption if e is made up of a sum of
approximately independent small effects, either genetic or environmental. It
would not be satisfied, however, if there is another major gene having a sub-
stantial effect in addition to the one modeled explicitly in (2.2). We will return
to this point below.

By simple, but somewhat tedious algebra (see Prob. 2.4 below) one can
rewrite the model (2.2) in the form:

y = mA{a+(1-2p)d} x[(xy—p)+(xr—p)|—{2 6} x[(zn—p) (ze—p)]+e, (2.3)

and show that [(xy —p) + (zr —p)] and [(x\ — p)(zx — p)] are uncorrelated by
virtue of the assumption that x,; and z are independent. Since by assumption
e is also uncorrelated with these terms, the variance of y can be written as
the sum of three terms:

2

o, = o2 +ol 402, (2.4)
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where

oi =2p(1 =p)la+(1—2p)s)*, of =4p*(1—-p)*s*, o =var(e). (2.5)
The term o? is called the locus specific additive variance, while o2 is called
the locus specific dominance variance. Note the potential confusion with the
terminology introduced above. The allele A is additive if and only if the dom-
inance variance is 0. If A is dominant or recessive, the dominance variance is
positive. In the very important special case of an intercross, defined below in
Sect. 2.2, p = 1/2, s0 02 = a?/2, and o2 = §2/4.

A measure of the importance of the locus under study is the locus specific
heritability, denoted by h* and defined to be the ratio (o7 + op)/0;. In the
special case that only a single gene contributes to the trait h? = H?, the
heritability of the trait.

2.1.2 Simulation of Phenotypes

Let us explore the effect of the different model parameters on the distribution
of the phenotype in a population. For the exploration we use R, which was
introduced in the previous chapter. Start with formation of the vector of
mean values, for the case where 4 =5, @« = 1, and 6 = —1 (i.e., a recessive
model). For each animal the mean expression level is equal either to 5 or to
7, depending on the animal’s genotype:

>n <- 6; p <- 0.5; x <~ rbinom(n,2,p)
> mu <- 5; alpha <- 1; delta <- -1

> mu + alpha*x + delta*(x==1)

(1] 755755

A normal residual term is added to the mean:

> sig <- 0.5
> mu + alpha*x + deltax(x==1) + sig*rnorm(n)
[1] 8.042733 5.351743 4.859863 7.133684 4.671937 5.558227

The default application of the function “rnorm” generates independent stan-
dard normal random variables. Multiplying by the standard deviation and
adding the mean transforms the distribution to having the given mean and
standard deviation. An alternative way of obtaining the same distribution is
by using the “mean” and “sd” parameters of the function:

> rnorm(n, mu + alpha*x + delta*(x==1), sig)
[1] 8.312484 5.351396 4.635130 6.936316 4.829702 5.295540

Yet, a third way would be to have:

> mu + alpha*x + delta*(x==1) + rnorm(n, sd=sig)
[1] 6.982847 6.354027 5.177322 6.852138 5.111498 4.644922
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Observe that we must introduce the standard deviation with the “par_name
= par_value” argument assignment format since the parameter “sd” is not
the second parameter of the function “rnorm”.

Let us put some real action into the story by simulating a population of
100,000 animals according to the given genetic model, under two different
scenarios for non-genetic variability:

n <- 107°5; p <- 0.5; x <- rbinom(n,2,p)
mu <- 5; alpha <- 1; delta <- -1; sig <- 0.5
y <- mu + alpha*x + delta*x(x==1) + sig*rnorm(n)
h2 <- var(alpha*x + deltax(x==1))/var(y)
plot(density(y) ,main=
paste("A recessive model:\n h"2 = ",round(h2,3),sep=""))

+ V V. V Vv VvV

This produces the density function on the left in Fig. 2.1. The density on the
right is produced by:

mu <- 5; alpha <- 1; delta <- -1; sig <- 1
y <- mu + alphaxx + delta*(x==1) + sig*rnorm(n)
h2 <- var(alpha*x + delta*(x==1))/var(y)
plot(density(y) ,main=
paste("A recessive model:\n h"2 = ",round(h2,3),sep=""))

+ V V Vv VvV

The object “h2” stores the value of h2, i.e., the fraction of the genetic vari-
ance for the modeled gene within the total variance. The function “density”
produces an estimate of the density of the population, based on the values
stored in the vector y. The resulting object is then plotted with the function
“plot”.

The title for the figure is set with the argument “main” of the function
“plot”. The assignment of this argument is a character string. Character
strings are entered using either double (") or single (°) quotes. The function
“paste” takes an arbitrary number of arguments and concatenates them one
by one into character strings, with a separating string determined by the
argument “sep”. Numbers are converted into character strings. The symbol
“\n” enters a line break.

The distributions of the phenotypes in both populations are given in
Fig. 2.1. Both pictures represent a mixture of two normal distributions. The
mean of each of the normal distributions that form the mixture is the same
(5 and 7), and the fraction is the same (3/4 and 1/4). The only difference be-
tween the two cases is the magnitude of the variance attributed to non-genetic
factors (1/4 versus 1). Note that this small change is enough to change a bi-
modal distribution into a distribution with a single mode. In fact, a casual
glance at the second density function in Fig. 2.1 suggests that it is roughly
normal, although a more careful inspection shows that it is slightly skewed to
the right.



42 2 Introduction to Experimental Genetics
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Fig. 2.1. Distributions of QTL phenotypes

2.2 Segregation of the Trait in Crosses

Crosses between inbred strains are the bread and butter of experimental ge-
netics. Inbred strains are specially developed to be homozygous at all loci
throughout the genome, in contrast to outbred populations which are often
polymorphic. Standard approaches for dissecting an heritable trait in exper-
imental genetics often involve crossing inbred strains. The genetic contribu-
tion to a trait cannot be demonstrated by looking at individuals from a single
inbred strain alone, since in principle all members of the same strain are ge-
netically identical and the observed phenotypical variability among them has
to be attributed to environmental factors. Therefore, in order to map genetic
factors one must select at least two different strains, which show different
levels of expression of the phenotype under the same environmental condi-
tions. In many cases one can screen the commercially available inbred strains
for an appropriate pair of strains, which are phenotypically distinct. Careful
crosses between the selected strains produce the population that is used for
the genetic mapping.
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The two most popular protocols for crossing inbred strains are the back-
cross and the intercross, which we describe below. However, before going into
the details of the two different breeding schemes, let us introduce the stan-
dard terminology. Practically all breeding experiments start with an outcross,
a mating between two animals or strains considered unrelated to each other.
Specifically, we consider here an outcross between two distinct inbred strains
that show a phenotypic difference. The resulting offspring are called the first
filial generation, or F}. Consider any genetic locus where the two strains differ.
Recall that inbred strains are homozygous at all loci. Say that the genotype
of one of the inbred strains at a given locus is AA, and the genotype of the
other inbred strain is aa. It follows that the genotype of the F; generation at
the polymorphic site must be Aa, since each parent passes on one of its alleles
to the offspring. Consequently, F} mice have a fixed genetic composition — all
are heterozygous at all polymorphic loci.

A backcross is obtained by mating the F; offspring with mice from either
one of the original inbred strains. Note that there are two possible types of
backcross, depending on the choice of the inbred strain for the cross, denoted
here by the AA x Aa backcross and the aa x Aa backcross. (As a matter of
fact, one can further divide the backcross breeding scheme based on the sex
of the F} mice in the cross. This may be important if a sex-linked trait or
imprinting is considered. However, we ignore these possibilities in the sequel.)

Consider the aa x Aa backcross design in the context of the simple QTL
model described above in (2.2). Assume the mother is inbred and the father
is the Fy. Then x,; is always equal zero, but zr may be zero or one. The
backcross offspring are either aa homozygous, which corresponds to zy = 0,
or Aa heterozygous, which corresponds to zr = 1. The probability of each of
the values is 1/2, with corresponding phenotypic mean levels of  and p+a+4.
The resulting regression model is given by

y=p+(a+d) +e, (2.6)

with a similar equation for the AA x Aa backcross. The offspring are either
AA homozygous or Aa heterozygous. In this case, the variable 1 — x has a
Binomial(1, 0.5) distribution, and the regression model takes the form:

y=(u+2a)+ (0 —a)(l—zr) +e. (2.7)

Both models (2.6) and (2.7) have a similar form. However, their statistical
properties may be quite different depending on the relations between « and §.
Since a Bernoulli random variable with p = 1/2 has variance p(1 — p) = 1/4,
the variance component associated with the genetic factor is (« + §)?/4 for
the first model and (a — §)2/4 for the second. Consequently, the locus specific
heritability is larger for the first model if a and § have the same sign, and vice
versa if they have opposite signs. For the additive model (6 = 0) the ratios
are equal.

The intercross is a result of the mating of an F} male and an F; female. In
terms of the notation, we will refer to the intercross as the Aa x Aa cross. The
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term F5 may also be used. (Subsequent generations of mating are denoted F,,
where n is the number of generations since the initial outcross.) The offspring
of the Aax Aa intercross can have any one of three genotypes. The distribution
of the genotypes follows the ratios 1:2:1, thus = has a binomial distribution,
B(2,1/2). It was shown above (Equation (2.5) and the following sentences)
that the variance component associated with the given locus is o?/2 + §2 /4.

We turn now, with the aid of a small simulation study, to a demonstration
of the segregation of the trait in a cross. The simulation will generate segrega-
tion of the alleles from parents to offspring and the resulting expression of the
phenotype in the offspring. Recall that a parent carries two alleles at a given
locus, one inherited from the grandfather and the other inherited from the
grandmother. Only one of these two alleles will be passed on to the parent’s
offspring. According to Mendel’s first law of segregation each of the alleles has
an equal chance to be passed on. For example, if the parent is Aa at the given
locus, then it will pass with equal probabilities either the allele A or the allele
a. Of course, if the parent’s genotype is AA (aa) it will pass on the allele A
(respectively a) with certainty.

Assume the parent is an F} mouse:

>n <-9

> pat <- rep("A",n)

> mat <- rep("a",n)

> pat

[4] ™A™ MwAM™ MAM O UAM O MAM O WAMW MAM WAW WAN
> mat

[1] "a" "a" "a" "a" "a" "a" "a" "a" "a"
> mode (pat)

[1] "character"

The function “rep” produces a vector with n repeats of its first argument.
Since the first argument is a character string, the result is a vector of char-
acter strings. The content of a regular vector can either be numerical, logical
(“TRUE” or “FALSE”), character strings, raw bytes, or complex numbers.

> from.mat <- rbinom(n,1,0.5)

> offspring <- pat

> from.mat==

[1] FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE
> offspring[from.mat==1]

[1] |IA’| HA" IlAlI "All

> mat[from.mat==1]

[1] "a" "a" "a" "a"

> offspring[from.mat==1] <- mat[from.mat==1]
> offspring

[1] IIA" llAll Ilall "all llAl’ llall IIA" "All Ilall
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The vector “from.mat” is a numerical vector of zeros and ones while the vector
“from.mat==1" is a logical vector. The index of a vector is given within square
brackets. A logical vector can be used in order to select a part of a vector —
the part associated with a “TRUE” values for the indexing vector. Compare,
for example the indexing vector produced by the third expression above with
the indexed vectors given in the subsequent expressions. Finally, note that
the assignment in the sixth expression produces a vector of character strings
for the segregated alleles according to the randomization produced in the
first expression. An alternative approach for selecting a part of a vector is
by using a vector of integers for indexing. Using a minus sign will produce
the complementary vector. Examine the expressions below. (Recall that the
binary operation “a:b” produces the vector of integers between a and b. See
the the description of the function “seq”.)

> 2:6

[1] 23 456

> offspring[2:6]

[1] |IA|| Ilall Ilall IIAII llall
> offspring[-(2:6)]

[1] IIAll IlAll IlAll llall

Return to the simulation. We will need to repeat the process of segregation
of alleles from a parent to its offspring several times. It is convenient to have
a function that conducts this task, instead of writing the same lines of code
over and over again. Below we create the appropriate function and store it in
an object called “meiosis”. Observe the format of a function. It starts with
the reserved word “function”, followed by a list of its arguments enclosed
in parentheses. Next comes the expression that the function applies to the
arguments. Instead, one can put between the curly brackets a sequence of
expressions to manipulate the arguments. The output of the function is the
value of the expression, or it may also be set by the function “return”. In
our example, if the arguments of the function are the two alleles of the given
parent, then the output is the random allele segregated to the offspring. The
function “length” determines the length of a vector.

> meiosis <- function(GF,GM)

+{

+ from.GM <- rbinom(length(GF),1,0.5)
+ GS <- GF

+ GS[from.GM==1] <- GM[from.GM==1]

+ return(GS)

+ 3

> meiosis(pat,mat)
[1] llall Ilall llall "All llall ||a|l ||al| llall llall llA"

Another special type of vector is called “list”. Regular vectors must have
all their components of the same type (numerical, logical, character, bites,
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or complex). A list, on the other hand, may have any type of object as its
component.

>n <- 1075

> model <- list(mu=5,alpha=1,delta=-1,sigma=0.5,allele="A")

> phenol <- rnorm(n,model$mu,model$sigma)

> pheno2 <- rnorm(n,model$mu + 2*model$alpha,model$sigma)

> a <~ rep("a",n)

> A <- rep("A",n)

> IB1 <- list(pat=a,mat=a,pheno=phenol)

> IB2 <- list(pat=A,mat=A,pheno=pheno2)

The list “model” contains the parametrs of the genetic model. Names are
assigned to the components of the vector. One alternative for referring to a
component of a vector is by its name: “vector.name$component .name”. (Or,
one may use the format: “vector.name["component.name"]”.) The vectors
“phenol” and “pheno2” store the generated phenotypes of the two inbred
lines. Finally, we store the genotype and phenotype information of the two
inbred lines as lists, titled “IB1” and “IB2”, respectively.

The function “cross” applies the function “meiosis” in order to simu-
late a cross between two mice. The first two input arguments are lists, “fa”
and “mo”, which contain the genetic information of the two parents. The
third argument is a list with the details of the genetic model. (The format
“argument=argument.value” may be used in order to assign a default value
to the argument. The default value is used unless another value is specifically
assigned.) The output of the function is a list with the genetic and pheno-
typic information of the offspring. Note that the offspring’s “pat” genotype
is an allele from the father’s genotype and the offspring’s “mat” genotype is
an allele from the mother’s genotype. The object x is a vector of integers (0,
1, or 2), m is the vector of the offspring’s mean phenotype, and y is the vector
of expressed phenotypes.

> cross <- function(fa,mo,model)

+{

+ pat <- meiosis(fa$pat,fa$mat)

+ mat <- meiosis(mo$pat,mo$mat)

+ x <- (pat==model$allele)+(mat==model$allele)

+ m <- model$mu + x*model$alpha + (x==1)*model$delta
+ y <- m + model$sigma*rnorm(length(x))
+ return(list(pat=pat,mat=mat,pheno=y))
+}

Note that the function “cross” may use the object “meiosis” even though
this object is not implicitly passed as one of the arguments. In general, any
existing object may be used inside a function. This is a useful property, but
may cause unexpected side effects if applied carelessly.
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We apply the function “cross” in order to create the F}, intercross, and
the two types of backcross:

F1 <- cross(IB1,IB2,model)
BC1 <- cross(IB1,F1,model)
BC2 <- cross(IB2,F1,model)
F2 <- cross(F1,F1,model)

V V V V

Since we would like to make several plots of the same format, we create the
function “plot.cross” in order to facilitate plotting. The input arguments
are the name of the cross, which appears in the title of the plot, and a cross
list. The output of the function is null. The side effect is the appropriate plot.
The expression that produces the plot is very similar to those that were used
in the previous plots.

plot.cross <- function(cross.name,cross)
{

>

+

+ plot(density(cross$pheno) ,main=paste(cross.name,
+ ": mean = ",round(mean(cross$pheno),2),

+ ", sd = ",round(sd(cross$pheno),2),sep=""))
+ 3}

The following expressions produce the plots in Fig. 2.2.

> op <- par(mfrow=c(2,3))
> plot.cross("IB1",IB1)

> plot.cross("IB2",IB2)

> plot.cross("F1i",F1)

> plot.cross("BC1",BC1)

> plot.cross("BC2",BC2)

> plot.cross("F2",F2)
> par (op)

The function “par” is used in order to set the parameters for high level plot-
ting. We save the current setting of plotting in the object “op” and set the
plotting region to contain six plots in two rows and three columns. After
plotting, the default setting is restored.

Examine the six plots in Fig. 2.2. The first two plots describe the distribu-
tion of the phenotype in the two pure inbred strains. Note that the distribution
follows the bell shape of the normal distribution. The two distributions look
the same, but they have different means. The distribution of the phenotype
among the F; mice is identical to the distribution among the inbred strain
with the low expression, since the genetic effect is recessive. The picture is
the same for the BC1 = aa X Aa backcross. All animals in this cross have
at most a single A allele. Genetic variability emerges in the last two plots.
Observe that the standard deviation of the phenotype increases from 0.5 to
1 in the case of the intercross and to 1.12 in the case of the backcross. Note
that the distribution is no longer normal, but rather a mixture of normals.
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Fig. 2.2. Segregation of the phenotype in crosses

The mixture frequencies are (1/2,1/2) for the backcross and are (3/4,1/4) for
the intercross.

The investigation of the backcross and the intercross will proceed through-
out most of the part of the book that deals with experimental genetics. Other
crossing designs will be considered occasionally. In particular, we will deal with
recombinant inbred strains, which are important resources in genetic mapping.
These inbred strains are created by the formation in parallel of several F» mat-
ing pairs, followed by several generations of inbreeding within each pair. The
result is a set of inbred strains, all originating from the initial cross of the two
inbred strains. In Chap. 3 we will explain in more detail the genetic population
dynamics of the formation of inbred strains and their genetic properties.

2.3 Molecular Genetic Markers

The emergence of modern experimental genetics goes hand in hand with the
discovery and the development of the technology for genotyping molecular
genetic markers. These markers are specific variations in the sequence of the
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DNA molecule. The ability to measure these variations enables the researcher
to trace the segregation of segments of genetic material from one generation
to the next. The information gathered this way, together with the phenotypic
data, is the input used for the statistical analysis. We consider here the two
most important types of variations in the context of gene mapping: the Single
Nucleotide Polymorphism (SNP) markers and the Simple Sequence Repeat
(SSR) markers.

2.3.1 The SNP Markers

The SNP, as the name suggests, involves variation in the nucleotide at a
specific locus. While some in a population of a given species may have, for
example, the base A at a given locus on a particular strand of DNA, others
may have T at the very same location in the DNA sequence. Although, in
principle, SNPs may have four distinct alleles, in practice they are typically
bi-allelic. Another, less frequent type of a SNP, is a deletion, i.e., the absence
of a given base pair.

The SNPs are the most abundant form of variation found in the genomes
of mammals. More than a million such variations have been mapped in the
last few years in the human genome. A similar effort, currently under way for
the mouse genome and for other genomes, is sure to produce similar numbers
for use in experimental genetics in the near future.

Current technologies for genotyping involve multiplying the region of the
variation using the Polymerase Chain Reaction (PCR). Via this simple but
miraculous laboratory process, a tube that originally contained a relatively
small number of very long and complex genomic DNA molecules, ends up
containing a huge number of copies of a small segment of the molecule about
the point of variation. Thus, instead of having to determine the color of a
needle in a stack of hay, the problem becomes that of determining the color
of the needle in a stack of identical needles.

Modern technologies involve various methods of partial sequencing of the
polymorphic locus, different approaches of tagging the locus, and signaling to
an electro-optic or other type of a detection device. New technologies emerge
almost daily, pushing down the price and increasing the rate of the genotyping
of SNPs.

2.3.2 The SSR Markers

Undoubtedly, SNPs will have a significant role in the future of experimen-
tal genetics, including the mouse model. However, until that day comes, SSR
markers are still the most important form of variation for mapping in experi-
mental genetics (and in family-based linkage analysis in humans).

An SSR — more commonly known under the nickname “microsatellite” —
is a genomic element that consists of a mono-, bi-, tri-, or tetrameric sequence
repeated (hence the name) a number of times that varies from one individual
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to another. These elements are very polymorphic. They also tend to mutate
relatively rapidly. However, this is not a major concern in experimental ge-
netics and in linkage analysis, which typically involve tracing the segregation
process only a limited number of generations.

The alleles of an SSR marker are determined by the length of the SSR
element. Thus, applying PCR to segments containing the SSR element will
yield products that vary in length according to number of tandem repeats in
the alleles. Separating these products by length, either by the use of gel elec-
trophoresis, or by the use of more sophisticated capillary-based systems, gives
a direct read of the different alleles. Tens of thousands of such SSR markers
have been identified and mapped. Commercial kits for their genotyping make
this tool handy for even the most modest genetic laboratories.

2.4 Bibliographical Comments

The regression model of this chapter originated in the pioneering paper of
Fisher [30]. A systematic development of a general version of this model is
given by Kempthorne [44]. Clearly written expositions appear in Falconer and
Mackay [27], Crow and Kimura [16], Lander and Botstein [47], and Lynch and
Walsh [51], among others.

Problems

For the following problems, assume that e has a standard normal distribution.

2.1. Simulate the distribution of y for a backcross design. Do the same for an
intercross design. Consider various levels of o and 4.

2.2. Consider the two major genes additive model:
y=pu+ar; + o te, (2.8)

where z; denote the number of A; alleles at locus ¢ (i = 1,2). Assume the
genes corresponding to x; and xo lie on two different chromosomes, so by
Mendel’s laws 1 and x5 are independent.

(a) Investigate the distribution of the phenotype for various values of the
model parameters (including the probabilities p; of the allele 4;).

(b) Assume that the indicated genes are the only genes contributing to the
trait, so e can be regarded as the environmental effect F. Find expressions for
o and o . (It will be helpful to rewrite the model as in (2.3).)

(c¢) Assume in addition that the parental strains are inbred. How would you
estimate H? if you know the phenotypes of samples from both parental strains
and from the intercross?
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(d) Extend the model to include k independent genes, k& > 2. Assume that
a; = «, for all 7 and that the parental strains are inbred. Can you figure out a
way to estimate k and « from phenotypic data involving both parental strains
and the intercross progeny?

2.3. Show that (2.3) follows from (2.2). Verify that the two terms involving
xy and zp on the right-hand side of (2.3) are uncorrelated. Hence verify (2.4)
and (2.5). Hint: To facilitate algebraic manipulations, it may be helpful to
observe that |zy — 2p| = Ty + Tp — 2Ty Tp.

2.4. The model (2.3) is customarily written in the somewhat different form
y=m+d(z—2p) + Iy — 2p(1 - p) — (1-2p)(x —2p)] +e,

where & = a+(1—2p)d and § = —2 8. Show that this is the same as (2.3). The
form given in (2.3) seems slightly easier to manipulate computationally and
illustrates that what geneticists call “dominance” is exactly what statisticians
call “interaction,” in this case the interaction of the allele inherited from the
mother with that inherited from the father.

2.5. Generalize the model of Prob. 2.2 to include interaction between loci, as
follows: Starting from y = pu + ayx1 + asxe + Y122 + €, where as above the
two loci are assumed to lie on different chromosomes, re-write the model in
the form:

y=m+ai1(xy —2p1) + da(z2 — 2p2) +y(x1 — 2p1) (22 — 2p2) + €.

What are &, and é»? Find an expression for 2. The term v?p; (1—p1)pa(1—p2)
is called the interaction variance, or more precisely the additive-additive inter-
action variance to distinguish this form of interaction from other possibilities.



2 Springer
http://www.springer.com/978-0-387-49684-9

The Statistics of Gene Mapping
Siegmund, D.; Yakir, B,

2007, XX, 334 p., Hardcover
ISBN: @78-0-387-40684-9





